
Information Sciences 679 (2024) 121096

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Generic network sparsification via degree- and subgraph-based

edge sampling ✩

Zhen Su a,b,∗, Yang Liu c, Jürgen Kurths a,d, Henning Meyerhenke b,∗∗

a Potsdam Institute for Climate Impact Research, Potsdam, Germany
b Department of Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
c School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Shaanxi, China
d Department of Physics, Humboldt-Universität zu Berlin, Berlin, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

Graph sparsification

Edge sampling

Network analysis

Triads

Network (or graph) sparsification accelerates many downstream analyses. For graph sparsification,
sampling methods derived from local heuristic considerations are common in practice, due to
their efficiency in generating sparse subgraphs using only local information. Filtering-based edge
sampling is the most typical approach in this respect, yet it heavily depends on an appropriate
definition of edge importance. Instead, we propose a generalized node-focused edge sampling
framework by preserving scaled/expected local node characteristics. Apart from expected degrees,
these local node characteristics include the expected number of triangles and the expected number
of non-closed wedges associated with a node. From a technical point of view, we adapt a
game-theoretic sampling method from uncertain graph generation to obtain sparse subgraphs
that approximate the expected local properties. We include a tolerance threshold for much
faster convergence. Within this framework, we provide appropriate algorithmic variants for
sparsification. Moreover, we propose a network measure called tri-wedge assortativity for the
selection of the most suitable variant when sparsifying a given network. Extensive experimental
studies on functional climate, observed real-world, and synthetic networks show the effectiveness
of our method in preserving overall structural network properties – on average consistently better
than the state of the art.

1. Introduction

Networks (= graphs, we use both terms interchangeably) have become generic data representations in various domains, ranging
from sociology to biology and even climatology [2]. Networks can be categorized based on the underlying process they model. Real-

world networks can model relationships among physical objects (e.g., in infrastructure such as streets, gas, and water) or conceptual

✩ A preliminary version of this article was published in the Proceedings of the 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM) [1].

* Corresponding author at: Potsdam Institute for Climate Impact Research, Potsdam, Germany.

** Corresponding author.
Available online 28 June 2024
0020-0255/© 2024 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: zhen.su@pik-potsdam.de (Z. Su), meyerhenke@hu-berlin.de (H. Meyerhenke).

https://doi.org/10.1016/j.ins.2024.121096

Received 6 March 2023; Received in revised form 7 June 2024; Accepted 22 June 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:zhen.su@pik-potsdam.de
mailto:meyerhenke@hu-berlin.de
https://doi.org/10.1016/j.ins.2024.121096
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2024.121096&domain=pdf
https://doi.org/10.1016/j.ins.2024.121096
http://creativecommons.org/licenses/by/4.0/

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

ones (e.g., in social networks or web graphs). Moreover, one can construct functional networks by statistically relating one time series
to another. For example, in climate science, climate data are represented in the form of networks for the spatiotemporal pattern
analysis of the underlying climate system [3]: by (1) viewing grid points (or locations) on Earth as nodes and (2) establishing edges
between nodes according to the similarity or causality between the corresponding time series at the pair of nodes.

Analyzing large networks in their entirety can be difficult due to the rapid growth of the typical data volume. For example, millions
of tweets per day are generated online in social networks; when dealing with climate data, taking the original spatial resolution (e.g.,
0.25◦ × 0.25◦) can lead to a network with more than half a million nodes and half a billion edges [4]. In such cases, carrying out
non-local structural queries or visualizations is time-consuming or even prohibitive. One common solution in the literature is lossy
compression, i.e., to discard a large proportion of possibly redundant edges by sparsification to obtain a sparse subgraph 𝐺̂ of the
input graph  = (𝑉 , 𝐸). To retain the contextual meaning of nodes, we focus on sparsification and do not consider graph coarsening
where nodes can be aggregated. Under the basic premise of preserving essential network properties, sparsification allows a faster and
sometimes even more accurate analysis of the available network data [5–7].

Which properties to preserve during sparsification, depends on the application context. Among other properties, theoretical work
considers spectral properties such as eigenvalues [8]. Preserving spectral properties is time-consuming, as it requires the solution of
many Laplacian linear systems. In practice, alternative objectives that can be computed faster are often preferred [9]. For this, a body
of fast edge sampling methods have been proposed, including probability-based [10–12] and filtering-based [13–15] edge sampling
(see Section 2). These sampling methods are edge-focused and depend heavily on an appropriate way to define edge importance,
especially filtering-based methods.

To relax such a dependency, we propose a generalized edge sampling method with a node-focused perspective. Node-focused
refers here to relying on local node characteristics rather than characterizing edge importance. Such an idea is motivated by the
fact that local structural characteristics can define not only the basic but also the global organization of a network, as indicated in
Refs. [16,17]. The following four applications provide supporting evidence:

• Random graph generation [16,17]. In a deterministic graph like , each edge exists with probability 1. For , one can generate
random graphs reproducing complex/non-local properties of , by preserving subgraph-based distributions of , e.g., degree
distribution, degree correlations, clustering, and so on.

• Uncertain graph sampling [18–20]. In an uncertain graph 𝑈 , each edge exists with probability in (0, 1], and a possible world is
a deterministic subgraph drawn from the distribution defined by 𝑈 . For 𝑈 , one can extract representative possible worlds by
preserving the expected degrees and the expected number of triangles associated with nodes of 𝑈 . The extracted representatives
preserve the structural properties of 𝑈 , facilitating statistically sound uncertain graph queries.

• Degree-based edge sampling [21,22]. By preserving the expected degrees of nodes, one can obtain sparse subgraphs 𝐺̂ that preserve
the degree distribution of  well.

• Centrality correlation [23,24]. For general networks, different centralities are correlated with each other. This is also true for
the degrees, the number of triangles, and the number of non-closed wedges associated with nodes. Besides, these three local
properties are interdependent by the definition of the local clustering coefficient [25].

Therefore, in the context of sparsification, it is natural to ask what local node characteristics look like in the sparsified subgraphs.
The applications uncertain graph sampling [18–20] and degree-based edge sampling [21,22] indicate the direction. Specifically, we
preserve not only the expected degrees, but also the expected number of triangles and the expected number of non-closed wedges,
which are all measures associated with nodes. In particular, we take into account the preservation of triangles due to triangles being
able to discern abnormal (sub)graphs and nodes in social networks [26], and to reveal the hidden thematic structure in the World
Wide Web [27]. Note that we particularly separate non-closed wedges from closed wedges – the latter are triangles. As we will see
later, our proposed approach implicitly preserves basic but also complex network properties.

To the best of our knowledge, limited work is closely related to our objective. Zeng et al. [21,22] formulate a similar approach
as an optimization problem (see degree-based edge sampling mentioned above). In their work, sparse subgraphs, which are generated
by preserving the expected degrees of nodes, preserve implicitly network properties, such as degree distribution and shortest-path
distance distribution. However, they only consider the preservation of the expected degrees – which seems overly myopic. Our
objective is a generalized version in comparison, since we consider additionally the expected number of triangles and the expected
number of non-closed wedges.

From a technical point of view, we transfer the results from uncertain graph sampling [19] to network sparsification; we do so by
adapting the game-theoretic sampling proposed by Ref. [19]. Our rationale for doing so is: (i) degree-based edge sampling [21,22] can
be technically regarded as a special case of uncertain graph sampling, in a sense that a uniform probability is assigned to each edge of
𝑈 ; (ii) our objective generalizes degree-based edge sampling, and preserves similar local node properties to those in uncertain graph
sampling; (iii) game-theoretic sampling performs best for uncertain graph sampling while guaranteeing convergence.

The paper is organized as follows. Section 2 reviews the related work on edge sampling and exact potential games. The proposed
edge sampling method and algorithms are explained in Sections 3 and 4, respectively. Section 5 presents experimental evaluations,
and Section 6 discusses the tri-wedge assortativity for selecting algorithms when sparsifying a given graph. Finally, Section 7 concludes
2

this paper.

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

1.1. Contributions

For graph sparsification, we propose an edge sampling method with a different perspective, which is motivated by uncertain graph
sampling [19] and degree-based edge sampling [21,22]. From a technical viewpoint, we adapt game-theoretic sampling method from
uncertain graph sampling to graph sparsification. Our contributions are:

• We propose a generalized node-focused edge sampling framework by preserving the expected local properties, including the
expected degrees, the expected number of triangles, and the expected number of non-closed wedges, associated with nodes in
the sparse subgraphs.

• By including a tolerance threshold into the game-theoretic sampling adapted from uncertain graph sampling [19], we significantly
accelerate the convergence, while maintaining the sparsification quality.

• Our proposed method maintains a better overall similarity of the sparse subgraphs to the original graphs than other state-of-the-

art sampling methods.

• We provide guidance for how to select one of the algorithmic variants involved in our sparsification framework, i.e., the game-

theoretic sparsification with tolerance (GST) and further with triangle-emphasis (GSTT), when applying them to an unknown
graph.

Compared to the conference version of this paper [1], which considers only functional climate networks, this extended version
aims to make our proposed method as general as possible for network data from various domains. To this end, we not only propose
additional optimization objectives, but also provide comprehensive studies using additional evaluation metrics and one more state-

of-the-art sampling method. The highlights of this extension include: (i) a constant time complexity for computing the expected
number of non-closed wedges, assuming that the degree and the number of triangles have been computed already; (ii) an additional
algorithmic variant GSTT as part of our framework, for which we relax the independence assumption imposed on the computation of
the expected number of triangles; (iii) a measure called tri-wedge assortativity that helps to decide which of the algorithms from our
framework to apply to an unknown graph.

2. Related work

We review first edge sampling methods, including probability-based and filtering-based ones. We also provide the necessary
background on exact potential games, since we adapt a game-theoretic sampling method [19] in our work.

Probability-based edge sampling. One way to sample edges from a given graph  is according to some probability distribution.
The most intuitive one is uniform sampling [11], which preserves spectral properties (i.e., the Laplacian eigenvalue distribution of
the generated sparse subgraph 𝐺̂ is similar to that of ) with high probability, but only over smooth inputs [10]. Spectral properties
such as eigenvalue distributions are important in the context of sparsification, due to their capability to characterize graph topology
and dynamical processes on networks [28]. Le [12] studied one non-uniform sampling approach. It assigns a probability to each
edge 𝑒 = {𝑢, 𝑣} that is inversely proportional to the number of common neighbors of the two nodes 𝑢 and 𝑣. This method is similar
to uniform sampling if the number of common neighbors becomes small, or similar to effective-resistance-based sampling [8] if the
number of common neighbors is large. Effective resistance, on the other hand, stems from viewing a graph as a resistive circuit,
where an edge of weight 𝑤 becomes a resistor of resistance 1

𝑤
. Intuitively, it is low if two vertices are connected via many paths

of short length. Using probabilities based on effective resistance leads to sampling methods with strong guarantees on the sparsified
subgraph. Generally, strong guarantees require algorithms that are rather time-consuming in practice. Spectral sparsification, for
example, requires the solution of numerous linear systems [8].

Filtering-based edge sampling. There is a body of sampling methods interested in identifying important edges (often referred to as
edge centrality) [13] to preserve structural properties, e.g., community structure [29,14,15] or the largest connected component [13].
In particular, Hamann et al. [13] have compared systematically several well-known filtering-based edge sampling methods, such as
using Jaccard similarity [14], Simmelian backbones [30], and algebraic distance [31]. The general sampling process used therein
contains two primary steps: edge scoring and filtering. Edge scoring assigns each edge a value to characterize the importance of that
edge; filtering then removes all edges with scores below a certain threshold such that the network is compressed to a desired ratio.
They also proposed a sampling method named local degree. It preserves the largest connected component of the original graph well
in the sparse subgraph.

Both probability-based and filtering-based edge sampling methods listed here can be implemented using only local information
without access to the entire network. Therefore, as we also see from our extensive experimental comparisons in Section 5, they are
fast and scale to very large instances.

Background on exact potential games. A strategic game ⟨𝑃 , {𝑆𝑝}𝑝∈𝑃 , {𝐶𝑝(𝑆𝑝, 𝑆−𝑝)}𝑝∈𝑃 → ℝ⟩ is a triplet which consists of
players 𝑝, the strategy 𝑆𝑝 of a player 𝑝, and the individual cost defined by a cost function 𝐶𝑝. Given initialized strategies for all
players, the game proceeds in a round-robin fashion. In every round, each player 𝑝 minimizes its cost 𝐶𝑝 based on the strategies 𝑆−𝑝

of all other players. Such a process is called best-response dynamics [32]. Noth that 𝑝 changes its current strategy 𝑆𝑝 to a new one 𝑆′
𝑝

if and only if (iff) the gain 𝑔(𝑝) is positive, i.e., iff 𝑔(𝑝) = 𝐶𝑝(𝑆𝑝, 𝑆−𝑝) −𝐶𝑝(𝑆′
𝑝
, 𝑆−𝑝) > 0. A strategic game has a (pure) Nash equilibrium

if the game terminates; that is, no player has the incentive to change its current strategy. A strategic game is called a potential
game if there is a single global function – the potential function Φ – that represents the incentives of all players to change their
3

strategies. Furthermore, a potential game is said to be exact if the gain in the cost function is reflected in the potential function, i.e.,

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Fig. 1. An example of computing the expected degree of node 𝐴, the expected number of triangles, and the expected number of non-closed wedges associated
with 𝐴. (a) The given graph . The degree of 𝐴, the number of triangles, and the number of non-closed wedges associated with 𝐴, are 𝑚𝐴

2 () = 4, 𝑚𝐴
3 () = 2 (i.e.,

{{𝐴, 𝐸}, {𝐴, 𝐷}, {𝐸, 𝐷}} and {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵, 𝐶}}), and 𝑚𝐴
𝑤
() = 4 (i.e., {{𝐴, 𝐸}, {𝐴, 𝐶}}, {{𝐴, 𝐸}, {𝐴, 𝐵}}, {{𝐴, 𝐷}, {𝐴, 𝐶}}, and {{𝐴, 𝐷}, {𝐴, 𝐵}}), respectively.

(b) The given graph  with a uniform and independent sampling probability 𝑝 = 0.7. Based on Eqs. (2a), (2b), and (2c), the expected degree of 𝐴, the expected number
of triangles, and the expected number of non-closed wedges associated with 𝐴, are 𝔼𝐴

2 = 2.8, 𝔼𝐴
3 = 0.686, and 𝔼𝐴

𝑤
= 2.254, respectively.

𝐶𝑝(𝑆𝑝, 𝑆−𝑝) − 𝐶𝑝(𝑆′
𝑝
, 𝑆−𝑝) = Φ(𝑆𝑝, 𝑆−𝑝) −Φ(𝑆′

𝑝
, 𝑆−𝑝). More importantly, the theory of best-response dynamics on an exact potential

game guarantees its convergence to a Nash equilibrium, regardless of the initialization [32].

3. Problem definition

3.1. Preliminaries

Let  = (𝑉 , 𝐸) be an undirected and unweighted simple (without self-loops, without multi-edges) graph, where 𝑉 is the set of
nodes and 𝐸 ⊆ 𝑉 × 𝑉 is the set of edges. The goal of graph sparsification is to find a subgraph 𝐺̂ = (𝑉 , 𝐸̂) that preserves certain
network properties of  in a scaled manner, i.e., where preservation measures reflect the different numbers of edges. Both  and 𝐺̂
have the same number of nodes as we do not consider node aggregation. For sparsification, we assume a uniform and independent
sampling probability 𝑝 ∈ (0, 1] for each edge. We use this probability 𝑝 to derive the expected local node properties, because our
objective is to preserve scaled local node characteristics. The most common symbols used throughout this work are shown in Table 1.

3.2. Sparsification via scaled local properties

For graph sparsification, Zeng et al. [21,22] take only the expected local degrees into account. To expand on their approach, we
further consider 3-size subgraphs and propose a normalized definition of network sparsification. Although the preservation of expected
local node properties can be extended to subgraphs of larger size, the computational cost can be prohibitive if considering subgraphs
with more than three nodes [19,33]. The expected degrees, the expected number of triangles (i.e., closed wedges), and the expected
number of non-closed wedges associated with nodes have been defined in the context of uncertain graph sampling [19] and can be
applied here as well.

For a node 𝑖 of a given  represented by its adjacency matrix 𝐀, the degree of 𝑖, the number of triangles, and the number of
non-closed wedges associated with 𝑖 are defined as:

𝑚𝑖
2() ∶=

|𝑉 |∑
𝑗=1

𝐀𝑖𝑗 (1a)

𝑚𝑖
3() ∶=

1
2

|𝑉 |∑
𝑗=1

|𝑉 |∑
𝑘=1

𝐀𝑖𝑗𝐀𝑖𝑘𝐀𝑗𝑘 (1b)

𝑚𝑖
𝑤
() ∶= 1

2
𝑚𝑖
2(𝑚

𝑖
2 − 1) −𝑚𝑖

3 (1c)

We can now define the expected local node properties, based on the given sampling probability 𝑝. Using the independence assumption
as in Ref. [19] and the linearity of expectation, we define the expected degree of 𝑖, the expected number of triangles, and the expected
number of non-closed wedges associated with 𝑖 as:

𝔼𝑖
2 ∶= 𝑝𝑚𝑖

2() (2a)

𝔼𝑖
3 ∶= 𝑝3𝑚𝑖

3() (2b)

𝔼𝑖
𝑤
∶= 1

2
𝑝2𝑚𝑖

2()(𝑚
𝑖
2() − 1) − 𝔼𝑖

3, (2c)

where the independence assumption is applied in Eqs. (2b) and (2c) (see Fig. 1 for an example). More precisely, each triangle
and each non-closed wedge is assumed to be preserved with the probability 𝑝3 or 𝑝2, respectively. Therefore, in Eq. (2c), the term
1
2𝑝

2𝑚𝑖
2()(𝑚

𝑖
2() − 1) represents the expected number of wedges (including both closed and non-closed ones) to be preserved in

the sparsified graph 𝐺̂. Note that the conference version of this paper [1] uses a recursive dynamic-programming algorithm [34] to
compute the expected number of non-closed wedges 𝔼𝑖

𝑤
. Here, by exploiting Eq. (2c), we simplify the computational effort to constant

time, given that 𝑚𝑖
2() and 𝑚𝑖

3() have been computed by Eqs. (1a) and (1b), respectively.

In the desired sparse subgraph 𝐺̂, each node should be as close as possible to its expected local properties. For this, we define the
4

normalized node-level and graph-level distances between 𝐺̂ and the current subgraph 𝐺′, which are motivated by Ref. [19].

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Table 1

List of symbols.

Symbol Definition

 = (𝑉 ,𝐸) An undirected and unweighted graph with 𝑉 and 𝐸 as vertex and edge sets, respectively

𝐀 The unweighted adjacency matrix of 
𝑝 The uniform and independent sampling probability 𝑝 ∈ (0, 1]
𝔼𝑖

2, 𝔼
𝑖

3, 𝔼
𝑖
𝑤

The expected degree (𝔼𝑖

2) of node 𝑖, and the expected number of triangles (𝔼𝑖

3) and the expected
number of non-closed wedges (𝔼𝑖

𝑤
) associated with the node 𝑖, based on  and 𝑝

𝐺′ = (𝑉 ,𝐸′) The current sparse subgraph during edge sampling with 𝑉 and 𝐸′ as vertex and edge sets,
respectively

𝐺∗ = (𝑉 ,𝐸∗) The final sparse subgraph output by our proposed method with 𝑉 and 𝐸∗ as vertex and edge sets,
respectively

𝐺̂ = (𝑉 , 𝐸̂) The desired sparse subgraph 𝑉 and 𝐸̂ as vertex and edge sets, respectively

𝔼3, 𝔼𝑤 The overall expected number of triangles (𝔼3) and the expected number of non-closed wedges (𝔼𝑤),
based on 𝐺̂

𝑚3(⋅), 𝑚𝑤(⋅) The overall number of triangles (𝑚3(⋅)) and the overall number of non-closed wedges (𝑚𝑤(⋅)) of a
given graph; for example, 𝑚3() and 𝑚𝑤() are for , while 𝑚3(𝐺′) and 𝑚𝑤(𝐺′) are for 𝐺′

𝑚𝑖

2(⋅), 𝑚
𝑖

3(⋅), 𝑚
𝑖
𝑤
(⋅) The degree (𝑚𝑖

2(⋅)) of node 𝑖, and the number of triangles (𝑚𝑖

3(⋅)) and the number of non-closed
wedges (𝑚𝑖

𝑤
(⋅)) associated with the node 𝑖, based on a given graph; for example, 𝑚𝑖

2(), 𝑚𝑖

3(), and
𝑚𝑖

𝑤
() are for , while 𝑚𝑖

2(𝐺
′), 𝑚𝑖

3(𝐺
′), and 𝑚𝑖

𝑤
(𝐺′) are for 𝐺′

Δ𝑖

2,3,𝑤(⋅) The node-level distance of node 𝑖 of a subgraph of  to its expectations, when preserving degrees,
triangles, and non-closed wedges (with subscripts ‘2’, ‘3’, and ‘𝑤’, respectively) in expectations; for
example, Δ𝑖

2,3,𝑤(𝐺
′) is for 𝐺′, while Δ𝑖

2,3,𝑤(𝐺
∗) is for 𝐺∗

Δ2,3,𝑤(⋅) The graph-level distance of a subgraph of  to the desired sparse subgraph 𝐺̂, , when preserving
degrees, triangles, and non-closed wedges; for example, Δ2,3,𝑤(𝐺′) is for 𝐺′, while 𝛿2,3,𝑤(𝐺∗) is for 𝐺∗

GST2,3,𝑤 The proposed algorithm: game-theoretic sparsification with tolerance, by default, preserving
degrees, triangles, and non-closed wedges in expectation; the preservation of subset properties leads
to GST2, GST3, and GST2,3

GSTT2,3,𝑤 The proposed algorithmic variant as an extension: game-theoretic sparsification with tolerance and
with triangle-emphasis, by default, preserving degrees, triangles, and non-closed wedges in
expectation; the preservation of subset properties leads to GSTT2, GSTT3, and GSTT2,3

Definition 1. Given the expected degree 𝔼𝑖
2 of node 𝑖, the expected number of triangles 𝔼𝑖

3 and the expected number of non-closed
wedges 𝔼𝑖

𝑤
associated with 𝑖, and the current subgraph 𝐺′ ⊆ , the node-level distance of 𝑖 to its overall expectation is:

Δ𝑖
2,3,𝑤(𝐺

′) ∶= 1
𝑚𝑖
2()

|𝑚𝑖
2(𝐺

′) − 𝔼𝑖
2|+ 1

𝑚𝑖
3()

|𝑚𝑖
3(𝐺

′) − 𝔼𝑖
3|+ 1

𝑚𝑖
𝑤()

|𝑚𝑖
𝑤
(𝐺′) − 𝔼𝑖

𝑤
|, (3)

where 𝑚𝑖
2() is the degree of node 𝑖 based on the given graph ; 𝑚𝑖

3() and 𝑚𝑖
𝑤
() are the number of triangles and the number

of non-closed wedges associated with 𝑖, respectively. Similarly, 𝑚𝑖
2(𝐺

′), 𝑚𝑖
3(𝐺

′), and 𝑚𝑖
𝑤
(𝐺′) are corresponding values based on

𝐺′. Therefore, 1
𝑚𝑖
2()

, 1
𝑚𝑖
3()

, and 1
𝑚𝑖

𝑤()
are values fixed for a particular graph and precomputable. We use them as normalization

factors to avoid the domination of any single absolute value in Eq. (3). Specifically, taking high-degree nodes as an example, during
sparsification, their degrees increase or decrease due to the preservation or removal of edges, respectively. This can further lead to
quite large changes regarding the number of triangles or non-closed wedges associated with these nodes. Without normalization, such
changes would dominate Eq. (3). Note that previous studies [19,21,22] ignore this factor, but we demonstrated its importance in the
conference version of this paper [1].

The graph-level distance for a subgraph 𝐺′ to its overall expectation is therefore defined by following Ref. [19] as:

Definition 2. Given the current subgraph 𝐺′ ⊆ , the graph-level distance of 𝐺′ to its overall expectation is:

Δ2,3,𝑤(𝐺′) ∶=
∑
𝑖∈𝑉

Δ𝑖
2,3,𝑤(𝐺

′) (4)

The network sparsification problem via scaled-local-property-based edge sampling is therefore defined as:

Definition 3. (Sparsification via scaled local properties). Given an undirected and unweighted graph  = (𝑉 , 𝐸) and a uniform and
independent sampling probability 𝑝 ∈ (0, 1], find a sparsified subgraph 𝐺̂ = (𝑉 , 𝐸̂) such that:

𝐺̂ ∶= argmin
𝐺′⊆

Δ2,3,𝑤(𝐺′), (5)

where the sampling probability 𝑝 is used for defining Δ2,3,𝑤(𝐺′) (see Eqs. (2a), (2b), (2c), (3), and (4)). As specified by Eq. (5), this
is meant as the argmin for all three properties together (see GST2,3,𝑤 and GSTT2,3,𝑤 in Table 1 and in Section 4). In our experiments, [

1 𝑖 ′ 𝑖 1 𝑖 ′ 𝑖

]

5

however, we also look at subsets thereof, i.e., degrees and triangles; that is, argmin
𝐺′⊆ 𝑚𝑖

2()
|𝑚2(𝐺) − 𝔼2|+ 𝑚𝑖

3()
|𝑚3(𝐺) − 𝔼3| (see

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

GST2,3 and GSTT2,3 in Table 1 and in Section 4). According to Ref. [18], when preserving only the expected degrees, this problem
is a special case of the closest vector problem, which is  -hard [35]. As our problem is a generalization, it is  -hard, too. The
decision variant is  -complete: it is easy to see that verification of a solution takes only polynomial time. As no exact polynomial-

time algorithm is known, we aim to provide heuristic solutions that are fast and accurate enough for practical purposes.

3.3. Emphasizing on the expected number of triangles

The sparse subgraph 𝐺̂ by Eq. (5) depends on how to appropriately derive the expected number of triangles 𝔼𝑖
3 and the expected

number of non-closed wedges 𝔼𝑖
𝑤

associated with node 𝑖. By default, 𝔼𝑖
3 and 𝔼𝑖

𝑤
are derived using the independence assumption.

However, considering the diversity of network data and potential edge dependencies [36], the independence assumption cannot
always be suitable. Therefore, we consider the case when the assumption of independence is relaxed as an algorithmic variant (see
Table 1 and Section 4 for GSTT with the second ‘T’ representing triangle-emphasis). This corresponds to the second highlighted
extension of this paper (see Section 1.1).

A conservative way to implement this idea is to emphasize only the expected number of triangles 𝔼𝑖
3 to be preserved in the

sparsified graph 𝐺̂. That is, we use Eq. (6) in replacement of Eq. (2b) for this purpose, leading to GSTT (see Algorithm 1):

1
2
(𝑝3 + 𝑝)𝑚𝑖

3(), (6)

where the probability that a triangle is preserved in 𝐺̂ is in [𝑝3, 𝑝], with 𝑝3 being the lower bound based on the independence
assumption and 𝑝 the upper bound. For example, in Fig. 1(b), the probability that the triangle {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵, 𝐶}} is preserved
is in [0.343, 0.7]; we then take the mean 0.5215 for calculating the expected number of triangles based on Eq. (6). Our rationale
for doing so is that the triangle is a more important motif structure than the non-closed wedge, because it affects the structure and
functionality of a graph to a larger extent [26,27]. In this way, we also adjust the ratio between the overall expected number of
triangles 𝔼3 ∶=

∑
𝑖∈𝑉 𝔼𝑖

3 and the overall expected number of non-closed wedges 𝔼𝑤 ∶=
∑

𝑖∈𝑉 𝔼𝑖
𝑤

to be preserved in 𝐺̂, as they are
tied with each other by Eq. (2c). Our empirical studies indicate the benefit of considering edge dependencies, particularly in observed
real-world networks.

When (not) to consider the relaxation of the independence assumption is investigated in Section 6. We conjecture that it depends
on the ratio between the overall number of triangles 𝑚3() and the overall number of non-closed wedges 𝑚𝑤() in the given graph :

𝑚3() ∶=
∑
𝑖∈𝑉

𝑚𝑖
3() (7a)

𝑚𝑤() ∶=
∑
𝑖∈𝑉

𝑚𝑖
𝑤
() (7b)

Specifically, if  has fewer triangles than non-closed wedges, i.e., 𝑚3() < 𝑚𝑤(), one needs to avoid a too rapid decline of 𝔼3, as such
a decline would lead to more dissimilarities between  and 𝐺̂. Therefore, relaxing the independence assumption by Eq. (6) to increase
𝔼3 is necessary. Similarly, if 𝑚3() > 𝑚𝑤() for , one needs to increase 𝔼𝑤, and this can be numerically achieved by retaining the
independence assumption by Eq. (2b).

4. Game-theoretic sparsification algorithms: with tolerance (GST) and with triangle-emphasis (GSTT)

Parchas et al. [19] proposed a sampling method based on game theory for uncertain graph sampling. It constitutes an exact potential
game with convergence to a Nash equilibrium [32]. We adapt this framework to sparsification for two main reasons (see Section 1):
(i) degree-based edge sampling [21,22] can be technically regarded as a special case of uncertain graph sampling; (ii) our objective
generalizes the degree-based edge sampling. The convergence of the game-theoretic sampling allows us to include a tolerance threshold
𝑇 for faster convergence (see Fig. 5 as an example).

In the context of sparsification, each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 in a given  is modeled as a player involved in a strategic game. Each
edge has the same binary strategies: 0 for removal and 1 for preservation. The objective of each edge is to make the current subgraph
𝐺′ as close as possible to the desired subgraph 𝐺̂ by decreasing the distance of the current local properties of each node to their
expectations, as given in Eq. (5). Therefore, there exists a global function Φ =

∑
𝑖∈𝑉 Δ𝑖

2,3,𝑤(𝐺
′) (same as Eq. (4)) to ensure that such

a strategic game is also a potential game. Meanwhile, a change of the strategy of 𝑒 affects a limited number of nodes locally near 𝑒
in terms of their current local properties in 𝐺′ , since we consider in our objectives subgraphs with up to 3 nodes. Let the set of nodes
affected by a strategy change of 𝑒 = (𝑢, 𝑣) be denoted by 𝐴(𝑒) ⊆ 𝑉 . If 𝑒 alters its strategy, the degrees of 𝑢 and 𝑣 change; the number
of triangles and the number of non-closed wedges associated with them may change as well. Similar changes apply to the common
neighbors of 𝑢 and 𝑣. Thus, 𝐴(𝑒) consists of 𝑢, 𝑣, and the common neighbors of 𝑢 and 𝑣 in 𝐺′. Consequently, each edge has its own
cost function 𝐶𝑒 =

∑
𝑖∈𝐴(𝑒) Δ𝑖

2,3,𝑤(𝐺
′) to minimize.

When the gain in the individual cost induced by the strategy update of 𝑒 is reflected in the gain in the potential function, a
potential game is called exact. Parchas et al. [19] have proved that their game-theoretic sampling method for uncertain graph sampling

constitutes an exact potential game. This still holds in our case, although we consider also non-closed wedges in our optimization
objective. Suppose that the decision of 𝑒 changes the current 𝐺′ = (𝑉 , 𝐸′) into 𝐺′′ = (𝑉 , 𝐸′′); the gain 𝑔(𝑒) in the potential function
6

Φ induced by a strategy change of 𝑒 is defined as (following Ref. [19]):

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Algorithm 1: Game-theoretic sparsification with tolerance (GST) and with triangle-emphasis (GSTT).

Input: An undirected and unweighted graph  = (𝑉 , 𝐸), a uniform and independent sampling probability 𝑝 ∈ (0, 1], and the tolerance threshold 𝑇 = 0.01.

Output: 𝐺∗ = (𝑉 , 𝐸∗)
// Stage I (The expected basic properties)

1 for 𝑖 ∈ 𝑉 do in parallel

2 Compute 𝑚𝑖

2(), 𝑚𝑖

3(), 𝑚𝑖
𝑤
(), 𝔼𝑖

2 , 𝔼𝑖

3 , and 𝔼𝑖
𝑤

based on Eqs. (1a), (1b), (1c), (2a), (2b) or (6), and (2c)

// Note that Eqs. (2b) and (6) yield GST and GSTT, respectively

// Stage II (Sparsification)
3 𝐺′ ← 

4 for 𝑖 ∈ 𝑉 do in parallel

5 𝑚𝑖

2(𝐺
′) ←𝑚𝑖

2(); 𝑚𝑖

3(𝐺
′) ←𝑚𝑖

3(); 𝑚𝑖
𝑤
(𝐺′) ←𝑚𝑖

𝑤
()

6 𝐿𝑛𝑒𝑤 ← 𝑉 ; 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙[|𝑉 |] ← 0; 𝑟 ← 0
7 repeat

8 𝐿 ←𝐿𝑛𝑒𝑤 ; 𝐿𝑛𝑒𝑤 ← ∅
9 for each 𝑒 = {𝑢, 𝑣} ∈𝐸 incident (in ) to a node in 𝐿 do

10 𝐴(𝑒) ← {𝑢} ∪ {𝑣} ∪ {𝑧 ∈ 𝑉 ∶ {𝑧, 𝑢} ∈𝐸′ ∧ {𝑧, 𝑣} ∈𝐸′}
11 Compute 𝑔′(𝑒) based on Eq. (9)

12 if 𝑔′(𝑒) > 0 then

13 if 𝑒 ∈𝐸′ then

14 𝐸′ ←𝐸′ ⧵ {𝑒}

15 else

16 𝐸′ ←𝐸′ ∪ {𝑒}

17 Update 𝑚𝑖

2(𝐺
′), 𝑚𝑖

3(𝐺
′), and 𝑚𝑖

𝑤
(𝐺′), based on 𝐺′

18 𝐿𝑛𝑒𝑤 ←𝐿𝑛𝑒𝑤 ∪𝐴(𝑒)

19 𝑟 ← 𝑟 + 1; 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙[𝑟] ← 1|𝑉 |Δ2,3,𝑤(𝐺′)
20 until 𝑟 ≥ 2 and 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙[𝑟 − 1] − 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙[𝑟] ≤ 𝑇

21 return 𝐺∗ ←𝐺′

𝑔(𝑒) ∶=
∑
𝑖∈𝑉

(Δ𝑖
2,3,𝑤(𝐺

′) − Δ𝑖
2,3,𝑤(𝐺

′′)), (8)

where
∑

𝑖∈𝑉 Δ𝑖
2,3,𝑤(𝐺

′) is the potential of 𝑒 by retaining its current strategy, while
∑

𝑖∈𝑉 Δ𝑖
2,3,𝑤(𝐺

′′) is the potential of 𝑒 by changing
its strategy. A positive gain with 𝑔(𝑒) > 0 is desirable, because it means that 𝐺′′ is closer to our objective than the current subgraph
𝐺′. Similarly, the gain in the cost function 𝐶𝑒 is:

𝑔′(𝑒) ∶=
∑

𝑖∈𝐴(𝑒)
(Δ𝑖

2,3,𝑤(𝐺
′) − Δ𝑖

2,3,𝑤(𝐺
′′)). (9)

Note that Eq. (8) is actually equivalent to Eq. (9) due to ∀𝑖 ∈ 𝑉 ⧵𝐴(𝑒): Δ𝑖
2,3,𝑤(𝐺

′) =Δ𝑖
2,3,𝑤(𝐺

′′); this equivalence ensures the existence
of an exact potential game and allows for faster updates. The best-response dynamics – that each edge repeatedly changes its strategy
(i.e., preservation or removal) to minimize its cost based on the decisions of all others – in the exact potential game guarantees the
convergence to a Nash equilibrium [32]. That is, if the corresponding algorithm models this process, it will terminate.

We implement the game-theoretic sparsification framework with tolerance (GST) and further with triangle-emphasis (GSTT).
Algorithm 1 presents the pseudocode of GST/GSTT, which models an exact potential game. The inputs include an undirected and
unweighted graph  and two scalars, i.e., a uniform and independent sampling probability 𝑝 ∈ (0, 1] for sparsification and the tolerance
threshold 𝑇 for early termination. Stage I (lines 1-2) computes the degrees of nodes, the number of triangles, the number of non-

closed wedges, and their expectations, based on  and 𝑝. The computations can be parallelized easily in several ways, since they
need only local information. Stage II initializes the current subgraph 𝐺′ with  in line 3. The values 𝑚𝑖

2(𝐺
′), 𝑚𝑖

3(𝐺
′), and 𝑚𝑖

𝑤
(𝐺′)

in line 5 are therefore exactly the same as 𝑚𝑖
2(), 𝑚

𝑖
3(), and 𝑚𝑖

𝑤
(), respectively. 𝐿𝑛𝑒𝑤 represents the set of all affected nodes and

is initialized with the entire set 𝑉 . We include another array 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙[|𝑉 |] for recording 1|𝑉 |Δ2,3,𝑤(𝐺′) during iterations. Starting
from line 7, the algorithm proceeds in rounds. In each round, given an edge 𝑒 incident to a node in 𝐿, it first finds all nodes in 𝐺′

affected by the decision of 𝑒. That is, 𝐴(𝑒) includes 𝑢, 𝑣, and common neighbors of 𝑢 and 𝑣 in 𝐺′. Then, it computes 𝑔′(𝑒) induced by
an assumed change in the state of 𝑒. If 𝑒 ∈ 𝐸′ and the removal of 𝑒 leads to a positive 𝑔(𝑒), then 𝑒 changes from 1 to 0. If 𝑒 ∉𝐸′ and
the preservation of 𝑒 gives a positive 𝑔(𝑒), then 𝑒 switches from 0 to 1. An example is given in Fig. 2. The iteration stops when the
gain progress is smaller than the threshold 𝑇 . Empirical studies on functional, observed real-world, and synthetic networks indicate
that 𝑇 = 0.01 is a good choice in practice for faster convergence while maintaining the quality of the sparse subgraphs.

Time complexity. Regarding (sequential) time complexity, we note for Stage I that computing Eq. (2a) takes (|𝐸|) time. When
computing triangles, we use a merge-based intersection operation between 𝑢 and each of its neighbors, since each node already
has a sorted neighbor set. Computing Eq. (2b) therefore takes (𝑑𝑚𝑎𝑥|𝐸|) time in total, where 𝑑𝑚𝑎𝑥 = max{𝑚𝑖

2() ∶ 𝑖 ∈ 𝑉 } is the
maximum degree in . (According to [37], an even tighter bound is (𝑎()|𝐸|), with 𝑎() being the arboricity of .) Computing the
expected number of non-closed wedges 𝔼𝑖

𝑤
for each node by Eq. (2c) takes constant time. Hence, the total time complexity of Stage I is
7

(𝑑𝑚𝑎𝑥|𝐸|). Stage II depends mostly on the time spent on the repeat-loop. Finding 𝐴(𝑒) involves a linear-time intersection operation

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Fig. 2. An example of graph sparsification using GST2,3,𝑤 (see Table 1 and Section 4). (a) The given graph . (b) The given graph  with a uniform and independent
sampling probability 𝑝 = 0.7. The table lists the degrees of nodes, the number of triangles and the number of non-closed wedges associated with nodes, and their
expectations, based on  and 𝑝 (see Eqs. (1a), (1b), (1c), (2a), (2b), and (2c)). (c) After initializing 𝐺′ with  (see line 6 of Algorithm 1), GST2,3,𝑤 is considering at
round 1 whether the edge 𝑒 = {𝐴, 𝐵} should still be preserved in 𝐺′. If 𝑒 retains its current strategy of preservation, the gain (or the distance from 𝐺′ to the overall
expectation by Eq. (4)) is 5.958; if it chooses removal from 𝐺′ , yielding a new subgraph 𝐺′′ as (d), the gain becomes 4.107. The gain 𝑔(𝑒) = 5.958 − 4.107 = 1.851 is
positive. Thus, 𝑒 is removed and the current subgraph 𝐺′ becomes (d).

with (𝑑𝑚𝑎𝑥) time each for two already sorted neighbor sets. For similar reasons as in Stage I, the for-loop takes (𝑑𝑚𝑎𝑥|𝐸|) time
(per iteration of the repeat-loop). Stage II therefore needs (𝑟𝑑𝑚𝑎𝑥|𝐸|) in total, where 𝑟 is the number of iterations of the repeat-loop.
Thus, in total, the time complexity of Algorithm 1 is (𝑟𝑑𝑚𝑎𝑥|𝐸|). We show in Section 5.2 how the tolerance threshold 𝑇 affects the
empirical convergence positively. Moreover, we present in Section 5.4 the empirical average running times of the whole GST/GSTT.

Before moving forward to the next part, it is worth emphasizing two important points. First, we consider by default the preservation
of all three expected local node properties in GST/GSTT, leading to algorithms GST2,3,𝑤/GSTT2,3,𝑤. Empirical studies still need to
compare them with the case where the preservation of the expected number of non-closed wedges is not considered, i.e., GST2,3
and GSTT2,3. Second, we mentioned in Section 3.2 the case where the dependencies between edges in a triangle subgraph should be
taken into account as GSTT. GSTT emphasizes the overall expected number of triangles, particularly for a given graph  with fewer
triangles than non-closed wedges, i.e., 𝑚3() < 𝑚𝑤(). The asymptotic time complexity of GSTT matches that of GST; the empirical
running time and the sparsification quality is investigated in the following section for all four proposed algorithmic variants: GST2,3 ,
GST2,3,𝑤, GSTT2,3, and GSTT2,3,𝑤.

5. Experimental evaluation

We assess the performance of our GST/GSTT framework by addressing the following questions in Sections 5.2, 5.3, and 5.4,
respectively:

Q1: How well does a sparse 𝐺∗ graph generated by GST/GSTT preserve expected local properties?

Q2: How well does a sparse 𝐺∗ graph generated by GST/GSTT preserve expected non-local / complex properties?

Q3: What is the empirical running time of GST/GSTT? Can instances with a few million edges be processed in reasonable time?

5.1. Experimental settings

(1) Data sets. Extending the conference version of this paper, we consider more and a wider range of network data sets, including
functional, observed real-world, and synthetic networks. All 27 networks are summarized in Table 2.

• Functional climate networks. Our interest in climate data is mainly driven by studies of complex climate phenomena using com-

plex networks during the last two decades [3]. The reconstructed functional climate networks can be large, especially when a
high spatial resolution is considered. From Glo_ERA5SP to Glo_ERA5WVFVC, the first eight networks are reconstructed from
daily ERA5 reanalysis data (available online1), within the June-July-August season from 1998 to 2019, with the global spatial
resolution of 1◦ × 1◦. For these climate data, the functional network reconstruction process is adapted from Ref. [38] by viewing
grid points as nodes and using Spearman’s correlation (which is applicable because the time series are smooth enough) as the
similarity between time series. To define edges, we take pair-wise correlations with a significance level of 0.05 and keep only the
entries from the highest 5% of the absolute values. The other two functional climate networks, i.e., Glo_TRMM and ASM_TRMM,
use the observational data of global precipitation from the Tropical Rainfall Measuring Mission 3B42v6 product (TRMM).2 The
reconstruction process for these two networks is the same as in Refs. [4,39].

• Observed real-world networks. From Chameleon to Twitch, the selected thirteen networks describe social, biological, and techno-

logical relationships and are available online from popular repositories.3,4

1 https://cds .climate .copernicus .eu/.
2 https://disc .gsfc .nasa .gov /datasets/.
3 http://snap .stanford .edu/.
8

4 https://networkrepository .com /index .php.

https://cds.climate.copernicus.eu/
https://disc.gsfc.nasa.gov/datasets/
http://snap.stanford.edu/
https://networkrepository.com/index.php

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Table 2

Characteristics of data sets.

Type Network Nodes (|𝑉 |) Edges (|𝐸|) |𝐸||𝑉 | Description

Functional
climate
networks

Glo_ERA5SP 7,320 593,736 81.11 Global surface pressure from ERA5 data

Glo_ERA5ST 7,320 882,102 120.51 Global surface temperature from ERA5

Glo_ERA5GPH 7,320 778,757 106.39 Global 250-hPa geopotential height from ERA5

Glo_ERA5OLR 7,320 422,724 57.75 Global outgoing long-wave radiation from ERA5

Glo_ERA5WUC 7,320 541,877 74.03 Global 250-hPa zonal wind from ERA5

Glo_ERA5WVC 7,320 340,725 46.55 Global 250-hPa meridional wind from ERA5

Glo_ERA5WVFUC 7,320 482,762 65.95 Zonal component of global 250-hPa vertically integrated
water vapor flux from ERA5

Glo_ERA5WVFVC 7,320 344,020 47 Meridional component of global 250-hPa vertically
integrated water vapor flux from ERA5

Glo_TRMM 36,000 2,139,214 59.42 Precipitation from TRMM data

ASM_TRMM 20,000 1,771,609 88.58 Precipitation from TRMM in Asian monsoon

Observed
real-world
networks

Chameleon 2,277 31,371 13.78 Wikipedia articles on chameleons

FBEgo 4,039 88,234 21.85 Social circles from Facebook

Crocodile 11,631 170,773 14.68 Wikipedia articles on crocodiles

HepPh 12,008 118,489 9.87 Collaboration on Arxiv High Energy Physics

AstroPh 18,772 198,050 10.55 Collaboration on Arxiv Astro Physics

ASI 34,761 107,720 3.1 Autonomous systems of the Internet

Enron 36,692 183,831 5.01 Email communication from Enron

Livemocha 104,103 2,193,083 21.07 Language learning community from Livemocha

Squirrel 5,201 198,353 38.14 Wikipedia articles on squirrels

Worm 16,347 762,822 46.66 Gene functional associations

Recmv 61,989 2,811,458 45.35 Ratings between users and movies

Catster 149,700 5,448,197 36.39 Friendships from Catster

Twitch 168,114 6,797,557 40.43 Mutual followers from Twitch

LFR networks

LFR𝜇=0.1 10,000 252,039 25.20 Synthetic benchmark

LFR𝜇=0.2 10,000 252,916 25.29 Synthetic benchmark

LFR𝜇=0.3 10,000 249,388 24.94 Synthetic benchmark

LFR𝜇=0.4 10,000 251,048 25.1 Synthetic benchmark

• LFR networks. The last four networks are synthetic, constructed with the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [40]

implementation in NetworKit [41,42], a tool suite for network analysis on large-scale graphs. Parameters are given as follows:
(i) power-law exponent for the degree distribution: 𝜏1 = −2; (ii) power-law exponent for the community size distribution: 𝜏2 =
−1; (iii) fraction of inter-community edges: 𝜇 ∈ {0.1, 0.2, 0.3, 0.4}; (iv) desired average and maximum degrees: 50 and 250,
respectively; (v) minimum and maximum sizes of communities: 25 and 250, respectively.

(2) Baselines. We compare GST with five competing methods as baselines, which include two state-of-the-art and three well-

known sampling methods.

• Two state-of-the-art methods. The first one consists of two variants, which are in our context called GST2 and GSTT2. Both methods
can be seen as part of our generic framework, but are based on Refs. [21,22] with the same optimization objectives used therein.
Zeng et al. [21,22] studied preserving the expected degree of each node and adapted two approximate methods similar to those
in uncertain graph sampling [19]. Parchas et al. [19] concluded that among all of the approximate methods they proposed, the
game-theoretic sampling method generates better representative possible worlds for their use case. As mentioned, we directly
adapt this framework for network sparsification. Note that GST2 and GSTT2 preserve only the expected degrees. Therefore, the
first comparison (see Section 5.2) is between GST2/GSTT2 and our generalization GST2,3/GST2,3,𝑤/GSTT2,3/GSTT2,3,𝑤, where
3 and 𝑤 denote triangles and non-closed wedges, respectively. The second competitor is proposed by Le [12]. The idea is to
sample edges with probability inversely proportional to the number of common neighbors (CN) between two nodes. When the
local connectivity defined in his work is sufficiently strong, the graphs sampled by CN show a strong spectral similarity to the
original graph (i.e., regarding the Laplacian eigenvalue distribution).

• Three well-known methods. The other three competitors are the well-known sampling methods local degree (LD) [13], local Jaccard
similarity (LJS) [14], and random edge (RE) [10] (see Section 5.3). We choose them due to their (mostly empirical) effectiveness in
preserving the overall connectivity (by LD), community structure (by LJS), and eigenvalue distribution (by RE), as demonstrated
previously for non-functional networks. They have been systematically compared by Hamann et al. [13] and implemented in
NetworKit [41,42].

(3) Evaluation metrics and procedure. For Q1, we analyze the extent to which the expected degree and the expected number
of 3-node subgraphs associated with each node are preserved, even when bearing some loss due to the inclusion of the tolerance
9

threshold 𝑇 in GST/GSTT. The four measures below are used in Section 5.2:

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Fig. 3. The workflow for Q2 (see Section 5.1). For each sampling probability 𝑝, Step 1 compares the similarity (regarding different properties) between the original
given graph  and the generated sparse subgraph 𝐺∗ (see Fig. 6 as an example). Step 2 summarizes rankings among different methods over different properties and 𝑝
(see Figs. 7, 8, and 9). Step 3 computes the number of data sets for which different methods have relatively better ranking results based on Step 2, over the given 27
networks (see Table 3).

• Node-wise distance distribution: 𝛿2,3,𝑤(𝐺∗) = {Δ𝑖
2,3,𝑤(𝐺

∗) ∶ 𝑖 ∈ 𝑉 } and 𝛿2,3(𝐺∗) = {Δ𝑖
2,3(𝐺

∗) ∶ 𝑖 ∈ 𝑉 }. Δ𝑖
2,3(𝐺

∗) ∶= 1
𝑚𝑖
2()

|𝑚𝑖
2(𝐺

′) −

𝔼𝑖
2| + 1

𝑚𝑖
3()

|𝑚𝑖
3(𝐺

′) − 𝔼𝑖
3| consider only the preservation of degrees and triangles in expectation. 𝛿2,3,𝑤(𝐺∗) and 𝛿2,3(𝐺∗) are

both sequences of length |𝑉 | with each element representing the node-level distance (see Eq. (3) as an example). We visualize
𝛿2,3,𝑤(𝐺∗) and 𝛿2,3(𝐺∗) using its distribution.

• Mean distance: 𝛿2,3,𝑤(𝐺∗) = 1|𝑉 |
∑

𝑖∈𝑉 Δ𝑖
2,3,𝑤(𝐺

∗) and 𝛿2,3(𝐺∗) = 1|𝑉 |
∑

𝑖∈𝑉 Δ𝑖
2,3(𝐺

∗).

• Convergence of mean distance: 𝛿2,3,𝑤(𝐺′) = 1|𝑉 |
∑

𝑖∈𝑉 Δ𝑖
2,3,𝑤(𝐺

′). This measure is designed for convergence analysis, since it uses
the current 𝐺′ (at line 19 of Algorithm 1) instead of 𝐺∗.

• Cumulative time: total time spent until the current iteration (lines 7-19 in Algorithm 1), also for empirical convergence analysis.

Regarding Q2, a workflow is given in Fig. 3. The core consists of the graph similarity estimation, which assesses to what extent
two graphs are similar. In our case, we consider the similarity between the generated sparse subgraph 𝐺∗ and the original graph  in
terms of the following properties, which cover multiple levels (see Step 1 in Fig. 3): (i) macroscopic: the average clustering coefficient
and largest connected component; (ii) mesoscopic: community structure and betweenness centrality; (iii) microscopic: degree and local
clustering coefficient; (iv) spectral: eigenvalue distribution. These properties have been widely used in various network analysis tasks,
including functional climate networks [38,39]. We assume that by preserving these important properties, other structural properties
are also preserved to some extent, due to correlations between different properties [23,24]. Computing the exact betweenness values is,
in practice, very expensive for the given original network . Therefore, we use the algorithm EstimateBetweenness [43] implemented
in NetworKit [41,42]. Similarly, obtaining the full spectrum of a large graph is computationally prohibitive; therefore, we use
the fast approximation techniques SLAQ_NetLSD (based on the heat kernel [44]) and SLAQ_VNGE (based on von Neumann Graph
Entropy [45]) proposed by Tsitsulin et al. [46] to compute a low-dimensional representation of a graph. Measures used to estimate
the similarity between the properties calculated from 𝐺∗ and  are (see Section 5.3):

• Average Deviation [13]: we analyze the deviation of the above-mentioned macroscopic properties in 𝐺∗ from those in , because
these properties are single-valued representations.

• Average Adjusted rand index (ARI) [47]: this measure is particularly used for assessing the similarity between two clusterings
computed for the final sparse network 𝐺∗ and the original network , respectively.

• Average Spearman’s rank correlation coefficient [13]: microscopic properties are node-wise representations, therefore similarities
are estimated using correlation with a significance level of 𝑃 < 0.05. In particular, it is quite likely to have non-significant
correlation coefficients, when the sampling probability 𝑝 decreases to a small value. For such cases, we set the correlation
coefficients to be zero; we also avoid as much as possible a small 𝑝, especially for networks with a small average degree. In our
empirical studies, different ranges of 𝑝 applied to different networks are given in Table 3.

• Average Euclidean distance [44,46]: this measure is also particularly used for the spectral distance comparison, as both 𝐺∗ and
 are represented by low-dimensional vectors using SLAQ_NetLSD and SLAQ_VNGE. More importantly, the Euclidean distance
takes into account the vectors’ magnitude, compared with cosine similarity.

The estimation process is as follows. Taking the comparison between GST2,3 and LD as an example, we first generate 10 sparse net-

works 𝐺∗ for a given , based on GST2,3. We choose 10 since all property similarity estimates show a small variance (see Section 5.3).
Then, another 10 sparse networks, say LD𝐺∗ , are created by using LD with the preservation ratio of edges calculated based on the
edge ratio between 𝐺∗ and . When estimating the similarity of the community structure, we apply the parallel Louvain method
(PLM) [48] from NetworKit [41,42] to , 𝐺∗, and LD𝐺∗ , respectively. We then compute the ARI between the highest-quality (out
of 100 repeated runs of PLM) community structures obtained from  and each 𝐺∗; the same process is applied to  and each LD𝐺∗ .

One can notice that it is difficult for one edge sampling method to outperform all the others for all these similarity estimations
on macroscopic, mesoscopic, and microscopic structural properties. Leskovec and Faloutsos [49] evaluate different algorithms based
on different data sets and different evaluation criteria. Partially motivated by their evaluation, we need additional measures to
summarize the performance over all of the similarity estimations, instead of checking them one by one (see Step 2 and Step 3 in Fig. 3
10

and Section 5.3):

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Fig. 4. Node-wise distance distribution (left 𝑦-axis, 𝛿2,3,𝑤(𝐺∗)) and mean distance (right 𝑦-axis, 𝛿2,3,𝑤(𝐺∗)) of the final sparse subgraph 𝐺∗ to the desired one 𝐺̂, for
Glo_ERA5SP (an example of functional climate networks). On the 𝑥-axis are different algorithmic variants under our proposed sparsification framework. Boxplots show
how close 0%, 25%, 50%, 75%, and 95% nodes are to their expected local properties. The suffixes of GST/GSTT represent the local properties chosen to be preserved,
with ‘2’, ‘3’, and ‘𝑤’ for degrees, triangles, and non-closed wedges, respectively. The first row is for GST: (a) GST with 𝑝 = 0.4, 𝑇 = 0; (b) GST with 𝑝 = 0.4, 𝑇 = 0.01;
(e) GST with 𝑝 = 0.9, 𝑇 = 0; (f) GST with 𝑝 = 0.9, 𝑇 = 0.01. The second row is for GSTT: (c) GSTT with 𝑝 = 0.4, 𝑇 = 0; (d) GSTT with 𝑝 = 0.4, 𝑇 = 0.01; (g) GSTT with
𝑝 = 0.9, 𝑇 = 0; (h) GSTT with 𝑝 = 0.9, 𝑇 = 0.01. Figures (a), (b), (e), and (f) produce a sparser structure due to a smaller sampling probability 𝑝. These plots illustrate
the benefit of preserving both the expected degree of each node and the expected number of 3-node subgraphs associated with each node. The hatches indicate the
respective best scenarios.

Fig. 5. Convergence of mean distance (left 𝑦-axis, 𝛿2,3(𝐺′) and 𝛿2,3,𝑤(𝐺′)) and cumulative time (right 𝑦-axis) of GST/GSTT, versus the number of iterations 𝑟, for
Glo_ERA5SP (an example of functional climate networks). Only GST2,3 and GST2,3,𝑤 are given here since Fig. 4 confirms the better performance when 3-node subgraphs
(i.e., triangles and non-closed wedges) are considered for preservation. The first row is for GST: (a) GST2,3 with 𝑝 = 0.4; (b) GST2,3 with 𝑝 = 0.9; (e) GST2,3,𝑤 with
𝑝 = 0.4; (f) GST2,3,𝑤 with 𝑝 = 0.9. The second row is for GSTT: (c) GSTT2,3 with 𝑝 = 0.4; (d) GSTT2,3 with 𝑝 = 0.9; (g) GSTT2,3,𝑤 with 𝑝 = 0.4; (h) GSTT2,3,𝑤 with 𝑝 = 0.9.
This figure illustrates the effect of the tolerance threshold 𝑇 = 0.01: it leads to faster convergence (at least 4×, the last blue solid triangle) of GST/GSTT, while nearly
retaining the quality of the sparse subgraph obtained with 𝑇 = 0 (the last black solid circle).

• Ranking distribution: for each given sampling probability 𝑝, each similarity estimation gives a ranking among GST/GSTT, LD,
LJS, RE, and CN, from 1 to 5. For each sampling method, we aggregate all rankings over different 𝑝 and over different similarity
estimations on macro-, meso-, and microscopic structural properties. Then, we visualize its ranking distribution for further ranking
comparison. The same empirical ranges of 𝑝 as used for the “average Spearman rank correlation coefficient” evaluation above
are applied here (also see Table 3).

• Mean ranking: the mean of all rankings of each method.

• Mann-Whitney U test: The mean ranking is not sufficient to compare the final performance of the five methods, due to the
large standard deviation within the ranking distribution. Therefore, instead of directly choosing the one with the smallest mean
ranking, we use this U test to classify the five sampling methods (i.e., GST/GSTT, LD, LJS, RE, and CN) into two categories:
Group I has better performance, Group II performs worse in comparison. In particular, methods in the two groups satisfy the
following conditions: (1) methods in Group I have the same cumulative distribution functions (CDFs) in terms of rankings, given
the significance threshold of 0.1; (2) there is at least one method (in Group I) whose CDF is stochastically larger than the CDF of
any method in Group II, given the significance threshold of 0.05. Using this test, we can see from empirical studies that Group I
also includes the method with the smallest mean ranking, i.e., the best one on average.

For Q3, to provide an unbiased comparison between GST/GSTT, LD, LJS, RE, and CN (see Section 5.4), we choose a single-threaded
environment without parallelism. We first average the running time over 10 runs (sufficient due to small variance) for each given
sampling probability 𝑝. Then, by averaging again over different 𝑝 (see Table 3), we compare the final computational cost for each
given graph (see Section 5.4).

5.2. Basic property preservation

We show in detail the distribution of 𝛿2,3,𝑤(𝐺∗) using boxplots and 𝛿2,3,𝑤(𝐺∗) for Glo_ERA5SP (Fig. 4 in the main text), Chameleon
11

(Fig. S1 in the Supplementary Material), and LFR𝜇=0.1 (Fig. S2 in the Supplementary Material), as examples from functional cli-

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Fig. 6. Comparisons of GST2,3 , LD, LJS, RE, and CN in preserving eight structural properties, for Glo_ERA5SP (an example of functional climate networks). Each
sampling probability 𝑝 on the x-axis is attached with the exact ratio of preserved edges in brackets. The GST2,3 is highlighted in red. This figure indicates that there is
no single method that performs better for all of these structural similarity estimations.

mate, observed real-world, and LFR networks. The results for the other networks are similar. The methods with comparably better
preservation are highlighted with hatches, all of which involve the preservation of 3-node subgraphs (i.e., triangles and non-closed
wedges) for both GST and GSTT. Regarding Q1, we conclude that preserving both the expected degrees and the expected num-

ber of 3-node subgraphs (i.e., GST2,3/GST2,3,𝑤/GSTT2,3/GSTT2,3,𝑤) generates sparse structures closer to the expectation than only
considering degrees (i.e., GST2/GSTT2). This fact holds even when the tolerance is set to 𝑇 > 0. From here on we focus only on
GST2,3/GST2,3,𝑤/GSTT2,3/GSTT2,3,𝑤.

Similarly, for the convergence and cumulative time of GST/GSTT, we also show the results for Glo_ERA5SP (Fig. 5 in the main
text), Chameleon (Fig. S3 in the Supplementary Material), and LFR𝜇=0.1 (Fig. S4 in the Supplementary Material) as examples. Results
for the other data sets are again similar to them. When the tolerance parameter is provided (in our case 𝑇 = 0.01), the convergence
of 𝛿2,3,𝑤(𝐺′) first strictly follows the convergence trajectories with 𝑇 = 0, as to be expected, and then stops due to early termination.
The final running times of GST2,3(𝑇 = 0.01) and GST2,3,𝑤(𝑇 = 0.01) (the last blue solid triangle) are at least 4 times faster than those
of GST2,3(𝑇 = 0) and GST2,3,𝑤(𝑇 = 0) (the last blue hollow triangle), respectively. More importantly, the quality of the respective
final sparse structure with 𝑇 = 0.01 (the last black solid circles) is still quite close to those of 𝑇 = 0 (the last black hollow circles).
Similar fast convergence can also be observed for GSTT2,3(𝑇 = 0.01) and GSTT2,3,𝑤(𝑇 = 0.01). Therefore, we use 𝑇 = 0.01 as default
value for the following experimental analyses.

5.3. Complex property preservation

As for structural property preservation, how to compare similarity estimates obtained from different structural similarity estima-

tions is not obvious, as mentioned in Section 5.1. We give such a similarity estimation result for Glo_ERA5SP in the main text (see
Fig. 6) and similar examples for both observed real-world and LFR networks as Figs. S5 and S6 in the Supplementary Material. For a
comprehensive view, we focus on overall rankings in Fig. 7.

As we can see from Fig. 6, GST2,3 is quite good at preserving degrees (see Fig. 6(e)), which can be expected due to the explicit
preservation of expected degrees. Although Hamann et al. [13] concluded that LD is best for preserving the overall connectivity
of a network, we see here from Figs. 6(a) and 6(b) that LJS is even better. This is likely due to different network structures in
different domains. They use mostly social networks, while here, Glo_ERA5SP is an instance of the functional climate networks.
Another noteworthy point is that for a given sampling probability 𝑝, only the similarity estimates of the community structure show
a slightly observable variance, while for other estimates, the variance is not visible. This suggests the stability of all these sampling
methods applicable to practical scenarios. Still, comparing different structural similarity estimates in Fig. 6 is not conclusive due
to the diverse performance of the different methods. We thus summarize Fig. 6 in Fig. 7A(a) by using their rankings. For example,
in Fig. 6(e), when 𝑝 = 0.1, the ranking among GST2,3, LD, LJS, RE, and CN is {1, 4, 2, 3, 5}; by enumerating all structural similarity
estimations in Fig. 6 over different 𝑝, we obtain for each method its ranking results.

Finally, the summarized rankings are presented in Figs. 7, 8, and 9 for functional climate, observed real-world, and LFR networks,
respectively. Methods with better relative performance are shown with hatches using the Mann-Whitney U test. We aim to provide
12

a generic sampling method. Therefore, only those algorithmic variants which show consistently better performance in a larger set

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Table 3

Summary of the performance of the sampling methods based on ranking distributions in Figs. 7, 8, and 9. Entries marked with ✓ represent methods with relatively
better performance.

Type Network Sampling probability (𝑝)∗ GST2,3 GSTT2,3,𝑤 LD LJS RE CN Reference

Functional
climate
networks

Glo_ERA5SP {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ ✓ Fig. 7A(a)

Glo_ERA5ST {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ ✓ Fig. 7A(c)

Glo_ERA5GPH {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ ✓ Fig. 7A(e)

Glo_ERA5OLR {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ Fig. 7A(g)

Glo_ERA5WUC {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 7A(i)

Glo_ERA5WVC {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ Fig. 7A(k)

Glo_ERA5WVFUC {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 7A(m)

Glo_ERA5WVFVC {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 7A(o)

Glo_TRMM {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 7B(r)

ASM_TRMM {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 7B(t)

Observed
real-world
networks

Chameleon {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ Fig. 8B(b)

FBEgo {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 8B(d)

Crocodile {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 8B(f)

HepPh {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ Fig. 8B(h)

AstroPh {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ Fig. 8B(j)

ASI {0.7, 0.8, 0.9} ✓ ✓ ✓ ✓ Fig. 8B(l)

Enron {0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ ✓ Fig. 8B(n)

Livemocha {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 8B(p)

Squirrel {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ Fig. 8B(r)

Worm {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ Fig. 8B(t)

Recmv {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ ✓ Fig. 8B(v)

Catster {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ ✓ Fig. 8B(x)

Twitch {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ Fig. 8B(z)

LFR networks

LFR𝜇=0.1 {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 9B(b)

LFR𝜇=0.2 {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ ✓ Fig. 9B(d)

LFR𝜇=0.3 {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ Fig. 9B(f)

LFR𝜇=0.4 {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} ✓ Fig. 9B(h)

Summary GST2,3 + GSTT2,3,𝑤 =
24
27

15
27

8
27

13
27

5
27

∗The only sampling parameter whose range is empirically selected to avoid non-significant correlations.

of networks are summarized in Table 3. GST2,3 works well in both functional climate and LFR networks (see Figs. 7A and 9A).
For GSTT2,3,𝑤, a consistently better performance in terms of solution quality is observable in the table from Glo_TRMM down to
LFR𝜇=0.4, with the exception of Chameleon, HepPh, and Squirrel (also see Figs. 7B, 8B, and 9B). The performance of GSTT2,3,𝑤 is
comparable with that of GST2,3 in Glo_TRMM, AS_TRMM, and LFR networks. According to the final shooting scores in Table 3, our
proposed method (seen as the union of its two variants GST2,3 and GSTT2,3,𝑤) outperforms the probability-based and filtering-based
approaches LD, LJS, RE, and CN; that is, in 24 out of 27 network instances, our proposed method belongs to Group I and has relatively
better performance. This answers Q2: preserving both expected degrees and 3-node subgraphs yields a sparse subgraph that better
preserves complex properties overall. How to choose between GST2,3/GSTT2,3,𝑤 for sampling an unknown given graph is discussed
in Section 6.

5.4. Running times

To answer Q3, we compare the running times of GSTT2,3,𝑤 , LD, LJS, RE, and CN in Fig. 10. According to Table 3, GSTT2,3,𝑤
yields the best solution quality, particularly in observed real-world networks. It is also the most time-consuming method, due to the
preservation of the expected degrees, the expected number of triangles, and the expected number of non-closed wedges associated with
nodes. The running time of GSTT2,3,𝑤 thus acts as an upper bound. For a fair comparison, the estimation process is as follows (taking
 = Glo_ERA5SP as an example): for each given sampling probability 𝑝, we calculate the average running time when generating
10 sparse subgraphs 𝐺∗. The edge ratio between 𝐺∗ and  is then used to initialize LD, LJS, RE, and CN, further to obtain their
corresponding running times.

According to Ref. [13], the running times of LD and LJS are slightly slower than RE, which only takes linear time in the number of
edges. For GSTT2,3,𝑤, it depends on the number of iterations 𝑟 in Stage II, even with the tolerance 𝑇 included for early termination.
In Fig. 10, GSTT2,3,𝑤 is roughly 18, 16, 148, and 34 times slower than LD, LJS, RE, and CN, respectively. As for GST2,3 , it is slightly
faster than GSTTT2,3,𝑤, with roughly 16, 14, 129, and 28 times slower than LD, LJS, RE, and CN, respectively. Nonetheless, even in
the most time-consuming scenario, our proposed method is still applicable to large-scale networks with a few million edges.

6. On the selection of GST𝟐,𝟑/GSTT𝟐,𝟑,𝒘

Although our framework with GST2,3/GSTT2,3,𝑤 outperforms LD, LJS, RE, and CN, it remains unclear how to choose the most
13

appropriate algorithm configuration in practice for a given unseen graph. In Table 3, the performance of GST2,3 dominates from

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Fig. 7. Ranking comparison of GST2,3/GST2,3,𝑤/GSTT2,3/GSTT2,3,𝑤 , LD, LJS, RE, and CN, for functional climate networks. Each ranking distribution is summarized
over eight structural similarity estimations and over different 𝑝 (see Fig. 7A(a) as a summarization example for Fig. 6). The considered different sampling probabilities
are given in Table 3. For each network, the relatively better sampling methods are highlighted with hatches using the Mann-Whitney U test (see Section 5.1). This
figure indicates that the overall performance of GST2,3/GST2,3,𝑤 by preserving both expected degrees and expected 3-node subgraphs is better than LD, LJS, RE, and
CN.

Glo_ERA5SP to Glo_ERA5WVFVC, while from Glo_TRMM down to LFR𝜇=0.4 (except Chameleon, HepPh, and Squirrel), GSTT2,3,𝑤
works consistently well. Finding the graph characteristics that can help with a decision between GST2,3 and GSTT2,3,𝑤 touches the
problem of network representation. In this regard, different network properties are also often considered, in both functional climate
and observed real-world networks [38,39]. In our case, network properties that can be computed quickly, especially with access to
only local information, are preferable. We use such network properties as prior knowledge for the selection of GST2,3 and GSTT2,3,𝑤.

Recall that by relaxing the independence assumption, GSTT emphasizes the overall expected number of triangles 𝔼3 to be preserved
in the sparse subgraph 𝐺∗; consequently, the overall expected number of non-closed wedges 𝔼𝑖

𝑤
is decreased according to Eq. (2c).

We have assumed in Section 3.2 that for a given graph  with fewer triangles than non-closed wedges, GSTT can avoid a rapid
decline of 𝔼3. Therefore, we expect that networks from Glo_TRMM down to LFR𝜇=0.4 (except Chameleon, HepPh, and Squirrel)
14

satisfy 𝑚3() < 𝑚𝑤(). For this, we define first the node-level difference between triangles and non-closed wedges of  as:

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.
Fig. 8. Same as Fig. 7, but for observed real-world networks.
15

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

Fig. 9. Same as Fig. 7, but for LFR networks.

Fig. 10. The running times of GSTT2,3,𝑤 (based on Table 3), LD, LJS, RE, and CN, versus 𝑑𝑚𝑎𝑥|𝐸| of 27 networks. GSTT2,3,𝑤 is the scenario consuming the most time as
it preserves all of the expected local node properties, i.e., degrees, triangles, and non-closed wedges. This figure indicates that our method can be applied to large-scale
networks even in the most time-consuming scenario of GSTT2,3,𝑤 .

Fig. 11. Network measures for distinguishing 24 out of 27 data sets (without Chameleon, HepPh, and Squirrel) into two groups. Solid blue points are the data sets
where our proposed methods show better performance based on Table 3. (a) Graph-level difference between triangles and non-closed wedges 𝜎() by Eq. (11). (b)
Tri-wedge assortativity 𝑟𝜎 () by Eq. (12). This figure indicates that 𝑟𝜎 () can be a quantitative measure for selecting GST2,3 and GSTT2,3,𝑤 for an unknown graph.

𝜎𝑖() ∶=𝑚𝑖
3() −𝑚𝑖

𝑤
() (10)

Then the graph-level difference between triangles and non-closed wedges is:

𝜎() ∶= 1|𝑉 |
∑
𝑖∈𝑉

𝜎𝑖() (11)

In Fig. 11(a), 𝜎() > 0 holds from Glo_ERA5SP to Glo_ERA5WVFVC, where GST2,3 shows better performance. Also, the reverse
observation 𝜎() < 0 can be made for most networks where GST2,3,𝑤 performs better. Still, an exception occurs in the FBEgo network
16

due to 𝜎() > 0 in Fig. 11(a). One possible reason for this is that 𝜎() captures only local structure information without considering

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

the larger connectivity pattern of a given graph . Therefore, we further define the following measure tri-wedge assortativity, based
on the definition of degree assortativity [50]:

𝑟𝜎() ∶=
∑|𝐸|

1 (𝑌𝑖 − 𝑌)(𝑍𝑖 −𝑍)√∑|𝐸|
1 (𝑌𝑖 − 𝑌)2

√∑|𝐸|
1 (𝑍𝑖 −𝑍)2

(12)

𝑟𝜎() ∈ [−1, 1] is essentially the Pearson correlation coefficient and is numerically computed by simply replacing the sequences (i.e., 𝑌
and 𝑍) of degree with that of 𝜎𝑖(). In Fig. 11(b), 𝑟𝜎 () distinguishes 24 data sets (without Chameleon, HepPh, and Squirrel) into two
groups, which are exactly in line with the performance of GST2,3 and GSTT2,3,𝑤 in Table 3. A higher tri-wedge assortativity indicates
that nodes with more triangles than non-closed wedges (or those with fewer triangles than non-closed wedges, respectively) tend to
connect with each other. For such a graph, our suggestion is to use GST2,3 for sparsification. If  tends to be lower assortative or
even disassortative according to Eq. (12), we suggest to use GSTT2,3,𝑤. From a computational viewpoint, 𝑟𝜎 () requires the number
of triangles 𝑚𝑖

3() and the number of non-closed wedges 𝑚𝑖
𝑤
() associated with a node 𝑖. Thus, the computation of 𝑟𝜎 () can be

combined with Stage I of Algorithm 1 at very little extra cost. The tri-wedge assortativity and its analysis constitutes the third
highlighted extension of this paper (see Section 1.1).

7. Conclusion

In summary, we proposed a generalized node-focused edge sampling framework for network sparsification. By preserving the
expected degrees, the expected number of triangles, and the expected non-closed wedges associated with nodes, complex properties
are preserved in the generated sparse subgraph in a self-organized way. Our proposed framework with two algorithmic variants, i.e.,

GST2,3 and GSTT2,3,𝑤, generates sparse subgraphs that preserve the overall similarity to the given graph in a considerably better
way. Extensive empirical studies verify its better average performance on functional climate, observed real-world, and synthetic LFR
networks. We further proposed a network measure, i.e., tri-wedge assortativity, which is very effective in guiding the selection between

GST2,3 and GSTT2,3,𝑤.

Regarding future work, one may consider more efficient strategies in refining this node-focused sparsification framework, since our
proposed strategy in Section 3.3 is a conservative option. Meanwhile, for practical application purposes, it is also worth investigating
how to derive potentially suitable sparsification ratios in advance. An undesired sparsification ratio can lead to too much loss of graph
information, and therefore, it should avoided. Besides, whether this sparsification framework works well in weighted graphs is yet to
be answered.

CRediT authorship contribution statement

Zhen Su: Writing – review & editing, Writing – original draft, Visualization, Validation, Methodology, Investigation, Formal
analysis, Data curation, Conceptualization. Yang Liu: Writing – review & editing, Methodology, Conceptualization. Jürgen Kurths:

Writing – review & editing, Supervision, Methodology, Funding acquisition, Conceptualization. Henning Meyerhenke: Writing –
review & editing, Validation, Supervision, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We would like to thank Panos Parchas for data sharing and Anton Tsitsulin for preliminary discussions. Z.S. was funded by the
China Scholarship Council (CSC) scholarship. Y.L. was supported by the National Natural Science Foundation of China (Grant No.
62203363). J.K. was supported by the Federal Ministry of Education and Research (BMBF) grant No. 01LP1902J (climXtreme). H.M.
was partially supported by German Research Foundation (DFG) grants ME-3619/4-1 (ALMACOM) and GR-5745/1-1 (DyANE). We
acknowledge the European Regional Development Fund (ERDF), the German Federal Ministry of Education and Research and the Land
Brandenburg for supporting this project by providing resources on the high performance computer system at the Potsdam Institute
for Climate Impact Research.

Appendix A. Supplementary material
17

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .ins .2024 .121096.

https://doi.org/10.1016/j.ins.2024.121096

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

References

[1] Z. Su, J. Kurths, H. Meyerhenke, Network sparsification via degree- and subgraph-based edge sampling, in: 2022 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), 2022, pp. 9–16.

[2] M. Newman, Networks, Oxford University Press, 2018.

[3] A.A. Tsonis, P.J. Roebber, The architecture of the climate network, Phys. A, Stat. Mech. Appl. 333 (2004) 497–504.

[4] N. Boers, B. Goswami, A. Rheinwalt, B. Bookhagen, B. Hoskins, J. Kurths, Complex networks reveal global pattern of extreme-rainfall teleconnections, Nature
566 (2019) 373–377.

[5] K. Yanagiya, K. Yamada, Y. Katsuhara, T. Takatani, Y. Tanaka, Edge sampling of graphs based on edge smoothness, in: ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, Singapore, Singapore, 2022, pp. 5932–5936.

[6] M. Choe, J. Yoo, G. Lee, W. Baek, U. Kang, K. Shin, MiDaS: representative sampling from real-world hypergraphs, in: Proceedings of the ACM Web Conference
2022, WWW ’22, Association for Computing Machinery, New York, NY, USA, 2022, pp. 1080–1092.

[7] L. Fang, C. Wu, HES: edge sampling for heterogeneous graphs, in: 2023 International Joint Conference on Neural Networks (IJCNN), IEEE, Gold Coast, Australia,
2023, pp. 1–8.

[8] J. Batson, D.A. Spielman, N. Srivastava, S.-H. Teng, Spectral sparsification of graphs: theory and algorithms, Commun. ACM 56 (2013) 87–94.

[9] J. Tětek, M. Thorup, Edge sampling and graph parameter estimation via vertex neighborhood accesses, in: Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, ACM, Rome Italy, 2022, pp. 1116–1129.

[10] V. Sadhanala, Y.-X. Wang, R. Tibshirani, Graph sparsification approaches for Laplacian smoothing, in: Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, PMLR, 2016, pp. 1250–1259.

[11] J. Lu, H. Wang, Uniform random sampling not recommended for large graph size estimation, Inf. Sci. 421 (2017) 136–153.

[12] C.M. Le, Edge sampling using local network information, J. Mach. Learn. Res. 22 (2021) 1–29.

[13] M. Hamann, G. Lindner, H. Meyerhenke, C.L. Staudt, D. Wagner, Structure-preserving sparsification methods for social networks, Soc. Netw. Anal. Min. 6 (2016)
22.

[14] V. Satuluri, S. Parthasarathy, Y. Ruan, Local graph sparsification for scalable clustering, in: Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, Association for Computing Machinery, New York, NY, USA, 2011, pp. 721–732.

[15] A. Gionis, P. Rozenshtein, N. Tatti, E. Terzi, Community-aware network sparsification, in: Proceedings of the 2017 SIAM International Conference on Data Mining
(SDM), Proceedings, Society for Industrial and Applied Mathematics, 2017, pp. 426–434.

[16] P. Mahadevan, D. Krioukov, K. Fall, A. Vahdat, Systematic topology analysis and generation using degree correlations, ACM SIGCOMM Comput. Commun. Rev.
36 (2006) 135–146.

[17] C. Orsini, M.M. Dankulov, P. Colomer-de-Simón, A. Jamakovic, P. Mahadevan, A. Vahdat, K.E. Bassler, Z. Toroczkai, M. Boguñá, G. Caldarelli, S. Fortunato, D.
Krioukov, Quantifying randomness in real networks, Nat. Commun. 6 (2015) 8627.

[18] P. Parchas, F. Gullo, D. Papadias, F. Bonchi, The pursuit of a good possible world: extracting representative instances of uncertain graphs, in: Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data, SIGMOD ’14, Association for Computing Machinery, New York, NY, USA, 2014,
pp. 967–978.

[19] P. Parchas, F. Gullo, D. Papadias, F. Bonchi, Uncertain graph processing through representative instances, ACM Trans. Database Syst. 40 (2015) 20:1–20:39.

[20] S. Song, Z. Zou, K. Liu, Triangle-based representative possible worlds of uncertain graphs, in: S.B. Navathe, W. Wu, S. Shekhar, X. Du, S.X. Wang, H. Xiong (Eds.),
Database Systems for Advanced Applications, in: Lecture Notes in Computer Science, Springer International Publishing, Cham, 2016, pp. 283–298.

[21] Y. Zeng, C. Song, T. Ge, Selective edge shedding in large graphs under resource constraints, in: 2021 IEEE 37th International Conference on Data Engineering
(ICDE), 2021, pp. 2057–2062.

[22] Y. Zeng, C. Song, T. Ge, Y. Zhang, Reduction of large-scale graphs: effective edge shedding at a controllable ratio under resource constraints, Knowl.-Based Syst.
240 (2022) 108126.

[23] D. Schoch, T.W. Valente, U. Brandes, Correlations among centrality indices and a class of uniquely ranked graphs, Soc. Netw. 50 (2017) 46–54.

[24] Z. Su, C. Gao, J. Liu, T. Jia, Z. Wang, J. Kurths, Emergence of nonlinear crossover under epidemic dynamics in heterogeneous networks, Phys. Rev. E 102 (2020)
052311.

[25] D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393 (1998) 440–442.

[26] L. Becchetti, P. Boldi, C. Castillo, A. Gionis, Efficient semi-streaming algorithms for local triangle counting in massive graphs, in: Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Las Vegas Nevada USA, 2008, pp. 16–24.

[27] J.-P. Eckmann, E. Moses, Curvature of co-links uncovers hidden thematic layers in the World Wide Web, Proc. Natl. Acad. Sci. 99 (2002) 5825–5829.

[28] P.N. McGraw, M. Menzinger, Laplacian spectra as a diagnostic tool for network structure and dynamics, Phys. Rev. E 77 (2008) 031102.

[29] J. Zhang, K. Zhu, Y. Pei, G. Fletcher, M. Pechenizkiy, Cluster-preserving sampling from fully-dynamic streaming graphs, Inf. Sci. 482 (2019) 279–300.

[30] A. Nocaj, M. Ortmann, U. Brandes, Untangling the hairballs of multi-centered, small-world online social media networks, J. Graph Algorithms Appl. 19 (2015)
595–618.

[31] E. John, I. Safro, Single- and multi-level network sparsification by algebraic distance, J. Complex Netw. 5 (2017) 352–388.

[32] D. Monderer, L.S. Shapley, Potential games, Games Econ. Behav. 14 (1996) 124–143.

[33] J. Nešetřil, S. Poljak, On the complexity of the subgraph problem, Comment. Math. Univ. Carol. 026 (1985) 415–419.

[34] F. Bonchi, F. Gullo, A. Kaltenbrunner, Y. Volkovich, Core decomposition of uncertain graphs, in: Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14, Association for Computing Machinery, New York, NY, USA, 2014, pp. 1316–1325.

[35] D. Micciancio, The hardness of the closest vector problem with preprocessing, IEEE Trans. Inf. Theory 47 (2001) 1212–1215.

[36] E.J. Friedman, A.S. Landsberg, J. Owen, W. Hsieh, L. Kam, P. Mukherjee, Edge correlations in spatial networks, J. Complex Netw. 4 (2016) 1–14.

[37] M. Ortmann, U. Brandes, Triangle listing algorithms: back from the diversion, in: 2014 Proceedings of the Meeting on Algorithm Engineering and Experiments
(ALENEX), Proceedings, Society for Industrial and Applied Mathematics, 2013, pp. 1–8.

[38] S. Gupta, N. Boers, F. Pappenberger, J. Kurths, Complex network approach for detecting tropical cyclones, Clim. Dyn. 57 (2021) 3355–3364.

[39] Z. Su, H. Meyerhenke, J. Kurths, The climatic interdependence of extreme-rainfall events around the globe, Chaos, Interdiscip. J. Nonlinear Sci. 32 (2022)
043126.

[40] A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms, Phys. Rev. E 78 (2008) 046110.

[41] C.L. Staudt, A. Sazonovs, H. Meyerhenke, NetworKit: a tool suite for large-scale complex network analysis, Netw. Sci. 4 (2016) 508–530.

[42] E. Angriman, A. van der Grinten, M. Hamann, H. Meyerhenke, M. Penschuck, Algorithms for large-scale network analysis and the NetworKit Toolkit, in: H.
Bast, C. Korzen, U. Meyer, M. Penschuck (Eds.), Algorithms for Big Data: DFG Priority Program 1736, in: Lecture Notes in Computer Science, Springer Nature,
Switzerland, Cham, 2022, pp. 3–20.

[43] R. Geisberger, P. Sanders, D. Schultes, Better approximation of betweenness centrality, in: Proceedings of the Meeting on Algorithm Engineering & Expermiments,
Society for Industrial and Applied Mathematics, USA, 2008, pp. 90–100.

[44] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, E. Müller, NetLSD: hearing the shape of a graph, in: Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 2347–2356.

[45] P.-Y. Chen, L. Wu, S. Liu, I. Rajapakse, Fast Incremental von Neumann graph entropy computation: theory, algorithm, and applications, in: Proceedings of the
18

36th International Conference on Machine Learning, PMLR, 2019, pp. 1091–1101.

http://refhub.elsevier.com/S0020-0255(24)01010-7/bibFE020C0C70FFF008A255EB4E21C4A1BBs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibFE020C0C70FFF008A255EB4E21C4A1BBs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib9CF2FF81901F2B48B6C185072E84DBC6s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibABB0310D352677DFD9040B48C98670D2s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib57C9368249B3C02CE7F7FEA274484AECs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib57C9368249B3C02CE7F7FEA274484AECs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib3F3AB046405764D9AF6A5D536A2D4375s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib3F3AB046405764D9AF6A5D536A2D4375s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibCA28068288F21D954851C94446F08FA2s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibCA28068288F21D954851C94446F08FA2s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibB50D21E36BE91EA37C9581690C1A7FADs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibB50D21E36BE91EA37C9581690C1A7FADs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibCE024DBEA31B21623905E886516C32D9s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib7DAFF64E62C3EDA916116DF13142110Cs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib7DAFF64E62C3EDA916116DF13142110Cs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibCE96833D2717DD83A1F7AB9445847493s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibCE96833D2717DD83A1F7AB9445847493s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibB5498F3F8CE5C80671191C65FF65259Es1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibD281818221CCA34C87154CB9A0959DDAs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib02AE93A2B69D7ADA84C2A10CEA832D0As1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib02AE93A2B69D7ADA84C2A10CEA832D0As1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib7B91FE82BC2F0B4FF2466B5E74DB2F93s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib7B91FE82BC2F0B4FF2466B5E74DB2F93s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib512A940461B40AF40B6F067076D36E43s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib512A940461B40AF40B6F067076D36E43s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib3600B10CF20D0C5A41DAFD6CA97D689Es1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib3600B10CF20D0C5A41DAFD6CA97D689Es1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib68F12F2FADE74ED6EA5FCD38C08B202Bs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib68F12F2FADE74ED6EA5FCD38C08B202Bs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib6F3A6AAE56016B9D7A5FBB24F97FFB48s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib6F3A6AAE56016B9D7A5FBB24F97FFB48s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib6F3A6AAE56016B9D7A5FBB24F97FFB48s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib48B957EEC0A36D104B9CD8DEF1E3B324s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib411A9968090AE86554EE5FF8DE76A84Fs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib411A9968090AE86554EE5FF8DE76A84Fs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib72570070CCA607EE7D60C71722903D20s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib72570070CCA607EE7D60C71722903D20s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0FD5FC8B31D09CB26B9F0EE9E3BC36EBs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0FD5FC8B31D09CB26B9F0EE9E3BC36EBs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0805D6FEBF9B6AD7F43639B6BEB0366Fs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib8018A961409FE3E07FF3CAFD09A2E483s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib8018A961409FE3E07FF3CAFD09A2E483s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibD4068337B7E2A9D4B70359A06DE178DCs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0AD162D2C3F01A5F3DA23FA6FC8A6811s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0AD162D2C3F01A5F3DA23FA6FC8A6811s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibFEEBE612419718FD4F3687EE744C2E66s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib3B1CFCF90E090E32DC2C2DAB407B670Cs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib8F0001AF43295F805C2E948C61263BE7s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibDBE92B155252F61DADFE41D6166531E1s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibDBE92B155252F61DADFE41D6166531E1s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib3F8B0E67BDD72435EFC1CDAB9CD964F0s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibE1C09022A71A743280E4DD3D0840C2ABs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib7201C8FD8FAD1D665AF13370E6AF190As1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib4442A9FDD7EA8BEBFDE5D565AB52D230s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib4442A9FDD7EA8BEBFDE5D565AB52D230s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibE02BBCF6B0C7D929F1DCC1CBA8889630s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib233AAD205BDE60E7C24AB71CAD54AAD4s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib8D3B5F99732A487377A85DF5285290F4s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib8D3B5F99732A487377A85DF5285290F4s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibE6766957C0AB3FBCAB8232BA1D0C82E8s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibBDB06A0CCEF2E5F4654F8E885E0BD822s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibBDB06A0CCEF2E5F4654F8E885E0BD822s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib664FE92AA573CA5549C2C082A4D7850Cs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibC48338C53C8392CD2F4DFFEB3457B127s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0EAEDB948E1AF15CED5FECDDCAB7AB56s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0EAEDB948E1AF15CED5FECDDCAB7AB56s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib0EAEDB948E1AF15CED5FECDDCAB7AB56s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib81EE1753DDB450BEB15801E970B9D841s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib81EE1753DDB450BEB15801E970B9D841s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibDC1332BFBF9B6BF269D13330CFD5423Cs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibDC1332BFBF9B6BF269D13330CFD5423Cs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib2E34E40DB5910188EE4E57D414312A03s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib2E34E40DB5910188EE4E57D414312A03s1

Information Sciences 679 (2024) 121096Z. Su, Y. Liu, J. Kurths et al.

[46] A. Tsitsulin, M. Munkhoeva, B. Perozzi, Just SLaQ when you approximate: accurate spectral distances for web-scale graphs, in: Proceedings of the Web Conference
2020, WWW ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 2697–2703.

[47] N.X. Vinh, J. Epps, J. Bailey, Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance, J. Mach.
Learn. Res. 11 (2010) 2837–2854.

[48] C.L. Staudt, H. Meyerhenke, Engineering parallel algorithms for community detection in massive networks, IEEE Trans. Parallel Distrib. Syst. 27 (2016) 171–184.

[49] J. Leskovec, C. Faloutsos, Sampling from large graphs, in: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’06, Association for Computing Machinery, New York, NY, USA, 2006, pp. 631–636.
19

[50] M.E.J. Newman, Assortative mixing in networks, Phys. Rev. Lett. 89 (2002) 208701.

http://refhub.elsevier.com/S0020-0255(24)01010-7/bib923BD75563E30981EBE4724C7255E354s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib923BD75563E30981EBE4724C7255E354s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib2D9677D6CB0F7250D807673A55097BEEs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib2D9677D6CB0F7250D807673A55097BEEs1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibFAB9818F6D1330F135F66CC5DCBE565Es1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib7F920DFACFB2732E8267A3155D337228s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bib7F920DFACFB2732E8267A3155D337228s1
http://refhub.elsevier.com/S0020-0255(24)01010-7/bibA8E43CEDEAE31197476381312B16B0F8s1

	Generic network sparsification via degree- and subgraph-based edge sampling
	1 Introduction
	1.1 Contributions

	2 Related work
	3 Problem definition
	3.1 Preliminaries
	3.2 Sparsification via scaled local properties
	3.3 Emphasizing on the expected number of triangles

	4 Game-theoretic sparsification algorithms: with tolerance (GST) and with triangle-emphasis (GSTT)
	5 Experimental evaluation
	5.1 Experimental settings
	5.2 Basic property preservation
	5.3 Complex property preservation
	5.4 Running times

	6 On the selection of GST2,3/GSTT2,3,w
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

