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Abstract
The latest generation of global climatemodels robustly projects thatmonsoon rainfall anoma-
lies in India will significantly increase in the 21st century due to global warming. This raises
the question of the impact of these changes on the agricultural yield. Based on annual district
data for the years 1966-2014, we estimate the relationship between weather indices (amount
of seasonal rainfall, number of wet days, average temperature) and the most widely grown
kharif crops, including rice, in a flexible non-parametric way. We use the empirical relation-
ship in order to predict district-specific crop yield based on the climate projections of eight
evaluated state-of-the-art climate models under two global warming scenarios for the years
2021-2100. We find that the loss in rice yield by the end of the 21st century lies on average
between 3 - 22% depending on the underlying emission scenario. For the sustainable sce-
nario impacts range from an increase of 3.2% to a decrease of 12.1% for individual districts.
In the worst-case scenario, all districts are negatively affected, with a predicted decrease in
rice yield ranging from 34% to a decrease of 11.5% in the long run. Potential gains due to
increasing rainfall are more than offset by the negative impacts of increasing temperature.
Adaptation efforts in the worst-case global warming scenario would need to cut the negative
impacts of temperature by 50% in order to reach the outcome of the sustainable scenario.

Keywords Climate change · Monsoon · Agriculture · India
JEL Classification Q10 · Q54 · O53

Introduction

India is the second largest rice growing nation accounting for 24%of theworld rice production
in 2020 (FAOFaostat, 2022). Regarding export, India is the third largest exporter contributing
13% to global rice exports in 2020 (FAO Faostat, 2022). Besides this role on the global
market, the stability of rice production has also an important impact on food security within
the country since rice is the principal food crop in India with an overall production of 178
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mio. tonnes in 2020. Further, more than 40% of the Indian labour force are employed in the
primary sector (World Bank, 2022). The income of people employed in the primary sector
is highly dependent on the annual weather realizations such as the Indian summer monsoon,
which accounts for 80% of annual rainfall in India (Kumar, 2004, 2010). Thus, changes
of the characteristics of the summer monsoon and the resulting income effects are highly
relevant for the socioeconomic well-being of people in India (Jayachandran, 2006; Colmer,
2021; Allen and Atkin, 2022; Carleton, 2017; Rosenzweig and Binswanger, 1992; Taraz,
Taraz; Chuang, 2019; Palagi, 2022).

As a result of global warming, it is expected and observed that the characteristics of
Indian’s climate, particularly the Indian summer monsoon, are undergoing a substantial
change: Depending on the underlying emission scenario the surface air temperature in India
is projected to increase by 1.3-4.4 °C by the end of the 21st century compared to a prein-
dustrial reference period (Krishnan 2020). The temperature increase is accompanied by a
projected increase in the amount of seasonal monsoon rainfall (Chaturvedi 2012; Menon et
al. 2013; Ha 2020; authorname 2021) with an estimated increase ranging from +9.7% to
24.3% (authorname 2021) and an increase in the year-to-year variability (Menon et al. 2013;
authorname 2021). It is projected that the number of very wet monsoon seasons increases
by a factor of 5-8 (Katzenberger et al. 2022). Also on the subseasonal scale, the number of
daily precipitation extremes is projected to increase (Krishnan 2020). This increase in climate
variability on different scales will change the growing conditions for agricultural crops and
therefore have an impact on the socio-economic livelihoods within India and given their role
on the global market also beyond.

We focus on the question of how this projected increase in rainfall and temperature during
the 21st century translates into agricultural production of Indian districts. Besides, we aim
to assess the amount of adaptation that would be required to counteract negative impacts of
global warming. To answer the research questions, we proceed as follows. First, we combine
district data on agricultural outcomes for the years 1966 - 2014 with observed rainfall and
temperature data during the same years to estimate the relation between agricultural yield
and climate conditions in a flexible and non-parametric way. Second, we use the obtained
coefficients in order to predict the future agricultural output for 2021-2100 on the basis of
precipitation and temperature projections extracted from an evaluated set of 8 global climate
models of the Coupled Model Intercomparison Project phase 6 (CMIP6). This comprehen-
sive multi-ensemble approach complements previous research that provided first quantitative
insights based on ’illustrative simulations’. In order to simulate different emission scenarios,
we analyse the data of different Shared Socioeconomic pathways (SSPs).

We find opposing effects for rainfall and temperature on rice yield: On the one hand, there
is a positive effect of the seasonal rainfall and the number of wet days during the monsoon
season from June-September (JJAS). On the other hand, there is a strong negative impact of
temperature during October and November (ON) on rice yield shortly before the crops are
harvested. When applying the estimated coefficients to the projected future climate for the
years 2021-2100, we find that agricultural yield is predicted to significantly decrease in the
future unless adaptation measurements are implemented. This trend is most clear under the
worst case global warming scenario (SSP5-8.5). Under this scenario, rice yield decreases
on average by 22% relative to the years of 1994-2014 in the long-term (2081-2100). For
the sustainable SSP1-2.6 scenario, the predicted losses in rice yield are more moderate with
an average decrease of 3.4% in the long-term. These predicted decreases in rice yield are
primarily driven by the negative impact of the projected future increase in temperature in
ON, which dominates the potential gains due to increasing rainfall and the number of wet
days during the monsoon season. This relationship holds for all major crops that are grown
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during the monsoon in India except for sugarcane, which is predicted to benefit from climate
change. We further show that it is especially the northern and eastern regions in India that are
associated with the largest relative decreases. Similar spatial patterns occur when evaluating
on the basis of the total rice production during the reference period (1995-2014). Midnapur
district in West Bengal is associated with the strongest decrease by the end of the century,
amounting to 160,550 tons (SSP1-2.6) and 786,132 tons (SSP5-8.5) respectively with an
average total production of 2,611,253 tons during the reference period. Finally our results
can be used to illustrate how potential adaptation in terms of gradually muting the negative
impact of temperature in ON would change the predicted changes in rice yield. Thereby we
are able to calculate the adaptation gap, which we define as the amount of adaptation that is
required required in a world of unsuccessful climate change mitigation (SSP5-8.5) to reach
the outcome of the sustainable scenario (SSP1-2.6), which depicts a world of successful
climate change mitigation. In the long-term, we show that in the worst case scenario, the
negative impact of temperature in ON would need to be cut by 50% in order to reach the
predicted outcome of the sustainable scenario (average decrease of 3.4%).

The findings complement previous research that has examined the relationship between
monsoon characteristics and rice yields based on past periods (Webster 1998; Meher 2015;
Auffhammer 2012; Fishman2016;Revadekar andPreethi 2012; Preethi 2019; Prasanna 2014;
Panda 2019). The methodical approaches range from field measurements under different
growing conditions over process-based models up to panel-based regression approaches.
Auffhammer (2012) use fixed effects regressions in order to determine the effect of monsoon
characteristics (extreme rainfall and drought, total rainfall andminimum temperature) on rice
yield in India and use Monte-Carlo simulations to quantify the role of past climate change on
the changes in kharif rice yield at the state-level between 1966-2002. The authors conclude
that climate change has evidently already negatively influenced rice production in India. From
a climatological perspective, it is important to note that the study is based on data covering
the period 1966-2002. During these years, there was a dominating rainfall-reducing effect
of aerosols on the Indian monsoon leading e.g. to increased occurrences of droughts (Seth
2019). This effect opposes the monsoon rainfall increasing effect imposed by greenhouse
gases that is expected to be the leading forcing throughout the 21st century.

Regarding future predictions of rice yield under the influence of climate change, that are
particularly important for future agricultural management (Fishman 2016; Taraz Taraz), only
a limited number of studies are available: Singh (2017) use three climate models in order to
quantify the relationship between rice cultivation and four climate indices. The authors find
that the climate suitability of rain-fed rice locations is projected to decline between 15 and
40% by 2050. Fishman (2016) provides an ’illustrative simulation’ of climate change impacts
based on a projected 10% increase in precipitation and a decrease of rainy days by 15 - single
values that are extracted from previous climate model generations. By using only a single
value, the study neglects potential changes in the temporal and spatial distribution of rainfall
and temperature. Thus, the author concludes that their approachmay give a general idea of the
tendency of future rice yield, but can not replace a complete climate model ensemble. Soora
(2013) use the InfoCrop-rice model and one general circulation model as well as one regional
climate model in order to quantify the impacts of climate change on rice yield. The authors
find that the suitability of irrigated rice yields may decrease by 10% until 2070-2099. While
the distribution of climate indices has been included in this study, there remains a strong
dependency of the results on the choice of the single model, which is why this approach
cannot replace a full ensemble model study.

There are numerous studies focusing on changes in global rice yield under climate
change: Muller (2014) use the Land-Potsdam-Jena managed Land (LPJmL) as a widely
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used ecosystem-based model and the Decision Support System for Agrotechnology Transfer
(DSSAT) in combination with two climate models to quantify the global losses in rice pro-
duction to be between 15.7 and 18.2% by 2050. Another study using these two process based
models as well as 5 other global crop models find that models including explicit nitrogen
stress project more severe impacts on global rice yield (Rosenzweig 2014). Zhao (2017)
combine different methodical approaches (ranging from global grid-based and local point-
based models, statistical regressions to field-warming experiments) to quantify the effect
of an increase in global mean temperature on global crop yield. The authors find that per
degree of global warming, global rice yield reduces by 3.2%. Vogel (2019) find that 27%
of the variance in global rice yield in 1967-2008 are attributable to climate extremes. Katja
et al. (2017) show that water limitation is a major driver of the observed variations in most
countries in their study.

Section “Data” introduces the different data sources as well as the descriptive statistics of
our final sample. The following Section “Estimating the Effect of Rainfall and Temperature
on Rice Yield” provides the empirical methodology for estimating the effect of weather
variables on agricultural yield as well as the results of the estimation. Section “Climate
Change Projections” covers the future changes in predicted agricultural yield under different
global warming scenarios. The final Section “Conclusion” discusses these results in the
context of existing literature and concludes.

Data

For answering our research question on how climate change impacts agricultural production
in India, we combine various data sets. The type of data can be grouped into three categories:
agricultural production data from administrative records, observational weather data from
the Indian Meteorological Department (IMD) as well as climate projections from 8 different
climate models from the CMIP6.

Agricultural Data

We obtain information on annual agricultural output for Indian districts for the years
1966-2014 from the District Level Database (DLD) for Indian agriculture provided by the
International Crops Research Institute for the Semi-arid Tropics (ICRISAT).1 The DLD con-
tains annual information on total production, yield and the share of irrigated area for all
major crops in India. Given the focus of the study on the monsoon (kharif) season, we extract
information on 7 crops, that are mainly grown during the monsoon season in India. These
crops are rice, sorghum, maize, pearlmillet, cotton, groundnut and sugarcane. The districts
are apportioned to the district boundaries of 1966. Thereby the administrative boundaries
are kept constant over time, which facilitates the construction of a balanced panel of Indian
districts for the years 1966-2014. Overall the DLD contains information on 313 districts
as of 1966, which corresponds to 571 districts as of 2014. Thereby, we cover 95% of the
Indian population (as of the census 2011) and around 88% of the total area of India. The
DLD information on annual crop production is collected from various administrative records
such as the Ministry of Agriculture and Farmers Welfare or the different State Directorates
of Agriculture.

1 The data is freely accessible under the following link: http://data.icrisat.org/dld/.
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Rainfall and Temperature Data

Wecomplement the agricultural datawith daily gridded rainfall and temperature data from the
IMD. The rainfall data (IMD4) is available for the years 1901-2021 at a spatial resolution of
0.25◦ x 0.25◦ (latitude x longitude) (Pai 2014). Theminimum andmaximum temperature data
is available for the years 1951-2020 at a spatial resolution of 1◦ x 1◦ (latitude x longitude)
(Srivastava 2009). In order to calculate an estimation of the mean daily temperature, we
average the minimum and maximum temperature. We spatially merge both of the data sets
with the Indian district level data.2 In case of multiple grid points located within one district,
we take the mean of all grid points that fall within the boundaries of a single district. Based
on the temporal and spatial distribution of daily rainfall and temperature, we construct 6
different variables. The first set of three variables is constructed over the months of June to
September,which is commonly associatedwith themonsoon season in India.We calculate the
average daily rainfall (which only differs by the absolute rainfall during the monsoon season
by the factor of 122, given that JJAS consists of 122 days) and average temperature for each
district in India for the months of June-September. Following (Fishman 2016), we calculate
the number of wet days, which are defined as days with at least 0.1 mm of precipitation.
We construct the same three variables for the post-monsoon season, which consists of the
months of October and November and covers the time after the monsoon until the crops are
usually harvested (Auffhammer 2012). Hence, our final set of weather variables consists of
the average daily rainfall (JJAS &ON), the average daily temperature (JJAS &ON), as well
as the number of wet days (JJAS & ON).3

Climate Model Data

Lastly, we use an evaluated set of the general circulation models that participated in the
CMIP6 that recently has become publicly available.4 CMIP6 is a collaborative framework
that coordinates climate modelling efforts around the world. In the context of each CMIP
generation, the model groups provide standardized output of general circulation models
covering past and future climate periods. Usually, each model generation is the basis for
one Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) that are
published approx. every 6 years. The resolution of the native model grids differ strongly; an
overview is given in Table 3. The models have been regridded and undergone bias correction
in the context of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) (Lange
2019).5 In order to gain insights into possible changes in crop yield, we use different emission
scenarios. The scenarios are based on different socioeconomic development narratives that
were translated into quantitative projections in several steps for, e.g., future energy systems,
land use and greenhouse gas emission by the use of Integrated Assessment Models and
transformed into input tables for the climate models. These scenarios are called Shared
Socioeconomic Pathways (SSPs) (Van Vuuren 2014; O’Neill 2017) and are combined with

2 For this purpose, we further construct a shapefile of Indian districts as of 1966.
3 Motivated by projected intensification of the monsoon on a daily scale (Katzenberger et al. 2022), we further
constructed indices aiming to capture extreme weather events such as the number of heavy rainfall days (e.g.
daily precipitation > 100 mm). Given, that these indices are almost perfectly correlated with average daily
rainfall, we exclude the number of heavy rainfall days from the analysis.
4 The datasets from CMIP6 simulations are freely available via the CMIP6 Search Interface: https://esgf-
node.llnl.gov/search/cmip6/
5 More details can be found in the ISIMIP3a protocol: https://protocol.isimip.org/
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the corresponding forcing level for the future, the so called Representing Concentration
Pathways (RCPs). In order to simulate unabated climate change, we use the scenario SSP5-
8.5 which is the combination of the socio-economic scenario pathway 5 (SSP5) and the
Representing Concentration Pathway 8.5 (RCP8.5). The pathway SSP5 is characterized by
a global aspiration for continuous economic development and a subsequent energy intensive
lifestyle. The resulting high energy demand is met with fossil fuels. In combination with a
lack of global concern for environmental matters, this pathway results in potentially high
challenges to mitigation of climate change. Furthermore, we use the scenario SSP1-2.6 that
is characterized by a sustainable development accompanied by a reduction of carbon energy
sources leading to low challenges for mitigation and adaptation (Van Vuuren 2014; O’Neill
2017). We choose these two scenarios to quantify the range of potential yield outcomes from
minimum to maximum change. For all 8 models we extract the same 6 climate indices.

In order to classify the models with the best performance regarding the climate indices
of interest, we conduct a model evaluation based on the reference period 1966-2014.6 In
this context, we compare the historical simulations of 21 climate models that took part in
CMIP6, with the above mentioned observed rainfall and temperature data from the IMD. The
selection criteria are based on the climate indices relevant for this study. See 7.1 for details
on the evaluation and model selection. Based on the results of the evaluation, we select 8
models that we use in our study: ACCESS-ESM1-5, CANESM5, IITM-ESM, INM-CM5-0,
IPSL-797 CM6A-LR, KACE-1-0-G, NESM3, UKESM1-0-LL. By choosing a set of models,
we can reduce the effect of model-specific bias and therefore derive a improved more general
projection of future climate anomalies.

Descriptive Statistics

Table 1 shows descriptive statistics of our final district sample. The average rice yield over
the period 1966-2014 amounts to 1,450 kg

ha , with 44% of the area used for rice production
irrigated. As can be seen in Panel (A) average daily rainfall, number of wet days and average
daily temperature strongly differ by season. With an average daily rainfall of 7.3 mm

day , the
amount of rainfall during the monsoon season (JJAS) clearly dominates the annual rainfall
cycle. On average, Indian districts experience 70.4 wet days during June-September (which
refers to almost 60% during one season). For the months of October and November the
share of wet days drops on average to 16%. Further, average daily temperature drops from
28◦C in JJAS to 23.5◦C in ON. Panels (B) - (D) summarize the averaged climate projections
of the selected climate models. Panel (B) highlights the descriptive statistics for the years
1995-2014, which serves as our reference period when predicting the agricultural impacts
of climate change. Panel (C) summarizes the projections for the years 2021-2100 for the
sustainable scenario SSP1-2.6 and Panel (D) for the worst case scenario SSP5-8.5. For both,
JJAS and ON, an increase in average daily rainfall, temperature and the number of wet days
is projected throughout the 21st century for the sustainable as well as for the worst case
scenario: Average JJAS rainfall in 2021-2100 increases by 15% relative to 1995-2014 for the
SSP1-2.6 scenario and by 25% for SSP5-8.5. Further details regarding the individual periods
can be found in IPCC (2022) or authorname (2021). With an increase by 13% (SSP1-2.6)
and 16% (SSP5-8.5), the increase in the number of wet days (JJAS) differs less between
the two scenarios. The strongest relative difference between the two SSPs is observed in the

6 The standardized historical simulations are in general available for the period 1850-2015. But for single
models, the year 2015 was not available, which is why we shortened the period for the evaluation process by
one year in order to create comparability between the models.
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Table 1 Descriptives statistics

(1) (2) (3) (4) (5) (6) (7)
Mean SD Min Median Max N Source

(A) 1966 - 2014

-Rice yield (kg/ha) 1,450 927.7 0 1,297 6,547 15,176 ICRISAT

-Rice production (1000t) 217.7 315.0 0 93.97 3,153 15,176 ICRISAT

-Share irrigated area 0.441 0.399 0 0.336 1 15,176 ICRISAT

JJAS

-Average daily rainfall
(mm/day)

7.263 4.385 0.0676 6.561 36.82 15,239 IMD

-Wet days (>0.1mm) 70.38 21.31 4.333 71.13 120.5 15,239 IMD

-Average daily tempera-
ture (◦C)

27.98 2.141 21.29 28.36 33.36 15,239 IMD

ON

-Average daily rainfall
(mm/day)

1.571 2.104 0 0.781 19.27 15,239 IMD

-Wet days (>0.1mm) 9.782 9.426 0 6.727 56 15,239 IMD

-Average daily tempera-
ture (◦C)

23.52 2.520 12.26 24.00 28.98 15,239 IMD

(B) 1995 - 2014 (Climate
Models)

JJAS

-Average daily rainfall
(mm/day)

8.256 5.592 0.462 7.010 58.57 7,460 CMIP6

-Wet days (>0.1mm) 61.79 18.44 13.56 60.31 120.6 7,460 CMIP6

-Average daily tempera-
ture (◦C)

27.60 3.938 6.167 28.55 33.26 7,460 CMIP6

ON

-Average daily rainfall
(mm/day)

1.953 2.137 0.0154 1.187 16.46 7,460 CMIP6

-Wet days (>0.1mm) 11.08 7.250 2.438 8.875 60.25 7,460 CMIP6

-Average daily tempera-
ture (◦C)

23.43 4.782 -3.860 24.63 28.96 7,460 CMIP6

(C) 2021 - 2100 (Climate
Models: SSP1-2.6)

JJAS

-Average daily rainfall
(mm/day)

9.553 5.855 0.538 8.499 57.99 29,840 CMIP6

-Wet days (>0.1mm) 70.01 16.69 15.73 68.81 120.9 29,840 CMIP6

-Average daily tempera-
ture (◦C)

28.61 3.873 7.152 29.51 34.75 29,840 CMIP6

ON

-Average daily rainfall
(mm/day)

2.240 2.326 0.0198 1.397 18.95 29,840 CMIP6

-Wet days (>0.1mm) 13.28 8.748 2.333 10.44 60.63 29,840 CMIP6
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Table 1 continued

(1) (2) (3) (4) (5) (6) (7)
Mean SD Min Median Max N Source

-Average daily tempera-
ture (◦C)

24.64 4.673 -2.720 25.86 30.19 29,840 CMIP6

(D) 2021 - 2100 (Climate
Models: SSP5-8.5)

JJAS

-Average daily rainfall
(mm/day)

10.32 6.195 0.827 9.133 65.58 29,840 CMIP6

-Wet days (>0.1mm) 71.77 15.54 18.27 71.25 120.9 29,840 CMIP6

-Average daily tempera-
ture (◦C)

29.94 4.031 7.049 30.68 38.27 29,840 CMIP6

ON

-Average daily rainfall
(mm/day)

2.587 2.507 0.0251 1.790 22.84 29,840 CMIP6

-Wet days (>0.1mm) 14.72 8.865 2.750 12.06 60.25 29,840 CMIP6

-Average daily tempera-
ture (◦C)

26.19 4.776 -2.966 27.24 33.67 29,840 CMIP6

Notes: Sample consists of a panel of 313 districts for the years 1966-2014. District boundaries are drawn as of
1966. Sources for agricultural output from ICRISAT. Temperature and rainfall data is obtained from IMD. In
cases of missing observations for irrigated area, the information has been interpolated from the closest earlier
year with information on irrigated share. Weather variables are calculated for the months June- September
(JJAS), which refers to the monsoon season and for the months October-November (ON), which refers to the
post monsoon season until the kharif crops are harvested. The climate model projection data is reported as the
mean of 8 selected climate models (CMIP6)

respective projections of JJAS average daily temperature, where the 8% increase relative to
1995-2014 in the SSP5-8.5 scenario is twice as high as the increase in the SSP1-2.6 Scenario
(4%). Similar tendencies can be observed for the post-monsoon season, where the relative
difference between the SSPs is most pronounced for average daily temperature. The SSP5-
8.5 scenario is associated with an increase of 12%, while the SSP1-2.6 scenario projects an
increase by 5%.

Estimating the Effect of Rainfall and Temperature on Rice Yield

Empirical Approach

Our methodological approach is summarized in Fig. 8. The two main challenges in identify-
ing a causal impact of weather realizations (e.g. precipitation and temperature) on agricultural
output are the endogeneity of the explanatory weather variables as well as the a-priori
unknown functional relationship between weather and agricultural output (Schlenker and
Roberts 2009). By constructing a panel of Indian districts for the years 1966-2014, we rely
on annual variation within districts for identifying the causal impact of our constructed
weather variables on agricultural output. This variation can be plausibly seen as exogeneous
and is well established in the literature (Dell 2014; Chen et al. 2016; Hsiang 2016; Zhang et
al. 2017; Auffhammer 2020). In order to put as less restrictions as possible on the functional
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form for identifying the effect of weather on agricultural output, we follow an approach
similar to Schlenker and Roberts (2009); Deschenes and Greenstone (2011) and Dell (2012).
We group the weather variables into different bins based on their observed distribution for
the years 1966-2014. This allows for maximum flexibility in estimating the effect of weather
on our outcome of interest. The only functional assumption we impose is that the effects are
constant within the same bin.

The main analysis relies on a model of the following form:

ln(yit ) =
37∑

a=1,a �=ā

βarain f allait +
125∑

b=5,b �=b̄

βbwetdaysbit +
34∑

c=22,c �=c̄

βctempcit

︸ ︷︷ ︸
Monsoon (JJAS)

+
20∑

d=0,d �=d̄

βdrain f alldit +
60∑

e=0,e �=ē

βewetdayseit +
29∑

f =13, f �= f̄

β f temp fit

︸ ︷︷ ︸
Post Monsoon (ON)

+β5irrigationit + αi + γt + εi t ,

(1)

where yit stands for the crop yield (e.g. rice; in
kg
ha ) in district i in year t ∈ [1966, 2014].

rain f allait refers to the average daily rainfall during JJAS, which we group into 37 bins
of 1mm. Hence, rain f all1i t is equal to 1 if district i in year t obtained an average daily
rainfall ∈ (0mm, 1mm] and rain f all2i t equals 1 if average daily rainfall ∈ (1mm, 2mm].
rain f all37i t equals 1 if average daily rainfall ∈ (36mm, 37mm] and thereby covers the
upper end of the rainfall distribution in our estimation sample. We omit rain f all8i t , which
represents the mean of the distribution of average daily rainfall in our sample for JJAS.
Hence, the coefficients βa have to be interpreted relative to the mean average daily rainfall.
wetdaysbit refers to the the binned number of wet days, which range from a minimum of
5 wet days up to 121 wet days during JJAS. Each bin exclusively contains 5 consecutive
wet day counts. Accordingly, wetdays5i t equals 1 if the number of wet days during JJAS in
district i in year t ∈ (0, 5]. Again we exclude the average value wetdays75i t . We repeat the
same procedure for tempcit , where we group average daily temperature during JJAS into 1◦C
bins ranging from 22◦C to 34◦C . We omit the mean bin temp29i t . Analogously, we proceed
with rain f alldit ,wetdaysdit and temp fit , which are constructed over the months of October
and November. In addition to the weather variables, we include the share of irrigated land
irrigationit . We further add district fixed effects αi to control for time-invariant differences
across districts as well as year fixed effects γt accounting for annual shocks that are common
to all districts, which also accounts for general technological progress in terms of efficiency
in agriculture. εi t is the error term.

Estimation Results

Since rice is the principal food grain that is grown during the monsoon season in India, we
choose rice yield as the dependant variable for illustrating our empirical results.7 Figure 1
plots the estimation results of Eq. 1 using the log of rice yield as the dependent variable.
The estimated β̂’s are given separately in Panels (a) - (f) for each of the main explanatory

7 Estimation results on other major kharif crops are reported in Figs. 9 - 14 in 7.1.
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Fig. 1 Estimation results for rice. The plotted coefficients refer to the coefficients β̂ as estimated according to
Eq. 1. Red lines indicate the respective 95% confidence interval. The vertical red line refers to the omitted bin,
which corresponds to the sample mean. Panel (a) depicts the results for average daily rainfall for the months
of June, July, August and September (JJAS) on rice yield. Panel (b) - (f) depict the results for the remaining
variables. Standard errors are clustered at the state level. The regression further includes district and year fixed
effects, which are not reported. The blue colored bars display the binned distribution of the respective variables
based on the the years 1966-2014. Red bars display the projected temperature distribution under SSP5-8.5.
Data sources: ICRISAT, IMD, CMIP6

variables. Red lines indicate the respective 95%-confidence intervals and the blue colored
bars in the background show the underlying distribution of the observed values (1966-2014)
that is used for identification. Panel (a) shows the results for average daily rainfall in JJAS.
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The impact of rainfall on rice yield is not symmetrically distributed around the mean. While
a drop in average daily rainfall by 50% from the sample mean (from 8 mm/day to 4mm/day)
reduces the rice yield on average by 12 percentage points (pp) (= (e−0.137 − 1) × 100),
an increase in rainfall by the same amount (from 8 mm/day to 12mm/day) increases the
rice yield on average only by 5pp. Generally, additional rainfall beyond the mean has no
significant impact on the rice yield (except for 9mm/day). The responsiveness of rice yield
to rainfall in ON is very limited (Panel (b)). Yet, there is a downward sloping trend for
rainfall extremes at the upper end of the rainfall distribution, i.e. excessive rainfall in the
post monsoon season negatively impacts the rice yield. Average daily rainfall in ON of 18
mm/day deceases the rice yield on average by 18pp relative to districts with an average daily
rainfall of 2mm/day. Note however, that these events are extremely rare and account only
for 0.03% of the observations in our sample. As depicted by Panel (c), there is a positive
impact of the number of wet days with a peak at 93 wet days. The impact of wet days (ON)
is very limited with most coefficients being insignificant without showing any clear positive
or negative pattern (Panel (d)). Lastly, Panel (e) and (f) depict the results for the average
daily temperature in JJAS and ON respectively. While there is on average a slight positive
but insignificant association between average daily temperature in JJAS and rice yield, there
is a strong negative and significant association between average daily temperature during ON
and rice yield. An increase in average daily temperature (ON) from 24◦C by 5◦C to 29◦C
decrease the rice yield on average by 28pp.

Themain benefit of our estimation approach is to allow for amaximumdegree of flexibility
in delineating the impact of specific weather variables on crop yield. One shortcoming of
this approach is that we can only identify effects of events that have been in the observable
range of weather phenomenons in the past. Using temperature in ON as an example, we can
identify the impact of average daily temperature (ON) on rice yield within the range of 13◦C
to 29◦C . Yet, with the estimates based on historical weather observations we cannot say
anything about temperature exceeding 29◦C . However, as shown by the red bars in Panel (e)
and (f) of Fig. 1 a non-negligible share of projected temperature values (both in JJAS an ON)
exceeds the range that has been observed in the past.8 Based on the observed functional form
of the binned estimates, we assume a linear relationship between rice yield and temperature.
We replace the temperature bins in Eq. 1with a linear temperature term for both JJAS andON.
This allows us to extrapolate the impact of temperature increase that exceed past observations
assuming a continuation of a linear relationship. The updated regression for estimating the
impact of the six weather variables is given in Eq. 4 in 7.1. The black lines in Panel (e)
and (f) indicate the estimated linear relationship between temperature and rice yield.9 The
coefficient for temperature in JJAS is 0.016 and for temperature in ON −0.091. Hence, an
increase of temperature in ON by 1◦C reduces the rice yield on average by 9.1%. Regarding
rainfall (JJAS & ON) and the number of wet days (JJAS & ON), extrapolation is not a major
concern since the future projections fall almost exclusively into the range of observations
in the past.10 For example, only 0.2% of all future rainfall events (JJAS) projected in the
SSP5-8.5 scenario exceed the observed maximum of 37mm. Further, given the flat slope of
the rainfall bins, we assign the coefficient of the maximum in the past (37mm) for the 0.2%
events exceeding past observations. The same procedure is applied to rainfall in ON. For the

8 Figs. 18 and 20 in 7.1 show that projected temperatures exceed past observations particularly by the end of
the 21st century under the SSP5-8.5 scenario.
9 The estimates of the linear relationship are based on the unbinned temperature distribution, which results in
a stronger weighting of more frequent observations.
10 For details see Figs. 15 in 7.1.
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number of wet days there is no need for extrapolating values since all projected values are
within the range of the past distribution of wet days 11

Climate Change Projections

Methodology

To quantify the impact of future climate change on agricultural yields in India, we retrieve the
estimated β̂ coefficients from the updated regression Eq. 4 and apply them to the data of each
of the selected 8 climate models for the two different global warming scenarios (SSP1-2.6
and SSP5-8.5). Formally, we calculate the log of the predicted rice yield as follows:

ln(ŷi tsm) =
37∑

a=1,a �=ā

β̂a ̂rain f allaitsm +
125∑

b=5,b �=b̄

β̂b ̂wetdaysbitsm + β̂ct̂empitsm

︸ ︷︷ ︸
Monsoon (JJAS)

+
20∑

d=0,d �=d̄

β̂d ̂rain f allditsm +
60∑

e=0,e �=ē

β̂e ̂wetdayseitsm + β̂ f t̂empitsm

︸ ︷︷ ︸
Post Monsoon (ON)

+ α̂i + β̂5irrigationit=2014︸ ︷︷ ︸
District specific intercept (time-invariant)

,

(2)

where the notation is identical to Eq. 1 and complemented by the indices s and m, which
denote the global warming scenario and the underlying climate model. Hence, ln(ŷi tsm)

stands for the log of the predicted rice yield in district i in year t for the global warming
scenario s ∈ [SSP1 − 2.6, SSP5 − 8.5] as projected by climate model m. Note, that when
quantifying the impact of climate change on agricultural output, we are interested in predicted
changes in crop yield that are purely driven by changes of the climate in terms of average
daily rainfall, number of wet days and average daily temperature. We implicitly ask the
question on how would the rice yield change, if everything else remains equal expect the
climate. Hence, the predicted changes in yield neglect possible adaptation strategies as well
as technological progress in the future. Therefore, the calculation of the prediction consists
of a time-varying part and a time-invariant part. The model projections of the average daily
rainfall (JJAS & ON), the average daily temperature (JJAS & ON), as well as the number of
wet days (JJAS & ON) constitute the time-varying part. The time-invariant part consists of
an additive combination of the estimated district fixed effects α̂i and each district’s irrigation
share as of 2014. Thereby, we are able to separately predict for each of the 8 climate models
the log of the rice yield for each individual year in our reference period (1995-2014), and for
each year in the future period of 2021-2100 for both global warming scenarios. Lastly, we
transform the log of the predicted rice yield back into the actual predicted rice yield (ŷi tsm).

After having obtained ŷi tsm , we calculate the relative differences between four future peri-
ods and our reference period. In order to identify heterogeneity over time, we split the future
period 2021-2100 into four equal intervals comprising 20 years following the classification

11 For details sees Figs. 16 in 7.1.
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Fig. 2 Predicted rice yield changes. Figure 2 shows the predicted changes in rice yield (Ŷ ) based on Eq. 3.
Panel (a) - (d) display the predicted change in rice yield under SSP1-2.6 for the future periods relative to
the reference period 1995-2014. Panel (e) - (f) show the predicted change in rice yield under SSP5-8.5.
All predictions correspond to the average of the predictions of all 8 selected climate models. Data sources:
ICRISAT, IMD, CMIP6

of the sixth Assessment Report of the IPCC (2022). The years 2021-2040 correspond to the
short-term, 2041-2060 to the medium-term, 2061-2080 to the medium/long-term and 2081-
2100 to the long-term future. We compare the predicted yield for these four future periods
with our reference period covering the same number of years (1994-2014). Formally, the
predicted relative changes in crop yield are calculated as follows:

ŶiT sm =
∑T

t=T−19 ŷi tsm − ∑2014
t=1995 ŷi tm∑2014

t=1995 ŷi tm
× 100, where T ∈ [2040, 2060, 2080, 2100],

(3)
with ŶiT sm standing for the predicted relative change (in %) in crop yield in district i

in the future 20 year period T ∈ [2040, 2060, 2080, 2100] for the global warming scenario
s ∈ [SSP1 − 2.6, SSP5 − 8.5] as projected by climate model m. In our main analysis we
average the relative difference over all 8 climate models to account for general uncertainties
across these models and to derive more robust tendencies of the climate projections.

Rice Yield Predictions

Following Eq. 3, we calculate the future change in rice yield under two different global
warming scenarios. Figure 2 shows the results for all districts in our sample across India
by time period (2021-2040, 2041-2060, 2061-2080. 2081-2100) and by global warming
scenario (SSP1-2.6, SSP5-8.5).12 The results for SSP1-2.6 are presented in Panels (a) - (d),
while Panels (e) - (h) show the results for SSP5-8.5. Note that the results are averaged over
all 8 climate models.13 While the predicted change in rice yield is similar in the short run
(2021-2040) for both global warming scenarios, they strongly diverge in the long run. There
is an average increase in rice yield of 0.18% for SSP1-2.6 and 0.31% for SSP5-8.5 in the
short run relative to the reference period of 1995-2014. From the medium run onward the

12 Figs. 7.1 - 30 in 7.1 shows the results for all other crops.
13 For the spatial distribution of changes in rice yields by the model-specific projections, see Figs. 22 and 23
in 7.1.
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Fig. 3 Distribution of predicted rice yield changes. Figure 3 shows the distribution of predicted rices yield
(ŷi tsm ) based on Eq. 2 relative to the predicted mean rice yield of the reference period (1995-2014). Panel(a)
depicts the distribution for the period of 2021-2040 compared to the reference period of 1995-2014 for rice.
Panel (b) -(d) depict the distributions for the remaining periods. Blue color indicates the distribution under
SSP1-2.6 and red color the distribution under SSP5-8.5. Data sources: Data sources: ICRISAT, IMD, CMIP6

predicted rice yield becomes negative for both scenarios. While the losses in the sustainable
scenario remain moderate (-1.9%: 2041-2060; -4.2%: 2061-2080; -3.4%: 2081-2100), they
further intensify in the worst case scenario (-6.8%: 2041-2060; -14.4%: 2061-2080; -22%:
2081-2100). In the long-term of the sustainable scenario, the average reduction in rice yield
amounts to 3.4% relative to the reference period. For the worst case scenario, the predicted
rice yield is expected to decrease on average by 22% relative to the reference period. When
weighting the districts by their average rice production during the reference period, the
long run reduction in rice yield amounts to 4.4% in the sustainable scenario and to 23% in
the worst case scenario. Although the predicted impacts differ in magnitude across global
warming scenarios, they follow a similar spatial pattern. The strongest negative impacts are
expected in the northern and eastern regions. Impacts in the long-term for the sustainable
scenario range from an increase of 3.2% in Mathura (Uttar Pradesh) to a decrease of 12.1%
in North Cachar Hills (Assam). In the worst case scenario all districts are negatively affected,
with Pithora Gar (Uttarakhand) having a predicted decrease in rice yield by 34% closely
followed by North Cachar Hills with a decrease of 33.9%. With a predicted decrease of
11.5% Coimbatore in Tamil Nadu has the smallest decrease in the long run.14

14 For the annual moving averages of predicted rice yield relative to the reference period by SSP, see Figs. 31
in 7.1.
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We translate the changes in rice yield into absolute changes realtive to the average total
production during the reference period. Midnapur district in West Bengal is the district with
the strongest decrease in the long run for both scenarios. In the SSP1-2.6 scenario, the
predicted decrease in rice production amounts to 160,550 tons and to 786,132 tons in the
SSP5-8.5 scenario respectively. With an average total production of 2,611,352 tons during
the reference period Midnapur district is also the district with the largest rice production
during the reference period. In the long run, the aggregated absolute loss in rice production
for all districts amounts to 4 mio. tons in the sustainable scenario and 21 mio. tons in the
worst case scenario compared to 90 mio. tons during the reference period. For further details
on the absolute changes in predicted rice yield see Figs. 21 in 7.1.

The entire distribution of all potential outcomes in predicted changes in annual rice yield
as projected by the 8 different climate models is illustrated in Fig. 3. For the sustainable
scenario, the share of years associated with a decrease in rice yield relative to the reference
period increases from 52% in the short-run (2021-2040) to 62% in the long run (2081-2100).
In the worst case scenario, the number of years with a decrease in rice yield increases from
53% in the period of 2021-2040 to 90% in the latest period of 2081-2100. Note however,

Fig. 4 Comparison acrossmodels. Figure 4 shows distribution of the predicted changes in yield (Ŷ ) as predicted
based on Eq. 3 across India for each climate model separately. Panel(a) depicts the results for the period of
2021-2040 compared to the reference period of 1995-2014, where blue boxplots display the results under
SSP1-2,6 and red boxplots under SSP5-8.5. Triangles refer to the mean and the solid lines within the boxplots
to themedian. Panel (b) - (d) depict the results for the remaining periods. Data sources: ICRISAT, IMD, CMIP6
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that while the means of the predicted changes in rice yield diverges across the SSPs, the
variation around themean does not differ systematically. Even in the long run,where strongest
differences in weather realizations are expected, the difference in the standard deviation of
the SSP1-2.6 and SSP5-8.5 scenario is minimal. The standard deviation for the SSP1-2.6
scenario equals 15.5pp and for the SSP5-8.5 scenario 15.8pp.

The general results on predicted changes in rice yield are averaged over the 8 selected
climate models. Figure 4 depicts the results for each of the selected climate models separately
and thereby provides insights into model-specific heterogeneity in the predicted impacts of
climate change on the rice yield in India. As shown in Panel (a) of Fig. 4, there is no strong
intra- and intermodel heterogeneity in predicted rice yield changes in the short-term.However,
in the long-term, as shown in Panel (d), these differences become more pronounced. The
average model-specific decreases in rice yield for the SSP5-8.5 scenario range from 36%
(INM-CM5-0 model / Institute of Numerical Mathematics) to 8% (UKESM1-0-LL / Met
Office Hadley Centre). For the sustainable SSP1-2.6 scenario, the IPSL-CM6A-LRmodel of
the Institut Pierre Simon Laplace predicts the strongest decrease in the long-term amounting
12%. Two models (CANESM5 / Canadian Centre for Climate Modelling and Analysis and
KACE-1-0-G / National Institute of Meteorological Sciences Korea) predict a slight positive
increase in the long run under SSP1-2.6. The differences between the models are originated
in the different implementation of physical processes and the parameterization schemes for
sub-grid scale processes. Besides, this study only uses one simulation per model instead of
using an ensemble of several simulations per model. Thus, the particular simulation might
be on the upper or lower end if comparing with regard to their output for the relevant weather
variables. Taking the multi-model mean of the 8 selected models, as done in this study, is an
established way to reduce the effect of model-specific outcomes (Li 2015).

Turning to intra-model differences by globalwarming scenario, theUKESM1-0-LLmodel
is associated with the lowest difference between the two scenarios (-3.2% in SSP1-2.6 vs
-8% in SSP5-8.5). The most pronounced difference is projected by the INM-CM5-0 model,
with an average decrease in rice yield in the SSP5-8.5 scenario of 31.2pp lower than in the
sustainable SSP1-2.6 scenario (-4.8% in SSP1-2.6 vs. -36% in SSP5-8.5).

Decomposition of Climate Change Impacts

In the following, we use our empirical approach to decompose the predicted changes by
isolating the individual effects of each variable. We do this by looking at ceteris paribus
changes. Put differently, we ask the question on how would the crop yield change if only one
of the variables (e.g. rainfall in JJAS) changes over time and all other variables remain at the
level of the reference period 1995-2014. Figure 5 shows the results of this decomposition
for the long-term (2081-2100), since the aggregated changes are most pronounced for this
period. Figures 32 - 34 in 7.1 contain the results for all other periods. If only the average
daily rainfall during JJAS would change most of the crops would be positively affected by
this change (except maize), see Panel (a) of Fig. 5. However, the extent of the changes are
rather limited. Further, the general increase in the number of wet days during JJAS have
a positive impact on the crop yields (Panel (c)). The results for ceteris paribus changes in
rainfall an the number of wet days during ON suggest that these variables only have minor
impact on the changes in crop yield (Panel (b) and (d)). In turn, the projected increases in
temperature in JJAS and ON exert strong effects on the predicted rice yield. The small gains
due to additional rainfall and number of wet days during JJAS are more than offset by the
negative impact of temperature increases in ON. If only the temperature in ONwould change
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Fig. 5 Estimation results by variable (2081-2100). Figure 5 shows distribution of the predicted changes in
yield (Ŷ ) as predicted based on Eq. 3 across India for all crops and each variable separately. Panel(a) depicts the
results for the period of 2081-2100 compared to the reference period of 1995-2014, when keeping all variables
at the level of the reference period except rainfall (JJAS). Panel (b) - (d) depict the results for the remaining
variables. Blue boxplots display the results under SSP1-2,6 and red boxplots under SSP5-8.5. Triangles refer
to the mean and the solid lines within the boxplots to the median. Data sources: ICRISAT, IMD, CMIP6
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and everything else would stay equal, the predicted rice yield in the long run would decrease
on average by 12% (SSP1-2.6) and 35% (SSP5-8.5), respectively. Further, the main driving
variable for the expected increase in sugarcane yield is the average daily temperature in JJAS.

Sensitivity and Adaptation Gap

The following section describes the sensitivity of our results with respect to temperature in
ON, which is dominating the predicted changes in rice yield. In our results, the predicted
changes in rice yield are calculated with the estimates obtained from Eq. 4, with the point
estimate for temperature in ON corresponding to β̂ = −0.091 as depicted in Panel (f) of
Fig. 1. In order to account for statistical uncertainty in our results, we recalculate the predicted
changes in rice yield with respect to changes in the β̂’s for temperature in ON. Put differently,
we examine how the predicted rice yield changes, if we alter the slope of the the temperature
effect in ON. Figure 6 illustrates how the results for rice yield respond to these marginal

Fig. 6 Adaptation gap and sensitivity with respect to average daily temperature (ON). Figure 6 shows the
predicted changes in rice yield (Ŷ ) based on Eq. 3 relative to the underlying coefficient (β) for temperature in
ON. Panel (a) plots the predicted changes in rice yield for the years 2021-2040 relative to the reference period
1995-2014. Panel (b) - (d) plots the predicted relative change in rice yield for the remaining periods. The
dashed lines indicate the 95% confidence interval for temperature (ON) as estimated in Eq. 4. The circle and
square display average predicted changes in rice yield when using the initial point estimate for temperature
(ON) of -0.091. The blue-shaded and red-shaded area display the 95% range of of the district prediction under
SSP1-2.6 and SSP5-8.5 respectively. Data sources: CMIP6 and author’s calculations based on ICRISAT and
IMD
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changes in the estimated effect of temperature in ON with the x-axis indicating the β̂s and
the y-axis the resulting rice yield predictions for every district. The dashed lines represent
the 95% confidence interval of the estimated temperature effect, which ranges from −0.128
to −0.055 (and a point estimate of −0.091). Analogously to the box plots in the previous
Figures, the blue-shaded area displays the 95%-bandwidth of the prediction results for the
SSP1-2.6 scenario and the red-shaded area for the SSP5-8.5 scenario. The solid lines indicate
averaged district-predictions across India, with the circle and the square marking our results
when using the initial point estimate of −0.091 (Panel (d): -3.4% under SSP1-2.6 and -22%
under SSP5-8.5). Using these two points as starting points for the sensitivity analysis and
moving to the right on the x-axis would correspond to a flatter slope and a weakening of the
temperature effect as compared to the initial results. Vice versa, moving to the left implies a
steeper slope and a stronger negative effect of temperature in ON.15

A β̂ of −0.055, which corresponds to the the upper bound of the 95% confidence interval
of the estimated temperature effect in ON, would lead to an average increase in rice yield of
1% in the long-term under the sustainable scenario. In the worst case scenario, the average
rice yield would decrease on average by 8%. Hence, under the SSP5-8.5 scenario, even when
assuming the weakest statistically supported impact of temperature in ON on rice yield, the
negative impact of temperature in ON would still outweigh the positive gains of increasing
rainfall and an increasing number of wet days. Assuming a β̂ of −0.128, which corresponds
to the the lower bound of the 95% confidence interval of the estimated temperature effect
in ON, rice yield would decrease on average by 8% in the SSP1-2.6 scenario. In the SSP5-
8.5 scenario, the average decrease in rice yield would amount to 34%. Thus, assuming the
strongest statistically supported negative relation of temperature in ON for the sustainable
scenario (-0.128) provides the same results as when assuming the weakest statistical relation
(-0.055) in the worst case scenario (both cases are associated with an 8% decrease in rice
yield).

Finally, the sensitivity analysis provides implications in terms of adaption and mitigation.
The reduction of the slope, which is equivalent to gradually reducing the negative impact
of temperature in ON, can be interpreted as some form of successful adaptation against the
negative temperature effects. The initial results for the sustainable SSP1-2.6 scenario, which
projects the future climate in a world of successfully mitigating greenhouse gases, suggest
an average decrease in rice yield by 3.4%. In the worst case scenario (SSP5-8.5) that is
characterized by failed mitigation, one would need to cut the negative temperature effect in
ON by around 50% (from −.0091 to −0.046) in the long run to reduce the average decrease
in predicted rice yield from 22% to 3.4%, which corresponds to the predicted outcome of
the SSP1-2.6 scenario. The decreasing tendency of agricultural yield is dominated by the
temperature increase in ON. Yet, studies focusing adaption find only very limited possibil-
ities for farmers to adapt against extreme heat in the past: By comparing long-difference
estimates with short-difference estimates (Burke and Emerick 2016) conclude that even in
a technologically advanced economy such as the US, the observed adaptation counteracting
heat impacts has been very limited in the past. Wing et al. (2021) confirm theses findings at
the global level. In the case of India, past adaptations have been focused on droughts given
that the second half of the 21st century was dominated by the rainfall-reducing effect of
aerosols on the Indian monsoon accompanied by increased occurrences of droughts (Seth

15 Note that the slope of the predictions is convex due to the log-linear relationship between rice yield and
temperature in ON. 7.1 provides a more detailed explanation on the convexity of the slope.
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2019). Hence, the incorporation of past adaptation efforts against droughts might not be
meaningful for future global warming that is projected to be characterized by a simultaneous
increase in rainfall and temperature and might therefore require different adaptation strate-
gies. However, studies focusing on adaptation have come to the conclusion that adaptation
has offset 9% of lost profits in India from 1956 to 1999 (Taraz Taraz). By adapting growing
periods, approx. 5-15% of reduced impact are feasible in India (Minoli 2022). Aragon et
al. (2021) find that short-term adjustment reactions of farmers include increasing the area
planted and a change of crop mix. These and comparable adaptation mechanisms could be
difficult to implement ex-ante, if the negative temperature effects only occur at the end of the
growing season (ON), when planting decisions have been made already. Thus, the potential
for adaptation is limited underlining the importance of mitigation.

Conclusion

The agricultural sector in India is highly dependent on the annual monsoon realizations. As
projected by CMIP6 climate models, seasonal rainfall will increase due to global warming. In
our study, we find that the positive effects associated with an increase in seasonal rainfall are
insufficient to counteract the negative impacts resulting from an increase in local temperature.
Overall, we show that agricultural yield is predicted to significantly decrease in the future,
strongest in the worst case scenario. While the rice yield decreases on average by 22%
relative to the years of 1994-2014 in the SSP5-8.5 scenario, the predicted decreases in rice
yield amounts to 3.4% under the SSP1-2.6 scenario. This tendency holds for all major crops
that are grown during the monsoon in India except for sugarcane. As Zhao (2016) report,
statistical approaches as conducted in this study, have the tendency to quantify crop yield
losses on the lower end of potential deficits compared to crop models and field warming
experiments. Taking this into account, the negative anomalies might even be higher than
quantified in this study. We further show that it is especially the northern and eastern regions
in India that are associated with the largest decreases in agricultural yield. These results show
that bymitigating climate change, the losses of rice yield in India as a result of climate change
can be reduced from 22% to 3%. In the worst case scenario, when mitigation efforts were
unsuccessful, one would need to reduce the negative impact of temperature in ON by 50%
in order to reach the predicted outcome of the sustainable scenario. Hence, the results can
serve as an indication of where to prioritize adaptation efforts.

While we control for general technological progress as observed in the past, the pressure
created by future yield losses might lead to national-scale adaptation strategies (incl. tech-
nological progress) complemented by individual farmer decisions that exceed the previously
observed adaptation efficiency. These adaptation measurements could include a shift towards
climate resistant crops, a timely adaptation of growing periods or expanding the irrigation
infrastructure. Nevertheless, it is particularly challenging to adapt to temperature changes
(Taraz 2018) and studies revealed limited potential of adaptation measurements in India
(Taraz Taraz; Minoli 2022). However, the increasing temperature in combination with a loss
in biodiversity might lead to a probability of diseases and pests exceeding past observations.
Additionally, it has to be noted that the CO2 fertilization effect opposing the negative impact
of increasing temperatures is not taken into account in our modelling approach. Future work
could aim to incorporate these aspects.
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A Appendix

Data

This section complements Section “Data” in the main paper. Table 2 contains additional
descriptive statistics for all seven crops. Figure 7 plots the spatial distribution of the main
weather indices as well as rice yield, rice production for the years 1966-2014 and rice irriga-
tion for 2014. Figure 7 provides a detailed description of the climate model evaluation and
selection process.

Table 2 Descriptive statistics all crops

(1) (2) (3) (4) (5) (6) (7)
Mean SD Min Median Max N Source

1966 - 2014

Rice

-Yield (kg/ha) 1,450 927.7 0 1,297 6,547 15,176 ICRISAT

-Production (1000tons) 217.7 315.0 0 93.97 3,153 15,176 ICRISAT

-Share irrigated area 0.441 0.399 0 0.336 1 15,176 ICRISAT

Sorghum

-Yield (kg/ha) 575.1 544.8 0 534 6,531 15,158 ICRISAT

-Production (1000tons) 19.09 45.59 0 1.300 604.7 15,158 ICRISAT

-Share irrigated area 0.043 0.150 0 0 1 15,076 ICRISAT

Maize

-Yield (kg/ha) 1,344 1,102 0 1,124 11,120 15,170 ICRISAT

-Production (1000tons) 32.95 72.54 0 5.900 1,028 15,170 ICRISAT

-Share irrigated area 0.192 0.305 0 0.0190 1 15,170 ICRISAT

Pearlmillet

-Yield (kg/ha) 501.8 558.3 0 397 9,714 15,144 ICRISAT

-Production (1000tons) 21.72 58.13 0 0.300 826.8 15,172 ICRISAT

-Share irrigated area 0.056 0.165 0 0 1 15,125 ICRISAT

Cotton

-Yield (kg/ha) 119.9 191.0 0 0 5,000 15,183 ICRISAT

-Production (1000tons) 6.675 23.55 0 0 376.6 15,188 ICRISAT

-Share irrigated area 0.180 0.330 0 0 1 15,124 ICRISAT

Groundnut

-Yield (kg/ha) 745.2 600.7 0 761 8,500 15,188 ICRISAT

-Production (1000tons) 21.82 67.49 0 1.500 1,688 15,188 ICRISAT

-Share irrigated area 0.040 0.0991 0 0 1 15,188 ICRISAT

Sugarcane

-Yield (kg/ha) 4,538 3,166 0 4,502 88,625 14,957 ICRISAT

-Production (1000tons) 74.13 188.8 0 8 2,005 14,957 ICRISAT

-Share irrigated area 0.681 0.421 0 0.975 1 14,957 ICRISAT

Notes: Sample consists of a panel of 313 districts for the years 1966-2014. District boundaries are drawn as
of 1966. Sources for agricultural output from ICRISAT
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Fig. 7 Figure 7 plots the descriptive statistics of the main estimation sample as described in Section “Data”.
Panel (a) plots the average rice yield for the years 1966-2014 in kg/ha. Panel (b) the average rice production in
1000t and Panel (c) the share of irrigated area as of 2014. Panel (d) -(i) plot average daily rainfall in mm/day,
number ofwet days (>0.1mm) and average daily temperature (in ◦C) for JJAS andON.Data sources: ICRISAT,
IMD

Climate Model Selection

In this study, we use the latest generation of general circulation models that participated in
the Coupled Model Intercomparison Project phase 6 (CMIP6) and perform a detailed model
evaluation in order to identify the models that are most suitable for our study i.e. perform
best regarding the climate indices relevant for this study. The model evaluation is based on
the IMD observational data and the reference period applied is 1966-2014. In order to select
a reasonable number of climate models, we choose selection criteria that are commonly used
in the context of climate model evaluations and regarding monsoon systems. The following
criteria determine if the models are selected for the analysis in this study:

• The average rainfall during the summermonsoon season (JJAS) as well as the post season
(ON) is within one standard deviation of the observed mean.

• The average temperature during the monsoon season (JJAS) as well as the post season
(ON) is in the range of observed mean plus/minus 10%.

• The average number of wet days during the summer monsoon season (JJAS) and the post
season (ON) is within plus/minus 35% of the observed.
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Table 3 Overview of the 21 CMIP6 models

Modeling Center CMIP6 resolution
(Group) Model (A/L/O) [km]

Commonwealth Scientific and Industrial Research
Organisation (CSIRO)

ACCESS-ESM1-5 250/250/100

Alfred Wegener Institute (AWI) AWI-CM-1-1-MR 100/100/25

Beijing Climate Center, China Meteorological Adminis-
tration (BCC)

BCC-CSM2-MR 100/100/50

Chinese Academy of Meteorological Sciences (CAMS) CAMS-CSM1-0 100/100/100

Canadian Centre for Climate Modelling and Analysis
(CCCma)

CanESM5 500/500/100

National Center for Atmospheric Research (NCAR) CESM2 100/100/100

Centre National de Recherches CNRM-CM6-1 250/250/100

Météorologiques/ Centre Européen de CNRM-ESM2-1 250/250/100

Recherche et Formation Avancées en Calcul Scientifique
(CNRM-CERFACS)

EC-Earth-Consortium EC-Earth3 100/100/100

LASG, Institute of Atmospheric Physics, Chinese
Academy of Sciences (CAS)

FGOALS-g3 250/250/100

NOAA Geophysical Fluid Dynamics Laboratory
(NOAA-GFDL)

GFDL-ESM4 100/100/50

Centre for Climate Change Research (CCCR), Indian
Institute of Tropical Meteorology (IITM)

IITM-ESM 250/250/100

Institute of Numerical Mathematics (INM) INM-CM5-0 100/100/50

Institut Pierre Simon Laplace (IPSL) IPSL-CM6A-LR 250/250/100

National Institute ofMeteorological Sciences-KoreaMet.
Administration (NIMS-KMA)

KACE-1-0-G 250/250/100

JapanAgency forMarine-Earth Science and Technology/
Atmosphere and Ocean Research Institute, University of
Tokyo (MIROC)

MIROC6 250/250/100

Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-HR 100/100/50

Meteorological Research Institute (MRI) MRI-ESM2-0 100/100/100

Nanjing University of Information Science and Technol-
ogy (NUIST)

NESM3 250/2.5/100

Ministry of Science and Technology (MOST), National
Center for High-performance Computing (NCHC)

TAIESM1 100/100/100

Met Office Hadley Centre (MOHC) UKESM1-0-LL 250/250/100

Notes: CMIP6 models with the corresponding Modeling center and the native grid resolution (Atmo-
sphere/Land/Ocean)

The results for the individual models and quantitative details can be seen in Tables 4, 5,
6, 7, 8 and 9. Since the models have undergone bias-correction aiming at optimizing the data
with regard to mean rainfall and temperature, the model results are similar for mean rainfall
and temperature. On the other hand, the results for the number of wet days reveal a wider
spread since the bias correction was not applied for this index. Thus, the model selection is
particularly determined by the models’ performance regarding wet days.

The average rainfall in India during the summer monsoon is according to observation in
the range of 868.7 plus/minus 78.3mm. All of the 21 CMIP6 models are able to capture
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Table 4 Average seasonal rainfall (JJAS)

Models Mean (mm) SD (mm) RMSE (mm) RMSE/tot

IMD observations 868.7 78.3 − −
ACCESS-ESM1-5 800.7 264.6 226.9 0.261

AWI-CM-1-1-MR 868.1 94.7 218.3 0.251

BCC-CSM2-MR 841.7 88.0 215.9 0.249

CAMS-CSM1-0 878.1 83.1 217.2 0.250

CANESM5 821.2 263.4 219.6 0.253

CESM2 841.6 190.3 208.6 0.240

CNRM-CM6-1 849.1 118.7 215.9 0.249

CNRM-ESM2-1 836.7 138.4 217.2 0.250

EC-EARTH3 855.4 158.6 218.4 0.251

FGOALS-G3 850.4 214.9 215.9 0.249

GFDL-ESM4 839.3 133.2 219.6 0.253

IITM-ESM 863.2 128.3 217.2 0.250

INM-CM5-0 833.6 129.6 214.7 0.247

IPSL-CM6A-LR 852.2 123.3 219.6 0.253

KACE-1-0-G 850.3 267.8 214.7 0.247

MIROC6 847.8 101.8 213.5 0.246

MPI-ESM1-2-HR 878.2 131.2 222.0 0.256

MRI-ESM2-0 838.4 242.2 222.0 0.256

NESM3 870.7 124.5 218.4 0.251

TAIESM1 854.7 122.1 219.6 0.253

UKESM1-0-LL 839.1 249.3 217.2 0.250

multi-model-mean 848.1 160.4 217.3 0.251

multi-model-mean (best) 841.4 193.8 219.6 0.3

Notes: Evaluation of CMIP6 models results for average daily rainfall (June-September) in comparison to the
IMD observations. Besides, the ensemble mean of all models as well as of the selected 8 models are given.
Presented are the mean average seasonal rainfall for JJAS, the standard deviation (SD) as well as the absolute
and relative root mean square error (RMSE)

Table 5 Number of wet days
(JJAS)

Models Mean SD RMSE RMSE/tot

IMD observations 81.1 5.2 − −
ACCESS-ESM1-5 53.5 7.1 32.4 0.400

AWI-CM-1-1-MR 47.3 4.9 38.0 0.469

BCC-CSM2-MR 47.7 3.9 37.7 0.465

CAMS-CSM1-0 49.4 4.5 36.0 0.444

CANESM5 53.0 6.7 33.0 0.407

CESM2 46.3 9.3 38.9 0.480

CNRM-CM6-1 47.1 6.4 38.0 0.469

CNRM-ESM2-1 45.1 7.4 40.1 0.494

EC-EARTH3 38.1 6.0 47.1 0.581

FGOALS-G3 49.4 6.1 36.5 0.450

GFDL-ESM4 46.6 6.6 38.7 0.477
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Table 5 continued Models Mean SD RMSE RMSE/tot

IITM-ESM 53.3 5.8 32.4 0.400

INM-CM5-0 57.8 5.5 28.2 0.348

IPSL-CM6A-LR 59.3 7.5 26.9 0.332

KACE-1-0-G 53.2 10.1 32.3 0.398

MIROC6 45.6 5.2 39.5 0.487

MPI-ESM1-2-HR 48.9 5.7 36.7 0.453

MRI-ESM2-0 47.2 8.6 37.9 0.467

fNESM3 55.4 5.5 30.2 0.372

TAIESM1 46.6 6.6 38.7 0.477

UKESM1-0-LL 53.0 9.7 32.7 0.403

multi-model-mean 49.7 6.6 35.8 0.441

multi-model-mean (best) 54.8 7.2 31.0 0.382

Notes: CMIP6 evaluation results for the number of wet days (June-
September) in comparison to the IMD observations. Besides, the
ensemble mean of all models as well as of the selected 8 models are
given. Presented are the average number of wet days for JJAS, its stan-
dard deviation (SD) as well as its absolute and relative root mean square
error (RMSE)

Table 6 Average daily temperature (JJAS)

Models Mean (°C) SD (°C) RMSE (°C) RMSE/tot

IMD observations 27.82 0.45 − −
ACCESS-ESM1-5 26.61 0.43 4.54 0.163

AWI-CM-1-1-MR 26.63 0.40 4.53 0.163

BCC-CSM2-MR 26.62 0.28 4.56 0.164

CAMS-CSM1-0 26.61 0.34 4.51 0.162

CANESM5 26.52 0.62 4.68 0.168

CESM2 26.71 0.48 4.52 0.162

CNRM-CM6-1 26.63 0.37 4.52 0.162

CNRM-ESM2-1 26.70 0.40 4.54 0.163

EC-EARTH3 26.54 0.39 4.58 0.165

FGOALS-G3 26.67 0.29 4.56 0.164

GFDL-ESM4 26.64 0.37 4.56 0.164

IITM-ESM 26.59 0.47 4.53 0.163

INM-CM5-0 26.60 0.39 4.51 0.162

IPSL-CM6A-LR 26.60 0.48 4.55 0.164

KACE-1-0-G 26.56 0.36 4.54 0.163

MIROC6 26.71 0.42 4.49 0.161

MPI-ESM1-2-HR 26.56 0.37 4.51 0.162

MRI-ESM2-0 26.60 0.38 4.57 0.164

NESM3 26.65 0.32 4.53 0.163

TAIESM1 26.72 0.44 4.55 0.164
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Table 6 continued

Models Mean (°C) SD (°C) RMSE (°C) RMSE/tot

UKESM1-0-LL 26.64 0.38 4.55 0.164

multi-model-mean 26.62 0.40 4.54 0.163

multi-model-mean (best) 26.6 0.4 4.6 0.2

Notes: CMIP6 evaluation results for average daily temperature (June-September) in comparison to the IMD
observations. Besides, the ensemble mean of all models as well as of the selected 8 models are given. Presented
are the average daily temperature for JJAS, its standard deviation (SD) as well as its absolute and relative
root mean square error (RMSE)

the mean rainfall within the range of plus/minus one standard deviation. The multi-model
mean is 848.7mm for the 21 models and 841.4mm for the selected 8 models with best
monsoon performance. These remarkably good results for rainfall simulation data are a

Table 7 Average rainfall (ON)

Models Mean (mm) SD (mm) RMSE (mm) RMSE/tot

IMD observations 108.0 26.4 − −
ACCESS-ESM1-5 108.9 52.8 29.0 0.261

AWI-CM-1-1-MR 109.0 37.9 30.5 0.282

BCC-CSM2-MR 98.3 37.8 26.8 0.248

CAMS-CSM1-0 110.9 40.2 29.0 0.269

CANESM5 107.5 29.8 27.4 0.254

CESM2 102.8 42.8 26.9 0.249

CNRM-CM6-1 107.0 40.8 26.4 0.244

CNRM-ESM2-1 102.1 40.7 26.7 0.247

EC-EARTH3 105.5 44.9 24.8 0.230

FGOALS-G3 108.7 46.7 27.4 0.254

GFDL-ESM4 102.6 39.3 27.5 0.255

IITM-ESM 105.5 50.2 27.3 0.253

INM-CM5-0 106.0 51.5 26.7 0.247

IPSL-CM6A-LR 110.5 30.4 29.0 0.269

KACE-1-0-G 112.4 50.1 29.3 0.271

MIROC6 100.6 45.6 29.7 0.275

MPI-ESM1-2-HR 102.9 46.1 27.2 0.252

MRI-ESM2-0 101.2 45.0 28.5 0.264

NESM3 109.9 33.7 30.7 0.284

TAIESM1 105.4 33.5 27.0 0.250

UKESM1-0-LL 103.7 48.2 26.1 0.242

multi-model-mean 105.8 42.3 27.8 0.257

multi-model-mean (best) 108.1 43.3 28.2 0.261

Notes: CMIP6 evaluation results for average daily rainfall (October-November) in comparison to the IMD
observations. Besides, the ensemble mean of all models as well as of the selected 8 models are given. Presented
are the average daily rainfall (ON), its standard deviation (SD) as well as its absolute and relative root mean
square error (RMSE)
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Table 8 Number of wet days
(ON)

Models Mean SD RMSE RMSE/tot

IMD observations 14.0 3.0 − −
ACCESS-ESM1-5 10.2 2.4 6.7 0.479

AWI-CM-1-1-MR 9.0 2.5 7.8 0.557

BCC-CSM2-MR 8.4 2.0 8.1 0.579

CAMS-CSM1-0 9.3 2.7 8.3 0.593

CANESM5 12.4 2.5 4.7 0.336

CESM2 7.7 2.5 8.8 0.629

CNRM-CM6-1 8.8 2.4 7.8 0.557

CNRM-ESM2-1 8.3 2.6 8.0 0.571

EC-EARTH3 6.0 2.2 10.6 0.757

FGOALS-G3 9.9 2.8 7.4 0.529

GFDL-ESM4 8.2 2.2 8.4 0.600

IITM-ESM 9.2 2.4 8.0 0.571

INM-CM5-0 9.9 3.5 6.7 0.479

IPSL-CM6A-LR 11.2 2.8 5.3 0.379

KACE-1-0-G 10.1 3.0 7.3 0.521

MIROC6 7.7 2.1 9.3 0.664

MPI-ESM1-2-HR 8.7 2.4 7.9 0.564

MRI-ESM2-0 8.2 2.3 8.3 0.593

NESM3 11.3 3.3 5.7 0.407

TAIESM1 8.5 2.4 8.6 0.614

UKESM1-0-LL 10.2 2.7 6.9 0.493

multi-model-mean 9.2 2.6 7.6 0.543

multi-model-mean (best) 10.6 2.8 6.4 0.457

Notes: CMIP6 evaluation results for the number of wet days (October-
November) in comparison to the IMD observations. Besides, the
ensemble mean of all models as well as of the selected 8 models are
given. Presented are the number of wet day (ON), its standard deviation
(SD) as well as its absolute and relative root mean square error (RMSE)

result of the bias-correction. The not bias-corrected CMIP6 models have a general tendency
to underestimate the observed mean (authorname 2021).

The results for the average temperature during the summer monsoon season in India are
revealing a negative bias of 1.2◦C compared to the the IMD mean for June to September
of 27.8 plus/minus 0.4◦C (multi-model mean for the 21 CMIP6 models: 26.6◦C and for
the 8 models with best performance also: 26.6◦C). This bias is a result of the different
reference data that was applied in the context of the bias correction and the data basis for
the model evaluation in this study: While the bias correction optimizes the data with regard
to the W5E5 reanalysis data (Lange 2019), we use the IMD data in this study for the model
evaluation. The W5E5 data set has been created on the basis of 0.5◦ aggregated ERA5
reanalysis data (Hersbach 2020) in combination with the WFDE5 dataset (WATCH Forcing
data methodology applied to ERA5 reanalysis data; (Cucchi 2020; Weedon 2010)) as well
as the precipitation data from version 2.3 of the Global Precipitation Climatology Project
(GPCP, (Adler 2003)). The reason for the strong difference in mean temperature in theW5E5
reanalysis data set and the IMD observation data set must result from the difference in the
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Table 9 Average daily
temperature (ON)

Models Mean (°C) SD (°C) RMSE (°C) RMSE/tot

IMD observations 23.76 0.54 − −
ACCESS-ESM1-5 22.09 0.42 5.27 0.222

AWI-CM-1-1-MR 22.11 0.47 5.25 0.221

BCC-CSM2-MR 22.22 0.44 5.23 0.220

CAMS-CSM1-0 22.13 0.40 5.22 0.220

CANESM5 22.03 0.70 5.29 0.223

CESM2 22.22 0.63 5.24 0.221

CNRM-CM6-1 22.07 0.50 5.25 0.221

CNRM-ESM2-1 22.21 0.53 5.26 0.221

EC-EARTH3 22.09 0.65 5.27 0.222

FGOALS-G3 22.12 0.45 5.23 0.220

GFDL-ESM4 22.18 0.57 5.25 0.221

IITM-ESM 22.18 0.50 5.23 0.220

INM-CM5-0 22.12 0.39 5.20 0.219

IPSL-CM6A-LR 22.08 0.54 5.26 0.221

KACE-1-0-G 22.05 0.48 5.24 0.221

MIROC6 22.18 0.49 5.22 0.220

MPI-ESM1-2-HR 22.10 0.48 5.25 0.221

MRI-ESM2-0 22.22 0.51 5.28 0.222

NESM3 22.16 0.39 5.21 0.219

TAIESM1 22.08 0.55 5.30 0.223

UKESM1-0-LL 22.17 0.47 5.23 0.220

multi-model-mean 22.13 0.48 5.25 0.221

multi-model-mean (best) 22.11 0.49 5.24 0.221

Notes: CMIP6 evaluation results for average daily temperature
(October-November) in comparison to the IMD observations. Besides,
the ensemble mean of all models as well as of the selected 8 models are
given. Presented are the average daily temperature (ON), its standard
deviation (SD) as well as its absolute and relative root mean square error
(RMSE)

methods applied in order to obtain the temperature data set. However, note that in our analysis
we are interested in changes over time within climate projections. Hence, a general and time
consistent underestimation of the number of wet days and temperature does not impact our
results.

Regarding the number of wet days, the CMIP6 models clearly tend to underestimate the
number of rainfall days compared to the historic mean of 1966-2014. Only 8 models are able
to capture the number of wet days within the range of the average number of observed wet
days of 81.1 plus/minus 35%. The 21 CMIP6 models reveal on average 49.8 days, while
the multi-model mean is 54.8 wet days and thus closer to the observed mean when only the
models that fulfill the selection criteria are chosen. Again by comparing two time periods, a
time consistent bias cancels. Finally, the following 8models fulfill the listed selection criteria:
ACCESS-ESM1-5, CANESM5, IITM-ESM, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G,
NESM3, UKESM1-0-LL.
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Empirical Approach

This section complements Section “Empirical Approach” in themain paper. Figure 8 summa-
rizes our approach. Equation 4 provides the updated regression approachwith the temperature
bins replaced by a linear term. Figures 9, 10, 11, 12, 13 and 14 show the estimated coefficients
of the weather variables for the respective crop yield.

ln(yit ) =
37∑

a=1,a �=ā

βarain f allait +
121∑

b=5,b �=b̄

βbwetdaysbit + βctempit

︸ ︷︷ ︸
Monsoon (JJAS)

+
20∑

d=0,d �=d̄

βdrain f alldit +
57∑

e=0,e �=ē

βewetdayseit + β f tempit

︸ ︷︷ ︸
Post Monsoon (ON)

+β5irrigationit + αi + γt + εi t ,

(4)

Fig. 8 This figure visualizes the input data, the working procedure and the output
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Fig. 9 Estimation results for sorghum.The plotted coefficients refer to the coefficients β̂ as estimated according
to Eq. 1. Red lines indicate the respective 95% confidence interval. The vertical red line refers to the omitted
bin, which corresponds to the sample mean. Panel (a) depicts the results for average daily rainfall for the
months of June, July, August and September (JJAS) on sorghum yield. Panel (b) - (f) depict the results for the
remaining variables. Standard errors are clustered at the state level. The regression further includes district
and year fixed effects, which are not reported. The blue colored bars display the binned distribution of the
respective variables based on the the years 1966-2014. Data sources: ICRISAT, IMD, CMIP6
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Fig. 10 Estimation results for maize. The plotted coefficients refer to the coefficients β̂ as estimated according
to Eq. 1. Red lines indicate the respective 95% confidence interval. The vertical red line refers to the omitted
bin, which corresponds to the sample mean. Panel (a) depicts the results for average daily rainfall for the
months of June, July, August and September (JJAS) on maize yield. Panel (b) - (f) depict the results for the
remaining variables. Standard errors are clustered at the state level. The regression further includes district
and year fixed effects, which are not reported. The blue colored bars display the binned distribution of the
respective variables based on the the years 1966-2014. Data sources: ICRISAT, IMD, CMIP6
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Fig. 11 Estimation results for pearlmillet. The plotted coefficients refer to the coefficients β̂ as estimated
according to Eq. 1. Red lines indicate the respective 95% confidence interval. The vertical red line refers to the
omitted bin, which corresponds to the sample mean. Panel (a) depicts the results for average daily rainfall for
the months of June, July, August and September (JJAS) on pearlmillet yield. Panel (b) - (f) depict the results
for the remaining variables. Standard errors are clustered at the state level. The regression further includes
district and year fixed effects, which are not reported. The blue colored bars display the binned distribution of
the respective variables based on the the years 1966-2014. Data sources: ICRISAT, IMD, CMIP6
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Fig. 12 Estimation results for cotton. The plotted coefficients refer to the coefficients β̂ as estimated according
to Eq. 1. Red lines indicate the respective 95% confidence interval. The vertical red line refers to the omitted
bin, which corresponds to the sample mean. Panel (a) depicts the results for average daily rainfall for the
months of June, July, August and September (JJAS) on cotton yield. Panel (b) - (f) depict the results for the
remaining variables. Standard errors are clustered at the state level. The regression further includes district
and year fixed effects, which are not reported. The blue colored bars display the binned distribution of the
respective variables based on the the years 1966-2014. Data sources: ICRISAT, IMD, CMIP6
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Fig. 13 Estimation results for groundnut. The plotted coefficients refer to the coefficients β̂ as estimated
according to Eq. 1. Red lines indicate the respective 95% confidence interval. The vertical red line refers to the
omitted bin, which corresponds to the sample mean. Panel (a) depicts the results for average daily rainfall for
the months of June, July, August and September (JJAS) on groundnut yield. Panel (b) - (f) depict the results
for the remaining variables. Standard errors are clustered at the state level. The regression further includes
district and year fixed effects, which are not reported. The blue colored bars display the binned distribution of
the respective variables based on the the years 1966-2014. Data sources: ICRISAT, IMD, CMIP6
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Fig. 14 Estimation results for sugarcane. The plotted coefficients refer to the coefficients β̂ as estimated
according to Eq. 1. Red lines indicate the respective 95% confidence interval. The vertical red line refers to the
omitted bin, which corresponds to the sample mean. Panel (a) depicts the results for average daily rainfall for
the months of June, July, August and September (JJAS) on sugarcane yield. Panel (b) - (f) depict the results
for the remaining variables. Standard errors are clustered at the state level. The regression further includes
district and year fixed effects, which are not reported. The blue colored bars display the binned distribution of
the respective variables based on the the years 1966-2014. Data sources: ICRISAT, IMD, CMIP6

Prediction

This section complements Section “Climate Change Projections” in the main paper. Figures
15, 16, 17, 18, 19 and 20 show the coefficients of the weather variables for rice yield and
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Fig. 15 Estimation results for rice and projected average rainfall (JJAS & ON) distributions. Figure 15 shows
the plotted coefficients refer to the coefficients β̂ as estimated according to Eq. 1. Red lines indicate the
respective 95% confidence interval. The vertical red line refers to the omitted bin, which corresponds to the
sample mean. All Panels display the results for the average daily rainfall for the months of June, July, August
and September (JJAS) and October and November (ON) on rice yield. Standard errors are clustered at the state
level. The regression further includes district and year fixed effects, which are not reported. The blue colored
bars display the binned distribution of the respective variables based on the the years 1966-2014. Panel (a)
depicts the projected wet days (JJAS) distribution for the reference period. Panel (b) - (e) depict the projections
for the future periods under under SSP1-2.6. Data sources: ICRISAT, IMD, CMIP6

Fig. 16 Estimation results for rice and projected number of wet days (JJAS & ON) distributions. Figure 16
shows the plotted coefficients refer to the coefficients β̂ as estimated according to Eq. 1. Red lines indicate the
respective 95% confidence interval. The vertical red line refers to the omitted bin, which corresponds to the
sample mean. All Panels display the results for the number of wet days for the months of June, July, August
and September (JJAS) and October and November (ON) on rice yield. Standard errors are clustered at the state
level. The regression further includes district and year fixed effects, which are not reported. The blue colored
bars display the binned distribution of the respective variables based on the the years 1966-2014. Panel (a)
depicts the projected wet days (JJAS) distribution for the reference period. Panel (b) - (e) depict the projections
for the future periods under under SSP1-2.6. Data sources: ICRISAT, IMD, CMIP6
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the respective projections in order to calculate the predicted rice yield under SSP1-2.6 and
SSP5-8.5.

Fig. 17 Estimation results for rice and projected average temperature (JJAS) distributions (SSP1-2.6). The
plotted coefficients refer to the coefficients β̂ as estimated according to Eq. 1. Red lines indicate the respective
95% confidence interval. The vertical red line refers to the omitted bin, which corresponds to the sample
mean. All Panels display the results for average daily temperature for the months of June, July, August and
September (JJAS) on rice yield. Standard errors are clustered at the state level. The regression further includes
district and year fixed effects, which are not reported. The blue colored bars display the binned distribution of
the respective variables based on the the years 1966-2014. Panel (a) depicts the projected temperature (JJAS)
distribution for the reference period. Panel (b) - (e) depict the projections for the future periods under under
SSP1-2.6. Data sources: ICRISAT, IMD, CMIP6
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Fig. 18 Estimation results for rice and projected average temperature (JJAS) distributions (SSP5-8.5). The
plotted coefficients refer to the coefficients β̂ as estimated according to Eq. 1. Red lines indicate the respective
95% confidence interval. The vertical red line refers to the omitted bin, which corresponds to the sample
mean. All Panels display the results for average daily temperature for the months of June, July, August and
September (JJAS) on rice yield. Standard errors are clustered at the state level. The regression further includes
district and year fixed effects, which are not reported. The blue colored bars display the binned distribution of
the respective variables based on the the years 1966-2014. Panel (a) depicts the projected temperature (JJAS)
distribution for the reference period. Panel (b) - (e) depict the projections for the future periods under under
SSP5-8.5. Data sources: ICRISAT, IMD, CMIP6
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Fig. 19 Estimation results for rice and projected average temperature (ON) distributions (SSP1-2.6). The
plotted coefficients refer to the coefficients β̂ as estimated according to Eq. 1. Red lines indicate the respective
95% confidence interval. The vertical red line refers to the omitted bin, which corresponds to the sample mean.
All Panels display the results for average daily temperature for the months of October and November (ON)
on rice yield. Standard errors are clustered at the state level. The regression further includes district and year
fixed effects, which are not reported. The blue colored bars display the binned distribution of the respective
variables based on the the years 1966-2014. Panel (a) depicts the projected temperature (ON) distribution for
the reference period. Panel (b) - (e) depict the projections for the future periods under under SSP1-2.6. Data
sources: ICRISAT, IMD, CMIP6
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Fig. 20 Estimation results for rice and projected average temperature (ON) distributions (SSP5-8.5). The
plotted coefficients refer to the coefficients β̂ as estimated according to Eq. 1. Red lines indicate the respective
95% confidence interval. The vertical red line refers to the omitted bin, which corresponds to the sample mean.
All Panels display the results for average daily temperature for the months of October and November (ON)
on rice yield. Standard errors are clustered at the state level. The regression further includes district and year
fixed effects, which are not reported. The blue colored bars display the binned distribution of the respective
variables based on the the years 1966-2014. Panel (a) depicts the projected temperature (ON) distribution for
the reference period. Panel (b) - (e) depict the projections for the future periods under under SSP5-8.5. Data
sources: ICRISAT, IMD, CMIP6
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Prediction Results

This section complements Section “Climate Change Projections” in themain paper. Figure 21
plots the absolute changes in predicted rice yield. Figure 22 and 23 plot the model specific
predictions in rice yield changes for the long-term. Figures 24, 25, 26, 27, 28, 29 and 30
show the results for changes in predicted yield, averaged across all 8 models, for all other
crops than rice. Figure 31 plots the annual moving average of predicted rice yield relative to
the reference period.

Fig. 21 Predicted rice production changes (evaluated at total production 1995 - 2014). Figure 21 shows the
predicted changes in total rice production evaluated at the average district rice production (in 1000t) during the
reference period (1995-2014). Panel (a) - (d) display the predicted change in rice production under SSP1-2.6
for the future periods relative to the reference period 1995-2014. Panel (e) - (f) show the predicted change in
rice production under SSP5-8.5. All predictions correspond to the average of the predictions of all 8 selected
climate models. Data sources: ICRISAT, IMD, CMIP6

Fig. 22 SSP1-2.6: Predicted rice yield changes (2081 - 2100). Figure 22 shows the predicted changes in rice
yield (Ŷ ) based on Eq. 3 for each climate model separately in the long-term (2081-2100). Panel (a)displays
the predicted change in rice yield under SSP1-2.6 as projected by the ACCES-ESM1-5 model. Panel (b) - (h)
show the predicted changes in rice yield under SSP1-2.6 as projected by the remaining models. All predictions
correspond to the average of the predictions of all 8 selected climate models. Data sources: ICRISAT, IMD,
CMIP6
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Fig. 23 SSP5-8.5:Predicted rice yield changes (2081 - 2100). Figure 23 shows the predicted changes in rice
yield (Ŷ ) based on Eq. 3 for each climate model separately in the long-term (2081-2100). Panel (a)displays
the predicted change in rice yield under SSP5-8.5 as projected by the ACCES-ESM1-5 model. Panel (b) - (h)
show the predicted changes in rice yield under SSP5-8.5 as projected by the remaining models. All predictions
correspond to the average of the predictions of all 8 selected climate models. Data sources: ICRISAT, IMD,
CMIP6

Fig. 24 Comparison across crops. Figure 24 shows the distribution of the predicted changes in yield (Ŷ ) as
predicted based on Eq. 3 across India for each crop separately. Panel(a) depicts the results for the period of
2021-2040 compared to the reference period of 1995-2014, where blue boxplots display the results under
SSP1-2,6 and red boxplots under SSP5-8.5. Triangles refer to the mean and the solid lines within the boxplots
to themedian. Panel (b) - (d) depict the results for the remaining periods. Data sources: ICRISAT, IMD, CMIP6
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Fig. 25 Predicted sorghum yield changes. Figure 25 shows the predicted changes in sorghum yield (Ŷ ) based
on Eq. 3. Panel (a) - (d) display the predicted change in sorghum yield under SSP1-2.6 for the future periods
relative to the reference period 1995-2014. Panel (e) - (f) show the predicted change in sorghum yield under
SSP5-8.5. All predictions correspond to the average of the predictions of all 8 selected climate models. Data
sources: ICRISAT, IMD, CMIP6

Figure 24 shows the average predicted changes across crops by global warming scenario
relative to the period of 1995-2014. In the short run there is no significant difference for all
crops between the two SSPs. Again the differences become more pronounced in the long-
term, with all crops decreasing except sugarcane. In the long run sugarcane yield is predicted
to increase on average by 8.2% (SSP1-2.6) or 25.6% (SSP5-8.5) respectively. Sorghum
yield is predicted to increase on average by 0.9% (SSP1-2.6) and decrease by 8.8% (SSP5-

Fig. 26 Predicted maize yield changes. Figure 26 shows the predicted changes in maize yield (Ŷ ) based on
Eq. 3. Panel (a) - (d) display the predicted change in maize yield under SSP1-2.6 for the future periods relative
to the reference period 1995-2014. Panel (e) - (f) show the predicted change in maize yield under SSP5-8.5.
All predictions correspond to the average of the predictions of all 8 selected climate models. Data sources:
ICRISAT, IMD, CMIP6
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Fig. 27 Predicted pearlmillet yield changes. Figure 27 shows the predicted changes in pearlmillet yield (Ŷ )
based on Eq. 3. Panel (a) - (d) display the predicted change in pearlmillet yield under SSP1-2.6 for the future
periods relative to the reference period 1995-2014. Panel (e) - (f) show the predicted change in pearlmillet
yield under SSP5-8.5. All predictions correspond to the average of the predictions of all 8 selected climate
models. Data sources: ICRISAT, IMD, CMIP6

8.5). Pearlmillet provides the biggest difference between the SSPs in the long-term, with a
predicted decrease in yield of on average 5.4% under the SSP1-2.6 scenario and 27.7% under
the SSP5-8.5 scenario.

Fig. 28 Predicted cotton yield changes. Figure 28 shows the predicted changes in cotton yield (Ŷ ) based on
Eq. 3. Panel (a) - (d) display the predicted change in cotton yield under SSP1-2.6 for the future periods relative
to the reference period 1995-2014. Panel (e) - (f) show the predicted change in cotton yield under SSP5-8.5.
All predictions correspond to the average of the predictions of all 8 selected climate models. Data sources:
ICRISAT, IMD, CMIP6
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Fig. 29 Predicted groundnut yield changes. Figure 29 shows the predicted changes in groundnut yield (Ŷ )
based on Eq. 3. Panel (a) - (d) display the predicted change in groundnut yield under SSP1-2.6 for the future
periods relative to the reference period 1995-2014. Panel (e) - (f) show the predicted change in groundnut
yield under SSP5-8.5. All predictions correspond to the average of the predictions of all 8 selected climate
models. Data sources: ICRISAT, IMD, CMIP6

Fig. 30 Predicted sugarcane yield changes. Figure 30 shows the predicted changes in sugarcane yield (Ŷ )
based on Eq. 3. Panel (a) - (d) display the predicted change in sugarcane yield under SSP1-2.6 for the future
periods relative to the reference period 1995-2014. Panel (e) - (f) show the predicted change in sugarcane yield
under SSP5-8.5. All predictions correspond to the average of the predictions of all 8 selected climate models.
Data sources: ICRISAT, IMD, CMIP6

Decomposition of Climate Change Impacts

This section complements Section “Decomposition of Climate Change Impacts” in the main
paper. Figures 32, 33 and 34 show the prediction results for ceteris paribus changes in the
projections of the different weather variables.

Sensitivity of Results

The following section provides an explanation of the convexity of the slope of Fig. 6, which
illustrates the sensitivity of the relative changes in rice yield predictions with respect to tem-
perature in ON. In the initial prediction results, we compare the predicted rice yield of a future
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Fig. 31 Moving averages by SSP. Figure 31 shows the moving averages with 5 leads and lags in predicted
rices yield (ŷi tsm ) based on Eq. 2 averaged across all 8 climate models and relative to the predicted mean rice
yield of the reference period (1995-2014). The blue-shaded and red-shaded area display the 95% range of of
the district prediction under SSP1-2.6 and SSP5-8.5 respectively. The lines refer to the annual average across
all districts in India. Data sources: CMIP6 and author’s estimated coefficients based on ICRISAT and IMD
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Fig. 32 Estimation results by variable (2021-2040). Figure 32 shows distribution of the predicted changes in
yield (Ŷ ) as predicted based on Eq. 3 across India for all crops and each variable separately. Panel(a) depicts the
results for the period of 2021-2040 compared to the reference period of 1995-2014, when keeping all variables
at the level of the reference period except rainfall (JJAS). Panel (b) - (d) depict the results for the remaining
variables. Blue boxplots display the results under SSP1-2,6 and red boxplots under SSP5-8.5. Triangles refer
to the mean and the solid lines within the boxplots to the median. Data sources: ICRISAT, IMD, CMIP6
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Fig. 33 Estimation results by variable (2041-2060). Figure 33 shows distribution of the predicted changes in
yield (Ŷ ) as predicted based on Eq. 3 across India for all crops and each variable separately. Panel(a) depicts the
results for the period of 2041-2060 compared to the reference period of 1995-2014, when keeping all variables
at the level of the reference period except rainfall (JJAS). Panel (b) - (d) depict the results for the remaining
variables. Blue boxplots display the results under SSP1-2,6 and red boxplots under SSP5-8.5. Triangles refer
to the mean and the solid lines within the boxplots to the median. Data sources: ICRISAT, IMD, CMIP6
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Fig. 34 Estimation results by variable (2061-2080). Figure 34 shows distribution of the predicted changes in
yield (Ŷ ) as predicted based on Eq. 3 across India for all crops and each variable separately. Panel(a) depicts the
results for the period of 2061-2080 compared to the reference period of 1995-2014, when keeping all variables
at the level of the reference period except rainfall (JJAS). Panel (b) - (d) depict the results for the remaining
variables. Blue boxplots display the results under SSP1-2,6 and red boxplots under SSP5-8.5. Triangles refer
to the mean and the solid lines within the boxplots to the median. Data sources: ICRISAT, IMD, CMIP6
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period with the reference period (see Eq. 3 for details). For reasons of simplicity, we assume
two periods, where period 1 refers to the reference period and period 2 to the future period.
Equation 5 shows for the reference period, how the log of the predicted rice yield (ln(ŷ1))
can be split in two parts. The first part covers all other variables apart from temperature in ON
and their coefficients such as rainfall, number of wet days and temperature in JJAS (RAI N1).
The second part represents the predicted impact of temperature in ON, which depends on
the estimated coefficient (β) and the projected temperature itself (T EMP1). Next, we can
transform the log of the predicted yield into the actual predicted rice yield (ŷ1).

ln(ŷ1) = RAI N1 + β × T EMP1

⇔ ŷ1 = eRAI N1+β×T EMP1 (5)

Equation 6 denotes the same procedure for the future period.

ln(ŷ2) = RAI N2 + β × T EMP2

⇔ ŷ2 = eRAI N2+β×T EMP2 (6)

The relative changes in predicted rice yield between the reference period and the future
period can be written and simplified as follows:

Ŷ = ŷ2 − ŷ1
ŷ1

= eRAI N2+β×T EMP2 − eRAI N1+β×T EMP1

eRAI N1+β×T EMP1
(7)

= eRAI N2+β×T EMP2

eRAI N1+β×T EMP1
− 1 (8)

= eRAI N2+β×T EMP2−(RAI N1+β×T EMP1) − 1 (9)

= e(RAI N2−RAI N1)+β×(T EMP2−T EMP1) − 1 (10)

In a next step, we differentiate Eq. 10 with respect to β, which denotes the estimated
temperature effect in ON. This yields Eq. 11.

Ŷ ′(β) = (T EMP2 − T EMP1) × e(RAI N2−RAI N1)+(T EMP2−T EMP1)×β (11)

It is evident, that the slope is steeper the larger the difference between T EMP2 and
T EMP1. In order to check if the function is convex or concave, we take the second derivative,
where Y ′′(β) > 0 would imply convexity. The second derivative is given by Eq. 12.

Ŷ ′′(β) = (T EMP2 − T EMP1)
2

︸ ︷︷ ︸
>0, if T EMP2 �=T EMP1

× e(RAI N2−RAI N1)+(T EMP2−T EMP1)×β
︸ ︷︷ ︸

>0
︸ ︷︷ ︸

>0, if T EMP2 �=T EMP1

(12)

The results show indeed that Y ′′(β) > 0 as long as T EMP2 �= T EMP1. Hence, the
sensitivity of the relative changes in rice yield predictions with respect to temperature in ON
is convex for both global warming scenarios (SSP1-2.6 and SSP5-8.5). However, due to the
smaller future increase in temperature in the sustainable scenario (blue-shaded area in Fig.
6), the convexity is less pronounced than in the worst case scenario (red-shaded area). This
also explains, why the plot in the worst case scenario becomes more convex over time, since
the projected future temperature in ON becomes higher on average over time.
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