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Key propagation pathways of extreme
precipitation events revealed by climate
networks
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The comprehensive understanding of propagation patterns of extreme precipitation events (EPEs) is
essential for early warning of associated hazards such as floods and landslides. In this study, we utilize
climate networks based on an event synchronizationmeasure to investigate the propagation patterns
of EPEs over the global landmasses, and identify 16major propagation pathways.We explain them in
association with regional weather systems, topographic effects, and travelling Rossbywave patterns.
We also demonstrate that the revealed propagation pathways carry substantial EPE predictability in
certain areas, such as in the Appalachian, the Andes mountains. Our results help to improve the
understanding of key propagation patterns of EPEs, where the global diversity of the propagated
patterns of EPEs and corresponding potential predictability provide prior knowledge for predicting
EPEs, and demonstrate the power of climate network approaches to study the spatiotemporal
connectivity of extreme events in the climate system.

Extreme precipitation events (EPEs) have substantial impacts on human
society and economy1. For example, extreme precipitation puts severe
pressure onurban sewage treatment networks2 and contributes to outbreaks
of waterborne diseases3. Natural hazards triggered by extreme precipitation,
such as floods, landslides, or mudslides, result in devastating damage to
critical infrastructure4,5, and further lead to prolonged and adverse impacts
on economic activities6–8. The increasingmagnitude and frequency of EPEs
caused by global warming9,10 have raised substantial public concerns in the
past fewdecades.Research related to extremeprecipitationshasbeen carried
out extensively, where advanced deep learning frameworks have been uti-
lized to effectively extract and learn complex features and patterns from
large-scale meteorological data, substantially improving our understanding
of extreme precipitation and bringing high prediction skills11,12. However,
exploring thepropagationpatternsofEPEsanduncovering themechanisms
behind them remains a challenge.

Climate networks have been widely applied as a powerful tool for the
study of EPEs and associated teleconnections13–16. For example, Boers et al.
introduced a method combining event synchronization (ES) with climate
networks to forecast over 60% of the EPEs in the central Andes of South
America, where the travelling Rossby waves over South America were

demonstrated to be the causation of the EPEs’ synchronization and pro-
pagation patterns15,17. This approach was also applied to reveal the tele-
connection patterns of global extreme precipitation18. Agarwal et al. have
utilized ES and a similarity measure called edit distance to investigate
extreme precipitation patterns in theGanga River basin, and have identified
essential locations in the river basin with respect to potential prediction skill
of EPEs19. Approaches based on ES and climate networks have also helped
revealing the propagation characteristics of extreme summer precipitation
in the United States20 and the synchronization pattern of extreme pre-
cipitation in Easter Asia21,22. The current research suggests that there exist
preferred spatiotemporal patterns associated with the occurrence of EPEs,
but to our knowledge the information provided by the literature primarily
focuses on the precipitation coherence phenomenonunder the specific local
weather systems, or limited to a specific region. A comparative investigation
on the EPEs across diverse global regions is lacking. Mostly the community
would be interested in the cases over other regions, and how the different
regions are different from one another. This has not been thoroughly
explored previously, thus holds considerable value for further investigation.

Here, we establish and evaluate a global directed network of EPEs over
the global land and investigate potential preferred propagation pathways of
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EPEs on different continents, using ES in combination with climate net-
works. The physical mechanisms of the revealed propagation pathways are
then verified from the perspectives of travelling Rossby waves in interplay
with topography. Furthermore, we analyze the potential predictability of
EPEs at different locations along their propagation pathways.

Results
Global climate network analysis of EPEs over land
The similaritymeasure ES quantifies the co-occurrence of extreme events in
a pair of time serieswith a dynamical time lag23. This enables us to depict the
synchronization between EPEs at different locations over the global land
masses (Methods section ‘Event synchronization’).

A functional climate network is defined as a directed graph, in which
nodes represent global land grid cells, edgeweights reflect the strength of ES.
For direction attributes, if the direction is fromgrid cell i (j) to grid cell j (i), it
indicates that EPEsat grid cell i typically occurbefore (after) those at grid cell
j. Upon applying suitable significance tests and pruning edges, a climate
network for EPEs is obtained, where network edges are placed whenever
corresponding ES values are significant with p < 0.01 (Methods section
‘Functional climate networks’ and ‘Significance tests’). The sensitivity of the
climate network to varying the different parameters used for network
construction - such as the p-value above - reflects the robustness of the
patterns revealed by the network metrics. Therefore, we compare the geo-
graphical distance distribution of the EPEs’ climate networkwithmaximum
delay τmax = 3, 6, 10 days (Supplementary Fig. 1; Methods section
‘Robustness tests’). The statistics of network edges’ geographical distances
follow a consistent power-law distribution when setting different τmax,
suggesting that the established climate network here is of great robustness. It
is also noted that there are much less synchronization effects for edges with
longer distances than that with shorter distances.

For this EPEs network, the edges with a short distance are considered,
in line with the interpretation given in15, as corresponding to regional
weather systems, while the edges with a long distance, say longer than
1000 km, may be associated with global large-scale circulation patterns18.
Previous work has demonstrated that the global distribution of spatial
distances of synchronized links decays as the power law at distances lower
than 2500 km, but exhibits a super-power-law behavior at greater distances.
The links associated with regional weather systems with distances up to
2500 km, includingmesoscale convective systems and tropical cyclones, the
remaining links are related to atmospheric teleconnection patterns18,22. We
therefore use this distance to define the short-distance network (i.e., the
inner edge distances are less than 2500 km) here. The network-based sta-
tistics hereafter are all based on this short-distance network. Regional
weather systems, such as frontal systems or convective systems in the (sub)
tropics, promote the propagation of extreme precipitation by creating
opportunities for lifting airflow and moisture transport24,25. To quantita-
tively identify the propagation pathways of the EPEs, the network

divergence is introduced to determine the source and sink regions15,20 of the
EPEs propagation (Fig. 1b; see Methods section ‘Functional climate net-
works’). Here, sources and sinks in the network represent the start and end
of propagating eventswithin a specific regionalweather system.Clear source
and sink regions can be observed in North America, South America, and
Australia. The spatial distribution of network divergence inNorthAmerica,
Europe, and Australia exhibits a West-East-coast pattern, i.e., the western
part of the continent generally has a positive networkdivergence, the eastern
side has a negative network divergence, suggesting that the western part of
the continent ismore likely to be the sources for the dynamics of EPEs,while
the eastern side is the sinks. The propagation of EPEs requires adequate
moisture conditions and anomalouspressure systems. Previous studieshave
shown that the main mechanisms of moisture transport on a global scale:
Low-Level Jets, atmospheric rivers, and monsoon systems carry substantial
moisture from tropical oceans moving from west to east, and provide
moisture conditions for the formation of EPEs after arriving on land26. For
example, the Pineapple Express in North America27, the West African
westerly jet28, and the coupling of the eastward movement of the Rossby
waves with the Low-Level Jets have also been linked to the synchronization
of precipitation extremes inmid-latitudes17,29. In summary, the western part
of the continents ofNorthAmerica, Europe, andAustralia aremore likely to
receive moisture from tropical oceans and to form sources under the
influenceof the eastward travellingofRossbywaves,while the easternpartof
the continent are more likely to be sinks, resulting in the West-East-coast
pattern. Compared to the Southern Hemisphere, the absolute value of
network divergence ΔS in the Northern Hemisphere is higher. This phe-
nomenon is attributed to the greater number of nodes over the Northern
Hemispheric land, resulting in a higher count of edges; the results shown in
the following are not sensitive to this effect.

Preferred propagation pathways of EPEs
The formation and propagation of EPEs under regional weather systems
may be traced efficiently using climate networks. The dominant pathways
are typically closely related to topography and, in the tropics and subtropics,
to the development of Mesoscale Convective Systems. For example, the
northward propagating frontal systems in South America collide with
warm, moist air masses from the Amazon basin causing propagation of
EPEs from southern-central SouthAmerica toward the eastern slopes of the
central Andes15,30–32, where orographic lifting effects further increase the
EPEs magnitude.

Herewe identify propagation patterns of the EPEs by the divergence of
the short-distance network. TakingNorthAmerica as an example, we select
three source regions of the EPEs network (corresponding to the typical start
point of the EPEs propagation pathway)15,33, denoted as regions A, B, and C
inFig. 2a, located in thenorthwestern, northeastern, and southern regionsof
North America. All of these are regions with notable positive network
divergence andare surroundedbyadistinctnetwork sink region.We further

Fig. 1 | Schematic illustration of the Event Synchronization measure and the
spatial distribution of network divergence in the short-distance network with
τmax= 3 days. a Shown are a pair of extreme events series and exemplary illustra-
tions of the dynamical delay τi;jm;n and maximum delay τmax. b Positive values of
network divergence ΔS indicate source regions of the short-distance network, which

are interpreted as locations where synchronized extreme precipitation occurs within
3 days before it occurs at other locations. On the other hand, negative values indicate
sink regions, that is, locations where synchronized extreme precipitation occurs
within 3 days after it occurs at other locations.
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count the weightedmean azimuth of the nodes within source region C (Fig.
2b), which shows that most of the nodes exhibit stronger outward syn-
chronization effects in the eastern part of North America (Methods section
‘Functional climate networks’). In addition, outward strength of source
region is introduced to identify the temporal order and dynamics of the
EPEs (Methods section ‘Functional climate networks’). Through calculating
the spatially averaged ES values from region C to each grid cell, we note the
high values of outward strength from region C extend along the Appa-
lachian Mountains, which indicates that EPEs in region C are followed by
EPEs along a narrow band along the Appalachian Mountains toward the
northeasternUnited States.Meanwhile, five grid cells with an edge length of
3° are selected to represent the propagation pathways of EPEs from regionC
to the northeastern United States, considering the statistical results of the
weighted mean azimuth (Fig. 2c). A strong synchronization effect is
observedbetween the different grid cells along the propagationpathways for
region C. For a certain regional weather system, the EPEs between grid cells
occur with time intervals within 2 days on average (Fig. 2d). To investigate
the underlying mechanism of atmospheric dynamics, we extract the time
points at grid cell 1where at least one extremeprecipitation event occurs and
calculate the composite anomalies of 850mb geopotential height and wind
fields for 2 days before to 3 days after the time of EPEs occurrence (Fig. 2e).
The composites exhibit eastward movement of high- and low- pressure
anomalies originating from Rossby wave activity, which favors the forma-
tion and propagation of the EPEs. The eastwardmovement of low-pressure
anomalies also promotes the eastward extension of the Great Plains Low-
Level Jet (GPLLJ), thereby enhancing the moisture transport from the Gulf
ofMexico towards the eastern part of NorthAmerica34. Combinedwith the
orographic lifting effects, this ultimately leads to the formation of the
revealed EPEs propagation pathway along the Appalachian Mountains.

Based on this framework, we further identify two propagation path-
ways of EPEs from southwestern Canada to Hudson Bay Coastal Plain and

from southeastern Canada along the Laurentian Mountains extending to
the Labrador Peninsula, respectively (Supplementary Figs. 2 and 3). Pre-
vious studies have shown that synoptic moisture propagation over western
and easternCanada is associatedwithRossbywaves35. The travellingRossby
waves contribute to the formation of these two propagation pathways.

Similar EPEs propagating patterns also exist in other continents, here
we furthermore present a case in Oceania. In Fig. 3a, three sub-regions in
northwest, central, and southern Australia are identified as the network’s
source regions A, B, and C, which is closed to the coastline. The network
nodes within region C almost consistently exhibit stronger outward syn-
chronization effects in southeastern Australia, i.e., the southern part of the
Great Dividing Range (Fig. 3b). The high values extensions of outward
strength from region C are consistent with the orientation indicated by the
weighted mean azimuths, where four grid cells are selected to represent
propagation pathway of the EPEs spanning the southern part of the Central
Plains (Fig. 3c). Furthermore,Hovmöller diagramof theEPEs reveal that the
time intervals of extreme events between grid cells are typically within two
days (Fig. 3d). For the coastal region of southern Australia, moisture con-
tribution is linked to transport associated with atmospheric rivers origi-
nating from the IndianOcean36,37, and composite anomalies further indicate
the continued eastwardmovement of low-pressure anomalies is theprimary
factor contributing to dynamics of the EPEs’ propagating patterns (Fig. 3e).

For regionsA,B, andC inAustralia (Fig. 3a), the propagationpathways
of the EPEs traverse the Western Plateau, the Australian basin (the Great
Artesian Basin), and the hilly terrain on the western side of the Great
Dividing Range, respectively. Active Rossby wave activity and topographic
effects are identified as common drivers in establishing these two pathways
of EPEs (Supplementary Figs. 4 and 5). In central andwesternAustralia, the
Australian Low-Level Jet plays a crucial role in moisture’s transport38. The
eastward movement of low-pressure anomalies, in interplay with the
topography, provide certain weather conditions and geographical

Fig. 2 | Results of the network analysis and atmospheric conditions for propa-
gation of extremeprecipitation events in regionCofNorthAmerica. aThe spatial
distribution of network divergenceΔS inNorthAmerica. RegionsA, B, C,marked by
black boxes, are identified as the network’s source regions in North America. b The
statistical weighted mean azimuth of all grid cells in region C. The orange solid line
shows the average angle and the black curve gives a 95% confidence interval for the
statistical weighted mean azimuth. c Outward strength of region C, which is the
average Out-Strength restricted to region C. Note in particular the high values along
the Appalachian Mountains. d Spatiotemporal evolution of extreme precipitation

events from region C along the sequence of boxes indicated in (c), where grid cell is
abbreviated as gc. Composite numbers of extreme precipitation events in the
respective boxes are displayed for the 3 days before and after extreme precipitation
occurs at grid cell 1. Each box has an edge length of 3°. e Composite anomalies of
850 mb geopotential height and wind fields from NCEP-NCAR Reanalysis 1 for
2 days before to 3 days after extreme precipitation occurs at grid cell 1. Temporal
resolution is daily, spatial resolution is 2. 5° × 2. 5°. Geopotential height contours are
depicted aswhite curves. Only significant values in student’s t-test (significance level:
0.05) are shown in the maps.
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constraints for the formation of the two propagation pathways originating
from regions A and B. As expected, the maximum time interval of EPEs
between grid cells on longer propagation pathways is greater.

For other continents, we continued to utilize the functional climate
networks to identify significant propagation patterns of EPEs. Ultimately, a
total of 16 typical propagationpathways of the EPEs are detected over global
lands (Fig. 4a). Most of these pathways are spatially confined by geo-
graphical features suchasmountains andhills. For example,warm,moist air
masses from the Amazon basin provide the potential for propagation of the
EPEs frommid-latitudes to the tropics, and this propagation is proven to be
associated with cold air intrusions39,40 (Supplementary Figs. 6 and 7). In
Northern Europe, the Norrland Plateau on the eastern side of the Scandi-
navian Mountains is leeward, and the linkage between atmospheric rivers
and local precipitation extremes is weak due to the rain shadow41. Some
studies propose that the Norrland Plateau has high skill in precipitation
prediction and that regional moisture transport is mainly attributed to
change in the North Atlantic Sea Surface Temperatures (SSTs) and the
anticyclonic circulation over the northeastern Atlantic42,43. Warmer SSTs
can promote more evaporation, leading to increased low-level moisture in
the North Atlantic, which in combination with the influence of prevailing
westerly winds and topography results in an increase in convective pre-
cipitation. The anticyclonic circulation transports moist air into Northern
Europe during the summer months. The movement of low-pressure
anomalies is favorable for poleward propagation of the EPEs along the
eastern side of the ScandinavianMountains44 (Supplementary Fig. 10). Two
distinct propagation pathways of EPEs are identified in Southern Europe,
associated with the topography from the Iberian Peninsula to the Alps
mountains and the Carpathian Mountains, respectively. The eastward

movement of Rossby wave activity remains the direct cause of the propa-
gationofEPEs (Supplementary Figs. 8 and9). The formationof propagation
pathways for EPEs follows a similar pattern in Asia and Africa (Supple-
mentary Figs. 11–15).

Predictability of EPEs by propagation patterns
There are significant synchronization effects among EPEs at different grid
cells along the propagation pathways, and we claim that this can provide a
basis for early warning of floods, landslides, and other hazards caused by
EPEs. To assess the potential predictability of the propagating extreme
events, we employ a method based on frequency statistics, where the time
when extreme events occurred at grid cell 1 is identified as the reference. By
extending this reference forward for a duration of 3 days, we calculate the
ratio of extreme events occurringwithin this time interval at subsequent grid
cells to the total number of extreme events at subsequent grid cells. This
result provides an estimation of the probability that an extreme event at grid
cell 1 is followed by extreme events at the subsequent grid cells along the
preferred propagation pathway. Note in particular the potential predict-
ability does not equate to realized predictability, and the calculation of
potential predictability only considers the occurrence of EPEs, but does not
involve the intensity of EPEs. We can take the potential predictability as
prior knowledge and integrate them into ensemble forecasting andmachine
learning forecasting in our futurework toprovide support for the prediction
of extreme events.

Taking the case of North America (Fig. 2) as an example, the
propagating patterns of the EPEs in North America typically span
long geographical distances, with the probabilities of all grid cells
decaying significantly with geographical distance. The three pathways

Fig. 3 | Results of the network analysis and atmospheric conditions for propa-
gation of extreme precipitation events in region C of Australia. a The spatial
distribution of network divergenceΔS in Australia. Regions A, B, C,marked by black
boxes, are identified as the network’s source regions in Australia. b The statistical
weighted mean azimuth of all grid cells in region C. The orange solid line shows the
average angle and the black curve gives a 95% confidence interval for the statistical
weighted mean azimuth. cOutward strength of region C, which is the average Out-
Strength restricted to region C. Note in particular the high values along the coast.
d Spatiotemporal evolution of extreme precipitation events from region C along the

sequence of boxes indicated in (c), where grid cell is abbreviated as gc. Composite
numbers of extreme precipitation events in the respective boxes are displayed for the
3 days before and after extreme precipitation occurs at grid cell 1. Each box has an
edge length of 3°. e Composite anomalies of 850 mb geopotential height and wind
fields from NCEP-NCAR Reanalysis 1 for 2 days before to 3 days after extreme
precipitation occurs at grid cell 1. Temporal resolution is daily, spatial resolution is
2. 5° × 2. 5°. Geopotential height contours are depicted as white curves. Only sig-
nificant values in student’s t-test (significance level: 0.05) are shown in the maps.
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have the greatest predictive potential at grid cell 2, with an average
probability of up to 68%, and still predicting more than 39% of the
EPEs at the ending grid cell. In total, the average probability of the 16
preferred propagation pathways in Fig. 4b is 0.45. As the distance
from the starting grid cell (i.e., grid cell 1 in Fig. 4a) increases, the
probability decreases accordingly, especially for the source region C
in North America and source region B in Australia. Inspecting the
estimated probability metrics along different EPEs propagation
pathways (Fig. 4b and Supplementary Table 1), the identified pro-
pagation patterns over North-Central Europe and North America can
provide more predictable EPEs than others. Moreover, the prob-
ability clearly depends on the specific selection of the grid cells
marked by spatial boxes and may be altered by adjusting their
position. This is a result based on the starting point of the propa-
gation pathways, allowing a favorable time horizon for early warning.

To further analyze the mean state and proportion of EPEs covered by
the 16 preferred propagation pathways, we statistically obtain the average
frequency of EPEs for each grid cell within the 16 propagation pathways,
and the percentage of chain events that adhere to the corresponding pro-
pagation pattern (Supplementary Table 2). We found that for the 16 pro-
pagation pathways, on average, more than 32% of EPEs follow the
propagation patterns revealed in this study. This percentage significantly
exceeds the overallmeanvalue for specific regions, such as regionA inSouth
America, region B in Europe, regionC in Europe, and regionC inAustralia,
where it reaches as high as 65.81%. The regional differences in this per-
centage also reflect the differences in the contribution of the revealed pro-
pagation patterns to the formation of regional precipitation extreme.
Additionally, for the seasonal distributions of the above chain events, we
found that chain events in North America, Europe, and Asia mainly occur
during the summer and autumn, while chain events in the Southern

Hemisphere are more prevalent during winter and spring (Supplementary
Fig. 16).

Discussion
We identified 16 preferred propagation pathways of EPEs and reveal sig-
nificant influence of topography and atmospheric Rossby waves on the EPE
propagation. The topographic lifting effect may favor the formation of
particularly strong EPEs, and the continued eastward movement of low-
pressure anomalies originating fromRossby wave activity embedded on the
westerly jets can explain the dynamics associated with the EPE propagation
patterns. Furthermore, empirical probabilities reveal the potential predict-
ability of EPEs along the different pathways, which is valuable to provide
prior knowledge for improving the forecast of EPEs. It cannot be overlooked
that these important conclusions can only be draw from the comprehensive
investigations on the global results. The potential predictability of EPEsmay
depend not only on the certain regional weather system, but is related to
atmospheric teleconnections. Some studies suggest better forecast skill for
extreme precipitations along the eastern side of the central Andes Moun-
tains duringwarmphases of the ElNiño SouthernOscillation (ENSO)15,45,46.
The phase and amplitude of the Madden-Julian Oscillation (MJO) have
been shown to modulate the probability and spatial distribution of rainfall
extremes in Southeast Asia, and the convective phase of the MJO increases
the probability of EPEs over land by about 30–50%47. The influence of
atmospheric teleconnections on EPEs may be an extension of the mod-
ulation of regional weather systems by atmospheric waves. Here we found
that the ENSO has weak influence on the spatial propagating pathways of
EPEs, but the warm and cold ENSO phases can induce higher predictability
of the propagating EPEs (not shown here). More in-depth investigation of
the relationship between atmospheric teleconnections andEPEpropagation
pathways will be addressed in our future work.

Fig. 4 | The spatial propagation pathways and
predictability of extreme precipitation events.
a The 16 preferred propagation pathways of the
EPEs marked by the black boxes over land. The red
arrows indicate the corresponding propagation
direction, the colored shading represents the global
relief derived from the ETOPO1 data with a spatial
resolution of 1 Arc-Minute. b The probability of
EPEs at subsequent grid cells along the propagation
pathways within 3 days after EPEs occur at
grid cell 1.

https://doi.org/10.1038/s41612-024-00701-6 Article

npj Climate and Atmospheric Science |           (2024) 7:165 5



EPEs are caused by complex processes, which normally leads to large
uncertainties in modelling and predicting global EPEs with general circu-
lation models. Our study employs the advanced climate network approa-
ches to study EPEs, and find that there exist robust synchronization and
propagation patterns of EPEs over global land, which provides promising
insights for the predictability of EPEs. Also, the ordinal patterns of obser-
vational EPEs could bring a reasonable way to evaluate and improve the
EPEs by climate modelling in the future study. Further, the framework
proposed in this study can be also instructive for studyingmore problems of
climate extreme events, such as the spatial propagation and forecast of
heatwaves, cold waves, or air pollution.

Methods
Datasets
Weutilize theNationalOceanic andAtmosphericAdministration (NOAA)
Climate Prediction Center (CPC) Global Unified Gauge-Based Analysis of
daily precipitation data for the period from 1980 to 2020 with a spatial
resolution of 0. 5° × 0. 5°, and there are 360 grid cells in the north-south
direction and 720 grid cells in the east-west direction. The dataset is con-
structed from gauge reports from over 30,000 stations collected from
multiple sources, including other national and international agencies.
Quality control is performed through comparisons with historical records
and independent information from measurements at nearby stations,
concurrent radar, satellite observations, and numerical model forecasts48.
Optimal interpolation with orographic consideration is used to interpolate
the dataset. The optimal interpolation defines the analyzed value at a grid
cell by modifying a first-guess field with the weighted mean of the differ-
ences between the observed and the first-guess values at station locations
within a search distance, where the weight is determined from the variance
and covariance structure of the target precipitation fields49. Compared with
existing products, the datasets show improvement in representing spatial
distribution patterns and temporal changes of precipitation50. TheAntarctic
region is not considered in this study due to the sparse distribution of
stations, which could lead to unstable data quality. For Meteorological
variables, such as 850mb geopotential height, and 850mb zonal and mer-
idional wind component obtained from the National Centers for Envir-
onmental Prediction-National Center for Atmospheric Research (NCEP-
NCAR) Reanalysis 1 with a spatial resolution of 2. 5° × 2. 5° are used in this
study to derive the underlying evolution of atmospheric patterns associated
with the EPEs. For geographical variables, we employ the ETOPO1 data for
ice surface versions with a spatial resolution of 1 Arc-Minute. The data are
derived from the ETOPO1 Global Relief Model, which integrates topo-
graphic, bathymetric, and shoreline data from regional and global datasets
to enable comprehensive, high-resolution renderings of geophysical char-
acteristics of the earth’s surface51.

The 95th percentile of the wet day (≥1mm day−1) for each grid cell is
defined as the threshold for extreme precipitation8,18, EPEs occurring on
consecutive days are counted as one event, and the occurrence time of each
extreme precipitation event is determined as the first day of occurrence.

Event synchronization
The non-linear synchronization measure ES is used to reveal preferred
propagating patterns of extreme events. As shown in Fig. 1a, grid cell i and
grid cell j are selected to describe the definition of synchronized events52.We
suppose that for grid cell i, an extreme precipitation event occurs at a
moment tim; for grid cell j, an extreme precipitation event occurs at a
moment tjn, where m 2 1;M½ �, n 2 1;N½ �, M and N denote the total
number of EPEs at grid cells i and j, respectively. A dynamical delay τi;jm;n is
introduced to decidewhether a pair of extreme events occurring at tim and tjn
is counted as a synchronized event, and its definition is as follows:

τi;jm;n ¼ min
timþ1 � tim; t

i
m � tim�1; t

j
nþ1 � tjn; t

j
n � tjn�1

n o

2

0
@

1
A ð1Þ

Furthermore, we introduce a maximum delay τmax to limit the max-
imum time interval between two synchronized events. We use f i=j

� �
to

denote the number of times an extremeprecipitation event shortly occurs in
grid cell i after it occurs in grid cell j, i.e.:

f i=j
� � ¼

XM
m¼1

XN
n¼1

Sij ð2Þ
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Sij ¼
1 if 0 < tim � tjn ≤min τi;jm;n; τmax
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>>:
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and analogously for f j=i
� �

. qij denotes the directed synchronization
strength between grid cell i and j, and its expression is given as:

qij ¼
f j=i
� �� f i=j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
M ×N

p ð4Þ

where qij is normalized to qij 2 �1; 1½ �. There is qij = 1 if EPEs are fully
synchronizedbetweengrid cell i and j, andEPEs at grid cell iprecedeEPEsat
grid cell j.

Compared to the static delays in the traditional linear correlation
analysis, ESmeasures allows for dynamicdelays betweenevents, rendering it
suitable for addressing non-linear temporal relationships, where typical
values for the dynamical delay fall within the range of 6 to 8 in this study
(Supplementary Fig. 17). Furthermore, ES can be employed to compute the
average synchronization strength of EPEs between geographical source and
sink regions. This will allow us to determine the preferred propagation
pathways of EPEs, thereby formulating a forecast rules for extreme rainfall.

Functional climate networks
Functional climate networks are defined as networks for which each edge is
placed in accordance with statistically similar synchronized behavior of the
two corresponding nodes, where nodes are represented by time series of
EPEs at the global land grid cells. For a pair of nodes, we assign their
respective ES values asweights to the corresponding directed edges.An edge
with positive ES indicates a pointing from the node where EPEs typically
occur first to the node where the synchronized extreme events occur within
the subsequent 3 days. The construction of the climate network transforms
the original connectivity structure of the dataset into the topology of the
network and thus makes it accessible.

To spatially solve the ordinal problem of EPEs, we introduce the net-
work divergence ΔS, which is defined as the difference between outdegree
kout and indegree kin at each node:

ΔSi ¼ kiout � kiin ð5Þ

where kiout is the number of connections directed outward from the node i,
kiin is the number of connections directed inward to the node i. Positive
(negative) values of network divergenceΔS indicate source (sink) regions of
the network. In source regions, EPEs are followed by EPEs occurred at other
nodes, and in sink regions, EPEs are preceded by EPEs occurred at
other nodes.

In addition, we calculate the outward strength of the selected source
regions in different continents to identify the corresponding propagating
patterns of EPEs:

Siout Rð Þ ¼
P

j2RWji

∣R∣
ð6Þ

where Wji is ES matrix of the climate network. ∣R∣ denotes the number of
nodes contained in the selected region R. Siout Rð Þ ¼ 1 indicate a full
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synchronization from each node in region R to node i.

ϕi Rð Þ ¼
P

i2RWijAzijP
i2RWij

ð7Þ

where Azij is azimuth from node i to node j.
For the selected source regions, the weighted mean azimuth of the

nodes is proposed through considering the various weights of the outward
edges. The weightedmean azimuths point out the orientation with stronger
outward synchronization effect for the nodes, with the reference of due
north and increasing clockwise. The average angle of the weighted mean
azimuths provides a directional reference for finding potential propagation
pathways of EPEs. However, to obtain a clear propagation pathway, out-
ward strength is utilized to reveal regions with high synchronization effects,
where regions with high outward strength spatially demonstrate possible
propagation pathways of EPEs. Grid cells are typically selected along
pathways with high outward strength and eventually extended to the sinks.

Significance tests
Significance tests is employed to prune the weakly correlated edges in
the climate network. For each observed ESij value, a null-model
distribution is obtained by computing the ES values for 1000 pairs of
surrogate extreme event series with M and N uniformly and ran-
domly distributed extreme events. The 99th percentile of the corre-
sponding null-model distribution is determined as the significance
threshold. If the observed ESij value exceeds this threshold, it indi-
cates that ESij value has a significance level of 0.01, and these edges
between node i and node j are saved in the network. In the climate
network for EPEs, edges passing the significance test will have clearer
propagation relations, while edges established by small- to medium-
scale weather systems occurring coincidentally at different spatial
locations (without persistent patterns) are typically pruned.

Robustness tests
For the climate network, the maximum delay τmaxmay affect the structure
of the network. Although previous studies find that the maximum delay
τmax has a weak influence on the synchronization of EPEs18,22, the geo-
graphical distance distributions of the network with τmax = 3, 6, 10 days are
compared in the Supplementary Materials because our study investigates
the extreme precipitation synchronization between global land grid cells.

Data availability
CPCdailyprecipitationdata is freely available fromtheNOAAathttps://psl.
noaa.gov/data/gridded/data.cpc.globalprecip.html. 850mb geopotential
height, and 850mb zonal andmeridionalwind component is obtained from
NCEP-NCAR Reanalysis 1 at https://psl.noaa.gov/data/gridded/data.ncep.
reanalysis.html. The ETOPO1data for ice surface versions is obtained from
the NOAA at https://www.ncei.noaa.gov/products/etopo-global-
relief-model.

Code availability
MATLAB was used for coding and plotting. The code used in this study is
available from the corresponding author on reasonable request.
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