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Abstract

The Arctic sea ice (ASI) is expected to decrease with further global warming.

However, considerable uncertainty remains regarding the temperature range that would lead

to a completely ice-free Arctic. Here, we combine satellite data and a large suite of models from

the latest phase of the Coupled Model Intercomparison Project (CMIP6) to develop an empirical,
observation-based projection of the September ASI area for increasing global mean surface
temperature (GMST) values. This projection harnesses two simple linear relationships that are
statistically supported by both observations and model data. First, we show that the September ASI
area is linearly proportional to the area inside a specific northern hemisphere January—September
mean temperature contour T'.. Second, we use observational data to show how zonally averaged
temperatures have followed a positive linear trend relative to the GMST, consistent with Arctic
amplification. To ensure the reliability of these observations throughout the rest of the century, we
validate this trend by employing the CMIP6 ensemble. Combining these two linear relationships, we
show that the September ASI area decrease will accelerate with respect to the GMST increase. Our
analysis of observations and CMIP6 model data suggests a complete loss of the September ASI (area
below 10% km?) for global warming between 1.5°C and 2.2°C above pre-industrial GMST levels.

1. Introduction

The loss of Arctic sea ice (ASI) in the last decades is
one of the most evident manifestations of anthropo-
genic climate change. ASI loss is strongly linked to
Arcticamplification [1]—the enhanced heating of the
Arctic relative to the global mean, as predicted by cli-
mate models [2-6] and confirmed by observations
[7-9]. Several mechanisms contribute to Arctic amp-
lification, such as the sea ice-albedo and the lapse-rate
feedbacks [10]. In the colder months, further heating
of the Arctic occurs due to increased emission of out-
going long-wave radiation and enhanced sensible and
latent heat fluxes over newly exposed open water [11].
Additional ocean feedback mechanisms triggered by
the reduction in the ASI cover have been identified,
such as the seasonal memory of the ice cover and the
so-called Atlantification [12, 13]. Seasonal memory

© 2024 The Author(s). Published by IOP Publishing Ltd

relates to the accumulation of heat in open water dur-
ing summer, delaying ice formation and reducing ice
thickness in winter, which can advance the timing of
ice melt in subsequent seasons [13]. Atlantification
is the increase of warmer and saltier Atlantic water
in the Arctic Ocean [12]. Both mechanisms further
reduce the ASI cover and lead to more pronounced
seasonal changes.

These multiple competing feedbacks are often
inadequately represented by the most recent genera-
tion of Earth System Models (ESMs) from the sixth
phase of the Coupled Model Intercomparison Project
(CMIP6) [14, 15]. The inter-model spread is large
and the temperature range predicted by the models
for a summer ice-free Arctic spans several degrees.
Therefore, it is crucial to complement CMIP6
predictions of ice-free conditions with observed
trends in the ASI area evolution. Reflecting this
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Figure 1. Linear relationships found in observational data employed in our prediction method. (a) Approximate relationship
between observed September ASI area and the area inside a specific northern hemisphere January—September mean temperature
contour T, = —9.1°C. The value for T, is found by maximizing the R? coefficient of the fit. The r-coefficient is the slope of the
linear fit. (b) Observed (dots) and extrapolated (lines) zonally averaged temperatures (January—September) against global
temperature anomaly from the equator to the north pole. The red lines denote the temperature T, (solid) with a 97.5%

confidence range (dashed).

approach, several studies have incorporated obser-
vational data in future projections for the ASI area,
reducing the uncertainty presented by the models
alone [16-18].

The summer ASI area has generally followed a
linear decrease with respect to the increasing global
mean surface temperature (GMST) both in model
simulations and observational data, despite exhibit-
ing varying rates of decline and a slower loss observed
since 2007 [19]. This linear response to the GMST is
expected to persist for higher temperature anomalies
[18, 20-27]. Our study combines two linear relation-
ships supported by both observations and CMIP6
models to obtain a novel and simple observation-
based methodology for predicting the September ASI
evolution. Our projection correctly captures the lin-
ear dependence observed between the summer ASI
and the GMST in historical data. However, we observe
an accelerated, non-linear decline of the September
ASI area for higher temperature anomalies. The tem-
perature range for a September ice-free Arctic derived
from our prediction method spans from 1.5 °C to
2.2°C GMST levels above pre-industrial. This res-
ult notably reduces the uncertainty compared to the
CMIP6 model projections and suggests a lower tem-
perature threshold for the onset of ice-free summers
in the Arctic, generally assumed to be at least 2°C
above pre-industrial levels [16—18].

2. Methods

2.1. Observational data

We employ a satellite-based time series [28] for the
September ASI area from 1979 to 2020, denoted
Apgt, and the zonally averaged January—September

2

surface temperature time series obtained from the
HadCRUTS5 data set [29]. For each year between
1979 and 2020, the average temperature is obtained
for each 5°-zone in the northern hemisphere. Since
our prediction method relies on temperature data
to estimate the yearly September ASI cover, we
have chosen to utilize the average temperatures from
January to September. We exclude months that do
not contribute to ASI area changes for the given year,
i.e. months following September.

First, we observe a linear dependence between
the September ASI area and the area inside a north-
ern hemisphere January-September mean temper-
ature contour T, (figure 1(a)). Second, we observe
a linear dependence of the zonal average January—
September temperature for each latitude 6 and the
GMST anomaly T, with respect to pre-industrial
levels (figure 1(b)) that can be described by the
equation

T(6) = a(6) T, + b(0) 1)
The solution to the equation
T(0)=T, (2)

which represents the temperature contour T, (red line
in figure 1(b)) crossing the zonally averaged temper-
atures for different values of T,, gives the value of
0 = Ocqge used in the equation

w/2
A(T,) = 271'R2/ cos (#)do, (3)

Ocdge

with the radius of the Earth R =6371 km.
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Figure 2. Graphical representation of our prediction
method. The top panel is extracted from figure 1(b). As the
red line intersects the zonally averaged temperatures, we
obtain the latitude 644, used to compute A(T¢) for different
values of T, in equation (3). The bottom panel represents
the resulting prediction (red line) for the September ASI
area and the relative uncertainty (red area). The prediction
is obtained from equation (4), using the r value for
observational data (see Methods section for details).

The area A(T,), when multiplied by a factor r,
gives the best approximation of the observed A,g; for
a given value of T,

AASI =rA (Tc) . (4)

The factor r is estimated via linear regression for a
range of different values of T,. The best fit for observa-
tional data, measured using the coefficient of determ-
ination R?, is obtained for T, = —9.1°C (figure 1(a)).
Finally, the relationship in equation (4) allows us to
get the observation-based projection for the chosen
T,. A visual representation of our prediction method
is depicted in figure 2.

The uncertainty in the prediction (figure 3, red
area) is obtained by a Monte Carlo method. In each
realization of the Monte Carlo sampling, we sub-
tract the linear trend from the September ASI area,
randomize the fluctuations, and add the randomized
data to the linear trend. On the resulting data, we
carry out the analysis as described above.

2.2. CMIP6 data

Our prediction method relies on the validity of the
linear relationships depicted in figure 1 and on the
assumption that they will hold for higher GMST
anomalies than present-day conditions. To ensure the
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Figure 3. Observation-based projection of the September
ASI area compared to CMIP6 models and linear
extrapolation of observational data (1979-2020). The thin
gray curves are the September ASI areas for the different
CMIP6 models under the Historical 4+ SSP5-8.5 scenario.
The filled grey area corresponds to one standard deviation
of the average temperature anomaly of complete ASI loss
obtained from the CMIP6 models (2.25 4 0.52°C above
pre-industrial). The red curve and area depict the
observation-based projection of the September ASI area
and the relative uncertainty, respectively (see Methods
section for details). The black solid curve is the
observational September ASI data and the dashed line
represents its linear extrapolation for higher GMST. Our
observation-based projection predicts ice-free conditions
for lower GMST values compared to both the CMIP6
ensemble and the linear extrapolation of observational data.

validity of these relationships in the future, we employ
different model runs from the CMIP6 ensemble. The
contributions of observational data and CMIP6 mod-
els in our analysis are concisely described in figure 4.

We merge data from the Historical and the SSP5-
8.5 (Shared Socioeconomic Pathway scenario with
very high levels of greenhouse gas emissions) simu-
lations for 30 CMIP6 models, up to the year 2100. We
use the monthly averaged variables siarean (sea ice
area north) and siconc (sea ice concentration). For
the temperature, we use tas (temperature at the sur-
face). As for the observational data, we fit linear func-
tions to the data with zero intercept and find the value
for the temperature T, for every model by maximiz-
ing R? (figure S5).

2.3. ASI sensitivity
We estimate the sensitivity of the ASI area as the rate
of ASI loss per degree of warming before the com-
plete loss of the summer ASI in three different CMIP6
scenarios: Historical + SSP5-8.5, Historical + SSP2-
4.5 (Shared Socioeconomic Pathway with intermedi-
ate levels of greenhouse gas emissions), and 1pctCO2
(gradual 1% increase in CO, concentration per year).
We fit the ASI area against temperature anomaly
curves using a least squares method with the slope
representing the average loss rate of ice per degree of
warming (figures 5, S1(a) and S2(a)). We repeat the
analysis by fitting the curves using a total least squares
method (figures S1(b), S2(b) and S3). We find that
most models exhibit a higher rate of September ASI
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Figure 4. Flowchart summarizing our prediction method. Main steps of our prediction method for the September ASI area. The
box with dotted edges represents the only contribution coming from the CMIP6 models, that is to provide support to our
prediction method by validating the linearity assumptions into the future. All the other steps rely on observational data only.
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Figure 5. Sensitivity of the ASI area for the CMIP6 model simulations under the Historical 4+ SSP5-8.5 scenario. Rate of ASI loss
for the last degree of warming against ASI loss for the second-last degree of warming before the first-time complete loss of the
summer ASI for all CMIP6 models under the Historical + SSP5-8.5 scenario. The loss rate per degree of warming is given by the
slope of the fitting line used for the ASI area against yearly GMST curves (least squares method). The majority of the models (21
out of 27) show an increased loss for the last degree of warming, and hence an overall acceleration of ASI loss.

decline for the last degree of warming before the com-
plete ASI loss, compared to the second-last degree.
While the exact rate of ASI area loss is sensitive to
the choice of linear fitting methodology, most mod-
els show an accelerated loss of the ASI under both fit-
tings, with slight variation across scenarios.

2.4. Temperature anomaly of complete ASI loss
To calculate the yearly GMST anomalies, we subtract
the globally averaged temperature from 1850 to 1900

AD of the data set in use from the same temperature
time series. This provides anomaly values relative
to the pre-industrial period. In the CMIP6 models
under consideration, the pre-industrial average tem-
peratures range from 12.4°C to 15.3°C, with mean
13.6°C and one standard deviation 0.65°C. The pre-
industrial average temperature in the HadCRUT5
data set is 13.8°C. In some model runs the ASI area
fluctuates around the threshold for an ice-free Arctic
of 10° km® after the ASI is completely lost for the
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Figure 6. Sketch of geometrical effect that contributes to
changes in the sensitivity at the ice edge. Temperature
profile from the equator (origin) to the north pole before
we significantly increase the CO, level (blue lines) and after
we increase the CO; level and hence the global temperature
(orange lines). In simple models, the ASI area is given by
the area north of the freezing point isotherm at latitude L.
The sensitivity S oc AL/AT of the ASI area to changes in
the global temperature is strongly linked to the shape of the
temperature profile. Arctic amplification lifts the
temperature profile at high latitudes, making it more
convex in the Arctic region. Even if the ice-albedo feedback
is suppressed so that the models are linear, this convexity
leads to a larger loss of ASI at higher temperatures for the
same AT.

first time. Therefore, we smooth the ASI area against
temperature anomaly curves using a 1°C centered
moving average and determine the temperature of
the complete ASI loss from the smoothed data. We
average these values and find that the mean temper-
ature anomaly for the complete September ASI loss
for the models is 2.25 °C with one standard deviation
0.52°C above pre-industrial GMST levels under the
Historical + SSP5-8.5 scenario (filled gray area in
figure 3) and 2.03 + 0.34 °C under Historical + SSP2-
4.5. Note that the smoothed curves are only used to
determine the temperature of the complete ASI loss,
not for the previous sensitivity analysis.

2.5. Analysis on a different observational data set
We confirm the robustness of our results by repeating
the analysis on an independent observational sea ice
data set, the Sea Ice Index, Version 3 [30]. This addi-
tional observation-based projection confirms our
conclusions and exhibits an accelerated non-linear
decline of the ASI area with ice-free conditions pre-
dicted for global warming between 1.5°C and 2.2°C
above pre-industrial GMST levels (figure S4).

3. Results

The linear proportionality between the September
ASI area and the area inside the mean temperature
contour holds for different values of T., depending
on the dataset under consideration. For the obser-
vational data, the best approximation (measured
using R?) of the temperature contour is T, = —9.1°C
(figure 1(a)). The same linear dependence holds for

A Poltronieri et al

all the CMIP6 models considered under the Historical
+ SSP5-8.5 scenario with R? > 0.95 (figure S5(b)),
though the temperature T, that gives the best approx-
imation slightly varies. Across CMIP6, T, ranges from
—14.3°C to —6.8°C, with mean —10.8°C and one
standard deviation 1.7°C (figure S5(a)). While the
spread in the T, values across the models may be
attributed to differences in their internal climate
dynamics or parameterization schemes, the consist-
ent linear dependency of the September ASI area on
the area delimited by the temperature contour T, that
exists in all CMIP6 models supports our methodo-
logy. There is also a linear dependence between the
September ASI area and the January-September mean
Arctic temperature (above 66°N), but the R? values
show that this dependence is not as concise as the one
shown in our approach, both in observational data
and in CMIP6 models (table S1 and figure S6).

The linear proportionality between the
September ASI area and the area inside the temper-
ature contour T,, combined with the linear trend of
the zonal temperature for higher GMST anomalies,
constitutes our prediction method (figure 3). The
result is a purely observation-based projection of the
September ASI area that shows an accelerating, non-
linear decline for increasing GMST anomalies, with
a smaller uncertainty range than CMIP6 projections.
From these observations, we can predict ice-free
conditions (area below 10° km?) for global warm-
ing between 1.5°C and 2.2°C above pre-industrial
GMST levels. The predicted decline in the September
ASI area is based purely on the satellite-based obser-
vational record and the identified strong relationships
with the temperatures.

Most of the CMIP6 models that reach ice-free
conditions under the Historical + SSP5-8.5 scenario
are aligned with the accelerating, non-linear decline
that we observe in our projection. These models show
anincreased loss of ASI for the last degree of warming,
compared to the second-last degree, before reaching
ice-free conditions in September (models above the
red line in figures 5 and S3). We repeat the sensitiv-
ity analysis on the models that reach ice-free condi-
tions under the Historical + SSP2-4.5 and 1pctCO2
scenarios (figures S1-S2). We observe again that the
majority of the models show an accelerated loss of
ASI for the last degree of warming, compared to the
second-last degree, before reaching ice-free condi-
tions in September.

4, Discussion

In this study, we combine two linear relationships,
both backed by observational data and CMIP6 mod-
els, to develop a new and simple methodology based
on observations for forecasting the evolution of the
September ASI area.
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Our methodology is inspired by energy-balance
models (EBMs), where the ASI area is defined as the
region north of a zonally-averaged temperature iso-
therm. This definition shows that the ASI decline can
vary in pace, accelerating or decelerating, independ-
ent of Arctic amplification, based on the temperat-
ure gradient at the ice edge (figure 6). Inspired by the
existence of this non-linearity in such simple models,
we test for the presence of similar behavior in both
CMIP6 model data and observations.

First, we find a similar EBM-type linear propor-
tionality between the September ASI area and the area
inside a northern hemisphere January-September
mean temperature contour T, (figures 1(a) and S5).
Second, we find a linear dependence of the zonally
averaged January-September temperatures and the
GMST anomaly (figures 1(b) and S7-S14), which is
predicted to persist through the end of the century
by the CMIP6 models. Combining these linear rela-
tionships allows us to obtain an observation-based
projection for the September ASI area. Our projec-
tion correctly reproduces the observed historical lin-
ear decline of the September ASI area in response to
the increasing GMST [18, 20-27]. However, we detect
an accelerated, non-linear decline of the summer ASI
area for higher GMST values (figure 3).

The CMIP6 models suggest that the sensitivity
of the ASI area will increase with higher temperat-
ures, as informed by the observation-based projec-
tion. The majority of the models analyzed show a
higher rate of ASI loss for the last degree of warming,
compared to the second-last degree, before reaching
ice-free summers under different scenarios (figures 5
and S1-S3). Despite the general problems of state-of-
the-art coupled climate models to estimate the sens-
itivity of the ASI area to warming [31, 32], this result
suggests a potential acceleration towards an ice-free
Arctic.

Numerous studies have already narrowed the
large uncertainty presented by the ESMs when estim-
ating the temperature increase required for the onset
of ice-free summers in the Arctic [16—18]. A novel
Bayesian approach [16] and model simulations recal-
ibrated using observations [17, 18] suggest that the
Arctic is likely to become ice-free in summer for
global warming of at least 2°C above pre-industrial
levels. Our method projects an earlier temperature
range for the occurrence of complete sea ice loss in
summer, estimating the GMST anomalies required
for a September ice-free Arctic to be between 1.5°C
and 2.2 °C above pre-industrial levels.

Using the averaged GMST data from the analyzed
CMIP6 models, we convert the obtained temperature
range to dates for a summer ice-free Arctic. This gives
us the onset of a September ice-free Arctic between
2027 and 2045 under the SSP5-8.5 scenario (very high
emissions) and between 2030 and 2059 under the
SSP2-4.5 scenario (intermediate emissions).

A Poltronieri et al

It is important to note that the validity of our
prediction depends on the CMIP6 models’ suggestion
that a linear dependence of the zonally averaged tem-
peratures on the GMST anomaly will persist through-
out the century. As we rely on this linearity assump-
tion to extend our observation-based projection into
the future, a different type of behavior would affect
the predicted trajectory for the ASI, either deceler-
ating or further accelerating its loss. However, our
method does not rely on the CMIP6 models’ ability
to reproduce or predict the ASI cover evolution.
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