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Rainfall seasonality dominates critical precipitation threshold for the 
Amazon forest in the LPJmL vegetation model 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• In simulations of the Amazon rainforest, 
we find a critical precipitation threshold 
below which biomass decreases rapidly. 

• Crossing the threshold is reversible 
when increasing precipitation again. 

• Significant "early warning signs" can be 
detected before the critical threshold. 

• We attribute spatial differences of the 
critical threshold to (i) the precipitation 
seasonality, (ii) potential evapotranspi
ration, (iii) the role of adaptive deep 
roots in regions with larger water stress.  
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A B S T R A C T   

Understanding the Amazon Rainforest’s response to shifts in precipitation is paramount with regard to its 
sensitivity to climate change and deforestation. Studies using Dynamic Global Vegetation Models (DGVMs) 
typically only explore a range of socio-economically plausible pathways. In this study, we applied the state-of- 
the-art DGVM LPJmL to simulate the Amazon forest’s response under idealized scenarios where precipitation 
is linearly decreased and subsequently increased between current levels and zero. Our results indicate a 
nonlinear but reversible relationship between vegetation Above Ground Biomass (AGB) and Mean Annual Pre
cipitation (MAP), suggesting a threshold at a critical MAP value, below which vegetation biomass decline ac
celerates with decreasing MAP. We find that approaching this critical threshold is accompanied by critical 
slowing down, which can hence be expected to warn of accelerating biomass decline with decreasing rainfall. 
The critical precipitation threshold is lowest in the northwestern Amazon, whereas the eastern and southern 
regions may already be below their critical MAP thresholds. Overall, we identify the seasonality of precipitation 
and the potential evapotranspiration (PET) as the most important parameters determining the threshold value. 
While vegetation fires show little effect on the critical threshold and the biomass pattern in general, the ability of 
trees to adapt to water stress by investing in deep roots leads to increased biomass and a lower critical threshold 
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in some areas in the eastern and southern Amazon where seasonality and PET are high. Our findings underscore 
the risk of Amazon forest degradation due to changes in the water cycle, and imply that regions that are currently 
characterized by higher water availability may exhibit heightened vulnerability to future drying.   

1. Introduction 

As the largest tropical forest on Earth, the Amazon rainforest is a key 
component of the Earth system (Nobre et al., 2021; Verweij et al., 2009; 
Flores et al., 2024). However, this rainforest is under threat from 
deforestation (Lovejoy and Nobre, 2019; Lapola et al., 2023; Boers et al., 
2017), climate change (Nobre et al., 2021; Armstrong McKay et al., 
2022; Drijfhout et al., 2015; Wunderling et al., 2021a, 2023; Canadell 
et al., 2021), and the physiological forcing of increasing CO2 (Langen
brunner et al., 2019; Richardson et al., 2018). 

A large body of research indicates that tropical forests, and the 
Amazon in particular, may have multiple stable equilibrium states and 
could abruptly and irreversibly transition between these states at 
bifurcation points, where the mean annual precipitation falls below a 
critical threshold (Lenton, 2011; Staver et al., 2011; Lenton et al., 2008; 
Lovejoy and Nobre, 2018; Hirota et al., 2011; Staal et al., 2020; Ciemer 
et al., 2019; Boulton et al., 2022). Since the Amazon hosts a large 
fraction of the world’s species and large stocks of terrestrial carbon, it is 
crucial to understand the mechanisms that may lead to the existence of 
multiple tree cover modes in the Amazon, and how these mechanisms 
might cause accelerated and possibly irreversible forest loss (Malhi 
et al., 2009; Verweij et al., 2009; Lenton et al., 2019; Smith et al., 2022; 
Drüke et al., 2023; Bultan et al., 2022). 

The bifurcation hypothesis assumes that effectively the entire 
regional vegetation system can be conceptualized as a low-dimensional 
model. When focusing on small-scale processes such as vegetation fires, 
the assumption of space-for-time substitution (Hirota et al., 2011; Staver 
et al., 2011) implies that different sites can be understood as realizations 
of that same system. Large-scale feedbacks between rainfall and vege
tation, for instance those related to moisture recycling (Zemp et al., 
2017), have also been invoked to argue for the potential existence of 
feedback-driven tipping points, in which case the low-dimensional 
model would represent the entire Amazon as one uniform system. In 
both cases, the argument relies on a nonlinear response of vegetation to 
changes in mean annual precipitation (MAP) as an environmental con
trol parameter (Ahlström et al., 2017). However, even without any 
feedback mechanisms that may give rise to a bifurcation, the Amazon 
could still have a reversible nonlinear response to climate change. Even 
such a reversible response would have severe impacts, for example on 
regional climate and the global carbon cycle. 

Few studies have used dynamic global vegetation models (DGVMs) 
directly to investigate whether vegetation actually follows a nonlinear 
response to gradual precipitation changes. Additionally, the applica
bility of bifurcation theory to the extensive spatial scale of the Amazon 
forest tree cover remains unknown. When using the theory of 
bifurcation-induced tipping points to study Amazon vegetation resil
ience, studies assume that tropical forests have a somewhat universal 
critical MAP (Staal et al., 2020; Wunderling et al., 2021b). However, 
satellite observations indicate that forests in various locations may have 
different critical thresholds (Tirabassi and Masoller, 2023; Valencia 
et al., 2024). 

At the same time, previous studies have used bifurcation theory and 
observational data to suggest that the Amazon forest is losing resilience, 
and may even be approaching a critical transition (Boulton et al., 2022; 
Smith et al., 2022; Blaschke et al., 2023). Resilience in this case is 
defined as the ability of the vegetation system to recover from pertur
bations such as drought and fires (Dakos and Kéfi, 2022; Buxton et al., 
2022). Understanding the factors that influence vegetation resilience is 
crucial in defining our current safe operating space. However, the 
drivers and mechanisms behind the observed vegetation resilience 

changes remain elusive. The main concerns with regard to the future 
resilience of the Amazon rainforest are: the decrease in available soil 
water due to increased potential evapotranspiration (Brauman et al., 
2012), a prolonged dry season (Fu et al., 2013), and the reduced mois
ture recycling resulting from the stomatal closure induced by CO2 con
centrations (Richardson et al., 2018), fires (Drüke et al., 2023), 
deforestation (Lovejoy and Nobre, 2019) and temperature stress and 
thermal maxima of physiological processes (Christopher et al., 2023). 
Smith and Boers (2023a) analyzed the restoring rate from perturbations 
in tropical forests, and showed that water availability and variability are 
important factors for driving resilience change. It has also been shown 
that different tree rooting strategies affect the dominance of tree species 
in South America (Sakschewski et al., 2021), which can have implica
tions for the adaptive capacity of the rainforest to long-term climate 
change. While simple conceptional models can neither include so many 
factors at play nor represent spatial differences, these aspects are rep
resented in DGVMs. Many DGVMs are able to simulate the distribution 
and dynamics of vegetation when driven by atmospheric variables such 
as precipitation and temperature (Sitch et al., 2008; Sakschewski et al., 
2021; Drüke et al., 2021a; Gouttevin et al., 2012). These models also 
project the potential impacts of climate change on forests based on po
tential future climatic scenarios (Malhi et al., 2009; Parry et al., 2022; 
Cox et al., 2004). 

DGVMs are hence a valuable tool to evaluate if low-dimensional 
bifurcations and tipping points are a plausible feature of the Amazon 
forest on a large spatial scale. In this study, we use the DGVM Lund- 
Potsdam-Jena managed Land (LPJmL) model to simulate the vegeta
tion response to precipitation change over the Amazon basin (see 
Methods). By using the model offline (uncoupled to the atmosphere) we 
focus on the vegetation’s response to climate change, but do not 
consider any interactions between atmosphere and vegetation. In other 
words, we here explore the small-scale hypothesis (similar to Hirota 
et al. (2011) and Staver et al. (2011)), but not the question of a potential 
hysteresis in the large-scale coupled dynamics of the Earth system. 

The LPJmL 4.0 model (Sitch et al., 2003; Schaphoff et al., 2018a) 
serves as a well-established and rigorously validated process-based 
vegetation model. Schaphoff et al. (2018b) evaluated LPJmL4 using in 
situ measurements, satellite observations, and agricultural yield statis
tics, demonstrating its strong performance in reproducing carbon fluxes, 
particularly global NBP and local NEE, and showing LPJmL4 suitable for 
process-based analyses of biosphere dynamics and multi-sectoral 
climate change impacts. It comprehensively simulates the surface en
ergy balance, water fluxes, carbon fluxes, and stocks, and the dynamics 
of natural and managed vegetation across the globe, driven by climate 
and soil input data. We conduct two primary experiments for each model 
configuration: the “decrease experiment”, which gradually reduces 
precipitation from current-day levels to zero, and the “increase experi
ment”, which restores precipitation back to its contemporary state by 
reversing the decrease experiment in time. This allows us to study the 
effect of varying MAP on the simulated Amazon forest’s above-ground 
biomass. As local water availability is also influenced by rainfall sea
sonality and the loss of soil water via evapotranspiration, we investigate 
the role of MAP, seasonality indices, and potential evapotranspiration 
(PET). We also explore the role of fire feedbacks and local forest adap
tation via deep rooting strategies (Sakschewski et al., 2021), by enabling 
and disabling different modules: (i) LPJmL with variable tree rooting 
strategies (parameterized as different maximum root depths, see Nep
stad et al. (1994); Oliveira et al. (2005); Sakschewski et al. (2021)), (ii) 
LPJmL with interactive vegetation fires as simulated by the SPITFIRE 
fire module (Thonicke et al., 2010; Drüke et al., 2019). In the following 
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Methods section, we provide a detailed description of the specific set
tings and configurations used in our models. 

2. Methods 

2.1. Experiment design and setting 

We here use the DGVM LPJmL4.0 (Schaphoff et al., 2018a) with 
disabled land use. LPJmL depicts global vegetation distribution through 
the fractional coverage of distinct plant functional types (PFTs), quan
tified as foliage projective cover (FPC). Additionally, managed land is 
represented through the fractional coverage of crop functional types 
(CFTs). Bioclimatic constraints and the influences of factors such as heat, 
productivity, and fire on plant mortality determine the establishment 
and persistence of various PFTs. This feature empowers LPJmL to un
ravel intricate feedback mechanisms, including those between vegeta
tion and fire and between roots and water availability. Since its original 
implementation by Sitch et al. (2003), LPJmL has undergone continuous 
refinement. Notable improvements include the incorporation of a water 
balance representation (Gerten et al., 2004), an agriculture module 
(Bondeau et al., 2007), novel components dedicated to fire dynamics 
(Thonicke et al., 2010; Drüke et al., 2019), permafrost interactions 
(Schaphoff et al., 2013), and phenology (Forkel et al., 2019). These 
enhancements collectively augment the model’s capacity to capture and 
simulate the complex interactions within the Earth’s system, amplifying 
its utility in addressing intricate research questions. In this study, the 
LPJmL version we apply does not include nutrient limitations like ni
trogen or phosphorus. In its standard configuration, consistent with our 
study, the model operates on a latitude-longitude grid, encompassing a 
spin-up period of 5000 years. During this spin-up phase, the model 
replicates the initial 30 years of the provided climate dataset to ensure 
convergence and stability. 

We refer to the LPJmL4.0 model with variable roots (LPJmL4.0-VR) 
(Sakschewski et al., 2021) and the LPJmL4.0 model with the SPITFIRE 
module (LPJmL4.0-SPITFIRE) (Drüke et al., 2019), using the coupled 
LPJmL4.0 model with variable root module and SPITFIRE module 
(LPJmL4.0-VR-SPITFIRE) to mimic the dynamical vegetation responses 
under precipitation control over Amazon rainforest region. We first 
study the effect of plant root depths strategy by comparing a model 
version with fixed maximum root depth to a version where maximum 
root depth is dynamic (Sakschewski et al., 2021) and can reach down to 
the total soil depth (which differs spatially). While in principle, two 
tropical tree types exist in LPJmL, enabling variable roots results in 20 
natural tropical tree types with different maximum root depths. The 
second effect, the role of wildfires, is studied by enabling the SPITFIRE 
module (Drüke et al., 2019; Thonicke et al., 2010). SPITFIRE is a 
process-based fire model, which simulates danger, ignition, spread, and 
effects of fire coupled to the vegetation dynamics in LPJmL. By enabling 
or disabling the deep variable root and SPITFIRE modules, four model 
versions were assessed: wildfire with deep root influence (Fire-var
Roots), wildfire without deep root influence (Fire-fixedRoots), no 
wildfire with variable root influence (noFire-varRoots), and no wildfire 
without variable root influence (noFire-fixedRoots). CO2 levels are kept 
constant at pre-industrial levels, and no land use is imposed in order to 
be able to focus on the effect of the factors described above. 

To assess if the vegetation system in the LPJmL model demonstrates a 
nonlinear and irreversible response consistent with bifurcation theory, it 
is essential to examine how vegetation biomass responds to changes in 
precipitation. The most straightforward method involves linearly 
reducing precipitation to zero and then incrementally restoring it to its 
original level, observing the vegetation response throughout. To inves
tigate the impact of precipitation on the equilibrium state of the vege
tation system, the precipitation is slowly decreased from the long-term 
observational climatology of the Amazon region to zero, and then 
increased to its original level. The input climatology is based on 
1981–2010 climate observations from CRU TS v. 4.06 (Climatic 

Research Unit gridded Time Series) dataset (Harris et al., 2020). In the 
experimental design, precipitation levels for each grid cell were modu
lated. This is implemented in the precipitation-decreasing experiment 
through a gradual reduction from current levels to zero, at a rate of 1 % 
per 100 years. Conversely, in the precipitation-increasing experiment, 
the increase is gradual from zero back to the original levels, maintaining 
the same rate. The precipitation change is executed in a step-like 
manner: Every hundred years, we decrease (or increase) precipitation 
by 1 % of the initial value at the first year and continue to run for 99 
years to ensure the system is in equilibrium or quasi-equilibrium, while 
all other climate forcings are kept constant. While the scaling factor to 
achieve this reduction drops from 1 to 0 in a step-wise fashion, precip
itation can still fluctuate from year to year due to natural variability (see 
Fig. 1a, b), which was simulated by adding the randomized shuffling of 
1981–2010 climate data. This shuffling process introduces the inter- 
annual variability in the experiment. Since the experiment only uses 
the climatological variability between 1981 and 2010 with a shuffling 
procedure, its impact on vegetation does not reflect the full interannual 
variability in the real climate, and so it will not be discussed in detail 
here. To bring the vegetation into equilibrium after the ramp-up, we also 
ran the model for another 1000 years at constant original precipitation 
levels after the precipitation finally returned to present-day levels 
(Fig. 1a). The length of the MAP and AGB time series spans 10,100 years 
for the decrease experiment and 11,100 years for the increase experi
ment, with the range of MAP values varying across grid cells. 

To analyze the relationship between MAP and AGB, we initially 
smooth and filter the MAP and AGB to eliminate high-frequency signals 
below 100 years by filtering using a 2th-order lowpass digital Butter
worth filter (Mitra, 2001), which is caused by the discontinuous pre
cipitation changes of 1 % every 100 years (Fig. 1b). We then establish a 
rescaled MAP time series with a consistent interval of 25 mm/yr, 
ranging from 0 to its maximum, and identify the corresponding AGB 
value for each MAP to derive the new rescaled AGB for each grid cell. 
This process ensures that the rescaled MAP of all grid cells start at zero 
and have the same interval, enabling a more convenient comparison of 
the rescaled AGB across different grid cells at the same MAP despite 
different data length. We use the relation between the rescaled MAP and 
AGB to identify the critical MAP and for classification via the unsuper
vised Self-Organizing Map (SOM) method (Vatanen et al., 2015). Based 
on the experience of many attempts, we chose to divide into 8 clusters. 
The number of clusters has little effect on the resulting pattern. 

2.2. Determining critical MAP and water availability indices 

To determine the critical MAP in a consistent manner, we employ a 
conditional average of three methods. (1) For the first method, a single 
change point detection technique is used. It selects a point to divide the 
signal into two parts and computes the error sum of squares between 
each signal part and the linear least-squares fit for that part as a residual 
error. The location of the division point is adjusted until the total re
sidual error is minimized. This transition point detection method is 
implemented using the ‘findchangepts’ function in Matlab2021b 
(MATLAB, 2021). (2) The second method also uses a change point 
detection approach but includes a threshold for minimum improvement 
in total residual error set to 106. This method may identify more than 
one change point and operates similarly to the first method, but it 
continues to find additional change points until the total residual error is 
first below the defined threshold. The transition point is determined as 
the change point with the max slope differences between the two sec
tions before and after it. This method is implemented using the ‘find
changepts’ function in Matlab2021b (MATLAB, 2021). (3) The third 
method estimates the point of maximum curvature by the derivative 
method. The curvature K can be estimated as follows: 
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K =
|yʹ́ |

(1 + yʹ2)
3
2

(1)  

where the AGB is a function of MAP, denoted by y. ý  represents the first 
derivativeyʹ = dAGB

dMAP, and ýʹ represents corresponding second derivative. 
The difference between the slopes of the sections split at the maximum 
curvature point is calculated. In order to circumvent potential inaccur
acies in transition point detection due to high-curvature local fluctua
tions, the calculation process is repeated for each point with decreasing 
curvature values, from the maximum down to the point of 1/3 maximum 
curvature. The point showcasing the largest positive slope difference is 
designated as the transition point. The critical MAP threshold in this 
study is then computed as a conditional average of these three methods’ 
results. If a result varies from the other two by >1000 mm/yr, it is 
considered an outlier and excluded from the average calculation, e.g. 
Supplementary Fig. A1. If any of these three methods fail to determine 
the critical threshold, we consider the corresponding critical MAP at that 
grid cell as indeterminate. 

To further explore the factors influencing critical MAP, we focus on 
the importance of water availability. Since local water availability is 
affected by rainfall seasonality, we examine the role of seasonality. 
Given that precipitation is prescribed in the experiment, simple seasonal 
variability metrics, e.g. the standard deviation of monthly precipitation 
in each year, would be biased by the absolute MAP, meaning the vari
ability metrics would change with controlled MAP. To mitigate the in
fluence of absolute MAP, we refer to Walsh-Lawler Seasonality Index 
(Walsh and Lawler, 1981) as the measure of precipitation seasonal 
variability metrics, which excludes the absolute value influence: 

SI =
1
R
∑n=12

n=1
∣xn − R/12∣ (2)  

in where R is the mean annual precipitation, xn is mean rainfall of month 
n. 

The aridity index is estimated by MAP relative to potential evapo
transpiration (PET). The dry season precipitation (DSP) is determined by 
first calculating the 3-month running mean over the entire period and 
then selecting the minimum value of each year as dry season precipi
tation, which refers to the same method in Chou et al. (2013). 

To explore the relationship between critical MAP and other vari
ables, we also calculate the aridity at the critical MAP value, and analyze 
the relationship between aridity and AGB under varying SI levels. We 
use partial correlation to estimate the linear partial correlation co
efficients between two variables among three variables controlling for 
the third variable. This can be achieved directly by ‘partialcorr’ function 
in Matlab 2021b (MATLAB, 2021). 

2.3. Dynamical system early warning indicators 

When a stable state described by a dynamical system loses stability 
(or resilience, in the sense of recovery rate; see Holling (1973); Pimm 
(1984); Held and Kleinen (2004); Boers (2021); Brovkin et al. (2021)), it 
is known to show so-called Critical Slowing Down (CSD) (Scheffer et al., 
2009; Lenton, 2011; Boers et al., 2022). CSD indicators like the auto
correlation and the variance are hence commonly used as early warning 
indicators for critical transitions (Dakos et al., 2008). Specifically, in a 
stochastic dynamical system with a bifurcation point (where the current 
stable state is lost), the temporal variance and lag-1 autocorrelation (AR 
(1)) coefficient will increase as the control parameter approaches this 

Fig. 1. Design of the precipitation control experiment using the LPJmL model. (a) Illustrates the gradual reduction of precipitation from current levels to zero at a 
rate of 1 % per 100 years, and its subsequent rise back to original levels at the same pace. This precipitation level then remains for an additional 1000 years to ensure 
equilibrium at the end. (b) shows each 100-year change is executed by reducing by 1 % of the initial value in the first year and maintaining this level for the following 
99 years. This process also incorporates interannual variability by shuffling 1981–2010 climate data. (c) Showcases the progression of Above Ground Biomass (AGB) 
at a chosen grid cell (the red dot in (d)) during the precipitation control experiment. (d), (e), and (f) Display the time-averaged AGB patterns in the Amazon during 
the initial state (years 1–10), at zero precipitation (years 10,091–10,100), and after the restoration to initial precipitation levels (years 21,191–21,200). The Amazon 
basin is determined from (http://worldmap.harvard.edu/data/geonode:amapoly ivb). 
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point (Scheffer et al., 2009). 
Based on this theory, assuming that the dynamics are close to the 

equilibrium, linearize the system around a fixed stable point x* for the 
fluctuations Δx = x–x*: 

dΔx = λΔxdt+ σdW (3)  

which defines an Ornstein–Uhlenbeck process a Wiener Process W and 
standard deviation σ. The fixed point is stable for restoring rate λ < 0. 
Discretizing this process into a time step Δt, the variance and AR(1) are 
obtained via Dijkstra (2013): 

〈Δx2〉 =
σ2

1 − e2λΔt (4)  

and 

α(n) = enλΔt (5) 

Therefore, as the system loses stability, λ approaching zero, AR(1) 
(that is α(1)) will increase toward 1 and variance 〈Δx2〉 will diverge to 
positive infinity, which thus can be used as precursor signals to detect 
critical slowing down and measure the drought resistance change of the 
system. To estimate the temporal variance and AR(1), we use a sliding 
window with a window size of 100 years. The Kendall τ patterns show 
the tendency of variance and AR(1) over time approaching transition 
points. The significance of the Kendall τ is detected by generating 100 
groups of Phase-Randomized Surrogate (PRS) time series for each grid 
cell, and calculating their Kendall τ (Dakos et al., 2008; Nian and Fu, 
2019). Kendall τ values above the 95 % percentile of the surrogate sta
tistics are considered significant (equivalent to p < 0.05). 

3. Results 

3.1. Nonlinear response without large-scale hysteresis 

The above-ground vegetation biomass generated by the model under 

the Fire-varRoots version is shown in Fig. 1(c,d). This version of LPJmL 
is able to simulate the biomass distribution and distribution of tree types 
fairly realistically (Fig. 1c) (Sakschewski et al., 2021). 

In the decrease experiment, the AGB of Amazon forest vegetation 
shows initial stability as the rainfall declines gradually. However, a 
transition to a quasilinear regime is observed when annual mean pre
cipitation decreases past a certain critical threshold (in the following: 
critical MAP), below which the forest biomass declines in response to the 
precipitation decrease (Fig. 1c). Observations of the Amazon forest- 
savanna landscape have also shown sharp transitions between two 
vegetation types when precipitation is varied (Tirabassi and Masoller, 
2023; Valencia et al., 2024). The overall shape of linearly increasing 
biomass with increasing MAP and a plateau thereafter is identical in all 
model versions (Fig. A2). The fact that a saturation level exists can be 
explained by the limitation of space (imposed in the model by a 
maximum foliage projected cover), light, and the maximum height of 
trees. Due to these limitations, there is a point at which no further in
crease in carbon storage can be realized, even without water limitation. 

In order to further analyze what determines the shape and threshold 
value in the nonlinear response of vegetation to precipitation, we 
selected four representative grid points: grid cell a2 with abundant 
annual precipitation (MAP>3000 mm/year); grid cell a1 with relatively 
high precipitation (MAP>2000 mm/year); grid cell a3 with relatively 
low precipitation (MAP<2000 mm/year); and grid cell a4 which shows 
hysteresis. We show the changes in biomass vs precipitation at these four 
representative grid cells (Fig. 2). While some grid cells within the forest 
maintain stable high biomass levels under high MAP conditions, biomass 
rapidly declines to zero when precipitation falls below a critical 
threshold. For example, in the precipitation decrease experiment, grid 
cell a1 has a critical MAP of 1575 mm/year, and grid cell a2 has a critical 
MAP of 1025 mm/year. Above these critical MAP values, AGB remains 
nearly unchanged. However, when MAP drops below the critical 
thresholds, the rate of AGB decline is 12.9 ± 0.4 gC/m2/mm for grid cell 
a1 and 17.4 ± 1.6 gC/m2/mm for grid cell a2 (Fig. 2). In contrast, 
certain grid cells, such as grid cell a3, exhibit a more gradual biomass 

Fig. 2. Variations in Above Ground Biomass (AGB) during Mean Annual Precipitation (MAP) increase and decrease experiments at four selected Amazon forest grid 
cells in the Fire-varRoots version. The inset illustrates the initial AGB from climatology across the Amazon forest and the positions of the chosen grid cells. a1 locates 
at 4.75◦N, 53.75◦W; a2 at 0.25◦N, 72.75◦W; a3 at 11.25◦S, 69.75◦W; a4 at 5.75◦S, 58.75◦W. The MAP and AGB have been filtered to remove high-frequency signals 
under 100 years (see Methods), and for clearer visualization, data points are displayed at 100-year intervals. 
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shift in response to precipitation changes, without any abrupt changes in 
sensitivity. Grid cell a3 with an indeterminate critical MAP shows a 
slower AGB change rate of 11.7 ± 0.4 gC/m2/mm in the precipitation 
decrease experiment. Often, however, the currently observed MAP at 
these grid points is already relatively low, so the relationship between 
biomass change and higher MAP is uncertain there. 

Regardless of the presence or absence of a critical threshold, the 
trajectories of biomass change in response to precipitation during the 
decrease and increase experiments exhibit an almost complete overlap 
in all four model versions (Fire-varRoots, Fire-fixedRoots, noFire-var
Roots, noFire-fixedRoots) (Supplementary Fig. A2). Also, comparing the 
biomass patterns at the beginning of the decrease experiment and the 
end of the increase experiment reveals that the overall vegetation is able 
to fully recover (Fig. 1d-f). In other words, we generally find no large- 
scale hysteresis and no alternative stable states in the model. Interest
ingly, there are exceptions at some grid cells (see purple grid cell a4 in 
Fig. 2 and Supplementary Fig. A2a,c). When comparing the AGB dif
ference between the end of the increase experiment and the start of the 
decrease experiment for each model version, the Fire-varRoots model 
version shows that the AGB cannot recover to the same level as it was at 
the start of the decrease experiment in some eastern and southern re
gions of the Amazon (Fig. A3a). Compared to the model version without 
variable-root (Fig. A3b, c) and fire impacts (Fig. A3c, d), in the Fire- 
varRoots model more regions in the Amazon area fail to recover or 
exceed their previous AGB levels, even as the MAP recovers fully at the 
end of the increase experiment (Fig. A3a). However, during the stage 
where biomass gradually changes with MAP, the trajectories nearly 
coincide. We suspect that at these grid points the large internal biomass 
variability and the delay in vegetation recovery (Fig. A4) can explain the 
differences. In addition, we examined the Foliage Projective Cover (FPC) 
difference between the end of the increase experiment and the start of 
the decrease experiment for each model version for evergreen and de
ciduous trees respectively (Fig. A4). The analysis of the Fire-varRoots 
model version shows that there is a notable transition from evergreen 
to deciduous forests in the eastern and southern Amazon Basin 
(Fig. A4b). This transition is consistent with the AGB hysteresis areas 
shown in Fig. A3. This suggests that there can be hysteresis due to 
competition between different plant types involving fire and/or root 
adaptation (Drüke et al., 2023). It should be noted, however, that our 
experiments were run over a very long time span and had plenty of time 
to get close to equilibrium after each precipitation change. 

Our results hence add to findings that observed no hysteresis under 
linear increases and decreases of CO2 in the LPJmL model (Drüke et al., 
2021b), but differ from those that show that fire can actually create 
multiple equilibria in a coupled version of LPJmL (coupled to an Earth 
system model) (Drüke et al., 2023) and in at least one other DGVM, 
JSBACH (Lasslop et al., 2016) (see Discussion and Conclusions). 

In our simulations, the comparison between the Fire-fixedRoots and 
noFire-fixedRoots model versions shows little effect of fire on the overall 
non-linear response of vegetation in the experiment (Fig. A2b,d). While 
wildfire and vegetation root strategies do impact the amount of biomass 
that can be realized at a certain MAP level (see Fig. A5), they are not the 
main determinants of the non-linear response of forests to MAP in 
LPJmL. 

However, as we will show below, there are spatial differences in the 
critical MAP. Previous research indicates that precipitation, its season
ality, PET, dry season precipitation (DSP), fire, and root depth all exert a 
nonlinear influence on vegetation AGB (Smith and Boers, 2023a; Malhi 
et al., 2009; Bush, 2017; Hutyra et al., 2005). In the following sections, 
we hence investigate how these drivers affect the critical MAP values. 

3.2. Role of fire and deep roots for the critical MAP 

The nonlinear transition in AGB sensitivity happens at different 
precipitation values for different locations (Fig. 2). Therefore, we 
identify the MAP value at which this transition happens and analyze the 

role of deep roots and fire in affecting this value. 
To determine the critical MAP for each grid cell, we used three 

different methods to calculate the critical threshold and averaged their 
results (see methods). This enabled us to map critical MAP across the 
Amazon forest area in the decrease experiment. The result for the Fire- 
varRoots model version is shown in Fig. 3a. The northwestern region 
of the Amazon rainforest shows a relatively low critical MAP, whereas 
the eastern and southern regions display a higher critical MAP. 

In our simulation setup, we assume that rainfall anomalies affect 
MAP whilst the rainfall seasonality remains unaffected. The critical MAP 
in this case thus represents the potential resistance to drought, which 
can also be regarded as a kind of resilience of the vegetation system (i.e. 
the inherent ability to remain unaffected by precipitation changes). As 
evident from Fig. 2, the lower the critical threshold, the smaller MAP can 
become before the forest biomass becomes sensitive to droughts. How
ever, this also means that once biomass at the more resilient locations 
passes the critical MAP threshold, it will be at a lower MAP level and 
thus will then become particularly sensitive to further drying, giving rise 
to potentially rapid loss of carbon pools. The pattern of critical MAP 
(Fig. 3a) suggests that under the current-day climate, the northwestern 
Amazon would exhibit higher potential drought resistance. In contrast, 
the southern and eastern areas appear more vulnerable to MAP changes. 
These findings agree with the patterns of resilience to climate change 
identified in other studies (Hirota et al., 2011; Ciemer et al., 2021; Staal 
et al., 2020). 

To further validate the critical MAP pattern, we employed the Self- 
Organizing Map (SOM) (Vatanen et al., 2015) method, which is an un
biased, unsupervised machine-learning technique for clustering high- 
dimensional data into a two-dimensional representation (see 
Methods). We use SOM to cluster the relationship between AGB and 
MAP for each grid cell in the Amazon, yielding eight clusters (Fig. 4). 
The results show a similar pattern of classification distribution 
compared to the spatial distribution of critical MAP (Fig. 3a). Because 
each cluster is comprised of time series with a similar shape, the clusters 
correspond to different critical MAPs. Evident across these varied clus
ters is the existence of a threshold, beyond which vegetation biomass 
decreases when MAP is reduced. One of the clusters exhibits no signif
icant shift, which probably corresponds to an initial MAP value that is 
already below critical MAP (Fig. 4c). In some areas of the southern and 
eastern Amazon, we did not identify a critical MAP value (Fig. 3a) (see 
Methods). Interestingly, the regions in most southern parts where we 
cannot detect a critical MAP align with the regions of low climatological 
MAP (Fig. A6). It is therefore plausible that in these regions the vege
tation at the start of the simulation is already below the critical MAP 
threshold. This is the case for cells in cluster 1 (Fig. 4c). Only a few grid 
cells in the southernmost part of the Amazon show a critical MAP, and 
these are also the cells with a high climatological MAP. 

All four model versions (Fig. A7) demonstrate similar spatial patterns 
of critical MAP. One of the few differences between the model versions is 
that there are larger critical MAP values (>2000 mm/yr) in the southern 
and eastern Amazon Basin in the model with deep-root strategy. The 
probability density functions (PDFs) for the critical MAP of all four 
model versions are also similar. Minor differences indicate that in the 
versions with fire, the PDFs for critical MAP values tend to be broader 
with more distribution of large critical MAP values. Root strategy and 
fire disturbance are not factors in determining critical precipitation 
threshold patterns in most of the Amazon forest (Fig. A7), but they still 
play a role for the critical MAP in some areas (Fig. A8). Compared with 
the impact of fire disturbance on critical MAP, the impact of root stra
tegies is more obvious in the eastern and the northernmost parts of the 
Amazon forest. For some of the easternmost regions, variable-deep root 
strategies significantly reduced critical MAP, thereby enhancing the 
forest’s ability to withstand drought, though small local areas in the 
northernmost, southern, and parts of the eastern Amazon show the 
opposite. 
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3.3. Role of seasonality and aridity for the critical MAP 

The next step to understanding the non-linear characteristics of the 
vegetation response to MAP changes is to find out what determines the 
critical MAP, and why it varies in different locations. The factors which 
are most likely to influence the critical MAP pattern are those associated 
with water availability and its variability, since those have a crucial 
impact on the resilience of the forest (Levine et al., 2016; Smith and 
Boers, 2023a). Following Smith and Boers (2023a), we use precipitation 
seasonality, inter-annual variability, and the aridity level (long-term 
MAP relative to PET) as ways to quantify water variability and avail
ability (see Methods). 

We first focus on the quantitative role of rainfall seasonality, which 
can be expected to increase the critical MAP value: At a given MAP a 
larger seasonality will mean smaller rainfall in the dry season and a 
higher likelihood of reaching the water stress threshold, where pro
ductivity becomes limited by water (instead of radiation). Thus when 
MAP is gradually decreased, the threshold is reached earlier for regions 
with larger seasonality. 

For equivalent MAP levels, larger SI values signify increased intra- 
annual variability in precipitation and vice versa. Large SI thus means 

more severe and less rainy dry seasons and implies that the vegetation 
experiences enhanced water stress during the dry season (Signori-Müller 
et al., 2021). Since the sub-annual precipitation input was scaled by the 
same factor within each year in our model setup, the SI is invariant in 
time, and is exclusively determined by the initial input of the clima
tology data. This allows us to separate the effect of seasonality on the 
critical MAP. 

The results demonstrate a high spatial Pearson correlation of 0.57 
between the patterns of critical MAP and SI under the Fire-varRoots 
version (Fig. 3 and Supplementary Fig. A7). The northwestern 
Amazon has a lower SI and a lower critical MAP. Conversely, the eastern 
and southern regions show a higher SI, because of the larger difference 
between the dry and wet seasons in these areas. These regions also have 
a higher critical MAP. A similar relation is observed across all four model 
versions (Supplementary Fig. A7), indicating a robust correlation be
tween critical MAP and SI, independent of wildfire or deep-root in
fluences. This suggests that the spatial distribution of precipitation 
seasonality is a key determinant of the critical MAP pattern, and the 
dominant factor compared to influences of fire and root strategies. 

To further explore the impact of SI on the critical MAP, we examine 
the relationship between Above Ground Biomass (AGB) and MAP at 

Fig. 3. The Critical MAP pattern and the relationship with other variables in the Fire-varRoots version. (a)Critical MAP pattern (the critical threshold for state 
transition). Hashed areas in (a) and (c) show regions where a critical threshold cannot be detected. (b)Precipitation seasonality index (SI) pattern over the Amazon. 
(c)The pattern of Potential Evapotranspiration (PET) at transition points over the Amazon. (d)The relationship between critical Mean Annual Precipitation (MAP) and 
the Seasonality Index (SI) during the precipitation-decreasing experiment. The color of each dot corresponds to the corresponding PET at transition points. The 
partial correlation between SI and critical MAP, given the condition of PET, is displayed in the top left corner of the subfigure. (e)The relationship between critical 
MAP and PET at transition points during the precipitation-decreasing experiment. The color of each dot corresponds to the corresponding SI. The partial correlation 
between PET and critical MAP, given the condition of SI, is displayed in the top left corner (d) and (e). 
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different SI values individually, for all grid cells in the Amazon during 
the decrease experiment. The result for the Fire-varRoots version is 
shown in Fig. 5, indicating that higher SI coincides with a higher critical 

threshold MAP. 
We also examined the dry-season precipitation (DSP, see Methods) 

and found that the DSP pattern at the critical MAP is also correlated to 

Fig. 4. Classification of the AGB variation with precipitation for the Amazon forest grid cells using the SOM method, based on the precipitation-decreasing 
experiment in the Fire-varRoots version. (a) Spatial distribution of all clusters by SOM classification; for easy comparison, (b) presents the pattern of critical 
MAP. Panels (c-j) represent the 8 clusters, where the gray line corresponds to all results assigned to each category, and the black line signifies the average value of this 
category (due to the different start precipitation in the decrease experiment at each grid cell, the average value can only be calculated if >70 % have values at a 
specific precipitation in each category). For simplicity, we consider grid points with initial AGB > 10000gC/m2 as forests, and these grid cells are subse
quently classified. 
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the critical MAP, though with a weaker correlation compared to the 
correlation between the SI and critical MAP (Fig. A9). The impact of 
variable-root strategies and fire disturbance, whether present or absent, 
overall doesn’t significantly affect the DSP pattern at the critical MAP 
threshold (Fig. A10). 

Rainfall and its distribution are, however, only a part of the moisture 
balance; the soil moisture available to plants also depends on runoff and 
evapotranspiration. An important value in this context is the aridity, 
which provides insight into the water availability status and offers a 
comparison across diverse climate and vegetation zones (Smith and 
Boers, 2023a). We here define aridity as PET divided by MAP. 

After estimating the aridity at the critical MAP value and analyzing 

the relationship between aridity and AGB under varying SI levels, the 
results show that the aridity level at the transition point is around 1.32 
for the Fire-varRoots version for all SI levels, indicating that PET is 
greater than precipitation and the forest is already in a water-scarce 
situation. The critical aridity value is similar across all four model ver
sions (Fig. A11). This suggests that at the transition point where biomass 
begins to decline, grid cells at similar SI levels experience similar water 
availability conditions. Most importantly, we find that using aridity 
instead of MAP as the control variable, a larger SI still implies a larger 
critical MAP (Fig. 5 b, d, f, h), pointing to seasonality as a true causal 
explanatory variable. 

Fig. 5. Heatmap depicting the distributions of vegetation AGB under controlled precipitation and under the corresponding Aridity Index (PET/MAP) for specific SI 
levels in the Fire-varRoots version. The first column presents the composite distribution map between AGB and its corresponding MAP at a specific SI (a, c, e, g), 
while the second column shows the composite distribution map between AGB and its corresponding Aridity at a specific SI (b, d, f, h). Each row represents a different 
SI level, from top to bottom, corresponding to SI values of 0.2, 0.4, 0.6, and 0.8 respectively. The blue lines represent the mean critical threshold values of MAP (a, c, 
e, g) or Aridity (b, d, f, h) at transition points, averaged by sampling the corresponding SI levels in the range ± 0.02.’TP’ means the Mean critical MAP values, which 
are shown in the upper right corner of each panel as blue fonts, and numbers in parentheses show sample sizes. The dashed lines indicate the range of one standard 
deviation around the mean. The critical MAP increases with increasing SI, whereas the Aridity remains approximately consistent around 1 at the transition point. 
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3.4. Early warning signals 

When the CSD theory is applied to satellite observations of the 
Amazon forest it can be shown that tropical forests show lower resilience 
at locations with low MAP (Verbesselt et al., 2016; Smith and Boers, 
2023a), and that large parts of the Amazon have been losing resilience in 
recent decades (Boulton et al., 2022). It should be emphasized, however, 
that great care is needed with regard to the employed vegetation index 
and data processing (Smith and Boers, 2023b; Smith et al., 2023). 

Although the non-linear response seen in the AGB-MAP relationship 
in this study is not bifurcation-induced tipping, resilience may still 
decrease before the transition (Kéfi et al., 2013), and we can check 

whether CSD indicators can provide warning signals for this transition. 
We consequently calculate the variance and the AR(1) coefficient in 
sliding windows up to the critical MAP, and estimate their nonlinear 
trend by their Kendall τ value, where τ > 0 means the trend is positive, 
and the larger the value, the more pronounced the increase, and vice 
versa (Boulton et al., 2022). In all four model versions, most grid cells 
exhibiting critical transitions also display gradually increasing CSD in
dicators, with some showing significant trends (Fig. 6). This demon
strates that CSD indicators are still partly valid for early warning signals 
of these critical transitions in our case, even though no bifurcation oc
curs. Note that the positive trends of the AR(1) coefficient and the 
variance are more pronounced and more significant in the experimental 

Fig. 6. Estimation of early warning indicators for Amazon vegetation prior to transitions. The first column presents maps of the Kendall τ values of AR(1) for in
dividual grid cells before transitions (a,c,e,g). The second column displays maps of the Kendall τ values of variance for individual grid cells before transitions (b,d,f,h). 
Rows correspond to the Fire-varRoots, Fire-fixedRoots, noFire-varRoots, and noFire-fixedRoots version, respectively. The percentage of grid cells with positive 
Kendall τ for each sub-figure is indicated in the top right corner as ‘Positive’. The significance of Kendall τ is evaluated using Phase-Randomized Surrogates (PRS), 
where a Kendall τ value is deemed significant if it surpasses 95 % of the surrogate results. The percentage of significant positive Kendall τ values out of all positive 
Kendall τ grid cells is indicated in the top right corner as ‘Significant’ for each sub-figure. 
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setups that consider adaptive deep roots. Additionally, when deep-root 
strategies are considered, the proportion of significant early warning 
signals is larger than in the other simulations. These patterns remain 
robust regardless of the sliding window size used to estimate temporal 
variance and AR(1), as confirmed through tests with varying window 
sizes shown in Supplementary Fig. A13. 

4. Discussion and conclusions 

We employed the advanced vegetation model LPJmL to simulate the 
response of the Amazon forest’s vegetation system to a decrease in 
precipitation. The precipitation was gradually decreased to zero and 
then similarly returned to its original state. Our results show that in this 
model the vegetation AGB changes non-linearly with MAP and that a 
regionally varying critical MAP threshold exists below which AGB 
rapidly declines. In the real-world, capturing direct relationships be
tween vegetation biomass changes and MAP variations is challenging 
because extreme and long-lasting changes in MAP have so far been rare. 
Researchers therefore employ a “space-for-time replacement” approach 
(Hirota et al., 2011), assuming that the biomass-MAP relationship 
observed across different locations reflects different stages of ecological 
development. The resulting distribution (Fig. A12) demonstrates a 
relationship similar to our simulations (Fig. 2), indicating that these 
simulations are credible. 

This non-linear and largely reversible relationship may seem to be in 
contrast with the hypothesis that the AGB’s change with MAP is irre
versible and bifurcation-induced (Staver et al., 2011; van Nes et al., 
2014; Staal et al., 2020). However, this fact is not surprising, since our 
DGVM does not include land-atmosphere feedbacks such as moisture 
recycling. On the other hand, the biomass loss in the model is reversible 
in most regions even when enabling fire, which in previous works has 
been argued to be sufficient to give rise to alternative states under the 
same climatic conditions (Staver et al., 2011; Hirota et al., 2011), and 
which in fact can create alternative stable states in LPJmL when the 
model is coupled to an Earth system model (Drüke et al., 2023). The 
difference between the results by Drüke et al. (2023) and ours indicates 
that some land-atmosphere interactions may be necessary to obtain fire- 
induced alternative states. For example, the climate in a savanna is often 
hotter and drier than in a forest, and there can consequently be larger 
fire regimes in a savanna, which inhibit forest regrowth. Cells in the 
grassland state can start to grow trees on a larger scale if they receive 
sufficient precipitation and lower temperatures, or if they are close to 
cells with more favorable conditions and can get moisture by atmo
spheric transport. As a result, they can increase humidity and precipi
tation, and escape the fire trap (Oliveras and Malhi, 2016). 

We find the existence of a threshold effect at a critical MAP value in 
vast parts of the Amazon Rainforest, with different potential sensitivity 
to reduced MAP for forests in different regions. Other studies employing 
the LPJ model have found similar nonlinear relationships or thresholds 
related to water availability, such as the dry season length (Levine et al., 
2016; Cowling and Shin, 2006). It is also possible that some regions in 
the present-day Amazon are already in a regime of large AGB sensitivity 
even though the precipitation is still high. In our experiments, we could 
not detect a critical MAP value in some regions of the southern and 
eastern Amazon based on our Method (see Methods). Apart from the role 
of other limiting environmental properties that may affect the (non) 
linearity of the AGB response, a possible explanation for this lack of 
critical MAP is that the forest in these areas may have already entered a 
fast-response stage, and thus biomass in these regions is already rela
tively sensitive to changes in precipitation. One large fluctuation in 
precipitation or a few years of continuous decrease could then lead to 
large carbon losses. 

Our results also indicate under which conditions certain factors 
dominate the critical MAP pattern. Most importantly, the critical MAP 
pattern is closely related to the seasonality of precipitation as measured 
by the SI (Fig. A7). We have also shown that the effect of seasonality 

persists when using aridity (PET divided by MAP) instead of MAP as the 
control variable (Fig. 5), which can account for spatial differences in 
potential evapotranspiration (Fig. 3). 

In fact, PET can be interpreted as a separate explanatory variable that 
has an effect on critical MAP, since a larger evaporative demand requires 
higher rainfall values in order to maintain a certain soil moisture level, 
even for the same rainfall seasonality. 

LPJmL computes PET by the Priestley-Taylor equation, which, in 
order to reduce dependency on observations, only relies on temperature 
and net radiation. Since temperature and the incoming radiative fluxes 
are prescribed, the only dynamic factor influencing PET is the surface 
albedo. Therefore, while forest cover remains high (which it does for 
MAP above the critical MAP), PET is constant in time. We can therefore 
treat PET as another background condition affecting critical MAP, with a 
certain spatial pattern but no time-dependence. 

We therefore also examined the relationship between PET at the 
transition point and critical MAP (Supplementary Fig. A14), in addition 
to the relationship between seasonality and critical MAP (Supplemen
tary Fig. A7 and A15). In our experiments, lower critical MAP corre
sponds to lower PET, as well as lower SI levels. 

The estimation of partial correlation (see Methods) between critical 
MAP and SI excluding PET at the transition point exhibits partial cor
relations still >0.3 between critical MAP and SI patterns in the four 
model versions (Supplementary Fig. A15. Vice versa, when conditioning 
on SI, we find a substantial influence of PET (Supplementary Fig. A14). 
The results hence indicate that both SI and PET play a role in deter
mining critical MAP. 

It should be mentioned, however, that both explanatory variables are 
highly correlated (Fig. A16). Low PET and SI coincide in the central and 
western Amazon, and higher values occur in the south and east. We 
presume that in the north-western Amazon rainforest, precipitation 
exhibits little seasonality due to the Intertropical Convergence Zone 
(ITCZ) crossing twice a year, ensuring a regular and abundant supply of 
rainfall (Espinoza Villar et al., 2009). In addition, the increased cloud 
cover that comes with high precipitation limits solar radiation, leading 
to a relatively small PET (McAfee, 2013). 

As shown in the previous section, fire disturbances and even more so 
variable root strategies have an impact on the vegetation biomass of the 
saturation state (where water ceases to be the limiting factor) in some 
areas. Upon the influence of variable root strategies, trees in parts of the 
eastern Amazon still retain more above-ground biomass before the 
equilibrium period approaches the transition, thereby decreasing the 
critical MAP threshold. The variable root strategy hence significantly 
increases the ability of trees to retain high biomass up to a smaller MAP 
threshold (e.g. Fig. A5). This result indicates that trees are developing 
adaptation strategies to dry conditions that may mediate their vulner
ability to long-term changes in precipitation, which is in line with pre
vious results (Ciemer et al., 2019; Smith and Boers, 2023a). In most parts 
of the Amazon, however, there is a high consistency in the non-linear 
relationship between AGB and MAP, regardless of whether or not the 
influences of a variable root strategy or wildfire disturbances are 
considered. In these regions, in particular in the western Amazon, 
variable-root strategies and fire disturbance have limited effects on 
critical MAP, with critical MAP patterns all maintaining similar behavior 
(Fig. A7 and A8). 

In this context, the fact that variable root depth plays a role for 
critical MAP only in parts of the Amazon where seasonality and PET are 
high is suggestive. Where moisture availability is the same year-round, 
trees obtain no benefit in investing in deeper roots and storing water. 
In contrast, in the case of high SI, there is still a wet season without water 
limitation, but also a dry season, which leads to water storage in the 
deeper soil levels that deep roots can access during the dry season, thus 
gaining an advantage over plant types with shallow roots. Consequently, 
the same level of aridity (a constant property above critical MAP in our 
model setup) can allow for higher AGB levels when the roots are able to 
reach deep water (Fig. A5), and critical MAP is lower at some places in 
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the eastern Amazon when variable roots are considered (Fig. A8). 
Regarding our result of critical slowing down (CSD) indicators, a 

significant number of cells show CSD before the critical MAP is reached, 
despite the fact that this threshold is not a discontinuous bifurcation 
point in the model and that the offline model setup does not include the 
land-atmosphere feedbacks that have previously been invoked to argue 
for a potential resilience loss of the Amazon rainforest (Zemp et al., 
2017; Staal et al., 2020; Boulton et al., 2022; Boers et al., 2017; Bochow 
and Boers, 2023). Our results show that even this “stand-alone” forest 
can display dynamic CSD signals when approaching critical water stress, 
which raises the question what processes on what scales give rise to the 
CSD observed in the real world, as e.g. in (Boulton et al., 2022; Smith 
et al., 2022; Smith and Boers, 2023b). We argue that the increase in 
variance around the critical MAP value is straightforward to understand: 
When the sensitivity of AGB to MAP increases from essentially 0 to a 
substantially positive number, variations in MAP translate into 
increasing variations in AGB. In line with this explanation, the AGB 
variance decreases again once MAP is well below the critical value (not 
shown). In contrast, the behavior of autocorrelation is much harder to 
understand since the characteristic time scale of biomass fluctuations 
depends on a number of complex processes in the model. The most 
important processes involve the allocation of carbon to different pools, 
and the population dynamics of the different plant types, which are 
determined by a dynamic establishment, mortality, and the adjustment 
for area limitations (see Sitch et al. (2003)). The relevant processes 
behind this result should hence be further investigated in future studies. 
Interestingly, the autocorrelation increase is somewhat more wide
spread and stronger in model versions with variable deep roots (Fig. 6). 
The deep root version differs from the default model in several ways, in 
particular the introduction of two new carbon pools (root sapwood and 
root heartwood, i.e. slow pools compared to leaves and fine roots that 
have short turnover times), and the competition of many slightly 
different plant types, which may increase the typical time scale of 
population densities. It is therefore plausible that the differences be
tween the model versions can be linked to these processes. In addition, 
the distribution of the CSD indicators shows a negative trend in variance 
and autocorrelation in some areas. At some grid cells, such as grid cell a 
in Fig. A17, where the CSD indicator decreases, the high MAP regime 
around 2000 mm/yr - 2500 mm/yr initially shows higher fluctuations in 
carbon pools, which is probably caused by competition between 
different plant types and results in a decrease in CSD indicators when 
MAP decreases. However, when MAP further decreases to around 2000 
mm/yr, system stability can increase probably caused by adjustment of 
plant type composition. As the MAP continues to decline to around 1500 
mm/yr, the local vegetation system again loses stability as it approaches 
the transition point (Fig. A17b). Therefore, the CSD indicator can show 
negative trends when assessed across the entirety of the MAP reduction 
process. Hence, it is possible that when the original MAP is large enough 
to allow more plant types to exist, the CSD indicator can show complex 
changes despite the monotonic decrease in MAP. An in-depth under
standing of the process behind CSD indicators, vegetation plant types, 
and environmental conditions still requires further exploration. 

Due to our idealized model setup, the full implications of our findings 
should be further analyzed in a climate-coupled model setting. Addi
tionally, our focus is on the response of the vegetation system to pre
cipitation changes under equilibrium or near-equilibrium conditions, 
and the impact of extreme events has not been taken into consideration. 
Both seasonality and extreme events are expected to increase with global 
warming (Seneviratne et al., 2021), so the true critical MAPs may be 
slightly larger, but the regional differences would remain. LPJmL en
forces important bioclimatic limits and thresholds, at which mortality 
and growth can change dramatically when certain precipitation levels 
are reached (Cowling and Shin, 2006; Poulter et al., 2010). In this re
gard, the changes reflected in our experiments may potentially be more 
nonlinear than in the real world. However, given that the nonlinear 
relationship between biomass and rainfall we identify is only one branch 

of a feedback loop involving atmospheric processes like moisture recy
cling, we still see the possibility of rather abrupt losses in vegetation 
carbon in the real Amazon forest. Our results indicate that regions like 
the central Amazon, without pronounced seasonality and relatively 
small PET, will initially appear to persist even when drying, but may 
then suddenly lose larger amounts of carbon and trees, first because the 
drying affects all seasons, and second because the local tree types are not 
adapted to such dry conditions. Regions of the Amazon rainforest with 
smaller precipitation seasonality, such as the northwestern area, may 
hence face greater threats in a future drier climate. 
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