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Abstract
Are there group decision methods which (i) give everyone, including minorities, an
equal share of effective decision power even when voters act strategically, (ii) pro-
mote consensus and equality, rather than polarization and inequality, and (iii) do not
favour the status quo or rely too much on chance? We describe two non-deterministic
group decision methods that meet these criteria, one based on automatic bargaining
over lotteries, the other on conditional commitments to approve compromise options.
Using theoretical analysis, agent-based simulations and a behavioral experiment, we
show that these methods prevent majorities from consistently suppressing minorities,
which can happen in deterministic methods, and keeps proponents of the status quo
from blocking decisions, as in other consensus-based approaches. Our simulations
show that these methods achieve aggregate welfare comparable to common voting
methods, while employing chance judiciously, and that the welfare costs of fairness
and consensus are small compared to the inequality costs of majoritarianism. In an
incentivized experiment with naive participants, we find that a sizable fraction of par-
ticipants prefers to use a non-deterministic voting method over Plurality Voting to
allocate monetary resources. However, this depends critically on their position within
the group. Those in the majority show a strong preference for majoritarian voting
methods.
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1 Introduction

Groupsmust often reach important collective decisions, despite diverse and sometimes
contested views on the best course of action. For example, city councilmembers decide
on which public services to invest in and how to allocate them, board members can
weigh in on hiring and other company initiatives, and community members may vote
on how to allocate budgets in places with participatory budgeting. Whether informally
or formally instituted through a votingmechanism, group decisions often employ some
form of majority rule to reach a decision. This is true of Plurality Voting, but also other
common voting methods, such as Approval Voting (Brams and Fishburn 1978), which
are designed to identify “the will of the majority”. But majority rule, perceived as a
cornerstone of democracy, can also oppress minorities (Lewis 2013). At a macro scale,
this ‘tyranny of the majority’ may lead to separatism or violent conflict (Collier 2004;
Cederman et al. 2010) and ultimately to welfare losses. To give just one example,
Devotta (2005) documents the role of majority voting in the Sri Lankan separatist war,
where the political structure led to ethnic outbidding, which resulted in ethnic conflict
with the Tamil minority.

One approach to ensuring that minority positions receive adequate representation is
to develop a voting mechanism that takes into account the fundamental fairness princi-
ple of proportionality (Cohen 1997;Cederman et al. 2010). Proportional representation
does this to some extent, but if it is only used for the election of a representative body,
which then itself uses a ‘standard’ (majoritarian) voting mechanism, the tyranny of the
majority may be upheld (Zakaria 1997). This is because proportional representation
does not imply proportional power: even a 49 percent faction may not have influence
over decisions. For example, the strong and increasing polarization in the US Sen-
ate over the past several decades (McCarty et al. 2016) has limited the effectiveness
of the minority party even though it has typically held more than 40% of the seats.
This effect can be quantitatively captured by the Banzhaf and Shapley–Shubik power
indices (Dubey and Shapley 1979).

So how can effective decision-making power be proportionally distributed? In this
paper, we use a mixed-methods approach to provide an in-depth analysis of two group
decision methods—including a novel method that uses conditional commitments to
support potential consensus options that depend on others’ support. These methods
achieve fairness by distributing power proportionally and increase welfare efficiency
by supporting not just full but also partial consensus and compromise. We discuss
these methods in detail below.

Smaller groups often try to overcome the majority problem through deliberation
that is aimed at consensus or consent, but this can be time-consuming and difficult
in strategic contexts or in larger group decision settings (Davis 1992). Deliberation
may also be perceived as less legitimate than formal voting (Persson et al. 2013).
Furthermore, supporters of the status quo may block consensus indefinitely. If the
group decision protocol includes a fallback method that is applied if no consensus is
reached by some deadline, and if this fallbackmethod ismajoritarian, then themajority
has an incentive to simply wait until the fallback method is invoked. Hence common
consensus procedures often favor the status quo (Bouton et al. 2018) or are effectively
majoritarian. If voters can act strategically, thenmost common group decisionmethods
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are also effectively majoritarian. Note that in public decision-making, strategic voting
behavior appears to be common (Bouton 2013; Kawai and Watanabe 2013; Spenkuch
et al. 2018).

Within accepted or dominant social choice mechanisms, there is thus limited abil-
ity to give voice to minority positions (May 1952). Addressing this dimension may
require re-considering certain features of standard social choice mechanisms, such as
the role of chance or the distribution of voters’ weights in preference aggregation.
Deterministic decision methods that use chance only to resolve ties tend to suppress
minority positions unless voters’ weights are adjusted over time in response to their
satisfaction to achieve some form of long-term proportionality, as in “Perpetual Vot-
ing” (Lackner 2020). However, it is relatively simple to distribute effective power
proportionally with non-deterministic methods. In such methods, the winning option
is sometimes determined by some amount of chance, not only to resolve ties, but also
to achieve fairness or provide incentives for cooperation. For non-deterministic meth-
ods, it is natural to measure the effective power of a group by the amount of winning
probability that the group can guarantee their chosen option. Methods under which
any majority of > 50% can guarantee their chosen option 100% winning probability,
such as Plurality Voting, Approval Voting, Range Voting, Instant Runoff Voting, and
Simpson–Kramer Condorcet, will be called ‘majoritarian’ here.

For example, the ‘Random Ballot’ (aka ‘Lottery Voting’) method (Amar 1984),
despite having many undesirable properties, does manage to distribute effective power
in a proportional way. In thismethod, voters indicate a single option on their ballot, and
then a single ballot is drawn at random to decide the winner. Variants of this method
can also be used to achieve a distribution of effective power that falls somewhere
between the “majority-takes-all” approach of majoritarian methods and a perfectly
proportional distribution. For example, one could draw a sequence of standard ballots
until one option’s vote count is two. This method, which we can refer to as “first to
get two”, would lead to the S-shaped power distribution shown in Fig. 1.1

The question of how to support consensus while also distributing power propor-
tionally is more challenging. However, it is also important to ensure that the group
decisionmethod leads to fair and also efficient outcomes that avoid extreme results and
foster social cohesion. ‘Random Ballot’ does the opposite: voters have no incentive to
select a potential consensus option, even if it was everybody’s second-best choice and
a good compromise. Recent theoretical results show that the combination of fairness
(by which we mean proportional allocation of power) and efficiency (by which we
mean selecting good compromise options that lead to higher welfare) can be achieved
if chance is used to incentivize consensus (Heitzig and Simmons 2012; Börgers and
Smith 2014). In those papers, the main innovation was to use a lottery of voters’ first
choices as the fall-back to a consensus vote.

While employing chance to incentivize consensus can achieve fairness and effi-
ciency criteria, introducing uncertainty in collective decision-making may also be
aversive to people (Gill and Gainous 2002). However, real-world problems typically
involve unavoidable stochastic risk and other forms of uncertainty, which is thus a fea-

1 While it might seem that the area under that power curve must be 1/2 for all possible methods, this is not
so: With the Borda method, the curve is a step function jumping from 0 to 1 at |G|/|E | = 2/3. Supplement
3.1.4 contains derivations of these facts.
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Fig. 1 Distribution of effective power by type of group decisionmethod. Effective power of a subgroupG of
an electorate E, as a function of relative group size |G|/|E |, for different types of voting methods. Dashed:
Majoritarian, deterministic methods. Solid: Proportional, non-deterministic methods such as Random Bal-
lot, Full Consensus/Random Ballot, Full Consensus/Random Ballot/Ratings, and two novel methods: Nash
Lottery and MaxParC. Dotted: An example of a non-proportional, non-deterministic method (“first to get
two”) (color figure online)

ture of everyday life that constituents are familiar with (Carnap 1947). Additionally,
there is prominent theoretical literature on such non-deterministic collective deci-
sion methods (e.g., Brandl et al. 2016). Furthermore, non-deterministic procedures
are routinely used in diverse contexts, including learning (Cross 1973), optimization
(Kingma and Ba 2014), strategic interactions (Harsanyi 1973), tax audits and mech-
anism design more generally, or the allocation of indivisible resources (e.g. school
choice) (Troyan 2012). There are also an increasing number of proposals to use these
methods for deciding on the composition of citizens’ councils (Flanigan et al. 2021)
or even appointing officers, as in ancient Athens. These examples demonstrate that
introducing an element of chance is one way to achieve certain desirable properties of
collective decision mechanisms.

Problem statement. In this article, we adopt the working hypothesis that non-
deterministic voting methods with clear advantages in terms of ethical criteria (e.g.
fairness) or economic criteria (e.g. welfare) should be considered by constituents in
situations where (a) collective decisions are made often and (b) the decisions are not
momentous. This includes regularly occurring group decisions about the governance
and management of day-to-day affairs, and excludes large-scale and infrequent elec-
tions of representatives.

With this context in mind, we provide a normative analysis of two such group
decision methods, introduced in Sect. 2, and show that they achieve fairness by dis-
tributing power proportionally and increase welfare efficiency by supporting not just
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Fig. 2 Archetypal group decision problem with potential for suppression of minorities, partial consensus,
or full consensus. Consider a situation where each of three factions of different size (column width) has a
unique favourite outcome (topmost). However, there might also be a potential ‘partial consensus’ option
Y and/or a potential ‘full consensus’ Z . Assuming strategic voters, majoritarian methods will result in
X1 for sure if faction F1 forms a majority. A notable exception is the Borda method, which might result
in Y or Z unless F1 forms at least a two-thirds majority. In contrast, the two non-deterministic methods
we consider—Nash Lottery and MaxParC—will select Z with certainty when it is present (green); one of
X1,2,3 with probabilities proportional to faction size when neither Y nor Z are present (orange); and Y or
X3 with proportional probabilities if Y but not Z is present (blue) (color figure online)

full but also partial consensus and compromise (Sect. 3). One of these methods, the
Nash Lottery, is adapted from a different context and can be interpreted as a form of
automatic bargaining using the Nash bargaining solution. The other,Maximal Partial
Consensus (MaxParC), is novel and is based on the idea of making one’s commit-
ment to support a potential consensus option conditional on others’ support for that
option. We complement this theoretical analysis with two empirical approaches: one
based on large-scale experiments with simulated agents (Sect. 4) and one based on
a virtual lab experiment with real participants recruited from Amazon Mechanical
Turk (Sect. 5). The simulation analyses allow us to assess any potential welfare losses
from implementing these decision rules relative to common alternatives and how agent
and problem characteristics affect the amount of randomness needed to reach a group
decision. In the virtual lab experiment, we elicit participants’ preferences between
MaxParC vs. Plurality Voting, and assess whether preferences depend on the degree
of distributive inequality facing the group or demographic and socioeconomic char-
acteristics of our respondents. Given the complexity of this mixed-methods approach,
we have complemented the main text with an extensive Supplement containing more
details about the three parts of the paper (theory, simulations, behavioural experiment),
but have still tried to keep the main text largely self-contained.

Example. As a paradigmatic test case (Fig. 2), consider a hypothetical group of three
factions, F1, F2, F3, with sizes S1,2,3 (in percent of voters). Assume that each faction
has a preferred option, X1,2,3, respectively, that is not liked by the other two factions.
Now suppose there is a fourth option, Y , which is not liked by faction F3, but which
is liked by factions F1,2 almost as much as their respective favourites, X1,2. Let us
call Y the ‘partial consensus’ outcome for factions F1,2. While what one might call
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‘welfare efficiency’ (picking an option that is scoring high in terms of some metric of
utility or welfare) seems to require that option Y has a considerable chance of being
selected, proportionality requires that X3 also has some chance of winning—namely,
an S3%chance. The twogroup decisionmethods described in this paper assignwinning
probabilities of S1 + S2% to Y and S3% to X3. Importantly, they do so not only if
all voters vote “sincerely” (i.e., honestly according to their true preferences) but also
if some or all voters vote strategically (e.g., by misrepresenting their preferences in a
certain way).

If we now introduce a fifth option, Z , that F1,2 like only slightly less than Y , and
which faction F3 likes almost asmuch as X3, thenboth decisionmethodswill select this
‘full consensus’ option Z for sure. In contrast, if the faction sizes fulfil S1 > S2+S3 and
if voters act strategically, then virtually all existing group decision methods will either
pick X1 with certainty, or will assign probabilities of S1,2,3% to X1,2,3, respectively. In
both cases, thesemethods would ignore the potential compromise options Y and Z and
would thus achieve lower overall welfare as compared to the two non-deterministic
methods highlighted in this paper. In fact, no deterministic decision method is able
to ensure that Y gets a chance without also rendering faction F3’s votes completely
irrelevant! Recognizing F3’s votes can only be achieved through the introduction of a
judicious amount of chance.

So how exactly should a non-deterministic group decision method be designed to
achieve both efficiency and fairness (taken here to mean effective proportionality),
even when voters act strategically, but also other consistency requirements typically
studied in social choice theory—such as anonymity, neutrality, monotonicity, and
clone-proofness—that make it plausible and hard to manipulate? We demonstrate two
such methods using a combination of ingredients from existing group decision meth-
ods (i.e., Approval Voting and Random Ballot), game theoretical concepts (i.e., the
Nash Bargaining Solution), and Granovetter’s “threshold” model of social mobilisa-
tion (Granovetter 1978).

2 Two possible solutions

The Nash Lottery. The first method we highlight and include in our study is what we
call the Nash Lottery (NL). It is an adaptation of ‘Nash Max Product’ or ‘Maximum
Nash Welfare’ from the literature on fair division of resources. As suggested in Aziz
et al. (2019), we translate it to our context by interpreting winning probability as
a “resource” to be divided fairly, and study the strategic implications of doing so.
The Nash Lottery can be interpreted as a form of automatic bargaining by means of
the well-known Nash Bargaining Solution. Similar to score-based methods such as
Range Voting (RV) (Laslier and Sanver 2010), it asks each voter, i, to give a rating,
0 � rix � 100, for each option x . Like Range Voting, the Nash Lottery then assigns
winning probabilities, px , to all options x so that a certain objective quantity, f (r , p),
is maximized.

Range Votingmaximizes the quantity f (r , p) = ∑
i
∑

x ri x px ,which is motivated
by its formal similarity to a utilitarian welfare function. This results in a majoritarian
method that is deterministic (i.e., we usually have px = 1 for some x except for ties).
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This determinism is because f (r , p) is a linear function of p. But that method neither
distributes power proportionally nor supports consensus when voters are strategic. In
the example of Fig. 2, faction F1 will quickly notice they can make X1 win for sure by
putting rix = 0 for all other options. Indeed, Range Voting is more or less strategically
equivalent to the simpler Approval Voting (Dellis 2010). As a consequence, strategic
voters almost never have an incentive to make use of any other rating than 0 or 100. In
case there is no Condorcet winner (an option preferred to each other option by some
majority), which is not too unlikely (Jones et al. 1995), there is not even any strategic
equilibrium between factions, and thus the outcome is largely unpredictable.

The Nash Lottery instead maximizes the quantity

f (r , p) =
∑

i

ln

(
∑

x

ri x px

)

, (1)

which gives a non-deterministic method (i.e., usually several options have a positive
winning probability px ) that supports both full and partial consensus. In Supplement
3.1.5, we prove that in situations similar to Fig. 2, a full consensus will be the sure
winner under the Nash Lottery, and a partial consensus would get a proportional share
of the winning probability. This would be so both in the case where voters are sincere
and in a certain strategic equilibrium. Even more so, we show in Supplement 3.1.4 that
using the logarithm rather than any other function of

∑
x ri x px is the only possible

way to achieve a proportional distribution of effective power.
The Nash Lottery is conceptually simple, and we will see below that it has some

additional desirable properties beyond distributing power proportionally and incen-
tivizing consensus, such as being immune to certain manipulations, e.g., adding a bad
option to affect the tallying process in ways beneficial to the manipulator. However,
this group decisionmethod also has three properties we consider important drawbacks.
Its tallying procedure requires performing an optimization task for which we know of
no pen-and-paper solution method. It also lacks an intuitive ‘monotonicity’ property:
as we will prove below, when a new option is added or a voter increases some existing
option’s rating, this might increase rather than decrease some other option’s winning
probability. Last but not least, we will see in our simulations that the Nash Lottery
employs considerably more randomness than our second method: it less often pro-
duces a deterministic result, and the resulting lotteries have larger entropy and smaller
maximal probability.

Maximal Partial Consensus (MaxParC).All three issues are addressed by our second
method that we develop in this paper, Maximal Partial Consensus (MaxParC). This
method is conceptually more complex, but is also strongly monotonic, easier to tally,
and leads more often to a deterministic winner in simulations. Like with Random
Ballot, each voter’s “vote” represents an equal share, 1/N , of the winning probability,
where N is the number of voters. But unlike Random Ballot, MaxParC allows each
voter to “safely” transfer their vote from their favourite option to a potential consensus
option, thereby incentivising voters to find and implement good compromise options.
This safety is achieved by making sure the vote transfer only becomes effective if
enough other voters transfer their votes as well. This effect is achieved by using
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a design element that allows voters to make conditional commitments to approve
compromise options.

To motivate the need for conditional commitments and our precise design, we can
first consider a simpler method that distributes power proportionally but does not
sufficiently incentivise compromise: the ‘Conditional Utilitarian Rule’ (CUR) from
Duddy (2015) and Aziz et al. (2019), a probabilistic, proportional method based on
approval ballots. In CUR, each voter states whether or not they approve each option.
A ballot is then drawn at random and, from the options approved on this ballot, the
one with the largest overall number of approving ballots wins.

In the test case of Fig. 2 with S1 > S2 + S3, if all voters approved Z , Z would be
the most-approved option and CURwould elect Z for sure. But faction F2 would soon
realize that if they all withdrew their approval of Z , Z would still be themost-approved
option. All votes from F1 ∪ F3 would still go to Z , while the votes from F2 would
now go to their favourite, X2,which is a strict improvement for F2.Approving Z , and
thus transferring votes from X1 to Z , can be seen as an “unsafe” contribution by F1
to a public good that can be exploited by F2 who can “free ride” by not approving Z .

As in a public goods game, unanimous approval of the potential consensus option is
not a strategic equilibrium under CUR, hence Z would not necessarily win.

The solution we propose is that F1 ∪ F3 should be given the possibility to condition
their approval of Z on others’ approval of Z .This wouldmean that when F2 withdraws
approval of Z , others do so as well, resulting in everyone’s votes going back to their
favorite options Xi , which is no longer an improvement for the deviators in F2. While
one can imagine various ways by which an approval might be made conditional, we
propose an intuitive approach inspired by Granovetter’s threshold model of social
mobilisation (Granovetter 1978; Wiedermann et al. 2020).

In MaxParC, rather than stating their approval directly, voters again assign numer-
ical ratings, 0 � rix � 100. These are now interpreted as a ‘willingness to approve’,
stating that “voter i approves option x if strictly less than rix percent of all voters do
not approve x .” For example, a zero rating means “don’t approve no matter what”. A
rating of 100 means “approve for sure”. Values in between mean “approve if enough
others do so.” All ratings together result in a set of mutually dependent constraints
that determine which voter ends up approving which options. It turns out that this set
of equations can be solved quite easily using the methods from Granovetter (1978).
For each option x, one first sorts the ballots in ascending order w.r.t. their rating of x .
One then identifies the first ballot, i, that is preceded by strictly less than rix percent
of all ballots. This ballot i, and all later ballots j (those with r j x � rix ), “approve” x .
In other words, the rating of this “pivot” voter i serves as a “cutoff” value for every-
one’s approval of x . Graphically, the cutoff can easily be identified by finding the first
intersection of the sorted ratings graph with its main diagonal, as in Fig. 3 (right).2

After determining which voters approve which options, MaxParC then applies CUR
on the so-calculated approval data. In case of remaining ties, the aggregated rating
values decide.

2 It would be harder to find a convincing solution if the conditions were not in terms of approval but in terms
of where a voter’s unique vote goes—as in the “increasing group activity selection problems” of Darmann
et al. (2012), Darmann (2019) and Abramowitz et al. (2021)—since then several maximal solutions might
exist and monotonicity becomes an issue, see Supplement 3.1.2.
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Fig. 3 Group decision method MaxParC from the view of some voter Alice. Left box: Each rating value
(thick colored needles coming in from the left) represents a conditional commitment by Alice to approve
the respective option. Approval scores (nos. of voters approving an option) are represented by light bars
coming in from the right, options are sorted by descending approval score. The rating of 13 for option C,
for instance, is interpreted as saying that Alice approves C if and only if less than 13 percent of voters do
not approve C. In other words, Alice is counted as approving an option if her rating needle overlaps with
the approval score bar (green needles), and is otherwise counted as not approving the option (blue needles).
Right diagrams: Approval scores can be determined graphically in a way similar to Granovetter (1978)
by finding the leftmost intersection of the graph of ordered ratings with the main diagonal. Alice’s “vote”
(= share of 1/N of the winning probability) goes to the most-approved option approved by her (dark green
needle). The resulting overall winning probabilities are shown as pie charts to the very left (color figure
online)

Figure 3 illustrates the MaxParC procedure, which can (at least in principle) be
performed using pen and paper. It is easy to see that if at least one option is rated
positively by everyone, then among all such options the one with the largest aggregate
rating will win for sure. In that case, MaxParC is like Range Voting restricted to the set
of universally approved options. Only if no option gets all positive ratings will chance
really play a role. For voters who are risk-averse, the potential use of chance can act
as an incentive to identify good compromises and rate them positively, as in Heitzig
and Simmons (2012). Indeed, MaxParC supports partial and full consensus in the test
case of Fig. 2: all voters will give Z a slightly positive rating, resulting in its certain
selection; if Z is not available, the F1,2 voters will give Y a rating slightly above S3
and thus transfer their votes and the corresponding winning probability safely from
X1,2 to Y . In both cases, no voter has an incentive to reduce their rating of Y or Z
in order to reserve their vote for their favourite option, because that would cause all
others’ votes to go back to their favourites as well since their condition for approval
would no longer be met.

In the next section, we provide some theoretical analysis of the formal properties of
the Nash Lottery andMaxParC, which verifies that these two methods perform well in
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terms of various qualitative criteria. In the subsequent sections, we use an agent-based
model to make quantitative comparisons among various methods and a virtual lab
experiment to understand the perceptions and preferences of American respondents
with respect to MaxParC as compared to Plurality Voting. We limit the latter study
to MaxParC due to the desirability of MaxParC relative to the Nash Lottery along
various dimensions as well as financial and sampling constraints.

3 Formal analysis

Formally, we study (probabilistic voting) methods M : B(C)E → �(C), where
C = {1, . . . , k} is a choice set of k > 1 options (aka alternatives, candidates), denoted
x, y, . . . ; E = {1, . . . , N } is an electorate of N > 2 voters, denoted i, j, . . . ;
B(C) �= ∅ is the set of possible (filled-in) ballots b; B(C)E is the set of (ballot)
profiles β = (β1, . . . , βN ), specifying a ballot for each voter; and �(C) is the set of
possible (winning) lotteries �, i.e., probability distributions on C . We interpret M as
a mechanism where the voters supply ballots βi and then the winning option is drawn
at random from the distribution M(β). If B(C) = [0, 1]C , so that b ∈ B(C) assigns
ratings 0 � bx � 1 to all options, we call M ratings-based. For convenience, we use
abbreviations such as

∑
x and

∑
i for

∑
x∈C and

∑
i∈E where no confusion can arise.

The Nash Lottery (NL) is the ratings-based method MNL defined as follows. Given
β ∈ B(C)E , for allm = 1, 2, 3, . . . , put rmi (�) = ∑

x �x
m
√

βi x for all i and � ∈ �(C),

and define a continuous, continuously differentiable, and weakly concave function
Sm : �(C) → R by Sm(�) = ∑

i ln r
m
i (�) ∈ [−∞,∞). The “Nash sum” S1 has a

global maximum that is attained on a compact convex set T 1 = argmax� S1(�) ⊆
�(C). If T 1 = {�}, we put MNL(β) = �. Otherwise we break the tie as follows: For
m � 2, Sm restricted to Tm−1 has a global maximum that is attained on a compact
convex set Tm ⊆ Tm−1. Then also T = ⋂∞

m=1 T
m is non-empty compact convex,

hence Lebesgue-measurable, and hence has a well-defined unique centre of mass
�∗ = ∫

T �d�/
∫
T d� with � ∈ T because of the convexity. We then put MNL(β) = �∗.

Maximal Partial Consensus (MaxParC) is the ratings-based method MMaxParC
defined as follows. Given β ∈ B(C)E , for all x, let Ax (the set of voters who
approve x) be the largest subset A ⊆ E such that ∀i ∈ A : |A|/N + βi x > 1.
Let sx = |Ax | +∑

i βi x/N (the score of x, basically the approval score with ties bro-
ken by average ratings). For all i, put Ai = {x : i ∈ Ax } (the set of options approved
by i) andWi = argmaxx∈Ai sx (the highest-scoring options approved by i, typically a
singleton). Also, put A∅ = E − ⋃

x Ax (the set of abstaining voters). If A∅ �= E, put
MMaxParC(β)x = ∑

i :x∈Wi
1/|Wi |(N−|A∅|).Otherwise, letW = argmaxx sx and put

MMaxParC(β)x = 1x∈W /|W | (if no-one approves anything, use a uniform distribution
on the highest-scoring options, typically a unique option). Note that we have rescaled
the ratings from [0, 100] to [0, 1] here (and in the Supplement) for convenience.

The method Random Ballot is defined by B(C) = C and MRB(β)x = |{i : βi =
x}|/N . Full Consensus/Random Ballot (FC) (“Voting method 1” from Heitzig and
Simmons 2012) is defined by B(C) = C2, βi = (β1

i , β
2
i ), MFC(β)x = 1 if ∀i : β1

i =
x (full consensus), and M(β)x = |{i : β2

i = x}|/N if � ∃y ∀i : β1
i = y (use RB as
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fallback if no full consensus exists). Full Consensus/Random Ballot/Ratings (RFC)
(“Votingmethod 2” fromHeitzig andSimmons 2012) is defined by B(C) = C2×[0, 1]
and MRFC(β)x = |Ax |

N + (1 − |A|
N )

px
N (draw a voter, elect the proposed x if x is a

potential full consensus, otherwise use the benchmark lottery). In this, Ax = {i |
β1
i = x∧∀ j : β3

j x � r j } (voters who propose x where x is a potential full consensus),
r j = ∑

x pxβ3
j x/N (effective ratings of the benchmark lottery), px = |{i : β2

i = x}|
(benchmark lottery), and A = ⋃

x Ax (voters who propose a potential full consensus).
Supplement 2.2 has more details on these methods and the formal framework.

3.1 Consistency, manipulability and fairness properties

We restrict ourselves to a subjectively chosen set of basic properties here that can
be proved or disproved easily, leaving a more comprehensive axiomatic treatment to
future work.

Let�(A) be the set of all permutations on A.We say that amethodM is anonymous
iff for all β ∈ B(C)E and σ ∈ �(E), M(β ◦ σ) = M(β). We call M neutral
iff for all β and σ ∈ �(C), M(β ′) = M(β) ◦ σ, where β ′

i = βi ◦ σ for all i .
We call a ratings-based M Pareto-efficient (w.r.t. stated preferences) iff M(β)y = 0
whenever ∃x ∀i : βiy < βi x . We call a ratings-based M almost surely resolute iff the
set

{
β ∈ B(C)E : |{x : M(β)x > 0}| > 1

}
has Lebesgue-measure zero.

We consider two versions of ‘mono-raise’ monotonicity from Woodall (1997). We
call a ratings-based M weakly mono-raise monotonic iff M(β)x � M(β ′)x whenever
∃i : βi x > β ′

i x ∧ (∀y �= x : βiy = β ′
iy) ∧ ∀ j �= i : β j = β ′

j (decreasing an option’s
rating does not increase its chances). We call a ratings-based M strongly mono-raise
monotonic iff M(β)y � M(β ′)y whenever ∃i ∃x �= y : βi x > β ′

i x ∧ (∀z �= x : βi z =
β ′
i z) ∧ ∀ j �= i : β j = β ′

j (decreasing an option x’s rating does not decrease any other
option y’s chances). Note that the strong version implies the weak one.

Regarding manipulability by introducing or removing options, we only study two
properties. We call a neutral, ratings-based M option-removal monotonic iff ∀y < k :
M(β)y � M(β ′)y whenever β ∈ B([k])E and β ′ ∈ B([k − 1])E with ∀i : β ′

i =
βi |[k−1] (removing an option does not decrease any other option’s chances). We call
a neutral, ratings-based M independent from losing options iff ∀y < k : M(β)y =
M(β ′)y whenever β ∈ B([k])E and β ′ ∈ B([k − 1])E with ∀i : β ′

i = βi |[k−1] and
M(β)k = 0 (removing an option with no chance does not change any other option’s
chances). Note that option-removal monotonicity implies independence from losing
options.

Generalizing the ‘Core Fair Share’ axiom fromAziz et al. (2019) to our framework,
we say an anonymous method M allocates power proportionally (aka is proportional)
iff ∀x ∀m � N ∃βm ∈ B(C)[m] ∀βN−m ∈ B(C)[N ]\[m] : M(βm, βN−m)x � m/N
(a coalition of m voters have a way of voting that guarantees option x a chance
at least m/N ). In contrast, we call M majoritarian iff ∀x ∀m > N/2 ∃βm ∈
B(C)[m] ∀βN−m ∈ B(C)[N ]\[m] : M(βm, βN−m)x = 1 (a strict majority can guaran-
tee x a sure win). Obviously, a majoritarian method (blue line in Fig. 1) cannot allocate
power proportionally (green line in Fig. 1).
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Proposition 1 MNL, MMaxParC, MRB, MFC, and MRFC are anonymous, neutral, and
allocate power proportionally. MNL and MMaxParC are Pareto-efficient. MMaxParC

is almost surely resolute. MMaxParC is strongly mono-raise monotonic and option-
removal monotonic, but MNL is neither.

Plurality Voting, Approval Voting, Range Voting, Instant-Runoff Voting, and all
Condorcet-consistent methods are majoritarian, independently of which tie- or cycle-
breaking method is used.

Proof Anonymity and neutrality are straightforward from the definitions.
Pareto-efficiency of MNL: We show that for lotteries where �y > 0, S1(�) can be

increased by moving y’s probability mass to x . Let � = MNL(β), assume �y > 0, and
define �′ ∈ �(C) by �′

x = �x + �y > �x , �′
y = 0 < �y, and �′

z = �z for all other z.
Then ∀i : r1i (�′) > r1i (�) � 0, hence S1(�′) > S1(�) and � /∈ T 1 ⊇ T � MNL(β), so
MNL(β) �= � after all.

Pareto-efficiency ofMMaxParC:We show that y is no-one’s highest-scoring approved
option. We have Ay ⊆ Ax , thus a′

y < a′
x , hence y /∈ W and ∀i : y /∈ A′

i , so
MMaxParC(β)y = 0.

MNL is proportional: Assume βm
ix = 1, ∀y �= x : βm

iy = 0, �∗ = MNL(β), and �∗
x <

m/N . We show that moving an infinitesimal probability mass towards x will strictly
increase S1(�), so that �∗ /∈ T 1, a contradiction. For ε � 0, let �ε

x = (1 − ε)�∗
x + ε

and �ε
y = (1 − ε)�∗

y for all y �= x . Then indeed

∂εS
1(�ε)|ε=0 =

∑

i

∑
z ∂ε�

ε
z |ε=0 βi z

∑
z �∗

zβi z
=

∑

i

(1 − �∗
x )βi x − ∑

y �=x �∗
yβiy

�∗
xβi x + ∑

y �=x �∗
yβiy

>
∑

i�m

(1 − m/N )

m/N
+

∑

i>m

(1 − m/N ) × 0 − ∑
y �=x �∗

yβiy

m/N × 0 + ∑
y �=x �∗

yβiy
= 0.

MMaxParC is proportional: With the same βm, we get ∀i � m : Wi = Ai = {x},
hence MMaxParC(β)x � m/N .

MRB, MFC, MRFC are proportional: It is easy to see that βi = x in MRB, β1
i =

β2
i = x in MFC, and β1

i = β2
i = x, β3

i x = 1 ∧ ∀y �= x : β3
iy = 0 in MRFC suffice to

make M(β)x � m/N .

Almost sure resoluteness of MMaxParC: Except for a set of measure zero, we have
∀i, x : βi x > 0 and ∀x �= y : sx �= sy, which implies ∃x∗∀y �= x∗ : sx∗ > sy,
∀i : Ai = C, Wi = {x∗}, and hence MMaxParC(β)x∗ = 1.

Strong mono-raise monotonicity of MMaxParC:We show that when going from β ′ to
β, only x can gain approval or score and thuswinning probability. Let A′, s′,W ′ denote
the versions of A, s, W that are based on β ′ instead of β. Then Ax ⊇ A′

x , sx > s′
x ,

∀y �= x : Ay = A′
y ∧sy = s′

y, ∀ j : A j ∈ {A′
j , A

′
j ∪{x}}∧Wj ∈ {{x},W ′

j ,W
′
j ∪{x}},

A∅ ⊆ A′
∅, and W ∈ {{x},W ′,W ′ ∪ {x}}. Hence, ∑

i :y∈Wi
1/|Wi |(N − |A∅|) �∑

i :y∈Wi
1/|Wi |(N − |A∅|) and MMaxParC(β)y = 1y∈W /|W | � MMaxParC(β)y =

1y∈W /|W | for all y �= x .
Option-removal monotonicity of MMaxParC: Similarly, we show that when con-

catenating the ratings for option k to β ′ to get β, no y �= k can gain approval
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or score and thus winning probability: Again, ∀y �= k : Ay = A′
y ∧ sy = s′

y,

∀ j : A j ∈ {A′
j , A

′
j ∪ {k}}. The rest of the argument is the same as for strong mono-

raise monotonicity with x = k.
Counterexample to MNL being strongly mono-raise monotonic: Consider N = 2,

k = 3, x = 1, y = 3, β1 = (1, 1/6, 0), β2 = (0, 3/4, 1), β ′
1 = (1/2, 1/6, 0), and

β ′
2 = β2. Then M(β) = (1/2, 0, 1/2) and M(β ′) = (1/4, 3/4, 0), hence M(β)3 >

M(β ′)3 although only a rating for option 1 was increased.
Counterexample to MNL being option-removal monotonic: Consider the same β

and now y = 1. Then M(β ′) = (2/5, 3/5), hence M(β)1 > M(β ′)1.
Other options being majoritarian: It is straightforward to see that for all of those

methods, if all i ∈ [m] specify x as the unique top-ranked option on βi , or put βi x = 1
and ∀y �= x : βiy = 0 in case of Range Voting, then x will win for sure because
m > N/2. ��
In Supplement 3.1.4we also show that replacing the logarithm by some other function
in the definition of MNL will destroy proportionality. Extensive numerical simulations
suggest further:

Conjecture 1 MNL isweaklymono-raisemonotonic, independent from losingoptions,3

but not almost surely resolute.

A complete formal treatment of clone-proofness is beyond the scope of this paper. We
only discuss the case here where for profile β, there are no relevant ties and then an
additional option k + 1 is introduced whose ratings are exactly the same as for some
existing option, say k, giving a profile β ′. More precisely, if for β, the tie-breaking
set T of MNL is a singleton {�∗}, then with β ′, we have T = {�′ ∈ �([k + 1]) :
�′|[k−1] = �∗|[k−1]} and thus MNL(β ′)|[k−1] = MNL(β)|[k−1]. Similarly, if for β, all
scores sx are distinct, then with β ′, allWi ∈ {{x} : x < k}∪{{k, k+1}} and thus again
MMaxParC(β ′)|[k−1] = MMaxParC(β)|[k−1]. In other words, adding an exact clone does
not change the chances of non-cloned options unless there are already too many ties.

3.2 Consensus-supporting properties

We restrict our formal analysis to the case presented in Fig. 2 of the introduction,
treating it as a one-shot, simultaneous-move, “factional” game in which the players
are not the individual voters but the factions F1, F2, F3. Without loss of generality,
assume C = [5] = {X1, X2, X3,Y , Z}, E = F1 ∪ F2 ∪ F3, F1 = {1, . . . , N1}, F2 =
{N1+1, . . . , N1+N2}, F3 = {N1+N2+1, . . . , N }, and N1 � N2,where Nt = |Ft |,
N = N1 + N2 + N3, and nt = Nt/N for t = 1 . . . 3. The (pure) strategy st of faction
Ft is then to choose the ballots of all its members, st ∈ B(C)Ft , resulting in profile
β = (s1, s2, s3) ∈ B(C)E . Player Ft ’s payoff for lottery � ∈ �(C), πt (�), is the sum
of its members’ expected utility functions,

∑
i∈Ft

∑
x �xuix . Their expected payoff

resulting from profile β under method M is then πt (M(β)) = ∑
x M(β)x

∑
i∈Ft uix .

Assume that individual utilities are as follows: ∀i ∈ Ft , t ′ �= t : ui Xt = 1 ∧
ui (Xt ′) = 0 ∧ ui Z = vZ < 1, ∀i ∈ F1 ∪ F2 : uiY = vY < 1, and ∀i ∈ F3 : uiY = 0.

3 The case where T 1 is a singleton is readily proved, only the tie-breaking case is the hard part.
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Finally, assume vZ > max{n1, n2, n3}, and vZ > (n1 + n2)vY . In other words, all
factions prefer Z to the benchmark lottery �bXt

= nt , �bY = �bZ = 0; and factions F1,
F2 prefer Z also to the “partial consensus” lottery �cX3

= n3, �cY = n1 + n2.
We now show that under MaxParC, the game has strong equilibria in which full or

partial consensus is realized.

Proposition 2 In the above situation, if M = MMaxParC and (n1 + n2)vY � vZ , then
the factional game has a strong Nash equilibrium β in which M(β)Z = 1.

Proof First, we note that under any possible resulting lottery �, total payoffs would
be �(�) = N1�X1 + N2�X2 + N3�X3 + NvZ�Z + (N1 + N2)vY �Y � NvZ , hence the
grand coalition of all three factions has no way to improve their payoff if M(β)Z = 1.

We show that the following profile fulfils the claim: ∀i ∈ Ft , t ′ �= m : βi Xt =
1 ∧ βi Z = 1/N ∧ βi (Xt ′) = βiY = 0. With this β, factional and total payoffs are
πt (M(β)) = NtvZ and �(M(β)) = NvZ .

Faction F3 alone could increase their payoff π3(�) = N3(�X3 + vZ�Z ) only by
moving probability mass from Z to X3. To do so, they need to put βi Z = 0 for some
i ∈ F3, but this would result in AZ ∩ (F1 ∪ F2) = ∅ because of β j Z = 1/N for all
j ∈ F1 ∪ F2. The resulting � would have �X1 � n1, �X2 � n2, and �X3 + �Z � n3,
hence π3(�) � N3n3 < N3vZ , which is not an improvement. Hence F3 has no
profitable deviation.

Similarly, faction F1 alone could increase π1(�) = N1(�X1 + vZ�Z + vY �Y ) only
by moving mass from Z to either X1 or Y . Again, this would require βi Z = 0 for
some i ∈ F1, resulting in AZ ∩ (F2 ∪ F3) = ∅ and thus �X2 � n2, �X3 � n3,
�X1 + �Z + �Y � n1, and π1(�) � N1n1 < N1vZ , not an improvement. So F1 has no
profitable deviation. The same holds for F2 by symmetry.

The coalition F1∪F2 could increase π12(�) := π1(�)+π2(�) = N1�X1 +N2�X2 +
(N1 + N2)(vZ�Z + vY �Y ) above its value of (N1 + N2)vZ only by moving mass
from Z to either X1, X2, or Y . This requires βi Z = 0 for some i ∈ F1 ∪ F2, hence
AZ ∩F3 = ∅, �X3 � n3, and �X1 +�X2 +�Z +�Y � n1+n2.Under these constraints,
max� π12(�) < (N1 + N2)vZ because of the premise (n1 + n2)vY � vZ .

Similarly, coalition F1 ∪ F3 could increase π13(�) := π1(�) + π3(�) = N1(�X1 +
vY �Y ) + N3�X3 + (N1 + N3)vZ�Z above its value of (N1 + N3)vZ only by moving
mass from Z to either X1, X3, or Y . This requires βi Z = 0 for some i ∈ F1 ∪ F3,
hence AZ ∩ F2 = ∅, �X2 � n2, and �X1 + �X3 + �Z + �Y � n1 + n3. Under these
constraints, max� π13(�) < (N1 + N3)vZ because of the premise n1vY � vZ . The
case for coalition F2 ∪ F3 is completely analogous by symmetry.

Hence no coalition has an improving deviation. ��

Note that this holds even if n1 > 1/2, in which case all majoritarian methods would
give X1 for sure in equilibrium because F1 strictly prefers this to any other lottery and
can enforce it.

Proposition 3 If M = MMaxParC, vY > max{N1, N2}/(N1 + N2), and option Z is
removed, then the factional game has a strong Nash equilibrium β in which M(β)Y =
n1 + n2 and M(β)X3 = n3.
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Proof Completely analogous to the previous proof, only that this time ∀i ∈ F1 ∪ F2 :
βiY = (N3 + 1)/N . ��
Because MNL has additional complexity due to the involved nonlinear optimization
and tie-breaking procedure, we do not prove the corresponding claims for MNL but
only conjecture them and give some supporting argument. Based on the results from
Heitzig and Simmons (2012), we also make a conjecture about MFC and MRFC:

Conjecture 2 In the above situation, if M ∈ {MNL, MFC, MRFC} and (n1 + n2)vY �
vZ , then the factional game has a strong Nash equilibrium β in which M(β)Z = 1.
Also, if option Z is removed and vY > max{N1, N2}/(N1 + N2), then the factional
game has a strong Nash equilibrium β in which MNL(β)Y = n1+n2 and MNL(β)X3 =
n3, while for MFC and MRFC no such strong Nash equilibrium exists.

Indeed, for the first part and M = MNL, let us put β as above with the exception that
∀i ∈ Ft : βi Z = nt . Let � = M(β) and �ZZ = 1, so that S1(�Z ) = ∑

t Nt ln nt �∑
t Nt ln nt and S2(�Z ) = ∑

t Nt ln
√
nt >

∑
t Nt ln nt . To see that � = �Z , i.e., Z

will win for sure, we note that moving an infinitesimal amount from �Z towards an
�′ �= �Z with �′

Z = 0 would cause a weak decline in S1 and a strict one in S2, so that
the resulting � /∈ T . This is because

∂ε

∑

t

Nt ln(ε�
′
Xt

+ (1 − ε)nt )|ε=0 =
∑

t

Nt
�′
Xt

− nt

nt

�
∑

t

N�′
Xt

− N � N − N = 0,

and analogously for S2, with < instead of � . For the second part, we put ∀i ∈ Ft :
βiY = nt/(n1 + n2) for t = 1, 2, which one can similarly show to lead to the claimed
output. However, to prove that no deviation by a single faction or pair of factions
pays off will be more difficult for MNL than for MMaxParC because we cannot rely on
strong monotonicity and have to distinguish several cases depending on whether the
optimization problem has an interior or boundary solution and whether a tie breaker
Sm with m > 1 is involved. Supplement 3.1.5 has some additional calculations in this
direction, and also gives an example where in the presence of several disjoint partial
consensus options, the corresponding ballot profile can fail to be a strong equilibrium
while still being coalition-proof.

4 Agent-based simulations

To assess the potential costs of achieving fairness and consensus in terms of welfare
loss, voter satisfaction, and amount of randomization, we complement our theoretical
analyses with empirical evidence from a large agent-based simulation, which can be
understood as a complex, computer-assisted thought experiment.

Experiment setup. In a diverse sample of almost 3million hypothetical group decision
problems, we compared the performance of the Nash Lottery and MaxParC to that of
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eight other methods. We chose five common deterministic majoritarian group deci-
sion methods: Plurality Voting (PV, aka ‘first past the post’), Approval Voting (AV),
Range Voting (RV), Instant Runoff Voting (IRV, aka ‘ranked choice voting’), and
the ‘Simpson–Kramer’ method (aka ‘Simple Condorcet’, SC). We also included three
non-deterministic proportional methods: ‘RandomBallot’ (RB, aka ‘Lottery Voting’),
‘Full Consensus/Random Ballot’ (FC), and ‘Full Consensus/Random Ballot/Ratings’
(RFC). The latter two are precursors of MaxParC that only support full consensus but
not partial consensus (Heitzig and Simmons 2012). To generate a diverse set of deci-
sion problems, we created random combinations of options, resulting in choice sets
that varied in number and compromise potential, and groups of voters, which varied
in size, individual preference distributions, and risk attitudes.

We used various preference models from behavioural economics and the spatial
theory of voting. The ‘unif’ model is similar to the ‘impartial culture’ (Laslier 2010),
which assumes that utility values are uniformly distributed on the interval [0,1] with no
structure whatsoever. In the block model (BM), voters form blocks with high internal
preference correlation, with no correlation between blocks, so that utility is a sum of
a block-specific normally distributed term and a smaller individual-specific normally
distributed term. The spatial models LA, QA, GA are variants of those used in the
spatial theory of voting (Carroll et al. 2013), where voters and options are represented
as normally distributed points in a low-dimensional “policy space”, and utility depends
on a voter’s distance from an option, either in a linear (LA), quadratic (QA) orGaussian
(GA) fashion.

For each combination of decision problemandgroupdecisionmethod,we simulated
several opinion polls, a main voting round, and an interactive phase where ballots
could be modified continuously for strategic reasons. We assumed various mixtures of
behavioural types among our simulated voters: lazy voting, sincere voting, individual
heuristics, trial and error, and coordinated strategic voting. For each decision problem,
we computed measures of the social welfare, randomness, and voter satisfaction for
all group decision methods, and identified which group decision methods different
voter types would prefer (see Supplement 2.3 for details).

Results.As can be expected from the definition of ‘majoritarian method’, somemajor-
ity of simulated voters (namely the ones whose preferences were being enacted under
themajoritarianmethod) preferred the results of themajoritarianmethods over those of
the proportional ones.Within the group of proportionalmethods, voters preferredMax-
ParC over the other methods on average, which might be related to its lower amount of
randomness and higher welfare (see below). Among the majoritarian methods, there
was no clear preference over the methods. Individual voters’ satisfaction—normalized
to zero for their least-preferred option and to unity for their favourite—averaged around
67% for PV, AV, RV, and IRV; 61% for SC, NL, and MaxParC; and still 57% for RB,
FC, and RFC. So MaxParC achieved 91% of the level of voter satisfaction achieved
by the best deterministic methods, and about the same as typical Condorcet methods.
This indicates thatMaxParCwas indeed able to incentivise simulated voters to support
good compromise options.

Regarding randomness, the outcome lotteries under MaxParC had only about 56%
of the Shannon entropy of those under RB, while NL produced about 77% of RB’s
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entropy. For Rényi entropy, this was similar. In MaxParC, the largest winning proba-
bility was about 69% on average, in NL it was only about 56%. In particular, MaxParC
led to a deterministic winner in about 19% of cases, NL only in about 11% of cases.
These findings show that MaxParC used significantly less randomization than NL,
which can be explained by its higher concentration of winning probability on the
most-approved option (which receives its full approval score as winning probability).

The deterministic methods produced somewhat higher welfare on average, but for
some preference models and welfare metrics, the non-deterministic methods matched
or outperformed the deterministicmethods. In two of the preferencemodels (‘BM’ and
‘unif’), the majoritarian methods generated slightly larger absolute utilitarian welfare
and smaller absolute egalitarian welfare values than the proportional methods. On the
intermediate Gini–Sen welfare metric, the proportional methods beat the majoritarian
ones in the ‘unif’ preference model, but were beaten by the majoritarian methods in
two other preference models (‘QA’ and ‘LA’), see Fig. 4. This confirms the intuition
that the more inequality-averse the welfare metric, the better non-deterministic meth-
ods will perform because they can equalize individual expected utility by suitable
randomization.

The striking discrepancy between the ‘unif’ and ‘QA’ preference models is due to
their extreme difference in structure. In the ‘unif’ model, the benchmark lottery, and
the lotteries resulting from proportional methods, are evaluated by all voters similarly,
at around 1/2 utility and with a variance that decreases with larger numbers of voters
and options. This leads to welfare values relatively close to 0.5 for the proportional
methods. However, a voter’s utility for any given option varies from 0 to 1, leading to
Gini-Sen welfare of only about 1/3 for the mostly deterministic majoritarian methods,
due to this inequality. In the ‘QA’ spatial model, on the other hand, utility functions
are strictly convex functions of options’ positions in policy space, so if an option is
spatially central, it is typically strictly preferred by most voters to an option lottery. At
the same time, spatial models often have central options that are Condorcet winners
(especially if the dimension is small and there are many options) and are thus likely
selected by the majoritarian methods. Hence the winners of majoritarian methods tend
to be preferred by most voters to option lotteries, in particular to those resulting from
proportional methods, in spatial models with convex utilities like the ‘QA’ model.

When fitting regression models to estimate the welfare metrics, we found that, in
general and across all group decision methods, both a larger dimension of the policy
space in the spatial theory of voting, and a greater level of spatial voter heterogeneity
resulted in decreased absolute welfare. As expected, having more options increased
welfare on average.

For most of the simulation results, preference distributions had a larger effect than
behavioural type or the amount of interaction (number of polling rounds and presence
of interactive phase). Surprisingly, for none of the decision methods, strategic voters
gained a clear advantage over lazy voters, and risk attitudes played a minor role. See
Supplement 3.2 for more detailed results.

Finally, for each decision problem we also compared (i) the difference between
individual voters’ utilities when a particular group decision method was used, and (ii)
the difference between voters’ average utility under different group decision methods.
We found that inmore than 75%of all decision problems, the utility difference between
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Fig. 4 Simulated welfare effects of various group decision methods. Distribution of final Gini–Sen welfare
across 2.5 mio. agent-based simulations by group decision method (rows), for five different models of how
voter preferences might be distributed (columns). See Supplement for definitions and detailed additional
results

the average and worst-off voter when using Range Voting—the best deterministic
method considered—was at least seven times as large as the difference in average
voter utility between the results of Range Voting and MaxParC. One interpretation of
this findings is that the welfare costs of fairness and consensus are small compared to
the inequality costs of majoritarianism.

Inspired by the latter finding, we propose to studymore generally an indicator of the
“inequality-scaled utilitarian costs” of using a method M for a decision problem with
utility functions ui and getting a lottery �, in spirit similar to ratios used by Merrill
(1988). It would divide the shortfall in utilitarian welfare from using M by a measure
of the inequality that would result from the utilitarian solution x∗,

φ(�) =
∑

i ui x∗ − ∑
i
∑

x �xuix
∑

i ui x∗ − N mini ui x∗
, where x∗ = argmax

x

∑

i

ui x .

5 Virtual lab experiment

Here, we briefly describe the sample, methods and results of a virtual lab experiment
aimed at assessing individual-level predictors of choice between two different voting
methods—Plurality Voting and MaxParC—in an incentivized setting with material
consequences. The study was performed in 12 data collection waves, run between
March 19 and April 12, 2021 and distributed across weekdays and times of day. The
study proceeded as follows: 1. Questionnaire; 2. Instructions and 8 rounds of group
decisions with Plurality Voting; 3. Instructions and 8 rounds of group decisions with
MaxParC; 4. Voting method free choice (preference elicitation) followed by 2 rounds
of play; and 5. Debriefing questionnaire. Hypotheses, experimental design, sampling
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and analysis plan were pre-registered (https://osf.io/2568f/). Please refer below and to
the Supplement for additional details.

Sample. We ran a 30-min experiment online using the Dallinger platform for online
behavioural experiments 4 with participants from AmazonMechanical Turk (MTurk).
616 participants completed the experiment, and 1096 individuals started the exper-
iment. Of these, 420 did not pass the attention check and 60 did not complete the
experiment, resulting in 616 experimental participants. 303 of these participants were
randomly assigned to the ‘high inequality’ treatment, and 313 to the ‘low inequality’
treatment. 42.7% of our sample is female, and the average age is 37.4. The sample size
was determined by a power calculation, pragmatic constraints, and an expected attri-
tion rate of 50%.We restricted our sample to participants who were at least 18 years of
age, English speakers, and had an MTurk approval rating of at least 95. We excluded
participants who failed the comprehension questions following the instructions from
participation in subsequent rounds, and we dropped all participants who did not com-
plete both voting methods and the preference elicitation rounds from all analyses.
Participants received a base payment of $0.10 for participating, compensation of $2
upon submission of the task, and a performance-dependent bonus payment. The aver-
age and maximum possible total payments were $8.58 and $13.10, respectively. This
study was approved by the Princeton University Institutional Review Board.

Voting Game. Participants, playing in groups, faced five different options for how
to distribute points or earnings among members of the group. The study included a
single between-subjects group-level treatment with two treatment arms: high and low
distributive inequality conditions (see Tables S1 and S2 in the Supplementary Materi-
als). The experiment was conducted across 12 waves, with each wave corresponding
to one of the two treatments. Waves were scheduled to ensure a similar distribution
of weekdays and experiment times across the two treatment arms. Participants were
unaware of the treatment condition and were assigned to treatment based on the wave
they participated in. Once in a treatment group, they were assigned a random “advan-
tage value”, which was drawn uniformly between zero and one and held constant for
the length of play. The relative ordering of the advantage values in a group determined
how likely a participant was to be favored by the different payoff distribution options
they faced in the voting game (see Supplementary Materials for additional informa-
tion). E.g., the higher the advantage value, the more often a subject would find that
the majority option in a certain round would be profitable for them.

During the voting rounds, participants made a series of 18 group decisions: 8 with
Plurality Voting, 8 with MaxParC, and 2 with their choice of voting method, either
PV or MaxParC. They were randomly matched with four other participants in each
round, forming temporary groups of five participants whose composition changed
across rounds. Participants were anonymous, unable to communicate and unlikely to
encounter the same group twice. They were given full information about the group
formation protocols (see SupplementaryMaterials for additional information. In order
for the game to continue smoothly despite differences in response times and potential
dropouts, we simulated participants (“bot players”)when necessary tomaintain groups

4 https://github.com/Dallinger/Dallinger
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of five, which was made transparent to the subjects at the start of those rounds. Sim-
ulated participants made rational, self-interested decisions by playing the focal Nash
equilibrium strategy. Approximately 46% of rounds using PV as the voting method
and 53% of rounds using MaxParC included at least one simulated participant.

In each round, the five participants were presented with five options from which
they had to collectively choose one that would be implemented for pay. Each option
represented a distribution of points among the five participants in the group for that
round. Each point earned in any round led to a payout of USD 0.01 at the end of
the game. Payoffs thus depended on advantage values of the five participants, how an
individual filled their ballot, how others in their group filled their ballots, and how the
voting method processed the ballots.

The payoffs in each option were designed so that in a group of purely self-interested
participants, three of the five (the “majority” faction) would favor a “majority option”,
while the other two would favor one of two “minority options”. By design, no self-
interested participant should favor the “partial” or “full compromise” options that were
offered. In contrast, participants who are not purely self-interested but are sufficiently
inequality-averse might favor the “compromise” options over the “majority” option
since they lead to more equal payoff distributions. A participant’s advantage value
determined the likelihood that they belonged to the “majority faction”. In addition, in
the high inequality treatment, also the payoff amounts were positively correlated with
the participants’ advantage values (see Supplement 2.4.1 for additional details about
advantage values, payoffs, and choice options).

Under Plurality Voting, the “majority faction” is expected to vote for the clearly
discernable “majority option” if they are self-interested voters. By contrast, under
MaxParC all self-interested voters should give the “full compromise option” a positive
rating, resulting in its sure election and thus a more equal payoff distribution.

Hypotheses and analyses.Our primary analyses and hypotheses focus on the revealed
preference over voting methods in the preference elicitation portion of the experiment.
Our primary dependent variable for our individual analyses is the choice ofMaxParCor
PV in the “free choice” portion of the game, and the aggregate analyses use the share S
of participants selectingMaxParC in these rounds. A game-theoretic analysis suggests
that if all participants were self-interested and rational, 44.8% would select MaxParC
over PV under the given payoff and advantage value structure. However, behavioral
economists and psychologists have found that individuals often make choices that are
not purely self-interested, and also tend to avoid risks and can be cognitively miserly,
avoiding complex tasks where possible (Fehr and Schmidt 2006; Falk et al. 2018).
As voting rationally under MaxParC might appear more complex than under Plurality
when given only short time, this might affect subjects’ method choice. Additionally,
political scientists and decision theorists sometimes assume additional costs associated
with methods that are too complex (Fishburn 1974) or involve considerable amounts
of chance (Gill and Gainous 2002).

These observations resulted in three pre-registered hypotheses:
Hypothesis 1a. Mild Complexity or Chance Aversion. S will be less than the self-

interested rational fraction of 44.8%, collapsing across treatment assignment.
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Hypothesis 1b. Complexity or Chance Aversion. More risk-averse individuals or
those who found MaxParC relatively difficult to understand will be more likely to
choose PV over MaxParC.

Hypothesis 1c. Extreme Complexity or Chance Aversion. S will be zero, collapsing
across treatment assignment.

Additionally, evidence from behavioral experiments suggests that inequality aver-
sion influences choice in decisions involving multiple actors. Since MaxParC is, by
some definitions, the fairer method, it could be more likely to be chosen when there
is greater potential for inequality.

Hypothesis 2a. Inequality Aversion. S will be greater for the “high inequality”
treatment than the “low inequality” treatment.

On the other hand, the “high inequality” treatment has two different effects on
inequality. For each individual option, it leads to higher inequality between voters’
payoffs than in the other treatment if that option wins. But the variation of the level of
inequality across the five options, i.e., the difference in inequality between the most
equal andmost unequal option, is lower in this treatment than in the other. Respondents
may thus have fewer inequality-related reasons to preferMaxParC over PV in the “high
inequality” treatment than in the “low inequality” treatment.

Hypothesis 2b. Inequality Aversion. S will be greater for the “low inequality” treat-
ment than the “high inequality” treatment.

Hypothesis 2c. Inequality Aversion.More inequality-averse or fairness-loving indi-
viduals will be more likely to choose MaxParC than PV.

Finally, as individuals with higher advantage value will more often profit from the
majority choice, they should prefer the majoritarian method:

Hypothesis 2d. Personal Advantage. Individuals with a higher advantage value will
be more likely to choose PV than MaxParC.

We tested our main hypotheses about aggregate choice using a binomial exact test
(H1a, H1c) and Fisher’s exact test (H2a, H2b). These analyses take the same primary
dependent variable of interest: the share choosing MaxParC. For H2a and H2b, our
primary independent variable of interest is the inequality treatment condition.

We analysed individual choices using a logistic regression to predict choice of
PV (dependent variable, coded 1/0). The independent variables in these regressions
and the hypotheses they address are: (H1b) risk aversion, simplicity preference, and
perceived difficulty of MaxParC in three separate regressions; (H2c) egalitarian and
pro-social preferences as measured by the Social Dominance Orientation scale; and
(H2d) individual advantage value. We included the following standard controls in all
regressions: age, education, gender, income and political affiliation. The text for all
the questions used in the analyses can be found in the pre-registration. We apply a
standard significance threshold of p < .05 for inference in all analyses. We present
the statistically significant results in Table 1.

Results. Turning to the results of the virtual lab experiment, we find that a significant
and sizable fraction of our participants chose to implement MaxParC when given the
choice between MaxParC and PV in the free choice rounds (share: 32%, confidence
interval C I = [29%, 36%], p < .001), indicating that about a third of the sample
preferred this option despite the presence of chance, additional complexity relative to
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PV, and no prior experience with the method. Indeed, over 68% of the sample either
strongly agree or agree with the statement “Did you feel that [MaxParC] was fair?”
and average earnings were comparable across the two methods: 36.3 points (PV) vs.
35.5 points (MaxParC).

We also find that the fraction choosingMaxParC in the free choice rounds is signif-
icantly less than the 44.8% predicted under the assumption of self-interested rational
actors. The lower uptake of MaxParC might be due to the perceived difficulty asso-
ciated with the method. In keeping with our hypotheses, we found that participants
who perceiveMaxParC to be difficult are significantly more likely to choose PV (stan-
dardized regression coefficient β = .44, p = .020, see col. 2 of Table 1). Indeed, the
fact that we see fewer people choosing MaxParC than expected under self-interested
rationality could also be due to people not understanding which voting behavior would
be optimal for them. At the same time, they were given 45 s to decide, which in ample
piloting seemed to be sufficient for participants to understand the choices.

Contrary to our pre-registered hypothesis, we also found that respondents with
higher risk aversion,measuredusing a self-reported qualitativemeasure fromFalk et al.
(2018), were less likely to choose PV (β = −0.42, p = .03, see col. 1 of Table 1). All
together, these results suggest that the complexity and stochasticity present inMaxParC
are insufficient to deter a large fraction of respondents from choosing this method over
the deterministic, simpler and familiar Plurality Vote, despite no prior experience with
the method. However, they also suggest that some subjects with lower advantage
values may not have realized that the welfare-enhancing effects of MaxParC in this
experiment (due to its higher likelihood of realizing the socially optimal option) would
also tend to be in their own self-interest. Hence additional training and explicationmay
be needed for at least a portion of the population.

We found no evidence that the inequality treatment contributed to the share of
participants choosing MaxParC in the free choice rounds. It could be that the effect
of the within-option distributive inequality, which was larger by design in the high
inequality condition, was harder to detect than the greater inequality across the five
options in the low inequality condition. We found no evidence that individual-level
inequality aversion, as measured by the items of the Social Dominance Orientation
scale (Pratto et al. 1994), predicted choice of voting method. However, we did find that
individualswith a higher level of personal advantage in the group—that is, thosewhose
preferences weremore likely to be aligned with themajority—were significantly more
likely to choose PV over MaxParC (β = 1.04, p < .001, see col. 3 of Table 1). In an
exploratory analysis of theMaxParC voting rounds, we found that themore risk-averse
a respondent was, the more likely they were to give the full consensus option a high
rating (β = 1.65, p = .001, see Supplement, Table S3 for details).

Finally, we find that the average realized payoffs in the 16 rounds of PV and Max-
ParC that precede the preference elicitation rounds are significantly predictive of vote
method choice. Greater earnings in PV relative toMaxParc is associated with a greater
likelihood of choosing PV (β = 1.33, p < .001, see col. 4 of Table 1), controlling
for the advantage value. Similarly, we find that realized earnings in the PV rounds
positively predict the likelihood of choosing PV, while earnings in MaxParC are neg-
atively associated with choosing PV (β = 1.71, p < .001 and β = −1.71, p < .001,
see col. 5 of Table 1). Finally, we find that these results hold even after including all
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other significant predictors, suggesting that realized earnings and personal experience
with the two voting methods are a strong predictor of choice in subsequent rounds.

6 Discussion

Non-deterministic methods can achieve proportional fairness and support consensus,
where deterministic methods cannot, without sacrificing total welfare. They also meet
other important criteria, such as those necessary for non-manipulability, while employ-
ing randomization judiciously.However, the proportional fairness of non-deterministic
methods results from their average proportionality over many decisions. Few would
recommend electing a government, a consequential decision that happens relatively
infrequently, by flipping a coin. In contrast, using coin flips for decisions that happen
on a regular basis may be more acceptable because the stakes are often lower and
advantages level out over time. While coin flips might achieve proportional fairness,
they would not lead to a consensus. The non-deterministic method introduced here
(MaxParC) has the benefit of incentivizing compromise in most situations while rel-
egating coin flips to rare occasions where a consensus cannot be found. Indeed, our
theoretical and simulation results show MaxParC to be a desirable group decision
mechanism, preferable in many ways to Plurality Voting. Voters can reduce or avoid
unwanted randomization in MaxParC by rating compromise options positively. Thus,
the more risk-averse the voters, the more likely consensus will emerge with Max-
ParC. Of course, one consequence of radical proportionalism is that stubborn voters
who refuse to compromise can still achieve their desired (and potentially extreme)
outcomes with a small probability. This means that the options up for vote must not
violate any basic rights. This is true of both majoritarian and non-majoritarian group
decision methods. History has demonstrated many cases where majorities have voted
for options that compromised the basic rights of minorities.

In our behavioral experiments, we found that about one third of voters chose Max-
ParC over Plurality Voting in the preference elicitation task, suggesting a sizable
demand for alternative voting methods—though we did find that perceived difficulty
of MaxParC reduced the likelihood that it was chosen. Critically, we also found that
a voter’s position within their group—specifically, whether they are “advantaged” or
hold a majority position—is highly predictive of choosing Plurality Voting. This sug-
gests challenges for the political feasibility of implementing a method that prioritizes
fairness but may also be seen to compromise the “will of the majority.” There are of
course limitations in the ability of a stylized experiment to capture the complexity of
real-world group decisions. In particular, while we operationalized choice options in
terms of a monetary allocation, preferences among real-world options are likely to be
complex and difficult to represent by a single monetary currency. Additionally, voters
are likely influenced by procedural preferences and fairness perceptions.

Finally, while consensus-supporting proportional methods of the type discussed
here are well-suited to the governance and management of day-to-day affairs, they
could also be applied to more consequential budget allocation decisions or parlia-
mentary elections. The asset distributed by a proportional method need not be the
winning probability in a single-outcome decision as in this article, but could be some
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other resource to be shared. In that case, the method turns into a deterministic method
that outputs a certain allocation of a resource across options. For example, the asset
might be parliamentary seats: suppose that instead of one of the common simple pro-
portional methods, the Nash Lottery or MaxParC was used to allocate parliamentary
seats to party lists based on voters’ ratings of all parties, convertingwinning probability
shares into seat shares using a suitable roundingmethod. Thismethodmight take better
advantage of opportunities for consensus without sacrificing proportionality. The seat
distribution would, on average, be less fragmented than under existing seat-allocation
methods, without sacrificing representation of minorities. Our theoretical, simulation
and experimental results thus suggest that communities may be able and willing to
avoid methods that result in knife-edge decisions that satisfy only half of voters, as
in many recent elections and referenda, by experimenting with consensus-supporting
proportional voting methods.
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org/10.1007/s00355-024-01524-3.
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