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Abstract

The majority of signatories to The United Nations Climate Change Conference in 2021 (COP26)
made a declaration to end deforestation by 2030. Here, we quantify future changes in land use and
associated CO, emissions to examine the impact of ending deforestation by 2030 on global land
dynamics and emissions using an open-source land-use model. We show that if the COP26
declaration to end deforestation is fully implemented globally, about 167 Mha of deforestation
could be avoided until 2050, compared to a baseline scenario which does not have extended forest
protection. However, avoided deforestation and associated emissions come at the cost of strongly
increased conversion of unprotected non-forested land to agricultural land, while land-use
intensification in most regions is similar compared to a baseline scenario. Global initiatives are
needed to facilitate a common dialogue on addressing the possible carbon emissions and
non-forest leakage effects due to the expedited loss of non-forested land under a policy aimed at

halting deforestation by 2030.

1. Introduction

The world has lost one-third of its forest, an area
approximately the size of the USA, China and India
combined (ca. 2000 Mha) compared to 10 000 years
ago [1-3]. In the past three decades (1990 to 2020),
the net global forest area loss was 178 Mha (420 Mha
deforestation and 242 Mha forest expansion) [4].
Global forest loss was, and still is, driven mainly by the
continued expansion of land for agricultural use [5,
6] with about 80% of the global deforestation being a
result of agricultural production [7, 8].

Large-scale deforestation has the potential to
alter the local climate and can contribute to global
warming [9]. Global emissions from deforesta-
tion due to agricultural expansion amounted to
3 Gt CO; in 2019 [10]. Reducing deforestation
(and forest degradation) reduces CO, emissions,
with an estimated technical mitigation potential of
0.4-5.8 GtCO, yr~! [11-15]. With such global (and

© 2024 The Author(s). Published by IOP Publishing Ltd

local) consequences, it is imperative that natural
forests are protected from deforestation.

The United Nations Climate Change Conference
in 2021 (COP26) in Glasgow, Scotland, marked a
renewed international focus on reducing emissions
from the world’s forests, with 145 nations represent-
ing 91% of global forest cover committing to work
collectively to halt deforestation by 2030 [16].

Protecting forest areas and reducing deforestation
plays an important role in climate change mitigation
[17]. The strict implementation of protected areas
in forests has been successful in limiting agricultural
expansion into forests both on regional [18] and
global scale [19]. Yet, there is a risk that forest protec-
tion efforts may stop deforestation in newly protec-
ted areas while displacing forest loss to unprotected
areas [20-23].

Investments in agricultural intensification while
protecting tropical forests is also shown to be a suc-
cessful measure to tackle deforestation from cropland
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and pastures expanding into forests if enforceable
policy mechanisms are in place [24]. Partial or non-
exhaustive land-use restrictions (e.g. logging bans)
have had mixed success in combating deforestation
for agriculture, in part because of the difficulties in
enforcing selective bans on clearing activities across
large areas [24].

Protecting existing carbon stores on land is a
priority for efficient natural climate solutions [25].
As a recurring element of the nationally determ-
ined contributions (NDCs) submitted after the Paris
Agreement, the land system has the potential to gen-
erate up to 25% of the planned emission reductions by
2030 with forests playing an important role in achiev-
ing this goal [26] by 2030. Pathways that prevent the
loss of native ecosystems are also estimated to provide
more than half of the pan-tropical cost-effective cli-
mate mitigation potential by 2050 [27].

Quantifying the implications that the COP26
declaration on stopping deforestation by 2030 have
on land use is crucial because it bears the risk to gen-
erate additional pressure on agricultural systems to
intensify and the risk to displace land-use change to
other ecosystems [23, 28]. To the best of our know-
ledge the effects of the COP26 declaration to end
deforestation on global and regional land-use dynam-
ics and emissions, as well as future emission pathways,
have not yet been studied comprehensively.

Currently, there is no single global land-use mod-
eling study, which specifically accounts for the aspir-
ation of stopping deforestation by 2030 while sim-
ultaneously accounting for the competition of land
between agriculture and forestry. It also remains
unclear if and to what extent such a mandate could
affect competition for land in the future. In this
study, we estimate for the first time the potential
CO, emissions and land-use consequences of the
declaration made at COP26 to end deforestation by
2030 using the recursive-dynamic partial equilibrium
land-use model of agricultural production and its
impact on the environment (MAgPIE) [29]. MAgPIE
accounts for competition for land between agricul-
ture and forestry at global and regional level [30]. We
also quantify the relative CO, emission savings from
such a policy compared to a baseline scenario (see
section 2).

We analyze two scenarios: 1) a baseline deforesta-
tion scenario following the middle of the road shared
socioeconomic pathway (SSP2) over the course of
this century, and, 2) a COP26 scenario where the
declaration to end deforestation by 2030 is realized
globally assuming full enforcement of such a policy
in every country across the globe. Global policy to
halt agriculture-driven deforestation is ramped up
before 2030 and fully achieved by 2030 in the COP26
scenario.

In the scenarios discussed here, deforestation
is considered as the removal of trees followed by
conversion of the erstwhile forest area to another
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land-use (e.g. agriculture). Such reclassification of
forest land to alternative land-use(s) means that the
opportunity to have regrowing trees after tree removal
is lost. Deforestation in MAgPIE under both the scen-
arios is driven by demand for agricultural land needed
to meet food, feed and livestock demand, determ-
ined via the socio-economic drivers (figure 1) in an
SSP2 world. We assume that the COP26 declaration
is implemented by 2030 uniformly across the globe
to be in line with the COP26 declaration of stopping
deforestation by 2030.

The COP26 scenario presented here is designed to
prevent any conversion of forest land (primary forest,
secondary forest and forest plantations) to agricul-
tural use (cropland and pasture) (table 3). Primary
forests are untouched forests without any sign of
human intervention [31]. Primary forest area can-
not increase in MAgPIE in both scenarios, since any
human intervention in primary forest area results in
reclassification of such area. Primary forests cannot
be converted to agricultural land in the COP26 scen-
ario. Roundwood removal from forests is allowed in
both the baseline and the COP26 scenarios.

2. Methods

2.1. Land-use model

MAGPIE is a global multi-regional land system mod-
eling framework [29, 30, 32—-35] that optimizes food,
feed, bioenergy, and timber production throughout
the 21st century. It is a partial-equilibrium model that
operates recursive-dynamically with limited foresight
using a cost-minimization approach. MAgPIE pro-
jects future land-use patterns for crop and timber
production, and captures the corresponding CO,
emissions. A graphical representation of the MAgPIE
modeling framework is shown in figure A1.

The open-source MAgPIE modeling framework
has been used to estimate global land system impacts
with competition between agriculture and forestry
[30] and quantifying synergies and trade-offs in
the global water-land-food-climate nexus [38]. The
MAgGPIE modeling framework has also contrib-
uted towards assessing global land based mitiga-
tion pathways [39], analyzing pathways to sustain-
able land-use and food systems [40], examining land-
based implications of early climate actions [41] and
assessing land-based measures to mitigate climate
change [42]. The contribution of the MAgPIE mod-
eling framework in filling research gaps pertaining
to optimal land use and competition for land, while
contributing to policy relevant discussions, makes it
a useful tool in analyzing the land-use implications
from the COP26 declaration of stopping deforesta-
tion by 2030.

This paper also incorporates the inclusion of
forestry in MAgPIE which has been missing from pre-
vious MAgPIE studies [32, 43]. Namely, the MAgPIE
model version presented here accounts for age-class
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Figure 1. Socio-economic drivers, i.e. population, income, calorie intake and demand for crop, livestock products and roundwood
on regional level in the MAEPIE modeling framework. Socio-economic drivers and developments in the scenarios discussed are
identical, corresponding to an SSP2 world. (a) Population (billion), (b) Per-capita income (USD PPP per capita yr—!), (c)
Per-capita calorie intake (kcal per capita yr—!), (d) Total demand for crop (food and feed), (e) livestock products and (f)
roundwood (industrial roundwood and wood fuel) (Mt DM yr—!). Additional numerical values are provided in tables 1 and 2.

distribution in both natural forests and forest plant-
ations, calculation of optimum rotation lengths for
forest plantations, competition between agriculture
and forestry as well as associated land-use change
emissions. An important component of elaborate
land-use decision-making in MAgPIE is based on
a land-matrix which has been updated to explicitly
represent agriculture driven deforestation, which has
also been missing from previous MAgPIE studies
which included an explicit forestry sector in the mod-
eling framework [22, 30]. Further summary of the
MAgPIE modeling lineage is provided in table 4.

2.2. Model drivers

Demand for agricultural and forest commodities
(food, feed, roundwood etc) is calculated based
on population and income projections for the 21st
century [44]. Food demand is derived based on food
demand regressions [45] and feed demand is contin-
gent on livestock demand [46]. Roundwood demand
is based on changes in population, income and
income elasticity of wooden products [30]. Age-class
distribution in natural forests is based on the global
forest age dataset [47] and age-class distribution in
forest plantations is based on forest resources assess-
ment (FRA) data on plantation forests in MAgPIE

3

[22]. Calculation of rotation lengths in forest planta-
tions is based on maximization of cumulative annual
increment [30]. Competition between agriculture
and forestry as well as associated land-use change
emissions are also based on the implementation of a
dynamic forestry sector in MAgPIE [30]. Main model
drivers are presented in figure 1 with regional defini-
tion provided in table A3.

2.3. Land cover

Land cover data for initializing the land cover in
MAGPIE is based on the land-use harmonization
(LUH) model [48]. Natural vegetation in MAgPIE is
composed of primary forest (i.e. pristine forests with
no signs of human intervention), secondary forests
(i.e. forests with some indication of human inter-
vention and management), and ‘non-forest land’ (a
land class in MAgPIE consisting of degraded forests
or uncultivated land with a lower vegetation car-
bon density than normal forests). Forests in MAgPIE
consists of primary forests, secondary forests, forest
plantations and forest plantations used for afforest-
ation purposes (i.e. due to NPIs). The initial dis-
tribution of natural vegetation in MAgPIE based
on LUH [48] is adjusted and harmonized to match
FRA Report data [49] with reallocation of natural
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Table 3. Summary of scenarios under consideration in an SSP2 world over the course of this century. a) the baseline scenario. b) the
COP26 scenario. Gray cells represent within land-class transition (e.g. cropland staying cropland). Empty cells represent additional land
transitions which are allowed (e.g. conversion from cropland to pasture land and vice versa are allowed in both scenarios). Cells with x
marked in red show the land transitions which are not allowed (e.g. primary forests cannot be converted to non-forest land in both
scenarios). Some land transitions are allowed in the baseline scenario but not in the COP26 scenario (e.g. conversion of primary and
secondary forests to cropland and pasture land is allowed in baseline scenario but prohibited in COP26 scenario). Both, baseline and
COP26 scenarios account for existing National Policies Implemented (NPIs) and offer land protection according to the World Database
on Protected Areas (WDPA). Food, feed and roundwood demand is the same in both scenarios.

a. Baseline scenario

Transition to

Cropland  Pasture Primary Secondary Forest Non-forest
forest forest plantations  land
Transition Cropland X
from Pasture X
Primary forest
Secondary forest X X
Forest plantations X
Non-forest land X
b. COP26 scenario
Transition to
Cropland  Pasture Primary Secondary Forest Non-forest
forest forest plantations  land
Transition Cropland X
from Pasture X
Primary forest X X X X
Secondary forest X X X
Forest plantations X X X
Non-forest land X

vegetation area to match country level data. Natural
forests in MAGPIE consist of primary and secondary
forests, and are defined as natural forests in MAgPIE
because these forests are not planted according to the
FRA definition of planted forests [4, 49].

2.4. Deforestation

The United Nations Framework Convention on
Climate Change (UNFCCC) defines deforestation as
the direct human-induced conversion of forest to
non-forested land [50]. FAO defines deforestation
as conversion of forest to other land use (whether
human induced or not) [31]. The FAO definition of
deforestation explicitly excludes places or cases where
trees have been harvested or logged and where the
forest is expected to regenerate naturally or with the
use of silvicultural methods [31].

In MAGPIE, we use the UNFCCC definition of
deforestation. Primary forests and secondary forests,
after harvesting or logging, are reclassified as second-
ary forests, as long as they are not converted into
agricultural land. Primary forests can be converted
to agricultural land only in the baseline scenario.
Conversion of primary forests to secondary forests
in MAgGPIE is allowed in both the baseline and the
COP26 scenario. This is followed by the expectation
of natural regrowth afterwards when primary forests
are re-classified as secondary forests due to human
intervention or management.

We also interpret the COP26 declaration as stop-
ping gross deforestation [51]. If new plantations are
established on natural forests, without classifying this
process as deforestation, this would only stop net
deforestation where primary forests could simply be
replaced with forest plantations [51, 52]. Relaxing
this constraint, i.e. ending net deforestation instead
of gross deforestation has shown to have worse out-
comes for annual CO, fluxes, resulting in higher gross
emissions and lower gross removals, resulting in over-
all higher net emissions [51]. Therefore, conversion
of primary or secondary forests to forest plantations
is considered as deforestation in MAgPIE. This inter-
pretation additionally allows us to account for biod-
iversity implications of replacing natural forests with
plantations [53].

2.5. Land use emissions

CO;, fluxes in land use, land-use change and forestry
(LULUCF) includes CO, fluxes from biomass
removal for industrial roundwood or wood fuel pro-
duction, deforestation due to conversion of forests
for alternative land use, regrowth of forests follow-
ing wood harvest or abandonment, and afforesta-
tion. Some of these activities release CO, into the
atmosphere (e.g. conversion of forests for agricul-
tural use, burning wood fuel), whereas others lead to
CO; removals from the atmosphere (e.g. regrowth,
afforestation).
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Table 4. Non-exhaustive summary of MAgPIE developments, with focus on the implementation of forestry sector within the MAgPIE

modeling framework.

MAGPIE Version

Description Reference

Mishra et al 2021

Mishra et al 2022

Humpenoder et al 2022

von Jeetze et al 2023

This study

4.3.5

4.4.0

4.6.9

First implementation of a dynamic forestry module in [30]
MAGPIE which simulates competition for land between

agriculture and forestry on same spatial scale. Also

introduced forest growth dynamics in the MAgPIE modeling
framework which included age-class calculations, rotation

constraints, dynamic carbon removal calculations and

demand for roundwood driven by socioeconomic changes.

Additional demand for engineered wood production for [22]
timber cities of the future. Increase demand for roundwood

add further pressure on the limited land resources increasing
competition between agriculture and forestry.

If sustainable land development stays exclusive to rich [36]
nations, global land-use change emissions will stay high.

Closing the inequality gap is crucial for land-based climate

efforts to meet the Paris Agreement goals.

Conserving semi-natural habitat within farmed landscapes [37]
by spatially relocating cropland outside conservation priority

areas, without additional carbon losses from land-use

change, primary land conversion or reductions in

agricultural productivity.

Stopping agriculture driven deforestation by 2030 to

simulate COP26 declaration on ending deforestation by

2030. MAGPIE is expanded by an updated land-transition

matrix which explicitly blocks the conversion of forest land

for agricultural uses. The updated land-transition matrix

also blocks indirect pathways of converting forest land to

non-forest land which are converted to agricultural land. See

table 3 for allowed transitions within land-uses in the
MAGPIE version used in this study.

In MAgPIE, for LULUCF emissions, we account
for gross land-use change emissions (land-use change
emissions not including regrowth), regrowth in
forests and non-forested land®, long-term carbon
storage in harvested wood products (HWPs), slow
release of CO, back into the atmosphere from existing
HWP pool due to decay. We account for long-term
carbon storage in HWPs according to the tier I meth-
odology of the Intergovernmental Panel on Climate
Change (IPCC) [54].

2.6. Land protection
MAgPIE simulates two types of land protection: a)
land protection based on the World Database on
Protected Areas (WDPA) [55], and b) land protec-
tion based on national policies implemented (NPI)
in accordance with the Paris Agreement [56]. Land
protection based on WDPA and halting agriculture-
driven deforestation is ramped up before 2030 and
tully achieved by 2030. NPI policies are also ramped
up until 2030 and are assumed constant after-
wards. Protected areas in MAgPIE are summarized in
table A4 and shown in figure A12.

The WDPA-based level of land protection is based
on International Union for Conservation of Nature

> Non-forested land in MAGPIE covers non-forest vegetation,
deserts, and shrublands.

(IUCN) categories Ia (strict nature reserves), Ib (wil-
derness areas), III (natural monument or feature),
IV (habitat or species management areas), V (protec-
ted landscapes), VI (protected areas with sustainable
use of natural resources) and ‘not assigned’ but leg-
ally designated areas [57]. The areas earmarked under
these protection categories are distributed equally
across all sub-land-types in MAgPIE (primary forest,
secondary forest, and other non-forested land).

WDPA is one of the largest collection of data
about terrestrial and marine protected areas world-
wide, including over 260 000 protected areas, which
makes it the most comprehensive database available
globally [58]. WDPA database is also built using a
bottom-up approach with data aggregated from the
ground level, provided by international organiza-
tions, governments, and non-governmental organiz-
ations. This makes WDPA a key resource when used
in MAGPIE for establishing a layer of protected areas
to make cost-optimal land-use decisions.

3. Results

3.1. Land-use change and land transition

Projected land-use changes between 2030-2050 dif-
fer considerably in the baseline and the COP26 scen-
ario. In the baseline scenario, cropland expands at
the cost of pasture land, primary forest, secondary
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Table 5. Global land use in 2020, 2030 and 2050. Projections shown for cropland, pasture, forest (primary forest, secondary forest and
forest plantations), non-forested land and urban areas in MAgPIE. Protected areas in MAgPIE are summarized separately in table A4.

2020 2030 2050 2050-2030
Baseline

and COP26 Baseline COP26 Baseline COP26 COP26-Baseline Baseline COP26
(Mha) (Mha)  (Mha) (Mha) (Mha) (Mha) (%) (Mha)  (Mha)
Cropland 1578 1626 1595 1725 1686 -39 -2 99 91
Pasture 3238 3226 3218 3204 3169 —35 —1 —22 —49
Primary forest 1295 1270 1285 1233 1281 48 4 —37 —4
Secondary forest 2346 2332 2363 2250 2369 119 5 —82 6
Forest plantations 152 181 181 224 222 -2 -1 43 41
Afforestation (NPIs) 177 180 180 180 180 0 0 0 0
Non-forest land 3880 3839 3831 3816 3717 —-99 -3 —23 —114
Urban 61 73 73 95 95 0 0 22 22

forest and non-forest land between 2030 and 2050
at the global level (figure 2(a)). The increase in
cropland (99 Mha) by 2050, compared to 2030 is
driven by demand for crops (for food and feed)
(table 5, figure 1(d)). Between 2030-2050, the loss of
primary forest (37 Mha), secondary forest (82 Mha)
and non-forest land (23 Mha) is largely driven by
continued deforestation in sub-Saharan Africa and
Asia (figure 2(b)) in the baseline scenario. In 2050,
the global avoided deforestation is estimated to be
167 Mha (119 Mha in secondary forests and 48 Mha
in primary forests) in the COP26 scenario compared
to the baseline scenario, largely due to the expansion
of cropland area on non-forested land in the COP26
scenario (table 5, figure A9).

Even if forest protection or conservation schemes
are implemented and enforced globally, they may
result in another sort of carbon leakage by encour-
aging farmland expansion into non-forested areas
that are not subject to forest conservation schemes
(non-forest leakage). The cropland expansion hap-
pening on pasture land and non-forested land in
the COP26 scenario instead of forest land (primary
forest, secondary forest and forest plantations) in the
baseline scenario comes from the explicit prohibi-
tion of agriculture-driven deforestation in the COP26
scenario (figure 3), making unprotected non-forested
land one of the remaining cost-effective resources for
agricultural expansion [23, 59].

Annual primary and secondary forest conver-
sion to cropland between 2030 and 2050 in the
baseline scenario is projected to be 0.6 Mhayr—!
and 3.8 Mhayr~! (figure 3). The full implementa-
tion of COP26 declaration is projected to lead to
an increased conversion of non-forested land into
cropland (4.2Mhayr~!) as well as pasture land
(1.2Mhayr~!) during the same period (2030-2050).

Most of this dynamic is driven by conversion
of non-forested land for cropland in sub-Saharan
Africa and Asia (figure A20) in the COP26 scen-
ario. The COP26 scenario also points towards higher
total global growing stocks in primary and secondary
forests compared to the baseline scenario because of

its higher forest area i.e. 167 Mha of avoided deforest-
ation in the COP26 scenario compared to the baseline
scenario between 2030-2050 (figure A10).
Concurrently, annual conversion of non-forested
land into pasture land increases in the COP26
scenario (1.3 Mhayr~!) compared to the baseline
scenario (0.1 Mhayr~—!) between 2030-2050 globally.
Similar to the conversion of non-forested land for
cropland, this dynamic is also driven by conversion
of non-forested land to pasture land in sub-Saharan
Africa and Asia (figure A20) in the COP26 scenario.

3.2. Cropland intensification and agricultural
commodity prices

In MAgPIE, food, feed and roundwood demand are
simultaneously accounted for while accommodating
competition between cropland and forestry. Yield-
increasing technological change in MAgPIE is real-
ized by intensifying agricultural land use and is meas-
ured using a 7 factor [60]. MAgGPIE estimates a mar-
ginal global agricultural yield increase of 15% in the
baseline scenario and 17% in the COP26 scenario
by 2050 compared to 2030 (figure 4(a) and table 6).
Highest projected increase in 7 factor is seen in
sub-Saharan Africa, with estimated agricultural yield
increase needed by 35% in the baseline scenario and
41% in the COP26 scenario by 2050 compared to
2030 (figure 4(a) and table 6).

Increased competition for land is a direct res-
ult of scarcity of land, which is exacerbated by the
end of agriculture-driven deforestation in the COP26
scenario. The agricultural commodity price index is
higher in regions where investments needed in yield-
increasing technological change (figure 4(a)) are high
(i.e. sub-Saharan Africa) (figure 4(b)). However, the
percentage change between 2030-2050 in the agri-
cultural commodity price index estimated globally
(—1.0%) is rather small (figure 4(b)) when com-
pared to 2030. This indicates that agricultural com-
modity prices remain relatively stable even under the
COP26 scenario, and there appears to be only a min-
imal trade-off between forest protection and agricul-
tural commodity prices. This is however not the case
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increase in land use compared to 2030 and values below 0 indicate decrease in land use compared to 2030 for respective land-use
types. Regional descriptions are provided in table A3.
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Table 6. Global and regional estimated land use intensity indicator (7) between 2030-2050.

2030 2050 Change compared to 2030 (%)
Baseline Baseline COP26 Baseline COP26
OECD90+EU 1.8 1.9 1.9 5.2 5.7
ASIA 1.6 1.8 1.9 18.3 19.7
LAM 1.4 1.5 1.5 9.3 12.5
ROW 1.0 1.2 1.2 23.7 27.1
SSA 0.9 1.2 1.3 35.0 40.5
World 1.3 1.5 1.6 14.7 17.4

in sub-Saharan Africa (in both the baseline and the
COP26 scenario) where the agricultural commodity
price index is expected to be relatively higher than the
2030 levels.

3.3. CO, emissions from land-use change

Global annual CO, emissions from land-use change
are strongly driven by changes in forest cover
(figures 2, 3, 5 and table 5). In the baseline scen-
ario, global net CO, emissions from land-use change
decrease from 1442 Mt CO, yr~! in 2030 to —681 Mt
CO, yr~!in 2050 (figure 5(A)). The global decrease
in net CO, emissions is largely driven by decreas-
ing CO, emissions in the OECD countries and EU,
as well as Latin America (table A6). In the COP26
scenario, net annual CO, emissions from land-use
change amounts to —1649 Mt CO, yr~! in 2050
(figure 5(B)), also driven by decreasing CO, emis-
sions majorly in the OECD countries (table A6).
Compared to the baseline scenario, the majority
of annual emission reductions are realized in Sub-
Saharan Africa, followed by Asia and the OECD
countries (table A6).

In the baseline scenario, global annual emission
from deforestation i.e. primary and secondary forest
conversion to non-forest areas is estimated to increase
from 6451 Mt CO, yr~! in 2030 to 7192 Mt CO, yr~!
in 2050 (figure 5(C)). In the COP26 scenario, global
annual emission from deforestation is estimated to
increase from 4836 Mt CO, yr~! in 2030 to 5567 Mt
CO, yr~!in 2050 (figure 5(C)).

Reduction in global annual emissions from defor-
estation in the COP26 scenario are realized in Latin-
America (LAM), Asia and Sub-Saharan Africa (SSA),
regions which are affected the most by cropland
driven deforestation [5] (figure 5(C)). Alternatively,
increase in global annual emissions from increased
conversion of non-forested land in the COP26 scen-
ario are realized in Asia and Sub-Saharan Africa
(SSA), regions where cropland expansion would
likely occur on non-forested land (figures 2(B)
and 5(D)).

4. Discussion

4.1. This study
We used the MAgPIE land-use modeling frame-
work with a detailed representation of food, feed

10

and roundwood production taking competition for
land into account to scrutinize the effects and con-
sequences of the declaration made at COP26 to stop
deforestation by 2030. Given limited land resources,
stopping agriculture-driven deforestation limits the
expansion potential of agricultural land and implies
trade-offs in terms of agricultural land use [23].

We find that a global realization of the COP26
declaration on deforestation could avoid about 167
Mha of deforestation globally by 2050 compared to
a baseline scenario. However, avoided deforestation
and associated emission reductions come at the cost
of strongly increasing conversion of unprotected non-
forested land to agricultural land, while land-use
intensification in most regions is similar compared to
the baseline scenario (figures 3 and 4(a)).

We also show that prohibiting agriculture-driven
deforestation leads to excessive conversion of unpro-
tected non-forested land to both cropland and pas-
ture land (figure 3). Additionally, pasture land is also
converted to cropland under the COP26 scenario.
Non-forested land and pastures are often considered
to be available for large-scale reforestation/restora-
tion projects [61]. In the COP26 scenario, we estim-
ate that a considerable amount of non-forested land
will need to be converted for agricultural use globally
(5.5 Mhayr~! for cropland and pasture, figure 3).

If non-forested land is converted to agriculture
in an extensive way, e.g. through agroforestry, the
COP26 scenario might offer a synergistic opportun-
ity by means of co-existence between agricultural
production and restoration/reforestation [62]. If the
conversion of non-forested land to agricultural land
is characterized by a focus on intensive agriculture,
this could reduce the land area available for res-
toration/reforestation. This could indirectly lead to
a conflict with climate change mitigation through
reducing deforestation or through restoring non-
forested/degraded lands.

4.2. Comparison to current literature

Our estimated overall range of emission savings via
stopping deforestation i.e. 19 Gt CO; or 0.95 GtCO,
yr~! on average between 2030-2050 (table A5), is
within the range estimated in IPCC Special Report
on Climate Change and Land between 2020-2050
(0.41-5.8 GtCOe yr— ') [63]. The annual emissions
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from land-use change in the baseline scenario are also
comparable to other IAMs [64] but lower than the
estimates of land use models which do not account
for competition for land at the same spatial scale as
MAgPIE [65].

4.3. Caveats

Our research has certain limitations due to the
assumptions that are made in MAgPIFE and the sim-
ulation design. Results discussed here are contin-
gent on the socioeconomic assumptions from the
SSP2 (‘middle-of-the-road’) scenario. As a corollary,
our results are as uncertain as future socioeconomic
developments. As established by other global land-
use models [66], uncertainty in future socioeconomic
developments brings a range of uncertainty about the
future development of the forest sector and associ-
ated land-use change. Future studies in this regard
could explore the role of the COP26 declaration on
deforestation under the full range of SSPs to assess a
broader range of uncertainty of the results.

The signatory countries of the COP26 declaration
on deforestation must differentiate between all three
types of forests [51], i.e. primary forests, regenerated
and restored forests (secondary forest in MAgPIE),
and forest plantations when trying to meet their com-
mitments. Ideally, avoiding deforestation in the best
case would mean complete protection of primary
forests i.e. stopping gross deforestation [51]. Such
differentiation already exists in the modeling frame-
work used here [22, 30] but stopping gross defor-
estation is not fully accounted for as primary forests
can be re-classified as secondary forests followed by
human intervention or management (for example
due to wood harvest, also see section 2). It is import-
ant to consider the full protection of primary forests
globally because it would likely exacerbate competi-
tion for land with possible negative consequences for
biodiversity beyond the assessment presented here.
These negative effects could also result from increased
wood harvest from secondary forests and additional
land demand for establishing forest plantations to
meet increasing roundwood demand but also from
increased conversion of non-forested land for agricul-
tural uses.

The non-forest leakage effects in the COP26 scen-
ario presented here, i.e, conversion of non-forested
areas for cropland use supports the findings of the
potential land-use impacts of forest conservation
schemes [23] and also points towards forest protec-
tion to realize the COP26 declaration on deforesta-
tion resulting in increased emissions from conversion
of non-forested land (figure 5(c)). We assume that
the potential policy discussed here, i.e. the declaration
made to end global deforestation by 2030, can be uni-
formly implemented globally. This is hardly the case
due to regional differences in governance, ownership
and legal frameworks.
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Latest research [67] also suggests that interna-
tional supply chains can play a crucial role in decreas-
ing deforestation, helped by interventions in defor-
estation risk areas that concentrate on bolstering
sustainable rural development and land governance.
The modeling framework we used here does not
account for grass-root level interventions and gov-
ernance which might help in reducing deforesta-
tion. For example, this study does not account for
regulations on deforestation free products like the
one implemented by European Union which entered
into force on the 29th of June 2023 [68]. For
this reason, the results and indicators discussed in
this study should be understood as projections or
expectations, which are valid under current modeling
assumptions.

The roundwood demand (figure 1) is the same
between the baseline and the COP26 scenario. Under
the assumptions made in MAgPIE in this study,
(figure 1), the roundwood demand is also fulfilled in
the COP26 scenario, saving as much carbon in HWPs
as in the baseline scenario (figure A11). Yet, our study
does not provide any insights into potential trade-
offs of stopping deforestation and providing addi-
tional biomass as part of a developing bio-economy
that increases biomass demands.

In the scenarios presented here, we also do not
account for the increasing demand for bioenergy,
i.e. bioenergy from non-wood fuel in MAgPIE. While
harnessing bioenergy from specifically grown energy
crops could provide a cost-effective addition to our
future energy blend [69], we cannot ignore the link-
age of increased bioenergy demand to deforestation
and biodiversity along with potential effects on food
and water security [69, 70]. Recent research has also
suggested that the overall carbon impact of bioenergy
production for replacing fossil fuels tends to be either
negative or uncertain, and at shows no relevancy to
time-sensitive climate targets [71].

5. Conclusion

To prevent negative spill-over effects from the con-
version of non-forest land to agriculture in the
COP26 scenario endemic species in such areas may
require additional protection [72]. To achieve this,
specific protection schemes would have to be put in
place [23]. Initiatives like the Global Grassland and
Savannah Dialogue Platform [73] can be critical in
facilitating a common dialogue on addressing loss of
biodiversity and CO, emissions due to the expected
loss of non-forested land in the COP26 scenario.

By preserving and improving the carbon sink and
lowering greenhouse gas emissions associated with
deforestation, forest-based climate mitigation could
be possible [26, 27]. Reduced deforestation and forest
degradation as a mitigation option appears in 26% of
the NDCs from 191 parties to the Paris Agreement
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[74] with many developing countries looking at it as
a priority with high mitigation potential.

Yet, the NDCs submitted to the NDC registry [75]
do not foresee the potential displacement effects of
forest conservation to other land uses, especially for
agriculture. Our study highlights the importance of
integrated land-use perspectives in reducing deforest-
ation as a mitigation policy and its eventual contri-
bution to climate change mitigation and competition
for land. Our study could also be used by signatories
to the Paris Agreement for updated formulations of
NDCs by addressing the potential carbon and biod-
iversity loss due to the loss of non-forested areas
under a COP26-like global forest protection policy.

Future research with a more detailed represent-
ation of the regional implementation of the declar-
ation made at the COP26 would also be needed to
better estimate the long-term land-use repercussions
and trade-offs from stopping deforestation by 2030.
There is presently a considerable amount of emphasis
on avoiding deforestation [75], including recent com-
mitments to achieve this goal at the COP26, with fur-
ther legislative initiatives in some of the leading global
economies like the European Union (EU) [8, 68, 76,
77], the United Kingdom (UK) [78], China [79], and
the United States of America (USA) [80]. It is crucial
to fuel the current global policy-driven momentum
for stopping deforestation, and such policy initi-
atives could benefit from a holistic perspective on
land use.
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Appendix

A.1. Additional information

A.1.1. Model setup

In this study, we employed the MAgGPIE 4 open-
source land-use modeling framework, specifically
version 4.6.9 with a modified land-transition mat-
rix (details in table 3). MAgPIE integrates economic
and biophysical methods to simulate global land-use
scenarios and their environmental impacts in a spa-
tially explicit manner (figures A1 and A2). Previously,
the MAGPIE framework has been instrumental in
modeling mitigation strategies for various shared
socio-economic pathways (SSPs) and has made con-
siderable contributions to multiple IPCC reports like
IPCC Special Report on land [81] and IPCC special
report on Global Warming of 1.5°C [82].

MAGgPIE’s operational scale is at aggregated spa-
tial units (simulation clusters). These clusters are
aggregated from finer spatial data on 0.5° resolution
[32, 83]. Geographically explicit data on biophys-
ical conditions are provided by the global grid-
ded crop, vegetation and hydrology model, i.e.
Lund-Potsdam-Jena managed land model (LPJmL)
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[84, 85] on a 0.5 degree resolution. Biophysical con-
straints provided by LPJmL to MAgPIE include car-
bon densities, agricultural productivity, i.e. crop
yields and water availability for irrigation. These
biophysical indicators act as additional constraints
within MAgPIE. The MAgPIE model version used
here (4.6.9) implements the COP26 declaration on
deforestation using explicit implementation of land-
transitions which prohibit conversion of forest land
to other land use types [86].

As a measure of technological advancements
enhancing yield, MAgPIE computes and utilizes an
agricultural land-use intensity factor known as (7)
endogenously. () represents the extent of crop yield
improvement resulting from human interventions or
management. The model encompasses various crop
types (detailed in table 2), in both rainfed and irrig-
ated systems. International trade patterns in MAgPIE
are informed by historical data, self sufficiency ratios
[87] and comparative advantages. Food demand
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projections stem from socioeconomic shifts such as
changes in GDP and population dynamics. For this
study, we aggregate the 12 standard model regions
of MAGPIE into 5 broader regions (as shown in
table A3).

A.1.2. Forest area, age-class allocation and roundwood
production

The area allocated to primary forests is assumed to
exist in the oldest age class. The area allocated to
secondary forests in MAgPIE follows the age classes
distribution based on the global forest age dataset
[47]. Initial forest plantation area in MAGPIE is
distributed so that a higher weight is provided to
younger age classes, reflecting the notion that plant-
ation area establishment has increased over the last
decades. After the initialization of forest areas, the
changes in forest cover are modeled endogenously
in MAgPIE. Changes in forest cover are directly
or indirectly driven by roundwood demand, timber
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harvest costs, expected yields, carbon prices, demand
for agricultural land, land-use change costs and land-
use change constraints.

Demand for roundwood can be fulfilled by realiz-
ing production from either forest plantations or avail-
able natural forests. Timber plantations are harves-
ted at maturity defined by optimal rotation lengths.
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Calculation of optimal rotation lengths in forest
plantations is based on maximization of cumulative
annual increment [30]. After every harvesting cycle,
forest age classes are shifted forward. Forest planta-
tions are protected from harvest during the specified
rotation period. Natural vegetation in MAgPIE is not
bounded by such rotational constraints.
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Table Al. General settings used for the baseline and the COP26 scenarios. Additional description of model settings are described in
https://rse.pik-potsdam.de/doc/magpie/4.6.9/. Specific model settings are part of the repository from Code and data availability section.

Model driver Setting

GDP SSP2 projection

Population SSP2 projection

Food Exogenous/Inelastic

Waste Regression-based estimation of food waste
Diet Regression-based estimation of diet

Trade balance reduction

Additional land conservation target based on
conservation priority areas

Irrigation for bioenergy crops

Pasture suitability areas

Restriction of afforestation in certain latitudes
Changes in Urban areas

Afforestation policy

Planning horizon for afforestation

Avoided deforestation policy

Avoided Other Land Conversion policy

Year by which damages to natural forests from shifting
agriculture has faded out

Scenario for non agricultural water demand from
WATERGAP model

Irrigation efficiency

1st generation bioenergy demand scenarios based on
Lotze Campen et al (2014)

Residue demand for 2nd generation bioenergy
scenarios

Distribution of age classes in forest plantations
Harvest from forest plantations

Distribution of age-classes during secondary forest
initialization
Harvest from natural forests

Roundwood demand

Land transition matrix

10 percent trade liberalization for secondary and
livestock products in 2030 2050 2100 and 20 percent for
crops

None except WDPA defined restrictions

Rainfed

SSP2+RCP4.5

Not allowed in Boreal regions (above 50 °N)
SSP2 projection

National Policies Implemented (NPIs)

50 years

National Policies Implemented (NPIs)
National Policies Implemented (NPIs)

2050

SSP2 projection

Regional static values from gdp regression
Constant at 2020 numbers

SSP2 projection

Higher weight to plantations established after 1990
Endogenously decided based on existing roundwood
demand. Harvest from plantations including age-class
shifting. All plantations are harvested at rotation age.
Plantation establishment is endogenous.

Based on Poulter et al 2018 using MODIS satellite data

Endogenously decided based on existing roundwood
demand. Harvest from natural forests includes
age-class shifting.

FAOSTAT number extrapolated based on
socioeconomic changes and Lauri et al 2019

table 1 in main manuscript
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Table A2. Full forms of abbreviations used in the manuscript along with explanatory notes where needed. Regional abbreviations are

shown in table A3.
Abbreviation  Full form Notes
COP Conference of the Parties to the United Nations
Climate Change Conferences
COP26 The 2021 United Nations Climate Change Held in Glasgow, Scotland, United Kingdom,
Conference from 31 October to 13 November 2021.
EU European Union
FRA Forest Resources Assessment Report Food and Agriculture Organization of the United
Nations (FAO) report released in 5 year cycles to
provide essential information for understanding
the extent of forest resources, their condition,
management and uses globally.
HPC High Performance Cluster
HU Humboldt University of Berlin
HWPs Harvested Wood Products
IPCC Intergovernmental Panel on Climate Change
TUCN International Union for Conservation of Nature
LUH Land-Use Harmonization University of Maryland hosted project to prepare
a harmonized set of land-use scenarios that
smoothly connects the historical reconstructions
of land-use with the future projections in the
format required for Earth System Models.
LULUCF Land use, land-use change and forestry
MAgPIE Model of Agricultural Production and its Impact
on the Environment
NDCs Nationally Determined Contribution Previously known as intended nationally
determined contribution (INDC)
NPIs National Policies Implemented
PIK Potsdam Institute for Climate Impact Research
SSp2 Middle of the road Shared Socioeconomic SSP2 is the second amongst the five Shared
Pathway Socioeconomic Pathways (SSPs)
UK United Kingdom
UNFCCC The United Nations Framework Convention on
Climate Change
USA United States of America
WDPA World Database on Protected Areas
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Table A4. Global and regional protected areas for MAgPIE from 2030 onwards (in Mha). Forest area is the sum of protected primary
forests and protected secondary forests.

ASIA LAM OECD90+EU ROW SSA World

Cropland 5 10 23 12 27 76
Non-forest land 35 72 196 120 144 567
Pasture 17 11 45 14 26 113
Forests 60 329 178 121 155 843
of which, Primary forest 29 260 52 25 44 410

of which, Secondary forest 31 69 126 96 112 433
Total 118 422 441 266 352 1599

Table A5. Global and regional cumulative emissions from land-use change. Values are for the year 2050 in comparison to 2030.
COP26-Baseline column shows the difference between the COP26 and the baseline scenario in 2050. All values in Gt CO5.

Baseline COP26 Baseline-COP26
ASIA 10 —-23 —-33
LAM —4 12 16
OECD90+EU —-23 -9 14
ROW =5 -5 0
SSA 25 9 —15
World 3 —16 —19

Table A6. Global and regional annual emissions from land-use change. All values in Mt CO, yr—'.

1

2030 2050 2050-2030
Baseline COP26 Baseline COP26 Baseline COP26 COP26-Baseline in 2050
ASIA 717 797 436 339 —282 —457 —97
LAM 725 171 —649 —541 —1373 —712 108
OECD90+EU —867 —863 —1209 —1336 —342 —473 —127
ROW —272 —315 —265 —271 7 45 =5
SSA 1138 888 1006 159 —133 —729 —847
World 1442 677 —681 —1649 —2123 —2327 —968
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Primary forest

Secondary forest

Forest plantation

Forest
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Baseline COP26
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Figure A9. Forest area change in 2050 compared to 2030 for two scenarios. Forest includes primary forest (forest landscapes
without any sign of human intervention), secondary forest (forest landscapes with some sign of human intervention, i.e. modified
and regrown forest) and forest plantations (for wood production). Values above 0 indicate increase in land-use in 2050 compared
to 2030 and values below 0 indicate decrease in land-use in 2050 compared to 2030 for respective land-use types. Regional
descriptions are provided in table A3.
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Figure A10. Global and regional change in total growing stock by 2050 compared to 2030 in primary and secondary forest
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Figure A11. Global cumulative land-use change emissions disaggregated into regions and components.
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Figure A20. Regional mean annual land transition between simulation steps during 2030-2050 for cropland, forests,
non-forested land and pasture. All values are rounded to one decimal point.
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