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Abstract 

Global hydrological models (GHMs) are widely used to assess the impact of climate change on 

streamflow, floods, and hydrological droughts. For the ‘model evaluation and impact attribution’ part of 

the current round of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3a), modelling teams 

generated historical simulations based on observed climate and direct human forcings with updated model 

versions. Here we provide a comprehensive evaluation of daily and maximum annual discharge based on 

ISIMIP3a simulations from nine GHMs by comparing the simulations to observational data from 644 river 
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gauge stations. We also assess low flows and the effects of different river routing schemes. We find that 

models can reproduce variability in daily and maximum annual discharge, but tend to overestimate both 

quantities, as well as low flows. Models perform better at stations in wetter areas and at lower elevations. 

Discharge routed with the river routing model CaMa-Flood can improve the performance of some models, 

but for others, variability is overestimated, leading to reduced model performance. This study indicates that 

areas for future model development include improving the simulation of processes in arid regions and cold 

dynamics at high elevations. We further suggest that studies attributing observed changes in discharge to 

historical climate change using the current model ensemble will be most meaningful in humid areas, at low 

elevations, and in places with a regular seasonal discharge as these are the regions where the underlying 

dynamics seem to be best represented. 

1 Introduction 

The water cycle is particularly susceptible to climate change, leading to changes in river flow with far-

reaching consequences for water availability for humans (e.g., hydrological droughts), for climatic hazards 

such as river floods, but also for ecosystems (Gudmundsson et al 2021, Maxwell et al 2019, Schewe et al 

2014, Thompson et al 2021, Van Vliet 2023). Fluvial floods led to the death of more than 200,000 people 

and incurred damages of 790 billion USD from 1980 to 2016 (Munich Re 2016). In addition, it has been 

estimated that floods and droughts resulted in 25 million people living in extreme poverty (Hallegatte et al 

2017). Model-based projections show a strong increase in land area and population exposed to river floods 

and droughts due to increased global warming (Lange et al 2020). 

Hydrological models are an important tool for decision-making in flood and drought management and 

preparedness and are used to make projections under different climate, land-use, and management 

scenarios. Global hydrological models (GHMs) in particular have been used, for example, to assess the 

impact of global warming on the availability of water resources (Pokhrel et al 2021, Schewe et al 2014, Liu 

et al 2017a), and on flood hazards (Dankers et al 2014, Hirabayashi et al 2021). In addition, GHMs can be 

used to attribute changes in the hydrological system to climate change. For example, Gudmundsson et al 
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(2021) showed that observed changes in river flow are consistent with climatic changes, and Sauer et al 

(2021) found a climate signal in the trends in damages caused by river floods. 

The evaluation of hydrological models is a critical first step towards impact attribution and future 

projections as for both purposes we need to understand to what degree models capture the processes 

determining discharge at individual locations, regions or globally. To this end, GHMs have been forced by 

observational climate data and observational direct human forcings (e.g., land use, location of dams and 

reservoirs) in ISIMIP2 already. These previous ISIMIP2 simulations have been evaluated, for example, 

regarding the influence of river routing on simulated discharge (Zhao et al 2017), the incorporation of 

human impact parameterizations (Liu et al 2017b, Veldkamp et al 2018), drought characteristics (Kumar 

et al 2022), or the seasonality of mean and extreme runoff (Zaherpour et al 2018). It has been shown that 

GHMs can simulate the extent of flooded areas, but for some events, GHMs overestimate the flood extent 

(Mester et al 2021). In addition, studies on economic damages caused by river floods showed that 

interannual variability of observed damages can be captured at least in some large scale areas (Sauer et al 

2021). Deviations at the damage level could be due to either the discharge simulated by GHMs or from 

other sources in the modelling chain (e.g., assumed river protection levels, estimated distribution of assets, 

local physical vulnerabilities, Sauer et al 2021). 

For ISIMIP3a, the climate input data and information on direct human forcings have been updated. For 

example, the data cover three additional years (2017-2019), accordingly more recent observational data has 

been used for bias adjustment, and an update in the bias adjustment method reduced excessively high daily 

maximum temperature values (Lange et al 2021, table 1 in Frieler et al 2024 shows details on data provided 

for daily climate, land use, irrigation, dams and reservoirs, and water abstraction). This study 

comprehensively evaluates the performance of nine global hydrological models that have contributed 

discharge data to ISIMIP3a so far. Five of these models were updated in terms of improving the 

representation of hydrological processes, and three models improved the representation of land cover 

(details in table 1). The effect of these improvements has been evaluated elsewhere (Müller Schmied et al 

2023, Tsilimigkras et al 2023, Boulange et al 2023, Yoshida et al 2022).
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Table 1. Model improvements implemented since ISIMIP2a for models evaluated in this study. More details on models in table S1. 

Model hydrological processes land-cover representation comment Reference 

CLASSIC   did not participate in 

ISIMIP2a 

Melton et al., 2020 

CWatM change in calculation of 

evapotranspiration with Penman-

Monteith using CO2 response of 

vegetation 

using time varying land use 

instead of static 

 Burek et al., 2020 

H08 land surface model parameters 

have been optimized at each 

climatic zone 

  Boulange et al 2023, 

Yoshida et al 2022 

HydroPy   did not participate in 

ISIMIP2, model was 

rewritten based on MPI-

HM which did participate 

in ISIMIP2, changes in 

model infrastructure, 

numerics and 

documentation 

Stacke & Hagemann, 

2021 

JULES-W2 1) snow process module upgraded 

to 10-layer scheme; 2) soil 

hydrolοgy scheme was changed 

to TOPMODEL scheme 

1) plant functional type (PFT) 

representation was changed from 

5 PFTs to 13 PFTs, 2) used time 

varying land use instead of static 

 Tsilimigkras et al under 

review, Best et al 2011 

MIROC-INTEG-

LAND 

  same as ISIMIP2a Yokohata et al., 2020 

ORCHIDEE-MICT improvements for high-latitude 

processes including snow and 

permafrost, specifically 1) soil 

freezing and snow processes; 2) 

  Guimberteau et al 2018 
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soil hydrology and river routing; 

3) soil carbon discretization and 

SOM-dependent soil thermal and 

hydraulic parameters for 

permafrost representation; 4) 

reformulation of soil hydric stress 

above the permafrost table; 5) 

fires 

WaterGAP2-2e updated input for sectoral water 

use models, updated and 

extended data base for 

calibration, modified calibration 

routine to consider observation 

uncertainty; storage-based river 

velocity algorithm; updated input 

for surface water bodies (e.g. 

GRanD 1.3), implemented river 

water temperature, diverse 

corrections in water abstraction 

procedure 

  Müller Schmied et al., 

2021, 2023 

WEB-DHM-SG  used time varying land use 

instead of static 

 Qi et al., 2022 
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 The aim of this study is to intercompare model performance regarding daily and maximum annual 

discharge as well as low flow and compare the performance of the models’ internal routing schemes to 

discharge generated from runoff by CaMa-Flood (Yamazaki et al 2011). We investigate which catchment 

properties correlate with model performance to suggest areas of model development and to identify stations 

that are particularly suitable for potential attribution studies or assessments of changes under future global 

warming as considered in ISIMIP3. 

2 Methods 

2.1 Simulated runoff and river discharge 

We use daily runoff and river discharge provided by nine modelling groups based on the ISIMIP3a 

simulation round (Frieler et al 2024): CLASSIC, CWatM, H08, HydroPy, JULES-W2, MIROC-INTEG-

LAND, ORCHIDEE-MICT, WaterGAP2-2e, and WEB-DHM-SG (table S1). WaterGAP2-2e is calibrated 

with observed discharge data (Müller Schmied et al 2023), and H08 uses parameters optimized to reproduce 

observed discharge in each climatic zone (Yoshida et al 2022). Simulated data are from the 

‘obsclim + histsoc’ experiment that is designed for model evaluation and uses observation-based daily 

atmospheric climate forcing (GSWP3-W5E5, Lange et al 2023) and varying direct human forcings 

provided by ISIMIP (Frieler et al 2024). According to ISIMIP model documentation (www.isimip.org), all 

GHMs use land-use data, five models use data on water-use (CWatM, H08, HydroPy, MIROC-INTEG-

LAND, WaterGAP2-2e) and four models use data on dams and reservoir (CWatM, H08, MIROC-INTEG-

LAND, WaterGAP2-2e). Simulations are done on a 0.5°x0.5° grid and are available for the years 1901–

2019.  

It has been shown that modelled peak river discharge using the river routing model CaMa-Flood 

(Yamazaki et al 2011) can perform better than the model’s internal routing scheme (Zhao et al 2017). 

CaMa-Flood differs from other routing schemes in that it explicitly also parameterizes flood inundation 

dynamics and provides water depth and inundation extent as output variables (Yamazaki et al 2011). It is 

therefore often used in combination with GHMs for flood modelling. CaMa-Flood provides its own routing 
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scheme on a 15’ grid. However, CaMa-Flood does not include the lakes and reservoirs routines simulated 

by GHMs, which can result in some models performing better without CaMa-Flood. Thus, in addition to 

discharge routed with each model’s internal routing scheme (specified in table S1), we use each model’s 

simulated runoff to drive CaMa-Flood and then derive river discharge. Daily runoff is provided by all nine 

models listed above, and discharge modelled with the model’s internal routing scheme is provided by seven 

models. JULES-W2 provides discharge routed with the ‘native JULES’ river topography (Total Runoff 

Integrating Pathways scheme (TRIP)) that includes spatially distributed meandering and velocity data 

(Tsilimigkras et al 2023), and has been shown to improve the accuracy of river flow simulations 

(Tsilimigkras et al under review). In addition, JULES-W2 provides discharge routed with the DDM30 river 

topology. 

2.2 Station selection and observed discharge data 

To evaluate model performance, we use daily discharge data from the Global Runoff Data Centre 

(GRDC). GHMs use different river routing schemes (detailed in Table S1) and the spatial coordinates of 

stations with observational data often do not match the coarser gridded river networks (Müller Schmied and 

Schiebener 2022). To ensure comparability, we base the selection of stations on a previously published 

report that analysed how well ISIMIP GHMs’ routing schemes align with the location of a selection of 

GRDC stations and are thus suitable for evaluating river discharge (Müller Schmied and Schiebener 2022). 

1096 out of 1509 stations were found to be compatible (Müller Schmied and Schiebener 2022). Of those, 

we select stations for which daily data was available for at least five years, and we only retain years with 

less than ten days of missing data, which are the same criteria as used by Zhao et al. (2017). In the end, we 

use 644 stations for model evaluation (figure 1), corresponding to 106 basins according to HydroBASINS 

level 3 from the HydroSHEDS database (figure S1, Lehner and Grill 2013). 

2.3 Model evaluation 

We analyse the extent to which model simulations can reproduce variability in daily discharge and 

maximum annual discharge. For both these metrics, and for each station and each GHM, we compare 

Page 7 of 27 AUTHOR SUBMITTED MANUSCRIPT - ERL-117362.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



 

Figure 1. The location of the 644 GRDC stations used for model evaluation. 

observed discharge to discharge routed with the model’s internal routing scheme, and discharge routed with 

CaMa-Flood, respectively. To evaluate model performance, we calculate the Kling–Gupta efficiency 

(KGE) and its three components: correlation (r), bias ratio (β), and variability ratio (γ) (Kling et al 2012). 

The KGE is used to evaluate hydrological models (e.g., Veldkamp et al 2018, Krysanova et al 2017) and 

measures the ability of a model to reproduce observed values. It is calculated by equally weighing the three 

components, where r is the linear correlation between observed and simulated values, β is the ratio of the 

mean simulated value to the mean observed value, and γ is the ratio of the standard deviation of simulated 

values to the standard deviation of observed values (Knoben et al 2019). The KGE metric is dimensionless. 

We calculate the KGE for daily and maximum annual discharge for each model and each station.  

For daily discharge, we also evaluate timing differences by testing whether shifting the simulated time 

series by up to 31 days (back- and forward) improves correlation, as has been suggested by Zhao et al 

(2017). 

For maximum annual discharge, we quantify which part of the distribution is over- or underestimated. 

For each station, we first identify the lower 50% of observational values and count the years where the 

simulated values are lower or higher, and then we do the same for the upper 50% of observed values.  
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To assess the capability of models to simulate low flow, we first determine the tenth quantile of daily 

discharge, i.e., the amount of discharge that is exceeded 90% of the time (Q90, Gosling et al 2017, 

Krysanova et al 2017). We then divide the difference between simulated tenth percentile and observed tenth 

percentile by observed tenth percentile. Thus, a value of zero implies a perfect match between observation 

and simulation, negative values imply that the simulated low flow is too low, while positive values indicate 

that the simulated low flow is simulated as too high. This is implemented for discharge routed with the 

model’s internal routing scheme, and discharge routed with CaMa-Flood. 

To depict spatial heterogeneity in model performance, we calculated for each model the mean low flow 

index and mean KGE for maximum annual discharge for each of the 106 basins (figure S1, Lehner and 

Grill 2013).  

2.4 Station characteristics 

We use station characteristics data from the Global Streamflow Indices and Metadata Archive (GSIM) 

that provides metadata for more than 30,000 stations (Do et al 2018, Gudmundsson et al 2018). GSIM data 

is only available for a subset of stations in this study. We use the following catchment properties from the 

database (number of stations with data available in parentheses): clay content (432), drainage density (379), 

elevation (436), irrigated area [%] (436), nightlight development index (176), number of dams upstream 

(436), population count (435), population density (435), sand content (432), silt content (433), slope (436), 

storage volume (total upstream storage volume, 436), and topographic index (436). The upstream catchment 

area from the gauge is taken from the GRDC database. To characterize how dry or wet the area is where a 

station is located, we used data from the Global Aridity Index and Potential Evapotranspiration Database 

(Zomer et al 2022). This aridity index is defined as the ratio of precipitation to potential evapotranspiration 

and is unitless (Zomer et al 2022). Both, catchment area and aridity index are available for all stations. 

To further investigate model performance at (sub-)arid stations, we first identified all stations with an 

aridity index less than or equal to 0.5 (Zomer et al 2022). For these 236 stations, we calculated the KGE 
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and its three components for daily discharge, maximum and mean annual discharge, mean monthly and 

long-term mean monthly discharge.  

3 Results 

3.1 Daily discharge 

In general, models can reproduce the variability of daily river discharge at most stations (e.g., time-series 

plot with corresponding KGE values in figure S2, S3). The median KGE across all stations ranges from -

0.43 for model WEB-DHM-SG to 0.46 for WaterGAP2-2e (figure 2a, table S2). The median correlation 

ranges from 0.17 for the model CLASSIC to 0.68 for WaterGAP2-2e (figure 2b, table S2). Most models 

(seven out of nine) tend to overestimate daily discharge at a majority of stations (bias ratio β larger than 

one), but there is a large variation in the magnitude of overestimation between models, as well as between 

stations (figure 2c, table S2). Results for the variability ratio (γ) are mixed, with two (out of nine) models 

overestimating variability (e.g., HydroPy), while the remaining models tend to underestimate variability 

(e.g., MIROC-INTEG-LAND, figure 2d, table S2).  

Models tend to perform well at stations in wetter areas (i.e., higher aridity index, table S3, figure 3), and 

less well at stations at higher elevations (table S3, figure 4), while in drier areas and at lower elevations 

there is a large spread across stations including good and poor model performance. The bias ratio tends to 

be larger at stations in drier areas (figure S4, table S5). For several models (six out of nine), the variability 

ratio is larger at higher catchment elevations (table S6, figure S5) and steeper slopes (table S6, figure S6). 

Stations for which models perform best (i.e., highest KGE and correlation across all models) are, for 

example, located at the Mekong River in Southeast Asia, and the Amazon River in South America.  

Shifting the time series can lead to improved correlation (figure S7), but the more shifting is required the 

worse model performance of shifted time-series is (figure S8).  

Regarding the use of river routing schemes, discharge routed with CaMa-Flood performs better for three 

out of seven models, especially for ORCHIDEE-MICT and WEB-DHM-SG (figure 2a). For these cases, 

KGE and especially its first component (correlation) is higher (figure 2a, 2b), but at the same time bias and 
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Figure 2. Evaluation of daily discharge routed by the model’s internal routing scheme (Mir) and CaMa-

Flood (CaMa) across 644 stations for Kling-Gupta efficiency (KGE) and its three components. JULES-W2 

provides discharge routed with two routing schemes (Mir, Mir2, details in table S1). Thick lines: median, 

box: first and third quartile, whiskers: 10th and 90th percentile. Details table S2.
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Figure 3. Relationship between aridity and model performance for daily discharge routed by the model’s internal routing scheme (Mir) and CaMa-

Flood (CaMa) across 644 stations. The aridity index is the ratio of precipitation to potential evapotranspiration (unitless, lower values correspond to 

more arid conditions, details in Zomer et al., 2022).  
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Figure 4. Relationship between mean catchment elevation and model performance for daily discharge routed by the model’s internal routing scheme (Mir) and 

CaMa-Flood (CaMa) across 436 stations. 

Page 13 of 27 AUTHOR SUBMITTED MANUSCRIPT - ERL-117362.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



variability are more strongly overestimated (figure 2c, 2d). In contrast, for HydroPy and to a lesser extent 

also for CWatM, discharge routed with CaMa-Flood tends to be worse compared to the model’s internal 

routing scheme (figure 2a), likely because variability is overestimated (figure 2d). For CWatM, HydroPy, 

and JULES-W2, CaMa seems to particularly overestimate variability at higher elevations and steeper slopes 

(table S7). 

3.2 Low flow 

Most models (six out of nine) do not capture the strength of low flow events, i.e., their magnitude of low 

flow is simulated too high (figure 5, S9, S10). However, HydroPy and JULES-W2 are often close to 

observed low flow, while WEB-DHM-SG tends to underestimate low flow (figure S9). Consistent with the 

above results, low flow is overestimated in arid regions, especially in the Australian and African basins 

(figure 5, S10). The exception is WEB-DHM-SG, which tends to underestimate low flow in these regions 

as well.3.3 Maximum annual discharge. 

Model performance is often worse for maximum annual discharge compared to daily discharge (seven 

of nine models, figure 6, S11, S12). The median KGE of annual maximum discharge across all stations 

ranges from -0.94 for WEB-DHM-SG to 0.24 for WaterGAP2-2e (figure 6a, table S8), and median 

correlation ranges from 0.31 for CLASSIC to 0.58 for WaterGAP2-2e (figure 6b, table S8). There is a 

tendency to overestimation (six of nine models), and for five models, river routing with CaMa-Flood leads 

to a stronger overestimation compared to the model’s internal routing scheme (figure 6c, table S8). The 

maximum annual discharge is more strongly overestimated at stations in dry areas (figure S13, table S11). 

Spatial analysis shows that eight out of nine models have a low KGE for most African basins, but a high 

KGE for most basins in Asia (figure 7, S14). At the same time, performance for the other regions is more 

heterogeneous. 
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Figure 5. Low flow index (Q90) derived from daily discharge simulated by model’s internal routing scheme, shown as basin average. Low flow 

index of zero implies perfect match between observation and simulation, negative values imply that low flow is simulated as too low, and positive 

values that low flow is simulated too high. 
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Figure 6. Evaluation of maximum annual discharge routed by the model’s internal routing scheme (Mir) and CaMa-Flood 

(CaMa) across 644 stations for Kling-Gupta efficiency (KGE) and its three components. JULES-W2 provides discharge 

routed with two routing schemes (Mir, Mir2, details in table S1). Thick lines: median, box: first quartile and third quartile, 

whiskers: 10th and 90th percentile. Details table S8.
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Figure 7. Kling-Gupta efficiency (KGE) for maximum annual discharge simulated by model’s internal routing scheme, shown as basin average. 
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The analysis of which part of the distribution of annual maxima is over- or underestimated shows that 

five models (of nine) overestimate low and high maximum discharge (figure 8). Except for MIROC-

INTEG-LAND, discharge routed with CaMa-Flood tends towards a stronger overestimation when 

compared to the model’s internal routing scheme. There are some cases where models overestimate low 

values of annual maximum discharge and underestimate high values. In those cases, the average correlation 

between observed and simulated discharge is around 0.5. There are only individual stations where models 

consistently overestimate low values of annual maxima and underestimate high values (example in figure 

S15, S16). 

 

Figure 8. Proportion of years for which the annual maximum is overestimated for years with low annual 

maximum (years for which the annual maximum is below the observed median across the entire time series) 

and high annual maximum (years for which maximum is above median). Bars above the horizontal line at 

50% show that the respective model tends towards overestimation. 

3.4 Arid stations 

Analysis of model performance across arid stations shows that all models perform better for mean 

monthly and mean annual discharge than for daily discharge due to a higher correlation coefficient (table 
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S13-S17, figure S17-S21). The correlation is highest for all models for long-term monthly discharge (table 

S15, figure S19), suggesting that models can reproduce the seasonal flows. 

4 Discussion 

We demonstrate that in general, the evaluated models are able to reproduce observed time series of daily 

and maximum annual discharge. The performance of ISIMIP3a models is similar to evaluation studies of 

earlier simulation rounds. For example, Veldkamp et al. (2018) estimated for monthly discharge simulated 

by ISIMIP2a models a median correlation of more than 0.6, and Hou et al (2023) derived very similar 

results for monthly runoff simulated by ISIMIP2a GHMs.  

In line with previous studies (Veldkamp et al 2018), the bias ratio is the evaluation parameter that 

contributed most to a reduced performance in KGE. We find that most models overestimate discharge and 

that the overestimation tends to be stronger for maximum annual discharge. For ISIMIP2a models, 

Hattermann et al (2017) also identified that models tend to overestimate monthly discharge, and similarly 

Zaherpour et al (2018) found that models overestimate extreme runoff. This suggests that applications 

further down the modelling chain, for example, for flooded areas or flood damages could be affected as 

well as other sectors such as agriculture or energy production. This is in line with a study showing that 

simulations with some GHMs led to an overestimation of flooded areas (Mester et al 2021).  

Our further investigation of model performance for maximum annual discharge reveals that both low 

and high values are either over- or underestimated (figure 8) as has been found by Zaherpour et al. (2018) 

for ISIMIP2a models. Thus, contrary to the suggestion by Mester et al (2021), we identify only a few cases 

where a model overestimates low values and underestimates high values, i.e., a ‘too flat’ simulation. This 

implies that we find no evidence for the proposal by Mester et al. (2021) that the flood return period by 

GHMs is simulated too short. 

Our evaluation setup of including seven GHMs with discharge routed by both, the model’s internal 

routing scheme and CaMa-Flood, allows for investigating the role of the routing scheme. While Zhao et al 

(2017) detected that routing with CaMa-Flood led to a lower multi-year mean maximum discharge 
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(ISIMIP2a models), we here find that CaMa-Flood routing results in a higher proportion of years being 

overestimated for maximum annual discharge (figure 8). Also, except for WEB-DHM-SG, routing with 

CaMa-Flood has a higher bias ratio than the model’s internal routing (figure 6c). Other studies found mixed 

performances for CaMa-Flood. Yang et al (2019) demonstrated that CaMa-Flood performs well for the 

amplitude of peak discharge but not the timing. In another study, the magnitude of 100-year floods was 

overestimated in Western and Central USA but underestimated in Eastern USA (Devitt et al 2021). 

However, in these studies, either CaMa-Flood was used as the only routing model (Yang et al 2019) or 

combinations of different GHMs, routing schemes, and climate forcing data were compared (Devitt et al 

2021). Therefore, it is not clear which components of the modelling chain contribute errors. Our finding 

that CaMa-Flood tends to overestimate peak discharge, especially at higher elevations with steep slopes, 

suggests that too much water is transported in the river and floodplain during peak discharges. This may be 

explained by the fact that evapotranspiration over floodplains and transmission losses are not included in 

CaMa-Flood (Zhao et al 2017). In addition, routing by CaMa-Flood could be too efficient (i.e., water 

reaches a station too quickly), suggesting that flow velocity in the river channel or floodplain is 

overestimated. Unlike kinematic wave approaches, CaMa-Flood includes a diffusion term that allows the 

wave to spread spatially. While capturing the spatial variability of flow velocity within the channel, the 

diffusive wave equation tends to concentrate the flow more rapidly in the case of rapid changes in flow, 

e.g., due to sudden changes in channel slope or rapid increases in discharge. As a result, peak discharges 

may be overestimated, particularly in higher elevation areas. In addition, flow velocity is influenced by 

river channel and floodplain characteristics, some of which are derived empirically in CaMa-Flood. This 

leads to uncertainties and potential biases in the estimation of peak discharges (Yamazaki et al 2011). 

When analysing which catchment properties are linked to model performance we find that two natural 

features, and not anthropogenic ones, are especially relevant. First, it is well established that hydrological 

models perform less well in arid and semi-arid regions (Zaherpour et al 2018, Hou et al 2023). We find that 

this is also the case for ISIMIP3a GHMs (figure 3). Dry areas have a low runoff coefficient meaning that a 

large proportion of the precipitation evaporates, and thus a small underestimation of evapotranspiration by 
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a model can lead to a strong overestimation of discharge (Hattermann et al 2017). As we find that discharge 

is more strongly overestimated in arid areas compared to humid areas (figure S4), this could mean that 

evapotranspiration may be underestimated particularly in arid areas. Given the relevance of hydrological 

modelling for projecting climate change impacts on drought prevalence in (semi-) arid areas (Wang et al 

2022), reducing bias in simulating discharge under dry conditions is an important area of future model 

improvement. However, as we find that the models show a high correlation for long-term mean monthly 

discharge, GHMs could be used to analyse changes in seasonal flows in (semi-) arid areas. 

Second, we find that models perform less well at higher elevations, as has been shown for ISIMIP2a 

(Yang et al 2019). This suggests that cold dynamics, i.e., glaciers, permafrost, and snowmelt, are important 

hydrological processes that are not yet adequately included in many models and are thus a further relevant 

area of model development (Gädeke et al 2020).  

As the output of GHMs is used to answer a range of different research questions including the impact of 

climate change on various aspects of the water cycle (Krysanova et al 2020), it is important to assess 

additional hydrological variables. For example, there is ongoing work evaluating terrestrial water storage 

and soil moisture simulated by GHMs from ISIMIP3a (Tiwari et al under review). A next step would be to 

validate other GHM output variables, such as evapotranspiration and groundwater recharge, as has been 

done in ISIMIP2 assessment studies (Gnann et al 2023, Wartenburger et al 2018, Pokhrel et al 2021). 

We conclude that our results help to identify areas where we have greater confidence in the ability of 

GHMs to simulate hydrological processes, particularly in humid areas, at low elevations and in areas with 

strong and regular seasonality. Stations in these areas are therefore likely to be best suited to studies aimed 

at attributing historical climate change based on the output of the investigated GHMs. We also identify 

areas where improved process simulation is needed, i.e., evapotranspiration, transmission losses and cold 

dynamics. 
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