
Article
Human heat stress could o
ffset potential economic
benefits of CO2 fertilization in crop production under
a high-emissions scenario
Graphical abstract
Highlights
d CO2 fertilization will lead to higher crop yields under high-

emission scenarios

d Thus, crop prices will likely decline under high-emission

scenarios

d Heat-stress impacts on labor could substantially increase

labor costs

d Heat-stress impacts on labor could outweigh economic

benefits of CO2 fertilization
Orlov et al., 2024, One Earth 7, 1250–1265
July 19, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
https://doi.org/10.1016/j.oneear.2024.06.012
Authors

Anton Orlov, Jonas J€agermeyr,

Christoph M€uller, ..., Andrew Smerald,

Julia M. Schneider, Jana Sillmann

Correspondence
anton.orlov@cicero.oslo.no

In brief

Climate change can significantly impact

agriculture through various channels.

Here, we find that climate change will

intensify heat stress, resulting in reduced

agricultural labor capacity and higher

labor costs in Africa and Asia. To mitigate

vulnerability to heat stress, proactive

adaptation measures, including the

deployment of mechanization, are

essential.
ll

mailto:anton.orlov@cicero.oslo.�no
https://doi.org/10.1016/j.oneear.2024.06.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oneear.2024.06.012&domain=pdf


OPEN ACCESS

ll
Article

Human heat stress could offset potential
economic benefits of CO2 fertilization in crop
production under a high-emissions scenario
Anton Orlov,1,15,* Jonas J€agermeyr,2,3 Christoph M€uller,4 Anne Sophie Daloz,1 Florian Zabel,5 Sara Minoli,4

Wenfeng Liu,6,7 Tzu-Shun Lin,8 Atul K. Jain,9 Christian Folberth,10 Masashi Okada,11 Benjamin Poschlod,12

Andrew Smerald,13 Julia M. Schneider,14 and Jana Sillmann1,12
1CICERO Center for International Climate Research, Oslo, Norway
2NASA Goddard Institute for Space Studies, New York, NY, USA
3Columbia University, New York, NY, USA
4Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
5Department of Environmental Sciences, University of Basel, Basel, Switzerland
6State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
7Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University,

Beijing, China
8NSF National Center for Atmospheric Research, Boulder, CO, USA
9Department of Climate, Meteorology & Atmospheric Sciences, University of Illinois, Urbana, IL, USA
10Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
11Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
12Research Unit Sustainability and Climate Risk, Center for Earth SystemResearch and Sustainability (CEN), Universit€at Hamburg, Hamburg,
Germany
13Institute of Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology,

Garmisch-Partenkirchen, Karlsruhe, Germany
14Department of Geography, Ludwig-Maximilians-Universit€at M€unchen, Munich, Germany
15Lead contact

*Correspondence: anton.orlov@cicero.oslo.no

https://doi.org/10.1016/j.oneear.2024.06.012
SCIENCE FOR SOCIETY Climate change can significantly affect food production in many ways. Changes in
greenhouse gases, temperature, and rainfall directly influence crop productivity, sometimes increasing yield
through a mechanism known as the carbon dioxide fertilization effect. However, agricultural production in
many countries also relies on physically demanding manual labor, primarily outside, and, as temperatures
rise, heat stress on agricultural workers can reduce labor capacity. Consequential climate change impacts on
food availability and affordability are a major societal concern, yet the specific and combined impacts on agri-
cultural production remain highly uncertain. An assessment of the future impacts of climate change on the pro-
duction and prices of four of theworld’smost consumed crops (maize, wheat, soybean, and rice) reveals that a
rise in heat stress will lower agricultural labor capacity and increase labor costs in Africa and Asia. This could
offset the potential economic benefits of higher yields due to elevated levels of CO2. Proactive adaptationmea-
sures, such as mechanization deployment, are needed to reduce the vulnerability to heat stress.
SUMMARY
Climate change can significantly impact agriculture, leading to food security challenges.Most previous studies
have investigated the direct climate impact on crops while neglecting the impact of heat stress on agricultural
labor. Here, we assess the economic consequences of climate impacts on four major crops—maize, soybean,
wheat, and rice—for scenarios involving low and high greenhouse gas emissions. Our analysis is based on the
output from a new generation of global climate and crop models to drive a multiregional economic model. We
find that, evenunder ahigh-emission scenario, the effectofCO2 fertilizationcould lead tohigher yields, resulting
in lowerprices formajor crops, except formaize.However, heat-induced losses in agricultural labor couldoffset
thepotential economicbenefitsofCO2 fertilization incropproduction inAsiaandAfrica.Our findingsemphasize
the importanceof addressingheat-stress impacts onagricultural labor throughproactiveadaptationmeasures.
1250 One Earth 7, 1250–1265, July 19, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION
 economic responses to climate impacts on crop productivity

might not necessarily correspond to the direct climate-induced
Under scenarios of high greenhouse gas (GHG) emissions,

climate change leads to increasing global temperatures and sig-

nificant changes in precipitation patterns across regions.1 Agri-

culture is especially exposed to climate risks, but, despite recent

advances in climate and crop modeling, the climate-induced im-

pacts on agricultural productivity remain highly uncertain.2,3 The

sensitivities of crop models to key drivers of crop yields—such

as carbon dioxide, temperature, water, and nitrogen—vary

significantly across different crop models.4 On the one hand,

an elevated atmospheric concentration of CO2 will enhance

the productivity of many C3 crops, including wheat, rice, and

soybean, through the CO2 fertilization effect.5 At high latitudes,

some regions could also experience diminishing temperature

limitations (i.e., longer growing seasons) and higher yields due

to global warming.6 On the other hand, crop yields are expected

to decline in regions where critical temperature thresholds are

already exceeded. This applies especially to C4 crops (i.e., car-

bon is fixed initially into a four-carbon compound during photo-

synthesis, rendering its assimilation more efficient). Maize, a

typical C4 crop adapted to drier climates, assimilates CO2

more effectively than C3 crops but benefits little from an increase

in atmospheric concentration of CO2. The most recent crop

model simulations based on phase 6 of the CoupledModel Inter-

comparison Project (CMIP6) indicate a high likelihood of

increased yields for soy, rice, and particularly wheat by the mid-

dle of the century, whereas maize yields are expected to

decline.3 In addition, the newest scientific evidence shows that

climate change will most likely affect crop productivity sooner

and more strongly than previously estimated.

Furthermore, apart from direct climate-induced impacts on

agriculture (i.e., due to changes in temperature and precipita-

tion), climate change could also indirectly affect agricultural pro-

duction through climate-induced impacts on capacity and pro-

ductivity of labor. Agriculture is one of the most labor-intensive

sectors, where most physical work is done outdoors and thus

is strongly exposed to heat stress.7 Under high-warming sce-

narios, heat stress could significantly reduce labor capacity,

especially in the tropics.8,9 More frequent and severe humid

heat could increase health risks and reduce the capacity for

physical work.10–12While shiftingworking hours could potentially

reduce the heat-induced loss of labor productivity under current

climatic conditions, this adaptation option will become less

effective under future high-warming scenarios as both daytime

and nighttime temperatures increase.13 Several economic

studies showed that the global cost of heat-stress impacts on la-

bor could be considerable.14,15 Recent studies also indicate that

heat-stress impacts on agricultural labor could lead to a non-

negligible global welfare loss.16,17 Heat-stress impacts on labor

could differ substantially across regions due to different levels of

mechanization deployment, with less mechanized regions being

most adversely affected by high temperatures.18

Since crops are tradable goods, regions could be indirectly

affected through changes in international prices of crops and

processed food products. Hence, not only the direct climatic im-

pacts on crop yields but also the trade position and integration

into international crop and foodmarkets will be important factors

determining food availability and security.19–21 Consequently,
impacts on yields in a region due to cross-regional and cross-

sectoral economic dependencies.

Here we assess the economic consequences of climate im-

pacts on crop yields for four major crops (i.e., maize, wheat, soy-

bean, rice) and heat-stress impacts on labor under low and high

GHG-concentration scenarios (i.e., Representative Concentra-

tion Pathways [RCPs] 2.6 and 7.0). The biophysical impacts on

labor and crop yields are derived from the latest global climate

model simulations available from CMIP622 and crop model sim-

ulations available from phase 3 of the Global Gridded Crop

Model Intercomparison (GGCMI3).3 Our economic analysis is

conducted using the macro-economic model GRACE (Global

Responses to Anthropogenic Changes in the Environment),23

which is a multiregional, multisectoral, computable general equi-

librium (CGE). The modeling framework of GRACE can consis-

tently capture cross-regional and cross-sectoral dependencies.

We use a static version of GRACE that assesses economic im-

pacts relative to the state of the world economy in 2011. We

found that adverse heat-stress impacts on agricultural labor ca-

pacity could substantially increase the production cost in Africa

and Asia under the high-emission scenario by the end of the cen-

tury, thereby offsetting a potential economic benefit of the CO2

fertilization. Proactive adaptation measures in the agricultural

sector, such as mechanization deployment, are needed to

reduce the vulnerability to heat stress.

RESULTS

Climate impacts on crop productivity
Using GGCMI3 model output, we calculated the regionally

aggregated changes in future crop yields relative to the average

yields in a historical reference period (1981–2010) for CMIP6’s

SSP1-RCP2.6 and SSP3-RCP7.0 scenarios (hereafter RCP2.6

and RCP7.0; see ‘‘experimental procedures’’ section). There-

after, the projected changes in all four crops were simulta-

neously implemented in the economic model GRACE to assess

the associated impacts on production, food prices, and income

by the middle and end of the century relative to the state of the

world economy in 2011. Figure 1 compares the yield response,

which is derived from GGCMI3 crop model simulations, and

the production response, which is the output of GRACE

including the market effects. The results of our economic

analysis are presented and discussed below. The uncertainty

of economic responses, which is represented by error bars in

the boxplots, is attributed to a combination of different climate

and crop model simulations.

Maize
Most of the crop model simulations show consistent reductions

in maize yields in the most important producer regions, espe-

cially under the high-emission pathway. Under RCP7.0, the

global median reduction in maize yields across the crop model

simulations accounts for 8.4% by the end of the century relative

to the average yield of 1981–2010 (Figure 1A). Climate impacts

onmaize yields differ considerably by region and water manage-

ment system (i.e., rainfed and fully irrigated) (Figure S1A).

Adverse climate impacts on maize yields can largely be
One Earth 7, 1250–1265, July 19, 2024 1251
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Figure 1. Changes in crop yields and production

Multi-year mean changes in crop yields (left column) and production (right column) of maize (A), wheat (B), soybean (C), and rice (D) by the mid (2041–2070) and

end of the century (2071–2100) under RCP2.6 (blue) and RCP7.0 (red) relative to the historical time period (in percent). Yield response is calculated using the

(legend continued on next page)
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explained by accelerated phenological development, which in-

cludes shorter grain-filling periods, more intense and frequent

drought, and a low sensitivity to the CO2 fertilization effect (see

J€agermeyr et al.3 for details). In contrast to C3 crops, maize as

a C4 plant does not experience a direct stimulation of photosyn-

thesis under an elevated CO2 concentration. Thus, even under

RCP2.6, maize yields are projected to decline in most regions.

Furthermore, maize is grown across a wider range of low lati-

tudes, where additional warming could reach critical tempera-

ture thresholds by the middle of the century even under RCP2.6.

For most of the crop model simulations, results of the eco-

nomic model GRACE show a robust decline in global production

of maize by the end of the century under both RCPs, especially

under RCP7.0, relative to the state of the world economy in

2011 (Figure 2A). The reduction in global production of maize

is explained by a lower production in the world’s largest maize-

producing regions, such as North America (mostly USA) and

East Asia (mostly China). For East Asia, the difference in produc-

tion responses between RCP7.0 and RCP2.6 is more pro-

nounced than for North America. This is because East Asia is

located at low latitudes and is therefore more exposed to addi-

tional warming. Additionally, South-East Asia experiences a

decline in maize production under RCP7.0 for most of the

climate-crop model combinations. Under both RCP scenarios,

a lower production of maize is associated with higher consumer

prices, especially by the end of the century under RCP7.0 (Fig-

ure 2A). At the same time, the less adversely affected regions,

such as Oceania (mostly Australia) and Central Asia, could expe-

rience an increase in maize production, which potentially dimin-

ishes the price increase in Oceania and Central Asia. Specif-

ically, Oceania shows a relatively strong increase in production

due to an expansion of maize area, since a global increase in

maize prices makes it more profitable to grow maize in Oceania.

As imported and domestically produced crops are assumed to

be imperfect substitutes in consumption, relative changes in

the consumer prices of maize differ by region, depending on

the biophysical yield response and trade position (i.e., net

importer or exporter). For example, Oceania, where most of

consumed maize is produced domestically (Figure S2A), shows

a smaller increase in the consumer price of maize compared to

many other regions. Similarly, Central Asia can even experience

a reduction in the consumer price of maize under both RCPs

because of increased domestic production.

Wheat
In contrast tomaize, wheat yields are simulated to increase at the

global level under both RCP scenarios formost of the cropmodel

simulations (Figure 1B). Higher wheat yields can largely be attrib-

uted to a strong sensitivity to the CO2 fertilization effect.3 More-

over, wheat is generally cultivated at higher latitudes, where

additional warming is often less harmful or can even lead to yield

increases, as is expected to occur in currently temperature-

limited regions. Also, results of the crop model simulations

show that an increase in yields of rainfed wheat is substantially
GGCMI3 crop model ensemble and corresponds to the harvested-area-weighted

the GRACE model considering market effects relative to the state of the world e

crops. Heat-stress impacts on labor are not included. The boxes show the interqu

variability outside the first and third quantiles, and outliers are removed.
larger than for fully irrigated wheat because the CO2 fertilization

effect is strongest under water-limited conditions (Figure S1B).

As a result, for most of the climate-crop model combinations,

the GRACE model simulations show a consistent increase in

global production of wheat under both RCP scenarios, driven

by a higher production in East Asia, South Asia, West Asia,

Oceania, and Eastern Europe (Figure 2B). Under RCP7.0, the in-

crease in global production of wheat tends to be higher than un-

der RCP2.6 due to a substantially higher atmospheric CO2 con-

centration. For most of the crop model simulations, North

America, Western Europe, and Africa experience less pro-

nounced increases in wheat yields compared to many other re-

gions, which could result in a decline in wheat production as it

becomes less profitable in these regions. Furthermore, wheat

production will likely decline in South-East Asia due to a decline

in wheat productivity, although, for South-East Asia, domestic

consumption of wheat is satisfied mainly through imports, and

changes in domestic production therefore do not have a sub-

stantial impact on the consumer price in South-East Asia. For

most of the crop model simulations for both RCPs, the regional

consumer prices of wheat are projected to decline due to

increased yields (Figure 2B). However, under RCP7.0, when

driven by climate models with a high equilibrium climate sensi-

tivity (ECS) (i.e., UKESM1-0-LL; see Table 1), some crop models

simulate reductions in wheat yields (see low-end whiskers in Fig-

ure 1B), and thus the GRACE model simulations point to a

possible increase in the regional consumer prices of wheat.

Soybean
Under RCP2.6, results of the cropmodel simulations also show a

relatively robust increase in soybean yields in most regions

(Figures 1C and S1C), due mainly to the CO2 fertilization effect.3

For RCP7.0 compared to RCP2.6, the yield responses are more

uncertain, with a wide range of results across climate-crop

model combinations, but the median responses of regional yield

changes tend to be positive. However, despite relatively strong

climate-induced impacts on soybean yields, results of the eco-

nomic analysis using GRACE show a moderately small impact

on global production of soybean (Figure 2C). This is because a

higher production in Latin America (mostly Brazil and Argentina)

and East Asia (mostly China) is associated with a lower produc-

tion in another large soybean-producing region, namely North

America (mostly USA). An increase in soybean yields in Latin

America is stronger than in North America, which induces a real-

location of soybean production from North to South America.

Despite potential yield increases,Western Europewill most likely

experience a reduction in its domestic production of soybean.

However, European production of soybean is modest, and Eu-

rope is a net importer of soybean from Brazil and USA. For

most of the cropmodel simulations, soybean production in other

regions, especially Oceania, will increase by the end of the cen-

tury relative to the state of the world economy in 2011. Overall,

the regional consumer prices of soybean will most likely decline

because of higher yields, and the price responses are similar
average of irrigated and rainfed crops. ‘‘Production response’’ is calculated by

conomy in 2011. GRACE simultaneously implements yield shocks for all four

artile range across climate and crop model ensembles. The whiskers show the

One Earth 7, 1250–1265, July 19, 2024 1253
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Figure 2. Changes in crop production and prices

Multi-yearmean changes in absolute crop production (left column) and consumer prices (right column) ofmaize (A), wheat (B), soybean (C), and rice (D) by themid

(2041–2070) and end of the century (2071–2100) under RCP2.6 (blue) and RCP7.0 (red) relative to the state of the world economy in 2011. GRACE simultaneously

(legend continued on next page)
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Table 1. Overview of scenarios and models

GHG emission scenarios Climate models Crop models Heat-labor exposure-response functions Economic model

SSP1-RCP2.6

SSP3-RCP7.0

GFDL-ESM4 (ECS: 2.6)

MPI-ESM1-2-HR (ECS: 3.0)

MRI-ESM2-0 (ECS: 3.2)

IPSL-CM6A-LR (ECS: 4.6)

UKESM1-0-LL (ECS: 5.3)

LPJmL

PEPIC

CROVER

EPIC-IIASA

ISAM

LandscapeDNDC

PROMET

NIOSH

Hothaps

Laboratory

GRACE

ECS stands for the equilibrium climate sensitivity, which determines a long-term temperature increase in response to a doubling of the atmospheric

CO2 concentration.
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acrossmost regions (Figure 2C). Despite a reduction in domestic

production, North America also experiences a reduction in the

consumer price of soybean under both RCPs, which is associ-

ated with an increased import demand for less expensive soy-

bean from Latin America. While the change in global production

of soybean is substantially less pronounced than for wheat, the

price response is relatively similar. This is because GRACE as-

sumes a less elastic demand for soybean compared to wheat.

Rice
Similar to soybean, under RCP2.6, results of the cropmodel sim-

ulations show relatively consistent increases in rice yields in the

largest rice-producing regions, while, under RCP7.0, the yield re-

sponses are more uncertain (Figures 1D and S1D). The CO2

fertilization effect is also the main driver behind an increase in

rice productivity. The yield increases of rainfed rice tend to be

larger than for fully irrigated rice (Figure S1D). For most of the

crop-model combinations, results of the economic analysis us-

ing GRACE show a relatively consistent increase in the global

production of rice under RCP2.6, which results from a higher

production in South and South-East Asia (Figure 2D). For

RCP7.0 compared to RCP2.6, relative changes in the global pro-

duction of rice are more uncertain, especially by the end of the

century. Specifically, the future production response of rice in

South-East Asia, one of the world’s largest rice-producing re-

gions, is highly uncertain under RCP7.0. In contrast to other re-

gions, West Asia experiences a consistent reduction in produc-

tivity and production of rice under both RCPs. For most of the

climate-crop model combinations, the economic model shows

a decline in the regional consumer prices of rice, which is driven

by a higher productivity of rice in the world’s largest producer re-

gions (Figure 2D).

Food prices and income
Climate-induced impacts on production and prices of unpro-

cessed crops affect the production cost of food products and

the income of farmers. In the following, we present and discuss

the impact on the food price index and real income (see section

‘‘experimental procedures’’ for definitions). Overall, the results of

the economic analysis using GRACE show that the climate-

induced impacts on food prices and income are moderately

small for most of the crop model simulations relative to the state
implements yield shocks for all four crops. The production response is measured

show the interquartile range across climate and crop model ensembles. The wh

removed.
of the world economy in 2011. For example, the interquartile

range (IQR) of changes in the food price index by the end of

the century relative to the baseline does not exceed 2.5%,

and, for real income, does not exceed 0.5% (Figure 3). The

modest responses of food prices and income are explained by

(1) market mechanisms, (2) shares of crops in total production

costs of food products, and (3) shares of food products in total

consumption expenditure. The first implies substitution possibil-

ities in consumption of imported and domestically produced

crops and food products, meaning that, to some extent, trade

smooths out the responses of food prices across regions.

Regarding the cost composition, according to version 9 of the

Global Trade Analysis Project (GTAP9) database24 used in the

economic analysis, the share of all crops in the total production

cost of primary livestock varies across regions from approxi-

mately 5% to 22%, and for processed food products ranges

from 6% to 31%, while the remaining cost is attributed to the

use of other intermediates and value added (Figure S3). In

economically developed regions, the income responses are rela-

tively small because the shares of food products in total con-

sumption expenditures are smaller than in developing regions.

Regarding the region-specific impacts, results of the GRACE

simulations show that, under RCP2.6, most regions, and espe-

cially African and Asian regions, will most likely experience a

moderately small decrease in food prices and an increase in

real income (Figure 3). For RCP7.0 compared to RCP2.6, the

economic impacts are more uncertain, especially by the end of

the century (e.g., in South-East Asia) but are still likely to be

beneficial in terms of lower food prices and higher real income.

The strong adverse impacts on food prices and income are asso-

ciatedwith a combination of climatemodels with a high ECS (i.e.,

UKESM1-0-LL; see Table 1) and some pessimistic crop models.

Regarding the uncertainty decomposition for the end-century

global income response, the analysis of variance (ANOVA)

shows that, for RCP2.6 (RCP7.0), around 66% (40%) of variance

explained is attributed to uncertainty related to general circula-

tion models (GCMs), and for crop model simulations it is 19%

(47%) (Figure S4).

Heat-stress impacts on labor
Above, we discussed the economic consequences of direct

climate-induced impacts on the productivity of four major crops,
in million tonnes (Mt). Heat-stress impacts on labor are not included. The boxes

iskers show the variability outside the first and third quantiles, and outliers are

One Earth 7, 1250–1265, July 19, 2024 1255
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Figure 3. Changes in the food price index and real income

Multi-year mean changes in the food price index (A) and real income (B) by the mid (2041–2070) and end of the century (2071–2100) under RCP2.6 (blue) and

RCP7.0 (red) relative to the state of the world economy in 2011. The price and income responses are driven by climate-related crop yield changes without

considering heat-stress impacts on labor. The boxes show the interquartile range across climate and crop model ensembles. The whiskers show the variability

outside the first and third quantiles, outliers are removed.
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driven by changes in temperature, precipitation, and CO2 con-

centration. However, agricultural production could also be indi-

rectly affected through human heat-stress impacts. To prevent

heat-induced illness, workers should take more frequent and

longer breaks, which reduces total work hours. Furthermore,

when working under hot weather conditions, heat stress can

reduce labor productivity. Heat-induced losses in labor capacity

make crop production more expensive because farmers need to

hire more workers and/or purchase machinery (e.g., air-condi-

tioned tractors) to cope with a reduced labor capacity. Using

the gridded data on temperature, relative humidity, and solar ra-

diation from CMIP6 climate model simulations and heat-labor

exposure-response functions, we calculated the heat-induced

loss in labor capacity for RCP2.6 and RCP7.0 scenarios (see

‘‘experimental procedures’’ section). The projected losses in la-

bor capacity were implemented in GRACE. In the following, we

present the economic responses when the heat-stress impacts

on agricultural labor are considered in addition to direct

climate-induced impacts on crop yields.

In all the explored scenarios, heat stress is shown to reduce la-

bor capacity, with the impacts being especially strong for South

and South-East Asia (Figure S5). Introducing the heat-stress im-

pacts on labor capacity results in higher consumer prices of

crops by themiddle and end of the century compared to the sce-

nario considering the yield responses alone. While, under

RCP2.6, crop prices show only moderately small increases, un-

der RCP7.0 the prices are substantially higher, especially by the

end of the century (Figure 4). Heat-stress impacts on labor

particularly exacerbate the price increases for maize and signif-

icantly diminish the price decreases for soybean and rice. The in-
1256 One Earth 7, 1250–1265, July 19, 2024
crease in consumer price of maize is especially strong in South

and South-East Asia. For soybean, the price responses in Asia

and Africa are more pronounced by the end of the century

compared to the middle of the century under RCP7.0 relative

to the state of the world economy in 2011, since the heat-stress

impacts become more severe. For South Asia, heat-stress im-

pacts on labor turn a decrease in the consumer price of soybean

into an increase. For rice, the heat-stress impacts on labor turn a

price decrease into a price increase in East and South-East Asia.

The price responses of rice to heat-stress impacts on labor are

relatively strong compared to other crops because rice is mainly

grown in Asian countries, which are at high risk of exposure to

heat stress under high-warming scenarios. For wheat, heat-

stress impacts on labor do not substantially affect the consumer

prices, since wheat is grown across a wide range of high lati-

tudes that are less exposed to heat stress.

As a result of heat-induced losses in labor capacity in produc-

tion of four major crops, food prices increase in all regions rela-

tive to the price levels when only climate change-induced yield

responses are implemented. Under RCP2.6, for most regions

except South and South-East Asia, the responses of labor

capacity have a moderately small effect on food prices and

real income by the middle and end of the century (Figure 5). In

South-East Asia, even under RCP2.6, heat-induced losses in la-

bor capacity have a relatively strong impact on food prices and

real income. East and South Asia, and especially South-East

Asia, show large shares of rice in total expenditures on crop con-

sumption (Figure S6), and the income response is thus especially

sensitive to changes in rice prices in these regions. Under

RCP7.0, the impacts on food prices become substantially
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Figure 4. Changes in consumer prices for crops

Median responses of consumer prices for maize (A), wheat (B), soybean (C), and rice (D) by themid (2041–2070) and end (2071–2100) of the century under RCP2.6

and RCP7.0 relative to the historical time period. The price responses are simulated using the GRACE model and show the median changes over GCMs, crop

(legend continued on next page)
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more pronounced, especially by the end of the century. For

example, under RCP7.0, almost all regions will likely experience

an increase in food prices (Figure 5). Overall, the response of real

income corresponds to the response of food price, since an in-

crease in food prices results in a decline in real income. By the

end of the century, real income declines in most regions under

RCP7.0. For high-latitude regions, heat-induced losses in labor

capacity are moderately small, as are the impacts on real in-

come, whereas African and Asian countries experience

significantly stronger reductions in real income. Reductions in

real income are especially pronounced when using output from

climate models with a high ECS (Figure S7). In low-income coun-

tries, where wages are themain income source, and food expen-

ditures account for a substantial portion of total income, real

wages can be a more direct measure of welfare changes. As

shown in Figure 5, the impacts on real wages are substantially

more pronounced than those on real income.

The ANOVA shows that, for the end-century global income

response under RCP2.6 (RCP7.0), the GCM-related uncertainty

attributes around 72% (50%) of variance explained, for crop

model simulations it is 15% (38%), and for the heat-labor expo-

sure-response functions it is 0.4% (0.9%) (Figure S4).

Heat-stress impacts also affect the distribution of income be-

tween rural and urban households across regions through mar-

ket mechanisms. Results from the GRACE simulations show

that heat-stress impacts on labor could result in an increase in

the rural-urban income ratio (see section ‘‘experimental proced-

ures’’ for definition), which means a reduction in the income gap

between rural and urban households (Figure S8). This is because

a widespread (global) decline in labor capacity leads to higher

crop prices. As the price elasticities of demand for food products

are relatively low, the positive effect of increased crop prices

tends to be stronger than the negative effect of a reduction in de-

mand and production.25 To compensate for the heat-induced

loss in labor capacity, the demand for agricultural labor in-

creases relative to the historical time period (i.e., no further

climate change), thereby leading to higher wages. Thus, an in-

crease in crop prices is absorbed by an increase in rural income.

Results of theGRACE simulations show that a higher demand for

labor due to heat-induced losses in labor capacity is associated

with a relocation of labor from non-agriculture to agriculture in

many regions. A negative correlation between agricultural pro-

ductivity and labor demand was also founded in an empirical

study from Liu et al.26

Beyond the major crops
Above, we evaluated the economic responses of climate im-

pacts on only four major crops (i.e., maize, wheat, soybean,

and rice). However, other crops are also an important source

of nutrition and income in many countries. In particular, vegeta-

bles and fruit, whose production is also labor intensive, account

for a large share of total consumption expenditures as well as a

large share of value added in the gross domestic product (GDP)

in African and Asian countries (Figure S6). In an additional simu-

lation using GRACE, we introduce the heat-stress impacts on la-
models, and heat-labor ERFs. The circles in shades of green labeled ‘‘Crop respo

of the four crops. The triangles in shades of orange labeled ‘‘Crop&Labor response

on labor of the four crops.
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bor capacity in production of all types of crops, including grains,

vegetables, and fruits in addition to four major crops. Due to a

lack of data, following M€uller and Robertson,27 we assume that

the yield responses of other crops equal the average yield

response of three major C3 major crops (i.e., wheat, soybean,

rice). We found that, when implementing the climate-induced im-

pacts on all types of crops, the decreases in food prices and the

increases in real income are larger compared to those when only

productivity of four major crops is affected by climate change.

This is because the CO2 fertilization effect results in higher pro-

ductivity and, therefore, lower consumer prices of other crops

(i.e., vegetables and fruit) (Figure S9). However, the heat-induced

losses in labor capacity diminish the decreases in food prices,

especially in Asia and Africa (Figure S10). This emphasizes that

the adverse heat-stress impacts on agricultural labor could

have a non-negligible impact on the welfare of households in

the most vulnerable low-latitude, low-income regions under

high-warming scenarios.

While the modeling framework of GRACE endogenously de-

picts the mechanization of crop production through substitution

between labor, land, and capital, results from the GRACE simu-

lations show that, due to budget constraints, many farmers

cannot afford to fully mechanize crop production. In an addi-

tional sensitivity experiment, we implement more proactive

mechanization at no cost by assuming that work intensity in

crop production is equivalent to an average work intensity in

the service sector, which implies a low intensity of physical

work (see section ‘‘climate labor shifters’’). Results of this sensi-

tivity experiment show that such a radical mechanization of crop

production would significantly reduce the adverse heat-stress

impacts on food prices and income (Figure S10). However, a

more proactive mechanization deployment would also require

massive investment costs and government support, which could

be financially infeasible in poor regions due to fiscal constraints.

DISCUSSION

The separate and combined climate-induced impacts on agri-

culture are highly uncertain. Most previous studies have primarily

focused on the direct climate impact on crop yields, while ne-

glecting the effects of human heat stress on agricultural labor.

Here we assess the economic consequences of future climate-

related impacts on the production and prices of four major crops

under both low- and high-emissions scenarios. Our economic

analysis uses the latest crop model simulations, based on

CMIP6. These simulations reveal significantly greater crop yield

responses to climate change compared to previous ones based

on CMIP5.3 The results of our economic analysis show no robust

evidence of welfare losses due to climate change-induced im-

pacts on crop productivity. This contradicts the findings of

some previous global economic studies based on a meta-anal-

ysis compiled for the Intergovernmental Panel on Climate

Change (IPCC) 5th Assessment Report.16,28,29 While maize pro-

ductivity will most likely decline in most regions even under a

low-emission scenario, crop model simulations indicate a high
nse’’ show the scenarios that only consider the climate-related yield responses

’’ show the scenarios that consider both yield changes and heat-stress impacts
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Figure 5. Changes in the food price index, income, and wages
Median responses of the food price index (A) and regional real income (B) and real wages (C) by the mid (2040–2070) and end (2071–2100) of the century under

RCP2.6 (green) and RCP7.0 (orange) relative to the historical time period. The income and price responses are simulated using the GRACE model and show the

median changes acrossGCMs, cropmodels, and heat-labor ERFs. The circles in shades of green labeled ‘‘Crop response’’ show the scenarios that only consider

the climate-related yield responses of the four crops. The triangles in shades of orange labeled ‘‘Crop&Labor response’’ show the scenarios that consider both

yield changes and heat-stress impacts on labor of the four crops.
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probability of an increase in yields of wheat, soybean, and rice

even under a high-warming scenario. An increase in crop pro-

ductivity will result in higher production and lower consumer pri-

ces. The CO2 fertilization effect is one of the main reasons for

higher crop yields. The primary divergence between our findings

and those of previous studies likely comes from the selection of

crop models. de Lima et al.16 and Moore et al.28,29 conducted a

meta-analysis, incorporating published yield response estimates

from various sources to develop climate-yield response func-

tions. Their meta-analysis likely relies on a different ensemble

of crop projections, which show significantly more pessimistic

outcomes compared to our own. The selection of crop models

(ensemble) for projecting yields in response to climate and atmo-

spheric CO2 changes significantly influences the projected

ensemble mean yield response.4,30

Although crops are imperfect substitutes in consumption,

the results of our analysis show that the total impact on

food prices and household income is moderately small and

likely positive in many regions, which is in line with some pre-

vious studies.17,31 Nevertheless, for climate models with high-

end warming levels and more pessimistic crop models, which

represent the extreme ends of the distribution, the adverse

warming effect could dominate the CO2 fertilization effect.32

This emphasizes the relevance of uncertainty ranges in

climate and crop responses (i.e., different warming and crop

yield responses to the same CO2 concentration). The CO2

fertilization effect still introduces one of the largest sources

of uncertainty for the end-century yield responses under

high-emissions scenarios.5

Furthermore, we found that human heat stress could have a

relatively strong impact on food prices and income compared

to the direct climate-induced impact on crop productivity.

Crop production, and especially rice production in low-latitude

regions with low mechanization, is expected to be most

adversely affected by heat stress. While the labor responses to

heat stress are modest by the middle of the century under

both RCP scenarios, the end-century impacts become substan-

tially more adverse under a high-warming scenario. More proac-

tive adaptation measures, such as mechanization deployment,

will be needed to reduce the heat-induced losses of labor capac-

ity in agriculture. However, the cost of adaptation might be larger

under a high-emission scenario, especially in a world facing a

high level of regional poverty and inequality. We also found

that higher prices of crops could reduce the income gap be-

tween rural and urban households in some regions, because

the positive price effect could be greater than the negative pro-

duction effect. However, the income response will also depend

on farm size, adaptive capacity, and how income is distributed

between farm workers and landowners. In regions with high

inequality and poor governance, the income could be dispropor-

tionally distributed in favor of landowners.33,34 Moreover, mainly

large farms could benefit from higher crop prices, whereas small

farms might not be able to cope with adverse heat-stress im-

pacts. Overall, human heat stress could not only lead to adverse

health impacts but could also challenge the implementation of

sustainable development goals (SDG) on poverty and food secu-

rity (i.e., SDG1 and SDG2). Restrictive agricultural trade policies,

such as export restrictions on crops, which can be implemented

to ensure domestic food security in response to temporal in-
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creases in food prices, could aggravate an increase in food pri-

ces in importing countries.35–37

This study has some caveats and limitations that need atten-

tion in future research. While the mid-century economic impacts

are relatively similar between RCP2.6 and RCP7.0, the end-cen-

tury impacts based on RCP7.0 might be overestimated in our

economic analysis. Based on current nationally determined con-

tributions, RCP4.5 and 6.0 appear to bemore realistic future sce-

narios than RCP7.0. However, the latest crop model simulations

are available only for RCP2.6, RCP7.0, and RCP8.5. Climate and

crop models might underestimate the impacts of climate ex-

tremes.38,39 The positive yield response due to enhanced CO2

could also be overestimated because the crop model simula-

tions do not include any impact of ozone changes. In the near

term, the adverse ozone effect could be stronger than the CO2

fertilization effect.40 In contrast to cropmodels, GRACE explicitly

implements several adaptation measures, such as irrigation

expansion, input substitution in production, and land-use

change but at a highly aggregated regional and sectoral scale.

In this analysis, we investigate the economic responses to

long-term climatic trends, while the impacts of climate extremes

(i.e., drought and extreme precipitation) are beyond the scope of

this study. In the long term, market mechanisms could smooth

and diminish adverse climate impacts on food prices. Neverthe-

less, the market mechanisms do not apply for remote regions

without access to the market. Moreover, in the short term, the

market mechanisms and adaptation could be hampered bymar-

ket imperfection and inertia in the economic system.41 Climate

impacts on the welfare of subsistence farmers are not quantified

in our economic analysis. A combination of macro- and micro-

economic analyses could give useful insights into potential

impacts on poverty and income distribution across different in-

come groups. Furthermore, we investigate only adverse heat-

stress impacts on labor, while a warmer climate could lead to a

higher labor capacity in high-latitude regions. More empirical

research is needed to estimate region- and sector-specific

exposure-response functions for climate-related impacts on ca-

pacity and productivity of labor. Due to a lack of data, our anal-

ysis focuses on the four major crops. Future research should

include non-staple crops because these are an important source

of nutrition and income.42 Climate-induced migration across

regions, which could also induce considerable socio-economic

effects, is not implemented in the economic model. Our analysis

relies on a static version of GRACE, which evaluates

economic impacts relative to the state of the global economy

in 2011. However, future economic impacts may significantly

differ due to socio-economic shifts, particularly technological

advancements such as mechanization. In this context, our eco-

nomic analysis can overestimate the economic cost of heat

stress by the end of the century. In future research, this can be

tackled by creating sector-specific projections for agricultural

production and trade, along with dedicated mechanization

pathways.

In our analysis, we use daily mean values of climate variables

to quantify the heat-stress indices and labor capacity. This

approach does not consider the diurnal cycle of climate vari-

ables. To assess the sensitivity of the results to this limitation,

we compare labor capacity based on daily mean and disaggre-

gated hourly climate data43 assuming a 7 a.m. to 7 p.m. workday



Figure 6. The flowchart of key processes in the GRACE model

Circular flows of economic activities and climate-economic interactions within a region (country) in GRACE. The climate component is not an endogenous part of

GRACE’s economic optimization. Biophysical climate-induced shocks are derived from climate and impact models and exogenously incorporated into GRACE,

meaning that the feedback effects of the economy on climate are not accounted for.
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without considering shifts in working hours (see supplemental in-

formation). The comparison is carried out at 30 locations glob-

ally, representing major agricultural regions (Figure S11). We

find that using daily mean values leads to an underestimation

of the heat-induced impacts on labor capacity. The degree of

underestimation varies by location and season, with the largest

deviations occurring in the warm seasons in high latitudes (Fig-

ure S12). Despite some limitations, the results of this study

emphasize the relevance of human heat stress in agricultural

production for food security and highlight the need for more

proactive adaptation measures to reduce the health risk and

economic costs of heat-stress impacts on agricultural labor.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests should be directed to and will be fulfilled by

the lead contact, Anton Orlov (anton.orlov@cicero.oslo.no).

Materials availability

This study did not generate new unique materials.

Data and code availability

Data to calibrate the GRACE model were obtained from GTAP9: https://www.

gtap.agecon.purdue.edu. The code of the GRACE model and simulation re-

sults presented and discussed in this study are available upon request.

The biased-adjusted daily Inter-Sectoral Impact Model Intercomparison

Project (ISIMIP) CMIP6 data for near-surface daily mean temperature and rela-

tive humidity are publicly accessible at https://data.isimip.org/search/tree/
ISIMIP3b/InputData/climate/simulation_round/ISIMIP3b/. The crop model

simulations are publicly accessible at https://www.isimip.org/outputdata/?

simulation_round=ISIMIP3b.

Methodology

Economic model

To assess the economic responses to climate impacts on crop yields and labor

capacity, we used a standard multiregional and multisectoral CGE model:

GRACE .23 A detailed description of GRACE can be found in Aaheim et al.23

GRACE describes the economic interactions associated with production, con-

sumption, and trade of commodities, products, and services (Figure 6) based

on the GTAP9 database.24 GTAP9 represents the economic interactions (i.e.,

production costs, consumption expenditures, and bilateral trade flow) be-

tween producers and consumers. GTAP9 data are compiled using regional

input-output tables. In the model, producers are assumed to maximize profit

subject to resource and technology constraints, and consumers are assumed

to maximize welfare (utility) from consumption of goods and services subject

to budget constraints. The main economic equilibrium conditions are (1) mar-

ket clearance (i.e., demand equals supply), (2) zero profit (i.e., production rev-

enue equals production cost), and (3) income balance (i.e., income equals ex-

penditures). In this study, we used a modified version of GRACE with a more

sophisticated depiction of the agro-economy,17 a description of which can

also be found in the supplemental experimental procedures. The main agro-

economic features implemented in the model are (1) conversion costs of

land-use change and (2) an explicit representation of two water management

systems (fully irrigated and rainfed). In the model, production of crops could be

increased through both land-use change and intensification but constrained

by resource availability (i.e., labor, capital, land, and water). In GRACE, the

regional production and prices are determined not only by direct climate im-

pacts on yields but also by market mechanisms. The latter are associated

with the interaction between demand and supply, and cross-sectoral and
One Earth 7, 1250–1265, July 19, 2024 1261

mailto:anton.orlov@cicero.oslo.no
https://www.gtap.agecon.purdue.edu
https://www.gtap.agecon.purdue.edu
https://data.isimip.org/search/tree/ISIMIP3b/InputData/climate/simulation_round/ISIMIP3b/
https://data.isimip.org/search/tree/ISIMIP3b/InputData/climate/simulation_round/ISIMIP3b/
https://www.isimip.org/outputdata/?simulation_round=ISIMIP3b
https://www.isimip.org/outputdata/?simulation_round=ISIMIP3b


Regions:
N−America L−America W−Europe E−Europe Africa W−Asia
C−Asia S−Asia SE−Asia E−Asia Oceania

Figure 7. Regional aggregation in GRACE
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cross-regional dependencies. Also, the competition for land among different

types of crops affects the production patterns. Hence, the market mecha-

nismsmight cause non-trivial production and price responses to direct climate

impacts. In GRACE, domestically produced commodities are supplied to do-

mestic and export markets. Applying the Armington approach,44 which is

widely implemented in standard CGE models, domestic and imported com-

modities are modeled as imperfect substitutes using the constant elasticity

of substitution (CES) functions. Imperfect substitutability between imported

and domestic crops implies that crops have different characteristics and qual-

ity, so consumer prices of crops are region specific (i.e., no single global price).

The values of substitution elasticities between imported and domestic com-

modities are taken from the GTAP database. Since major crops are relatively

homogeneous goods, the values of substitution elasticities are higher than

for manufactured goods. Furthermore, agricultural and non-agricultural

goods aremodeled as imperfect substitutes.We assume an imperfect mobility

of labor across sectors, which is implemented using a constant elasticity of

transformation (CET) function, but labor is immobile across regions (i.e., no

migration). Capital is mobile across sectors and regions. The conversion

cost of land-use changes is depicted by a nested-CET function. While total

land availability is constrained, land use for different types of crops and

pasture is endogenously determined in GRACE by market mechanisms. We

used a static version of the model, which implies that economic impacts are

estimated relative to the reference year of 2011. For our economic analysis,

we aggregated the monetary values of consumption expenditures, production

costs, and trade flows of all countries presented in the GTAP database into 11

world regions (Figure 7; Table S1). Price responses of wheat, which are simu-

lated by GRACE, were validated against historical data in Zhang et al.45

GRACE was also validated through theoretical modeling and sensitivity ana-

lyses with respect to key parameters of the model (i.e., substitution elasticities

in production and consumption).46

Our economic impact assessment was conducted for two GHG emission

scenarios: CMIP6’s SSP1-RCP2.6 and SSP3-RCP7.0 (hereafter RCP2.6 and

RCP7.0, because only climate component is considered in our analysis).47

The former implies a strict mitigation policy, which leads to an increase of

global annual mean surface temperature below 1.3�C–2.4�C by the end

of the century relative to 1850–1900. The latter is associated with a 2.8�C–
4.6�C increase of global annual mean surface temperature due to higher

GHG emissions.1 Using GRACE, we conducted two simulations per scenario.

First, we incorporated the biophysical crop yield changes derived from the

crop model ensemble.3 Second, in addition to the climate impacts on crop

yields, we introduced the heat-stress impacts on labor capacity.

GRACE quantifies the climate-induced impacts on regional production and

consumer prices of crops, food prices, and income. A regional consumer price

of crop is calculated as a consumption-weighted price of import and domestic

crops. The total impact on food prices is measured by a food price index,

which is a consumption-weighted average price of a basket of food products.

An increase (decrease) of crop productivity in a region tends to lead to lower

(higher) regional food prices. GRACE is a multi-region and multi-sector model

that shows the changes in equilibrium prices. Thus, changes in crop produc-
1262 One Earth 7, 1250–1265, July 19, 2024
tivity in outermost regions could also affect regional

food prices because of trade. The impact on food

prices also depends on the trade position (i.e., net

exporter vs. importer of crops) as well as demand

elasticities for crops and food products. Moreover,

the production and price of a crop depend on how

other crop types are affected by climate change

because of competition for land. Real income is a

nominal income deflated by the consumer price in-

dex (CPI). Nominal income includes earnings from

providing primary production factors such as labor,

capital, land, and other natural resources. These

earnings are subsequently allocated toward both

consumption and savings. For each region, con-
sumers are modeled by a representative household. In our analysis, real in-

come is used as a welfare index because it accounts for both changes in con-

sumer prices and income. We also assess the impact on real wages, which

serves as another indicator of welfare. Real wages measure the purchasing

power of wages and are computed by taking the economy-wide average

wage and adjusting it for inflation using the food price index. Moreover, to

analyze potential impacts on income distribution between rural and urban

households, based on results from the GRACE simulations, we compute a ru-

ral-urban income ratio, which quantifies changes in rural income relative to ur-

ban income. Rural income is defined as the weighted average income from the

agricultural sector, and urban is the weighted average income from non-agri-

cultural sector. We use the initial shares of income from labor, capital, and land

as a weighting factor.

Climate-yield shifters

The projected yield changes of four major crops (i.e., maize, wheat, soybean,

and rice) are taken from the GGCMI3 crop model simulation archive.48 We

used the crop yield simulations from an ensemble of seven crop models,

driven by five CMIP6 climate models, which are down-scaled and bias

adjusted by ISIMIP (Table 1). Crop model simulations provide crop yields for

two water management regimes: rainfed and fully irrigated. Fully irrigated

means that there are no water availability constraints for crop irrigation and

the models apply as much water as was requested by the plants. While 12

crop models participated in GGCMI3, only seven crop models provided simu-

lations for RCP7.0. We take RCP7.0 as a high-end GHG emissions scenario as

RCP8.5 has recently been criticized for being unrealistic.49 The ensemble of

climate models covers the range of ECS of the full CMIP6 ensemble, with a

range of 2.6–5.3.50 We used crop model simulations that explicitly consider

changing atmospheric CO2 concentrations depending on the RCP scenario.

All cropmodel simulations implement fixed 2015-year direct human influences

(i.e., land use, nitrogen deposition, and fertilizer). The new generation of crop

models distinguish between winter and spring wheat, and two rice seasons

(i.e., first and second growing period), while the GTAP database used in our

analysis provides aggregated annual economic values. Therefore, we calcu-

lated the yield responses of wheat and rice using themaximum values of winter

and spring wheat and two rice seasons, respectively. Because GRACE is

resolved at an aggregated regional scale (Figure 7), we aggregated the

spatially explicit data on crop yields at a 0.5� 3 0.5� geographic grid resolution

to the same regions represented in GRACE using crop-specific harvested

area51 as a weighting factor. Then, the harvested-area-weighted yields were

smoothed using the method of rolling averages to obtain long-term trends of

climate-induced changes in crop productivity. Finally, for each crop type, wa-

ter management system (i.e., rainfed and fully irrigated), RCP, and climate and

crop model combination, we calculated the changes in crop yields in future

scenarios relative to the average yields in a reference period (1981–2010)

(hereafter, the climate yield shifters). The climate yield shifters were used in

GRACE as scaling factors for total factor productivity of crop production.

The climate yield shifters include the crop yield response to changes in both

atmospheric CO2 concentrations and climatic variables (i.e., temperature

and precipitation). Note that all crop model simulations isolate the climate



Figure 8. Heat-labor ERFs showing the relationship between labor

capacity and environmental stress index (ESI) for high work intensity
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signal and do not assume any adaptation measures or changes in manage-

ment. However, some adaptation measures, such as irrigation; land-use

change; mobility of capital and labor; and substitution between capital, labor,

and land, are endogenously implemented in GRACE.

Climate labor shifters

The heat-stress impacts on labor capacity were quantified using the wet-bulb

global temperature (WBGT) and the environmental stress index (ESI). The

WBGT measures a combined effect of temperature and humidity on heat

stress in shade (i.e., shielded from the sun), while the ESI also includes the

additional effect of solar radiation. Specifically, the WBGT was computed us-

ing the biased-adjusted daily ISIMIP CMIP6 data on near-surface daily mean

temperature (tas) and relative humidity (hurs) by applying the empirical model

from Stull52 (Equations 1 and 2). To calculate the ESI, we applied the empirical

model from Moran et al.53 using the data on near-surface daily mean temper-

ature, relative humidity, and surface downwelling shortwave radiation (rsds)

available from the same CMIP6 climate models used in the crop model

simulations (Equation 3). ESI is found to be an accurate approximation for

more precise iterative methods to calculate WBGT for outdoors.53–55

WBGTshade = 0:67 �WBTstull + 0:33 � tas (Equation 1)

WBTstull = tas � atan
�
c1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hurs+c2

p �
+ atanðtas + hursÞ

� atanðhurs � c3Þ+ c4 �
�
hurs

3
2

�
� atanðc5 � hursÞ � c6

(Equation 2)

ESI = 0:63 � tas � 0:03 � hurs + 0:002 � rsds+ 0:0054 � tas � hurs

�
�

0:073

0:1+rsds

�
(Equation 3)

Using theWBGT and ESI, labor capacity was computed applying three heat-

labor exposure-response functions (ERFs). One is based on field studies,

which were synthesized for the ‘‘high occupational temperature health and

productivity suppression’’ program (Hothaps).56,57 Another one is derived

from the National Institute for Occupational Safety and Health (NIOSH) stan-

dards.58,59 The third is based on an experiment trial where physical work

was simulated using treadmill-based walking (hereafter, Laboratory ERF).60

For our economic analysis, we used the mean values of labor capacity levels

estimated for indoor (WBGT) and outdoor (ESI) work environment, because

workers try to avoid full sun exposure by moving some tasks to times when

it is less hot. Moreover, in the tropics, �40% of days are cloudy.9 Using three

ERFs (i.e., Hothaps, NIOSH, and Laboratory) aims to capture uncertainty

ranges of heat-stress impacts on labor (Figure 8). The NIOSH, Hothaps, and

Laboratory ERF do not consider any adaptation, but GRACE assumesmobility

of capital and labor as well as substitutability between capital and labor (i.e.,

mechanization). Moreover, shifting working hours is also implicitly included
in our analysis because daily mean values of climate variables are used to

compute the heat-induced impacts on labor capacity.

We computed the heat-stress impacts on labor capacity for three levels of

work intensity (i.e., high, moderate, and low work intensity). For the core sim-

ulations of GRACE, a moderate work intensity in crop production is assumed

for North America, Western Europe, Oceania, and Eastern Europe because

these regions are relatively mechanized. For all other regions, crop production

is assumed to require a high work intensity. For a sensitivity test on more pro-

active mechanization, we used the estimates for low work intensity, which is

equivalent to work intensity in the service sector. The heat-stress impacts

on labor were calculated for each RCP and climate model using a similar pro-

cedure as for crops: (1) we aggregated the daily heat-stress impacts on labor

to annual average values using the crop calendar for GGCMI348 as a weighting

factor, then (2) aggregated the spatially explicit impacts to 10 world regions

represented in GRACE using the harvested area as a weighting factor; (3)

we calculated the rolling averages; and finally (4) we computed the changes

in labor capacity in future projections relative to the average level of labor ca-

pacity in the reference scenario (1981–2010) (hereafter, the climate labor

shifters). The climate labor shifters were used in GRACE as the scaling factors

for labor productivity in crop production.
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6. Wiréhn, L. (2018). Nordic agriculture under climate change: A systematic

review of challenges, opportunities and adaptation strategies for crop pro-

duction. Land Use Pol. 77, 63–74. https://doi.org/10.1016/j.landusepol.

2018.04.059.

7. Poulianiti, K.P., Havenith, G., and Flouris, A.D. (2019). Metabolic energy

cost of workers in agriculture, construction, manufacturing, tourism, and

transportation industries. Ind. Health 57, 283–305. https://doi.org/10.

2486/indhealth.2018-0075.

8. Dunne, J.P., Stouffer, R.J., and John, J.G. (2013). Reductions in labour ca-

pacity from heat stress under climate warming. Nat. Clim. Chang. 3,

563–566. https://doi.org/10.1038/nclimate1827.

9. Kjellstrom, T., Maitre, N., Saget, C., Otto, M., and Karimova, T. (2019).

Working on a warmer planet: The effect of heat stress on productivity

and decent work (International Labor Office). https://www.ilo.org/

publications/major-publications/working-warmer-planet-effect-heat-stress-

productivity-and-decent-work.

10. Powis, C.M., Byrne, D., Zobel, Z., Gassert, K.N., Lute, A.C., and Schwalm,

C.R. (2023). Observational and model evidence together support wide-

spread exposure to noncompensable heat under continued global warm-

ing. Sci. Adv. 9, eadg9297. https://doi.org/10.1126/sciadv.adg9297.

11. Raymond, C., Matthews, T., and Horton, R.M. (2020). The emergence of

heat and humidity too severe for human tolerance. Sci. Adv. 6,

eaaw1838. https://doi.org/10.1126/sciadv.aaw1838.

12. Russo, S., Sillmann, J., and Sterl, A. (2017). Humid heat waves at different

warming levels. Sci. Rep. 7, 7477. https://doi.org/10.1038/s41598-017-

07536-7.

13. Parsons, L.A., Shindell, D., Tigchelaar, M., Zhang, Y., and Spector, J.T.

(2021). Increased labor losses and decreased adaptation potential in a

warmer world. Nat. Commun. 12, 7286. https://doi.org/10.1038/s41467-

021-27328-y.

14. Takakura, J., Fujimori, S., Takahashi, K., Hasegawa, T., Honda, Y.,

Hanasaki, N., Hijioka, Y., and Masui, T. (2018). Limited Role of Working

Time Shift in Offsetting the Increasing Occupational-Health Cost of Heat

Exposure. Earth’s Future 6, 1588–1602. https://doi.org/10.1029/

2018EF000883.

15. Orlov, A., Sillmann, J., Aunan, K., Kjellstrom, T., and Aaheim, A. (2020).

Economic costs of heat-induced reductions in worker productivity due

to global warming. Glob. Environ. Change 63, 102087. https://doi.org/

10.1016/j.gloenvcha.2020.102087.

16. de Lima, C.Z., Buzan, J.R., Moore, F.C., Baldos, U.L.C., Huber, M., and

Hertel, T.W. (2021). Heat stress on agricultural workers exacerbates

crop impacts of climate change. Environ. Res. Lett. 16, 044020. https://

doi.org/10.1088/1748-9326/abeb9f.
1264 One Earth 7, 1250–1265, July 19, 2024
17. Orlov, A., Daloz, A.S., Sillmann, J., Thiery, W., Douzal, C., Lejeune, Q., and

Schleussner, C. (2021). Global Economic Responses to Heat Stress

Impacts on Worker Productivity in Crop Production. Econ. Disaster.

Clim. Chang. 5, 367–390. https://doi.org/10.1007/s41885-021-00091-6.

18. Simpson, C., Hosking, J.S., Mitchell, D., Betts, R.A., and Shuckburgh, E.

(2021). Regional disparities and seasonal differences in climate risk to

rice labour. Environ. Res. Lett. 16, 124004. https://doi.org/10.1088/

1748-9326/ac3288.

19. Hasegawa, T., Fujimori, S., Havlı́k, P., Valin, H., Bodirsky, B.L., Doelman,

J.C., Fellmann, T., Kyle, P., Koopman, J.F.L., Lotze-Campen, H., et al.

(2018). Risk of increased food insecurity under stringent global climate

change mitigation policy. Nat. Clim. Chang. 8, 699–703. https://doi.org/

10.1038/s41558-018-0230-x.

20. Nelson, G.C., Valin, H., Sands, R.D., Havlı́k, P., Ahammad, H., Deryng, D.,

Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., et al. (2014). Climate

change effects on agriculture: Economic responses to biophysical shocks.

Proc. Natl. Acad. Sci. USA 111, 3274–3279. https://doi.org/10.1073/pnas.

1222465110.

21. Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., van der

Mensbrugghe, D., Biewald, A., Bodirsky, B., Islam, S., Kavallari, A.,

Mason-D’Croz, D., et al. (2015). Climate change impacts on agriculture

in 2050 under a range of plausible socioeconomic and emissions sce-

narios. Environ. Res. Lett. 10, 085010. https://doi.org/10.1088/1748-

9326/10/8/085010.

22. Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J.,

and Taylor, K.E. (2016). Overview of the Coupled Model Intercomparison

Project Phase 6 (CMIP6) experimental design and organization. Geosci.

Model Dev. (GMD) 9, 1937–1958. https://doi.org/10.5194/gmd-9-

1937-2016.

23. Aaheim, H.A., Orlov, A., Wei, T., and Glomsrød, S. (2018). GRACE model

and applications. CICERO Report;2018:01 (CICERO Center for

International Climate Research), pp. 1–45.

24. Aguiar, A., Narayanan, B., and McDougall, R. (2016). An Overview of the

GTAP 9 Data Base. J. Glob. Econ. Anal. 1, 181–208. https://doi.org/10.

21642/JGEA.010103AF.

25. Andreyeva, T., Long, M.W., and Brownell, K.D. (2010). The Impact of Food

Prices on Consumption: A Systematic Review of Research on the Price

Elasticity of Demand for Food. Am. J. Public Health 100, 216–222.

https://doi.org/10.2105/AJPH.2008.151415.

26. Liu, M., Shamdasani, Y., and Taraz, V. (2023). Climate Change and Labor

Reallocation: Evidence from Six Decades of the Indian Census. Am. Econ.

J. Econ. Policy 15, 395–423. https://doi.org/10.1257/pol.20210129.

27. M€uller, C., and Robertson, R.D. (2014). Projecting future crop productivity

for global economic modeling. Agric. Econ. 45, 37–50. https://doi.org/10.

1111/agec.12088.

28. Moore, F.C., Baldos, U., Hertel, T., and Diaz, D. (2017). New science of

climate change impacts on agriculture implies higher social cost of carbon.

Nat. Commun. 8, 1607. https://doi.org/10.1038/s41467-017-01792-x.

29. Moore, F.C., Baldos, U.L.C., and Hertel, T. (2017). Economic impacts of

climate change on agriculture: a comparison of process-based and statis-

tical yield models. Environ. Res. Lett. 12, 065008. https://doi.org/10.1088/

1748-9326/aa6eb2.

30. Li, L., Wang, B., Feng, P., J€agermeyr, J., Asseng, S., M€uller, C., Macadam,

I., Liu, D.L., Waters, C., Zhang, Y., et al. (2023). The optimization of model

ensemble composition and size can enhance the robustness of crop yield

projections. Commun. Earth Environ. 4, 362. https://doi.org/10.1038/

s43247-023-01016-9.

31. Fujimori, S., Iizumi, T., Hasegawa, T., Takakura, J., Takahashi, K., and

Hijioka, Y. (2018). Macroeconomic Impacts of Climate Change Driven by

Changes in Crop Yields. Sustainability 10, 3673. https://doi.org/10.3390/

su10103673.

32. Zabel, F., M€uller, C., Elliott, J., Minoli, S., J€agermeyr, J., Schneider, J.M.,

Franke, J.A., Moyer, E., Dury, M., Francois, L., et al. (2021). Large potential

for crop production adaptation depends on available future varieties.

Glob. Chang. Biol. 27, 3870–3882. https://doi.org/10.1111/gcb.15649.

http://refhub.elsevier.com/S2590-3322(24)00316-6/sref1
http://refhub.elsevier.com/S2590-3322(24)00316-6/sref1
https://doi.org/10.1088/1748-9326/abd8fc
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1029/2023EF003773
https://doi.org/10.1038/s43016-020-00195-4
https://doi.org/10.1016/j.landusepol.2018.04.059
https://doi.org/10.1016/j.landusepol.2018.04.059
https://doi.org/10.2486/indhealth.2018-0075
https://doi.org/10.2486/indhealth.2018-0075
https://doi.org/10.1038/nclimate1827
https://www.ilo.org/publications/major-publications/working-warmer-planet-effect-heat-stress-productivity-and-decent-work
https://www.ilo.org/publications/major-publications/working-warmer-planet-effect-heat-stress-productivity-and-decent-work
https://www.ilo.org/publications/major-publications/working-warmer-planet-effect-heat-stress-productivity-and-decent-work
https://doi.org/10.1126/sciadv.adg9297
https://doi.org/10.1126/sciadv.aaw1838
https://doi.org/10.1038/s41598-017-07536-7
https://doi.org/10.1038/s41598-017-07536-7
https://doi.org/10.1038/s41467-021-27328-y
https://doi.org/10.1038/s41467-021-27328-y
https://doi.org/10.1029/2018EF000883
https://doi.org/10.1029/2018EF000883
https://doi.org/10.1016/j.gloenvcha.2020.102087
https://doi.org/10.1016/j.gloenvcha.2020.102087
https://doi.org/10.1088/1748-9326/abeb9f
https://doi.org/10.1088/1748-9326/abeb9f
https://doi.org/10.1007/s41885-021-00091-6
https://doi.org/10.1088/1748-9326/ac3288
https://doi.org/10.1088/1748-9326/ac3288
https://doi.org/10.1038/s41558-018-0230-x
https://doi.org/10.1038/s41558-018-0230-x
https://doi.org/10.1073/pnas.1222465110
https://doi.org/10.1073/pnas.1222465110
https://doi.org/10.1088/1748-9326/10/8/085010
https://doi.org/10.1088/1748-9326/10/8/085010
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
http://refhub.elsevier.com/S2590-3322(24)00316-6/sref23
http://refhub.elsevier.com/S2590-3322(24)00316-6/sref23
http://refhub.elsevier.com/S2590-3322(24)00316-6/sref23
https://doi.org/10.21642/JGEA.010103AF
https://doi.org/10.21642/JGEA.010103AF
https://doi.org/10.2105/AJPH.2008.151415
https://doi.org/10.1257/pol.20210129
https://doi.org/10.1111/agec.12088
https://doi.org/10.1111/agec.12088
https://doi.org/10.1038/s41467-017-01792-x
https://doi.org/10.1088/1748-9326/aa6eb2
https://doi.org/10.1088/1748-9326/aa6eb2
https://doi.org/10.1038/s43247-023-01016-9
https://doi.org/10.1038/s43247-023-01016-9
https://doi.org/10.3390/su10103673
https://doi.org/10.3390/su10103673
https://doi.org/10.1111/gcb.15649


ll
OPEN ACCESSArticle
33. Hallegatte, S., and Rozenberg, J. (2017). Climate change through a

poverty lens. Nat. Clim. Chang. 7, 250–256. https://doi.org/10.1038/

nclimate3253.

34. Hertel, T.W., Burke, M.B., and Lobell, D.B. (2010). The poverty implications

of climate-induced crop yield changes by 2030. Glob. Environ. Change 20,

577–585. https://doi.org/10.1016/j.gloenvcha.2010.07.001.

35. Falkendal, T., Otto, C., Schewe, J., J€agermeyr, J., Konar, M., Kummu, M.,

Watkins, B., and Puma, M.J. (2021). Grain export restrictions during

COVID-19 risk food insecurity in many low- and middle-income countries.

Nat. Food 2, 11–14. https://doi.org/10.1038/s43016-020-00211-7.

36. Janssens, C., Havlı́k, P., Krisztin, T., Baker, J., Frank, S., Hasegawa, T.,

Leclère, D., Ohrel, S., Ragnauth, S., Schmid, E., et al. (2020). Global hun-

ger and climate change adaptation through international trade. Nat. Clim.

Chang. 10, 829–835. https://doi.org/10.1038/s41558-020-0847-4.

37. Stevanovi�c, M., Popp, A., Lotze-Campen, H., Dietrich, J.P., M€uller, C.,

Bonsch, M., Schmitz, C., Bodirsky, B.L., Humpenöder, F., and Weindl, I.
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Supplemental Experimental Procedures 

Daily mean vs. hourly responses 

Bias-adjusted hourly climate model data is not available. Therefore, we use daily mean values. 

To test our results for a potential underestimation, we apply the Teddy–tool v1.1 (TEmporal 

Disaggregation of DailY Climate Model Data) for temporal disaggregation of daily ISIMIP3b 

climate model data to hourly timeseries 1. The applied method for disaggregation compares 

every single day of a given climate model dataset to daily bias-adjusted WFDE5 reanalysis data 

(1980-2019). For the day of interest at a specific location, the Teddy-Tool identifies the most 

similar climatic day at the same location within a predefined time window (+/- 5 days) around 

the day of interest. For the best fit, it applies the historical hourly diurnal profile (based on bias-

adjusted hourly WFDE5 reanalysis data) to the climate model daily mean value. Thereby, the 

Teddy-Tool conserves mass and energy in all cases and strictly preserves the daily mean value 

(sum for precipitation) of the climate model. The physical relationship between temperature 

and relative humidity is considered and oversaturation is restricted. For radiation, precalculated 

potential incoming shortwave radiation is set as a maximum. For temperature, daily maximum, 

minimum, and mean values of the climate model are considered for the temporal disaggregation 

and are exactly reproduced in the sub-daily results. Thus, the Teddy-Tool allows for 

incorporating local sub-daily climate profiles and therefore reproducing seasonal and regional 

characteristics.  

Then, we compare the levels of labour capacity based on daily and disaggregated hourly data. 

For this sensitivity analysis, we exemplarily selected RCP 7.0 of the UKESM1-0-LL climate 

model for 30 locations representing major global agricultural regions (see Fig. S11). Assuming 

a 7 a.m. to 7 p.m. workday, we find that, indeed, when using hourly data, the heat-induced 

labour losses could be substantially larger than when using the daily mean depending on latitude 

and season (see Fig. S12). The largest difference can be found in the summer seasons of 

continental climate zones (up to 30 percentage points), while tropical regions show lower and 

more uniform reductions throughout the year. However, we do not allow for shifts in the 

working hours, which could partly compensate heat-induced labour losses.   

Description of the production system in GRACE  

Here, we description the production system for crops, which is implemented in GRACE. For 

irrigated crops, we adopt the structure of crop production similar to Luckmann et al. (2014) and 
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Orlov et al. (2021), which is illustrated in Fig. 1. Rainfed crops have the same production 

structure but without water as a production input. Sectoral production is modelled using nested 

constant elasticity of substitution (CES) functions. Adaptation in production is represented by 

substitution among production inputs (i.e., labour, capital, and land) as well as mobility of 

production inputs across sectors. Elasticities of substitution implemented in CES functions 

determine the degree of substitutability among production inputs. The substitution effect is 

determined by the value of substitution elasticity and the value share of production input.      

 
 Fig. 1: Nested structure of production of irrigated crops. 

At the top level of nested CES functions, production of crops is described by a Leontief 

production function over intermediates and the aggregate of value-added-water, which implies 

no substitutability between those two aggregates. At the second level, the aggregate of value-

added-water (VAWi) is a standard CES function over capital (see Eq. 1). In GRACE, equations 

are also region- and sector specific, and the indexes defining region and sector are removed 

from Eq. 1 for simplicity.  

𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑎𝑎𝑎𝑎 ∗ �𝑠𝑠ℎ𝑓𝑓 ∗ 𝑉𝑉𝐿𝐿𝑟𝑟 + 𝑠𝑠ℎ𝑓𝑓 ∗ 𝐶𝐶𝑟𝑟 + 𝑠𝑠ℎ𝑓𝑓 ∗ 𝐿𝐿𝑟𝑟�
1
r                                           Eq. 1 
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where  

 VAW is the value-added aggregate in a sector  
 WL is the aggregate of water-land in a sector   
 C is capital input in a sector 
 L is labour input in a sector   
 ad is the shifter parameter for CES function in a sector  
 sh is the factor-specific share parameter in a sector   
 r is the elasticity parameter, which equals to: 𝑟𝑟 = 1 − 1

σ
  

 𝜎𝜎 is the substitution elasticity  

The elasticity of substitution between capital, labour, and the aggregate of water-land, which 

measures the change in the ratio of inputs with respect to the ratio of their prices, is assumed to 

equal 0.7. The empirical literature rejects the hypothesis of a Cobb-Douglas function, which 

implies a substitution elasticity between capital and labour of one, and shows that the 

substitution elasticity tends to be less than one 4,5. In GRACE, the default value of the 

substitution elasticity between capital, labour, and the aggregate of water-land is assumed to 

equal 0.7, which is supported by empirical evidence 6–8. At the third level, the aggregate of 

water-land is depicted by a standard CES function over water and land. The substitution 

elasticity between water and land tends to have a small value ranking from 0 to 0.3 2,9,10. In our 

analysis, the value of this substitution elasticity is assumed to equal 0.3. 

The allocation of land among sectors is modelled using a two-level nested constant elasticity of 

transformation (CET) function. At the first level, land is allocated between cropland and other 

sectors (e.g., pasture) using a CET function with a transformation elasticity of 0.3. At the second 

level, a CET function allocates cropland among different types of crops. In different CGE-based 

studies, the value of transformation elasticity for cropland among different types of crops varies 

from 0 to 1 10–15. In our analysis, the value of transformation elasticity for cropland is assumed 

to equal 0.7. Following Gaasland (2008), labour allocation is modelled to be imperfectly mobile 

across sectors using a constant elasticity of transformation (CET) function with a transformation 

elasticity of 3.  

Description of the price system in GRACE  

Equilibrium prices are determined by interactions of demand and supply. In CGE models, 

equilibrium in commodity and factor markets are achieved when three main conditions are 

satisfied, such as i) market clearance (i.e., demand should be equal supply), ii) zero profit (i.e., 

production revenues should be equal production costs), and iii) income balance (i.e., 
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consumer’s income should be equal expenditures). These conditions are achieved through 

market mechanisms and adjustments, such as mobility (re-allocation) production factors (i.e., 

labour, capital, and land) across sectors, substitution among production factors, changes in trade 

and consumption, and substitution in consumption of commodities.  

Producer prices are determined by unit cost of production inputs, such as intermediates, labour, 

capital, and land. For example, the price formation of irrigated crops is shown in Fig. 2. The 

producer price of an irrigated crop (PD) is determined by an aggregate price of intermediates 

(PIO) and an aggregate price of value-added including water (PVAW). The price of value-

added is determined by factor prices for capital, labour, and land (PFAf,) and the price of water 

input (Pwater). The consumer price of a crop (P) is determined by a domestic producer price (PD) 

and an import price of crop (PIM). GRACE is formulated as a mixed-complementarity problem 

(MCP) 17–19. Commodity and factor prices are defined as the complementary variables to zero 

profit conditions for commodity and factor markets, while the aggregate prices, such as the 

price of value-added, is defined as unit cost functions derived from CES functions (Eq. 2). Note 

that in GRACE, equations are region- and sector specific, and the indexes defining region and 

sector are removed from Eq. 2 for simplicity. 

𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉 = 1
𝑎𝑎𝑎𝑎
∗ �𝑠𝑠ℎ𝜎𝜎 ∗ 𝑃𝑃𝑉𝑉𝐿𝐿1−𝜎𝜎 + 𝑠𝑠ℎ𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐𝜎𝜎 ∗ 𝑃𝑃𝑃𝑃𝑉𝑉𝑐𝑐𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐1−𝜎𝜎 + 𝑠𝑠ℎ𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝜎𝜎 ∗ 𝑃𝑃𝑃𝑃𝑉𝑉𝑐𝑐𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟1−𝜎𝜎 �

1
1−𝜎𝜎                      

Eq. 2 
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 Fig. 2: Price system for irrigated crops. 

A productivity shock affects the production cost (PD) and the returns to factors of production 

(i.e., wages and profit) (PFAf). To minimise the cost, producers adjust their production through 

substitution of inputs as well as factor mobility. In response to changes in producer prices and 

income, consumers adjust their consumption by choosing how much and what to consume. 

Imported and domestically produced commodities are assumed to be imperfect substitutes, 

which is modelled using the Armington approach (i.e., CES functions). The elasticity of 

substitution between imported and domestic commodities are obtained from the GTAP 

database. Moreover, different commodities (e.g., different crops or food vs. non-food) are 

assumed to be imperfect substitutes in private consumption (i.e., substitution effect). Moreover, 

a demand response of staple crops is also determined by changes in relative prices of staple 

crops and other goods (i.e., food and non-food). For example, in rich countries, people would 

consume more “luxury” items if food becomes cheaper (i.e., income effect). Changes in 

commodity and factor prices lead to a new market equilibrium through re-allocation of 

production inputs across sectors, substitution effects, and changes in trade and consumption 
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patterns. Substitution effects in production and consumption of commodities induce non-

linearity in economic responses.  

Formation of consumer prices 

In the GRACE model, the price response is determined by interactions between demand and 

supply, given the assumption of market equilibrium (i.e., demand equals supply) (Fig. 3). As 

the GRACE model explicitly depicts bilateral trade, the demand for commodities consists of 

domestic supply (minus export) and import. In the presence of trade, in addition to domestic 

production, the response of global supply of crops also determines the response of consumer 

prices. Similar to other CGE models, in GRACE, domestic and imported commodities are 

assumed to be imperfect substitutes and therefore, the price response differs by region, 

depending on the share of imported commodities in total consumption and the shock on crop 

productivity. The response of consumer prices and domestic production can be asymmetric 

because of trade possibility. For example, a region can experience a climate-induced reduction 

in production of crops and, at the same time, a reduction in the consumer price, if there is a 

global increase in production, leading to a higher import demand. However, if the yield shock 

is relatively strong and the domestic demand is mainly satisfied through the domestic supply, 

then a reduction in domestic production could lead to an increase in the regional consumer price 

of crops due to imperfect substitutability between domestically produced and imported crops.    

 
 Fig. 3: Formation of consumer prices. 
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Supplementary Tables  

Table S1: Regional aggregation.  
Regions Countries 

W-Europe (Western 
Europe) 

Albania, Austria, Belgium, Switzerland, Germany, Denmark, Spain, Estonia, 
Finland, France, United Kingdom, Greece, Croatia, Ireland, Italy, Lithuania, 
Luxembourg, Latvia, Netherlands, Norway, Portugal, Slovenia, Sweden 

W-Asia (Western Asia) United Arab Emirates, Armenia, Azerbaijan, Cyprus, Georgia, Israel, Jordan, 
Kuwait, Oman, Qatar, Saudi Arabia, Turkey, Iraq, Lebanon, Syria, Yemen 

L-America (Latin America) 
Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Dominican Republic, 
Ecuador, Guatemala, Honduras, Jamaica, Mexico, Nicaragua, Panama, Peru, Puerto 
Rico, Paraguay, El Salvador, Trinidad & Tobago, Uruguay, Venezuela 

Oceania Australia, New Zealand 

Africa 

Benin, Burkina Faso, Botswana, Côte d’Ivoire, Cameroon, Egypt, Ethiopia, Ghana, 
Kenya, Morocco, Madagascar, Mozambique, Mauritius, Malawi, Namibia, Nigeria, 
Rwanda, Senegal, Togo, Tunisia, Tanzania, Uganda, Angola, Congo - Kinshasa, 
Chad, Congo - Brazzaville, Equatorial Guinea, Gabon, São Tomé & Príncipe, 
Central African Republic, Burundi, Comoros, Djibouti, Eritrea, Mayotte, 
Seychelles, Somalia, Sudan, South Sudan, Algeria, Libya, Cape Verde, Gambia, 
Guinea-Bissau, Mali, Mauritania, Niger, St. Helena, Sierra Leone, South Africa, 
Zambia, Zimbabwe 

S-Asia (Southern Asia) Bangladesh, India, Iran, Sri Lanka, Nepal, Pakistan, Afghanistan, Bhutan, Maldives 
E-Europe (Russia and 
Eastern Europe) Bulgaria, Belarus, Czechia, Hungary, Poland, Romania, Russia, Slovakia, Ukraine 

SE-Asia (South-East Asia) Brunei, Indonesia, Cambodia, Laos, Malaysia, Philippines, Thailand, Vietnam, 
Myanmar (Burma) 

N-America (North 
America) Canada, United States 

E-Asia (East Asia) China, Hong Kong SAR China, Japan, South Korea, Mongolia, Taiwan 
C-Asia (Central Asia) Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan 
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Supplementary Figures  
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Fig. S1: Multi-year mean changes in regional harvested-area-weighted yields of fully irrigated and 
rainfed maize (A), wheat (B), soy (C), and rice (D) by the mid [2041–2070] and end [2071–2100] of 
the century under RCP2.6 (blue) and RCP7.0 (red) relative to the average yield in the historical time 

period [1981-2010]. The boxes show the interquartile range across climate and crop model ensembles. 
The whiskers show the variability outside the 1st and 3rd quantiles, and outliers are removed. 



12 
 

 
Fig. S2: Shares of imported maize (A), rice (B), soybean (C), and wheat (D) in total expenditures on 
imported and domestically produced crops (in percent). Own calculations based on version 9 of the 

GTAP database for 2011 reference period.  
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 Fig. S3: Shares of crops, intermediates, and value added in total production cost of food products (A) 
and primary livestock (B) (in percent). Own calculations based on version 9 of the GTAP database for 

2011 reference period. 
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 Fig. S4: Analysis of variance for global real income. The legend “GCM” stands for the GCM-related 

uncertainty, “CropModel” is for the uncertainty of crop model simulations “ERF” is for the 
uncertainty of heat-labour exposure response functions. “Crop response” (A) show the scenarios that 
only consider the climate-related yield responses of the four crops. The triangles in shades of orange 
labelled “Crop&Labour response” (B) show the scenarios that consider both yield changes and heat 

stress impacts on labour of the four crops. 
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 Fig. S5: Area-weighted multi-year mean changes in labour capacity in production of all crops by the 
mid [2041–2070] and end [2071–2100] of the century under RCP2.6 (blue) and RCP7.0 (red) relative 
to the average yield in the historical time period [1981–2010]. The boxes show the interquartile range 
across climate models ensemble and labour-heat exposure-response functions. The whiskers show the 

variability outside the 1st and 3rd quantiles. The dots show outliers. 
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 Fig. S6: Shares of value added in GDP (A), shares of crops in total expenditures on crop consumption 
(B), and shares of food in total consumption expenditures (C) (in percent). Own calculations based on 

version 9 of the GTAP database for 2011 reference period.  
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 Fig. S7: Median responses of global food price index (A) and real income (B) by the end [2071–

2100] of the century under RCP2.6 and RCP7.0 for each climate and crop model combination relative 
to the historical time period. The income and price responses are simulated using GRACE and show 

the median changes over GCMs, crop models, and exposure-response functions relative to the state of 
the world economy in 2011. The circles in shades of green labelled “Crop response” show the 

scenarios that only consider the climate-related yield responses of the four crops. The triangles in 
shades of orange labelled “Crop&Labour response” show the scenarios that consider both yield 

changes and heat stress impacts on labour of the four crops. 
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 Fig. S8: Median responses of changes in the rural-urban income ratio by the mid [2040–2070] (A) 
and end [2071–2100] (B) of the century under RCP2.6 and RCP7.0 relative to the historical time 

period. The income responses are simulated using the GRACE model and show the median changes 
over GCMs, and crop models, and exposure-response functions relative to the state of the world 

economy in 2011. The circles in shades of green labelled “Crop response” show the scenarios that 
only consider the climate-related yield responses of the four crops. The triangles in shades of orange 

labelled “Crop&Labour response” show the scenarios that consider both yield changes and heat stress 
impacts on labour of the four crops. A positive (negative) number means that a decrease (increase) in 

income gap between rural and urban households. 
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 Fig. S9: Median responses of the food price index by the mid [2041–2070] (A) and end [2071–2100] 
(B) of the century, and regional real income by the mid [2041–2070] (C) and end [2071–2100] (D) of 
the century under RCP7.0 relative to the historical time period. The income responses are simulated 
using the GRACE model and show the median changes over GCMs and crop models relative to the 

state of the world economy in 2011. Heat stress impacts on labour are not included. The green circles 
show the scenarios that only consider the climate-related yield responses of for major crops. The blue 

squares show the scenario that consider the climate-related yield responses of all types of crops. 
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 Fig. S10: Median responses of the food price index by the mid [2041–2070] (A) and end [2071–2100] 
(B) of the century, and regional real income by the mid [2041–2070] (C) and end [2071–2100] (D) of 
the century under RCP7.0 relative to the historical time period. The income responses are simulated 
using the GRACE model and show the median changes over GCMs, crop models, and heat-labour 

exposure-response functions relative to the state of the world economy in 2011. The blue squares show 
the scenarios that only consider the climate-related yield responses of all types of crops. The red 

triangles show the scenario that consider both yield changes and heat stress impacts on labour with 
high work intensity. The orange triangles are the same as the former but with a radical mechanisation 

deployment in crop production. 
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 Fig. S11: Sample members selected to compare the levels of labour capacity which are calculated 

using hourly and daily mean climate data.  
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 Fig. S12: Absolute differences between the levels of labour capacity calculated using hourly climate 
data for a 7 a.m. to 7 p.m. workday and those calculated using daily mean values of UKESM1-0-LL 

by the end of the century [2071–2100] under RCP7.0. The X-axis indicates the sample members (Fig. 
S11), which are ordered by latitude. Negative values show that when using hourly climate data, the 

labour capacity is smaller compared to when daily mean values of climate data are used. Labour 
capacity is estimated using the NIOSH exposure-response functions.   
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