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ABSTRACT

Synchronization holds a significant role, notably within chaotic systems, in various contexts where the coordinated behavior of systems
plays a pivotal and indispensable role. Hence, many studies have been dedicated to investigating the underlying mechanism of synchroniza-
tion of chaotic systems. Networks with time-varying coupling, particularly those with blinking coupling, have been proven essential. The
reason is that such coupling schemes introduce dynamic variations that enhance adaptability and robustness, making them applicable in
various real-world scenarios. This paper introduces a novel adaptive blinking coupling, wherein the coupling adapts dynamically based on
the most influential variable exhibiting the most significant average disparity. To ensure an equitable selection of the most effective cou-
pling at each time instance, the average difference of each variable is normalized to the synchronous solution’s range. Due to this adaptive
coupling selection, synchronization enhancement is expected to be observed. This hypothesis is assessed within networks of identical sys-
tems, encompassing Lorenz, Rössler, Chen, Hindmarsh–Rose, forced Duffing, and forced van der Pol systems. The results demonstrated
a substantial improvement in synchronization when employing adaptive blinking coupling, particularly when applying the normalization
process.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0188366

Synchronization is a fundamental concept closely linked to
the structure of networks, encompassing network topology that
defines the connections among nodes and the nature of interac-
tions determined by couplings. Networks can generally be clas-
sified as static, evolving, or adaptive. Adaptive networks are
considered more realistic models that can emulate manifold real-
world phenomena. Previous research has mainly concentrated
on the adaptability of network topology to illustrate its influ-
ence on synchronization improvement. However, recent atten-
tion has shifted toward the adaptability of coupling configu-
rations, which has proven to affect enhancing synchronization
significantly. In this study, we explore a novel adaptive blink-
ing network where, at each time step, the single-variable dif-
fusive coupling is determined based on the normalized average
nodal difference. Through various examples, we demonstrate that

this structure impacts synchronization by reducing the required
coupling strength to attain this state.

I. INTRODUCTION

Complex dynamical networks are characterized by multi-
ple interconnected elements or nodes having temporal dynamical
behaviors.1–3 These networks exhibit intricate interconnections and
possess the capacity to manifest emergent phenomena.4–6 Com-
plex dynamical networks are found extensively in both natural
and technological domains, ranging from the neuronal connections
within the human brain7 to the complicated web of interactions
observed on social media platforms.8 They provide a framework for
understanding diverse phenomena like information flow,
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synchronization, and resilience. Consequently, networks form a
fundamental study area in diverse fields. Synchronization is an
important phenomenon in complex networks such as biologi-
cal networks.9–11 This state refers to the emergence of coherent
and coordinated behavior across the network without centralized
control.12,13 It can involve complete synchronization,12 generalized
synchronization,14 phase synchronization,15 lag synchronization,16

and partial synchronization, such as cluster synchronization17 and
chimera.2 Examples include the synchronization of neural firing
in the brain,18,19 alignment of circadian rhythms,20,21 oscillations of
power grids,22 and spreading opinions in social networks.23 Synchro-
nization arises from interaction between network components and
can be modeled using dynamical systems theory.

The impact of network topology on the synchronization in
complex networks has been the subject of extensive research. Con-
nectivity structure and coupling frameworks are key factors influ-
encing synchronization.24,25 Various studies have explored this rela-
tionship, such as research by Hong et al.26 and Wu et al.27 investi-
gating synchronization in small-world networks. Wang and Chen28

and Moreno and Pacheco29 focused on synchronization dynamics in
scale-free networks. Given the practical importance of synchroniza-
tion, efforts have also been directed toward improving synchroniza-
tion in networks with static30–32 or temporal evolving structures33–35

and adaptive ones.36–38

In a broad context, adaptive networks can be described as
dynamic networks that continuously reconfigure their structure
according to predetermined rules influenced by the dynamical states
of their nodes.39,40 For instance, Zhou and Kurths36 found that the
synchronization in weighted scale-free networks can be significantly
improved by utilizing a weight adaptation scheme based on the
local synchronization of nodes. Within this adaptive framework,
the coupling strength between neighboring nodes is progressively
enhanced, which leads them to achieve synchronization. Assenza
et al.37 presented a simple model for adaptive networks of phase
oscillators, wherein the links connected to each node were weighted
according to the cumulative incoming strength and the local syn-
chronization level. The presented mechanism was based on the
notion that local synchronization can be enhanced through the
interplay of two mechanisms: homophily, which reinforces con-
nections with units exhibiting similar characteristics within the
network, and homeostasis, which ensures the stability of the input
strength received by each unit. Employing a similar homophily prin-
ciple, Eom et al.38 introduced an adaptive network in which a fitness
function controls the network’s configuration. This function pro-
motes the connection of oscillators that share more closely aligned
phases. They asserted that such adaptivity has the potential to result
in improved synchronization and can also lead to percolation.

The studies mentioned above focused on the network topol-
ogy while keeping the coupling function constant over time. Besides
these studies, some researchers have highlighted the impact of time-
varying couplings on synchronization. These studies delve into how
changes in the coupling mechanisms over time can significantly
influence the synchronization behavior of systems. As an illustra-
tion, Parastesh et al.41 conducted a study involving a network with
blinking coupling, where the variables were involved in the cou-
pling periodically with a certain blinking period. They demonstrated
that synchronization stability progressively approaches that of the

average network when the coupling blinks rapidly, following a lin-
ear trend. Consequently, synchronization can be enhanced based on
the larger Lyapunov exponent of the uncoupled system. In another
study, Dayani et al.42 proposed an optimal time-varying coupling
strategy to improve synchronization. This approach considers small
time intervals in each of which the coupling is chosen from all poten-
tial single-variable couplings based on the smallest local Lyapunov
exponent. They assessed the effectiveness of this method by applying
it to various networks comprising Rössler, Chen, and Chua systems.

This paper presents a basic contribution in the form of an adap-
tive blinking network. The uniqueness of this network lies in its
dynamic coupling selection mechanism, which is tied to the identi-
fication of variables possessing the highest average nodal difference
values. This adaptive blinking network marks a departure from tra-
ditional approaches by incorporating a nuanced and highly flexible
strategy that dynamically adjusts the coupling between nodes based
on the distinctive characteristics of nodal differences. Through this
inventive approach, the paper opens new avenues for exploring
dynamic network behaviors and significantly enhances our under-
standing of adaptive systems. Section II elaborates on the intricate
details of this adaptive coupling scheme. In Sec. III, empirical results
on six diverse network examples are provided, which demonstrate
significant synchronization enhancement through adaptive blink-
ing coupling. Last, Sec. IV provides a comprehensive discussion and
summarizes the paper’s key contributions.

II. MODEL AND METHOD

In this study, a novel blinking network, which does not
adhere to a predefined time-varying coupling scheme, is introduced.
Instead, we consider a scenario where the coupling scheme adap-
tively switches among the n → n configurations (according to the
notations in Ref. 43), where n = 1, . . . , d, at each time instance t.
To start with, considering a network of N interconnected dynamical
units within the context of networked dynamical systems, each sys-
tem’s dynamics, denoted as Xi, which is a d-dimensional vector of
state variables xi1 , xi2 , . . . , xid

, can be expressed as a solution to the
following differential equation:

Ẋi = F(Xi) − σ

N
∑

j=1

LijH(t)Xj, (1)

where F(Xi) : Rd → Rd signifies the intrinsic dynamics of system i,

σ is the coupling parameter, LN×N is the Laplacian matrix (
∑N

j=1 Lij

= 0), and H(t) : Rd → Rd is the coupling function at time t.
To dynamically select the coupling configuration, an adap-

tive approach is employed. Initially, the pairwise nodal difference
vectors, denoted as |Xj − Xi| for i = j = 1, . . . , N with j 6= i, are
computed. Subsequently, the dth variable associated with the highest
average difference determines the d → d coupling scheme at each
time t. This adaptive method ensures that the coupling configuration
aligns with the variable exhibiting the most significant difference,
thereby adapting to the evolving system dynamics. For the sake of
clarity, consider an adaptive blinking network comprising N inter-
connected identical three-dimensional systems, each represented by
Xi = [xi, yi, zi]

T. To ascertain the coupling configuration at each
time t, the averaged nodal difference vectors, denoted as Vd, can be
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computed as follows:

Vd =
2

N(N − 1)





N−1
∑

i=1

N
∑

j=i+1

|Xj − Xi|





=
2

N(N − 1)





N−1
∑

i=1

N
∑

j=i+1

|xj − xi|

×

N−1
∑

i=1

N
∑

j=i+1

|yj − yi|,

N−1
∑

i=1

N
∑

j=i+1

|zj − zi|



 . (2)

Subsequently, m = argmax(Vd) represents the variable with
the most nodal difference yielding to the most effective coupling.
Hence, at each time instance t, the coupling scheme is established
as m → m coupling [Hmm(t) = 1]. Here, the notation n → m signi-
fies Hmn(t) = 1, indicating that the disparity in the nth variables of
the nodes is incorporated into the mth equation of each respective
system.

Upon closer examination of Eq. (2), it becomes evident that
the choice of the most effective coupling scheme may be influenced
by the domain of the attractor in each dimension, which essen-
tially signifies different scales of the system’s variables. To ensure
an equitable selection process, the nodal difference vector for each
variable is normalized with respect to the attractor range in the
synchronization state within the corresponding dimension. This
normalization procedure accounts for potential variations in scale
across different dimensions and ensures a fair assessment of cou-
pling scheme effectiveness. Accordingly, letting xd = xmax − xmin,
yd = ymax − ymin, and zd = zmax − zmin, where indices max and min
refer to the maximum and minimum of the manifold solution,
Eq. (2) can be adapted as follows:

Vd =
2

N(N − 1)





1

xd

N−1
∑

i=1

N
∑

j=i+1

|xj − xi|,
1

yd

×

N−1
∑

i=1

N
∑

j=i+1

|yj − yi|,
1

zd

N−1
∑

i=1

N
∑

j=i+1

|zj − zi|



 . (3)

The selection process remains consistent with the previously
mentioned approach, where the averaged nodal difference vector Vd

dictates the choice of the d → d coupling configuration at each time
t. It is worth noting that the diffusive characteristic of the coupling
function leads to F(S) = F(X), where S = [x, y, z]. In the following,
we delve into evaluations of network synchronization and highlight
the distinctive features of the method in comparison with recently
developed blinking networks.

The master stability function (MSF) method provides an ana-
lytical mathematical framework for analyzing the stability of the
synchronization state within complex networks.44 By calculating the
eigenvalues of the Jacobian matrix, the MSF helps to determine
whether a network’s synchronized state is globally stable or suscep-
tible to instabilities. According to the MSF approach, the stability
of the synchronous state is tantamount to the stability of the per-
turbation equation around the zero equilibrium point. Using the

eigenvalues (λi) of the Laplacian matrix, the perturbation equation
of Network (1) can be defined by the following linearized dynamical
equation:

ζ̇ = [DF(S) − KiDHs(t)] ζ i, (4)

where ζ i = Xi − S, S is the synchronous solution, DF(S) : Rd → Rd

and DHs(t) : Rd → Rd denote Jacobian matrices of F(Xi) and H(t),
evaluated at the synchronized state S. Moreover, K is the normal-
ized coupling parameter defined as Ki = σλi, where λi is a vector
with λ1 = 0 and λ2 ≤ · · · ≤ λd. It is essential to highlight that when
applying the definitions mentioned earlier, the coupling functions
adhere to linear diffusion, meaning that DHs(t) = H(t). The pres-
ence of a negative sign for the largest Lyapunov exponent indicated
as 3(λi), for i = 1, . . . , N, serves as a demonstration of the sta-
bility of the synchronization manifold. This stability, in turn, can
be interpreted as a fundamental requirement for synchronizing N
interconnected oscillators configured in a network topology defined
by matrix L.

Upon closer examination of Eq. (4), it can be realized that
the coupling scheme represented by H(t) assumes a pivotal role in
the synchronization dynamics of N coupled systems. Employing the
MSF technique, Huang et al.43 investigated the synchronization of
renowned low-dimensional systems, exploring all conceivable lin-
ear diffusive coupling schemes while maintaining the constancy of
H(t) across the run time T. The investigation of time-varying cou-
pling functions, often called blinking coupling, constituted the focal
point of the research conducted by Parastesh et al.41 In this study, it
was postulated that H(t) transits between the 1 → 1 and 2 → 2 and
3 → 3 coupling schemes periodically with a time period of τ . They
employed the MSF method as a result of the coupling’s predictable
switching pattern. In accordance with the findings presented in
Ref. 41 when sufficiently rapid blinking is considered, wherein the
blinking period τ takes values considerably shorter than the approx-
imate period of the oscillators, the stability of the synchronous
solution aligns with the stability pattern exhibited by the averaged

network, wherein H(t) =













d−1 0 . . . 0

0 d−1
. . .

...
...

. . .
. . . 0

0 . . . 0 d−1













. Additionally, it

has been established in Ref. 41 that the stability of such networks,
whether they exhibit fast blinking or involve multiple couplings
(average network) while maintaining an equivalent synchroniza-
tion cost (the sum of coupling values), adheres to a linear stability
pattern with a slope of − 1

d
(for a d-dimensional system). In mathe-

matical terms, this pattern can be expressed as 3 = 30 − K
d
, where

30 represents the largest Lyapunov exponent of an isolated system.
Hence, depending on the value of 30, it is conceivable that net-
works with fast-blinking dynamics may undergo an improvement
in synchronization.

In the context of the proposed adaptive blinking network,
where the coupling scheme H(t) lacks a predefined pattern and
remains unpredictable without numerical solutions, the MSF tech-
nique proves impractical for delivering analytical stability assess-
ments of the network’s synchronization state. Consequently, we
resort to numerical methods and employ the synchronization error
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FIG. 1. The phase portraits of the chaotic solutions for (a) the Lorenz system with (σ , ρ,β) = (10, 28, 2), (b) the Rössler system with (α,β , γ ) = (0.2, 0.2, 9), (c) the Chen
system with (a, c,β) = (35, 28, 8/3), (d) the HR system with (I, r , s) = (3.2, 0.006, 4), (e) the forced Duffing system with (η, h, q) = (1, 0.1, 5.6), and (f) the forced van
der Pol system with (d, F, η) = (3, 15, 4.065). The initial conditions are considered (x0, y0, z0) = (1, 1, 1) to achieve the Lorenz and Chen attractors, (x0, y0, z0) = (0, 0, 0)
to achieve the Rössler and forced Duffing attractors, and (x0, y0, z0) = (0.1, 0, 0) to achieve the HR and forced van der Pol attractors. The system parameters remained
consistent with those specified in Ref. 43

as a means to evaluate the network’s synchronizability. The synchro-
nization error, denoted as Esync, can be calculated using the following
equation:

Esync =
1

N − 1

〈

N
∑

j=2

‖Xj(t) − X1(t)‖

〉

T

. (5)

Here, the symbol 〈.〉 represents the averaging process throughout
run time denoted as T after transient dynamics have been elimi-
nated. In the subsequent section, through simulations conducted
on various well-known systems, we demonstrate that implement-
ing adaptive blinking can improve the synchronization state of
these systems compared to networks with constant and traditional
blinking schemes.
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FIG. 2. The MSF (left panel) and the synchronization error (right panel) of two coupled Lorenz systems in (a) 1 → 1 (for 0 ≤ K ≤ 20), (b) 2 → 2 f(or 0 ≤ K ≤ 20), (c)
3 → 3 (for 0 ≤ K ≤ 10), and (d) fast-blinking (for 0 ≤ K ≤ 8, and τ = 0.03) coupling schemes. The system parameters are the same as those in Fig. 1(a), and initial
conditions are randomly distributed around (x0, y0, z0) = (1, 1, 1). The zero-crossing point(s) of K, at which 3 < 0, are indicated with the green dashed line.
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FIG. 3. The synchronization error of the adaptive blinking Lorenz network for 0 ≤ K ≤ 3 with N = 2, (a) before and (b) after the normalization process. The system
parameter settings are the same as in Fig. 1(a), and the initial conditions are randomly selected closely around (x0, y0, z0) = (1, 1, 1). The value of the coupling parameter
K at which Esync = 0 is marked with the solid arrow.

III. RESULTS

In this section, our analysis encompasses the calculation of
MSFs and synchronization errors for both conventional networks
characterized by time-constant couplings (specifically, the 1 → 1,
2 → 2, and 3 → 3 configurations) and time-varying networks by
fast-blinking coupling functions. Subsequently, we proceed to com-
pute the synchronization error for networks implementing an adap-
tive blinking coupling scheme, both with and without the normal-
ization process, as detailed in Eqs. (2) and (3). In each scenario, we
pinpoint the precise value of the coupling parameter K at which
3 turns negative and Esync reaches zero. This approach enables
us to assess the impact of the adaptive blinking framework on
network synchronization across varying conditions and configura-
tions. For network construction, six renowned chaotic systems are
incorporated, namely, the Lorenz [Fig. 1(a)], Rössler [Fig. 1(b)],
Chen [Fig. 1(c)], Hindmarsh–Rose [HR; Fig. 1(d)], forced Duffing
[Fig. 1(e)], and forced van der Pol [Fig. 1(f)] systems. In the numeri-
cal analysis, the fourth-order Runge–Kutta method with a time step
of 0.005 and a run time of 10 000 time units is utilized to com-
pute the synchronization errors and employed Lyapunov analysis
to derive the MSFs. This methodology allows for a comprehensive
assessment of network synchronization across these diverse chaotic
systems. It is important to note that in the calculation of the syn-
chronization error, a network comprising N = 2 coupled oscillators

with L =

[

1 −1
−1 1

]

is taken into consideration. The method’s ver-

satility is also verified through simulating a larger network of HR
systems.

A. Lorenz system

Letting F(Xi) describe the dynamics of the Lorenz system,
which can be defined as follows:45

F(Xi) =











ẋi = σ(yi − xi),

ẏi = xi(ρ − zi) − yi,

żi = xiyi − βzi,

(6)

where x, y, and z are the state variables, and σ , ρ, and β are
the system control parameters. When the system is defined with
the parameters σ = 10, ρ = 28, and β = 2 and initialized with
(x0, y0, z0) = (1, 1, 1), as depicted in Fig. 1(a), the chaotic nature
of the Lorenz attractor can be observed. The stability of the syn-
chronization state in coupled Lorenz systems is illustrated in Fig. 2,
where both MSF and synchronization error metrics are employed
to assess synchronization performance under various coupling
configurations. Figures 2(a)–2(c) pertain to scenarios with time-
constant coupling functions, denoted as the 1 → 1 (for 0 ≤ K
≤ 20), 2 → 2 (for 0 ≤ K ≤ 20), and 3 → 3 (for 0 ≤ K ≤ 10)
schemes, respectively, while Fig. 2(d) corresponds to the fast-
blinking network with a blinking period of τ = 0.03 and 0 ≤ K ≤ 8.
Within the examined range of the parameter K, as illustrated in
Fig. 2, synchronization in the Lorenz network is attainable for differ-
ent
conditions:

• For constant coupling schemes (the three cases: 1 → 1,
2 → 2, and 3 → 3), synchronization is achieved for K ≥ 7.322,
K ≥ 2.228, and 1.368 ≤ K ≤ 9.236, respectively.

• For the fast-blinking network with coupling changing at each
period τ over the total time T, synchronization is achieved for
K ≥ 2.48.

Notably, among these scenarios, the 3 → 3 coupling design
results in the lowest synchronization cost. Here, fast-blinking cou-
pling does not contribute to enhancing synchronization. Nonethe-
less, Fig. 3(a) illustrates the synchronization error of the net-
work with adaptive blinking before normalization, and Fig. 3(b)
shows the synchronization error after the normalization process for
0 ≤ K ≤ 3. It becomes evident that adaptive blinking coupling
enhances synchronization, as the network achieves synchrony for
K ≥ 1.29 without normalization and for K ≥ 1.26 with the normal-
ization factor applied.
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FIG. 4. The MSF (left panel) and the synchronization error (right panel) of two coupled Rössler systems in (a) 1 → 1 (for 0 ≤ K ≤ 4.8), (b) 2 → 2 f(or 0 ≤ K ≤ 4.8),
(c) 3 → 3 (for 0 ≤ K ≤ 10), and (d) fast-blinking (for 0 ≤ K ≤ 0.8, and τ = 0.03) coupling schemes. The system parameters are the same as those in Fig. 1(b), and initial
conditions are randomly distributed around (x0, y0, z0) = (0, 0, 0). The zero-crossing point(s) of K, at which 3 < 0, are indicated with the green dashed line.
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FIG. 5. The synchronization error of the adaptive blinking Rössler network for 0 ≤ K ≤ 0.25 with N = 2, (a) before and (b) after the normalization process. The system
parameter settings are the same as in Fig. 1(b), and the initial conditions are randomly selected closely around (x0, y0, z0) = (0, 0, 0). The value of the coupling parameter
K at which Esync = 0 is marked with the solid arrow.

B. Rössler system

Taking the Rössler system as the node’s dynamics, F(Xi) is
expressed as the follows:46

F(Xi) =











ẋi = −yi − zi,

ẏi = xi + αyi,

żi = β + (xi − γ )zi,

(7)

where x, y, and z are the system variables, and α, β , and γ are the
system parameters under which the system exhibits different peri-
odic and chaotic behaviors. As demonstrated in Fig. 1(b), the Rössler
system exhibits chaotic behavior for α = 0.2, β = 0.2, and γ = 9
assuming the initial condition of (x0, y0, z0) = (0, 0, 0). In Fig. 4,
the left panels display the MSFs, while the right panels depict syn-
chronization errors for the Rössler system when organized within
a network. The network configurations considered are 1 → 1,
2 → 2, 3 → 3, and fast blinking (with τ = 0.03) coupling functions,
each over 0 ≤ K ≤ 4.8, 0 ≤ K ≤ 4.8, 0 ≤ K ≤ 10, and 0 ≤ K ≤ 0.8,
respectively. Within the specified intervals of K, synchronization is
attained in different coupling schemes for the Rössler system,

• For the 1 → 1 coupling scheme, synchronization occurs in
0.186 ≤ K ≤ 4.614.

• In the 2 → 2 coupling scheme, synchronization is achieved for
K ≥ 0.157.

• In the fast blinking with τ = 0.03, synchronization occurs for
K ≥ 0.232.

Notably, the 3 → 3 coupling scheme appears to not result in
complete synchronization as no value of K is found within the
explored parameter range where Lambda < 0 and Esync = 0. This
signifies that full synchronization remains elusive under this partic-
ular coupling configuration for the Rössler system. The fast blinking
coupling scheme does not enhance synchronization for the Rössler
system since the synchronization is achieved at a lower value of K
when employing the 2 → 2 configuration. Therefore, 2 → 2 cou-
pling outperforms the fast-blinking scheme in terms of achieving
the synchronization state. The results of adaptive blinkings on the

network synchronization are demonstrated in Fig. 5. It is noticeable
that when the coupling is adaptively selected, synchronization can
be achieved for K ≥ 0.1. In addition, after applying the normaliza-
tion process, this threshold decreases even further to K ≥ 0.0975,
indicating a significant enhancement in synchronization.

C. Chen’s system

Assuming F(Xi) pursues the dynamics of Chen’s system as the
nodal dynamics of the network, we have47

F(Xi) =











ẋi = a(yi − xi),

ẏi = (c − a − zi)xi + cyi,

żi = xiyi − βzi,

(8)

where x, y, and z are the states of Chen’s system, and the parameters
are a, c, and β . By configuring Chen’s system with the parame-
ters a = 35, c = 28, and β = 8/3 and initializing it with (x0, y0, z0)

= (1, 1, 1), Fig. 1(c) illustrates the chaotic dynamics exhibited by
Chen’s system under these specified conditions. Figure 6 provides an
overview of the synchronization stability analysis results for Chen’s
network. The left panels illustrate the MSFs, while the right panels
depict synchronization errors. These analyses are conducted for var-
ious coupling schemes, namely, 1 → 1, 2 → 2, and 3 → 3 designs,
with parameter exploration in the following ranges: 0 ≤ K ≤ 10,
0 ≤ K ≤ 10, and 0 ≤ K ≤ 25, respectively. Additionally, a time-
varying coupling scheme under fast blinking, with a period of
τ = 0.03, is examined within the parameter range of 0 ≤ K ≤ 20. As
discerned from the analysis presented in Fig. 6, it becomes evident
that the network fails to achieve synchronization when employ-
ing 1 → 1 coupling. However, synchronization is observed within
specific parameter ranges for other coupling schemes as follows:

• For the 2 → 2 coupling scheme, synchronization is achieved for
K ≥ 3.541.

• In the case of the 3 → 3 coupling scheme, synchronization occurs
within 5.347 ≤ K ≤ 21.51.
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FIG. 6. The MSF (left panel) and the synchronization error (right panel) of two coupled Chen’s systems in (a) 1 → 1 (for 0 ≤ K ≤ 10), (b) 2 → 2 f(or 0 ≤ K ≤ 10),
(c) 3 → 3 (for 0 ≤ K ≤ 25), and (d) fast blinking (for 0 ≤ K ≤ 20, and τ = 0.03) coupling schemes. The system parameters are the same as those in Fig. 1(c), and initial
conditions are randomly distributed around (x0, y0, z0) = (1, 1, 1). The zero-crossing point(s) of K, at which 3 < 0, are indicated with the green dashed line.
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FIG. 7. The synchronization error of the adaptive blinking Chen’s network for 0 ≤ K ≤ 10 with N = 2, (a) before and (b) after the normalization process. The system
parameter settings are the same as in Fig. 1(c), and the initial conditions are randomly selected closely around (x0, y0, z0) = (1, 1, 1). The value of the coupling parameter
K at which Esync = 0 is marked with the solid arrow,

• Under the fast-blinking scheme, synchronization is attained for
K ≥ 7.

Note that for time-constant couplings, the reported synchro-
nization regions are valid for the studied range of parameter K. It
is observed that the network achieves synchronization with the low-
est K value under the 2 → 2 coupling rather than the fast-blinking
scheme. The synchronization assessment of the network employing
adaptive blinking coupling is presented in Fig. 7 through synchro-
nization error. Notably, the adaptive switching between couplings
results in synchronization at lower K values as K ≥ 3.5 before and
K ≥ 3.2 after involving the normalization factor.

D. HR system

Considering F(Xi) follows the dynamics of the HR system
according to the following set of equations:48

F(Xi) =











ẋi = yi + 3x2
i − x3

i − zi + I,

ẏi = 1 − 5x2
i − yi,

żi = −rzi + rs(xi + 1.6),

(9)

where the state variables of the system are denoted by x, y, and z,
and the system’s parameters are I, r, and s. According to Fig. 1(d),
for I = 3.2, r = 0.006, and s = 4, the HR system exhibits a chaotic
dynamics initialized by (x0, y0, z0) = (0.1, 0, 0). The MSF (left pan-
els) and the synchronization error (right panels) diagrams featured
in Fig. 8 provide insights into the synchronization stability anal-
ysis of the HR network. The analyses are conducted for different
coupling configurations, i.e., 1 → 1, 2 → 2, 3 → 3, and fast blink-
ing (with τ = 0.03), with parameter exploration in the following
ranges: 0 ≤ K ≤ 5, 0 ≤ K ≤ 5, 0 ≤ K ≤ 10, 0 ≤ K ≤ 0.15, respec-
tively. In the HR network, it is noteworthy that synchronization to
a common temporal pattern is observed within specific parameter
ranges for various coupling schemes, except for the 3 → 3 scheme.
Here are the synchronization regions for the HR network within the
determined range of the parameter K:

• For constant coupling schemes (the two cases: 1 → 1 and 2 → 2),
synchronization is achieved for K ≥ 0.94 and K ≥ 0.094, respec-
tively.

• For the fast-blinking network with coupling changing at each
period τ over the total time T, synchronization is achieved for
K ≥ 0.0405.

Here, it is apparent that the fast-blinking coupling scheme
proves to be effective in enhancing synchronization within the HR
network since the synchronization incident is observed for the low-
est value of K compared to other cases, underscoring the advantage
of fast-blinking coupling in promoting synchronization in the HR
network. The synchronization error analysis of the HR network
employing adaptive blinking, both with and without the normal-
ization consideration, is depicted in Fig. 9. Notably, without the
normalization process, no significant improvement in synchroniza-
tion is observed (K ≥ 0.46), compared to the fast-blinking network.
However, after the normalization, synchronization experiences a
substantial enhancement (K ≥ 0.033).

E. Forced Duffing system

Let us contemplate the utilization of the forced Duffing sys-
tem to characterize the behavior of the nodes within the network,
as expressed by the following equations:49

F(Xi) =

{

ẋi = yi,

ẏi = −hyi − x3
i + q sin(ηt),

(10)

which can be rewritten in an autonomous form as follows:

F(Xi) =











ẋi = yi,

ẏi = −hyi − x3
i + q sin(ηzi),

żi = 1,

(11)

with x, y, z as state variables and h, q, and η as the system parameters.
The chaotic attractor of the forced Duffing system, characterized
by parameters h = 0.1, q = 5.6, and η = 1 and the initial condition
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FIG. 8. The MSF (left panel) and the synchronization error (right panel) of two coupled HR systems in (a) 1 → 1 (for 0 ≤ K ≤ 5), (b) 2 → 2 f(or 0 ≤ K ≤ 5), (c) 3 → 3
(for 0 ≤ K ≤ 10), and (d) fast-blinking (for 0 ≤ K ≤ 0.15, and τ = 0.03) coupling schemes. The system parameters mirror those in Fig. 1(d), and initial conditions are
randomly distributed around (x0, y0, z0) = (0.1, 0, 0). The zero-crossing point(s) of K, at which 3 < 0, are indicated with the green dashed line.
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FIG. 9. The synchronization error of the adaptive blinking HR network for 0 ≤ K ≤ 0.1 with N = 2, (a) before and (b) after the normalization process. The system parameter
settings are the same as in Fig. 1(d), and the initial conditions are randomly selected closely around (x0, y0, z0) = (0.1, 0, 0). The value of the coupling parameter K at which
Esync = 0 is marked with the solid arrow.

FIG. 10. The MSF (left panel) and the syn-
chronization error (right panel) of two coupled
forced Duffing systems in (a) 1 → 1 (for 0
≤ K ≤ 10), (b) 2 → 2 f(or 0 ≤ K ≤ 10),
and (c) fast-blinking (for 0 ≤ K ≤ 0.5, and τ

= 0.02) coupling schemes. The system
parameters are the same as those in Fig. 1(e),
and initial conditions are randomly dis-
tributed around (x0, y0, z0) = (0, 0, 0). The
zero-crossing point(s) of K, at which 3 < 0,
are indicated with the green dashed line.
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FIG. 11. The synchronization error of the adaptive blinking forced Duffing network for 0 ≤ K ≤ 0.25 with N = 2, (a) before and (b) after the normalization process. The
system parameter settings are the same as in Fig. 1(e), and the initial conditions are randomly selected closely around (x0, y0, z0) = (0, 0, 0). The value of the coupling
parameter K at which Esync = 0 is marked with the solid arrow.

(x0, y0, z0) = (0, 0, 0), is presented in Fig. 1(e). For the stability anal-
ysis of the synchronous solution in the forced Duffing network, the
MSFs and synchronization errors are illustrated in Fig. 10. These
results are organized into left and right panels and correspond to
various coupling configurations, including 1 → 1 (for 0 ≤ K ≤ 10),
2 → 2 (for 0 ≤ K ≤ 10), and the fast-blinking (for 0 ≤ K ≤ 0.5 and
τ = 0.02) schemes. In the self-contained description of the forced
Duffing oscillator, as presented in Eq. (11), the inclusion of the vari-
able z serves to mimic the influence of time t on the system. Hence,
within blinking-based coupling configurations, the 3 → 3 scheme
is excluded from consideration in the analysis of synchronization.
The analysis presented in Fig. 10 reveals that within the explored
coupling parameter range, synchronization in the forced Duffing
network is achieved as follows:

• For time-constant coupling schemes, i.e., the 1 → 1 or 2 → 2
configurations, synchronization occurs for K ≥ 0.132.

• In the fast-blinking coupling design with the blinking period of
τ = 0.02, synchronization is observed for K ≥ 0.135.

These findings highlight that the fast-blinking coupling con-
figuration does not necessarily lead to enhanced synchronization
in the forced Duffing system network. Instead, the smallest K val-
ues for achieving synchrony are observed through time-constant
coupling configurations, namely, the 1 → 1 or 2 → 2 configura-
tions. Nonetheless, through the synchronization error calculated for
0 ≤ K ≤ 0.25, Fig. 11 indicates that network synchronization can be
further enhanced when adaptive blinking coupling is involved. More
clearly, Fig. 11 shows that via adaptive blinking coupling, the forced
Duffing network achieves synchrony for K ≥ 0.0925, which can be
decreased to K ≥ 0.0825 when the normalization process is involved
in the coupling selection process.

F. Froced van der Pol system

As the last studied case, the forced version of the van der Pol
system is assumed as the network node dynamics, which obeys the

following equations:50

F(Xi) =

{

ẋi = yi,

ẏi = −xi + d(1 − x2
i )yi + F sin(ηt),

(12)

where x and y are the state variables and d, F, and η are the system’s
control parameters. The forced van der Pol system can be repre-
sented as an autonomous system by introducing the variable z to
emulate the effect of time t. Consequently, in its autonomous form,
the forced van der Pol system is defined as follows:

F(Xi) =











ẋi = yi,

ẏi = −xi + d(1 − x2
i )yi + F sin(ηzi),

żi = 1.

(13)

Figure 1(f) illustrates that when the system parameters are
fixed at d = 3, F = 15, and η = 4.065 and initialized with (x0, y0, z0)

= (0.1, 0, 0), the forced van der Pol system behaves chaotically.
Figure 12 indicates the MSFs in the left panels and synchroniza-
tion errors in the right panels, in which the stability of the van der
Pol network is analyzed for 1 → 1 concerning 0 ≤ K ≤ 10, 2 → 2
concerning 0 ≤ K ≤ 10, and blinking network with fast switching
with τ = 0.02 concerning 0 ≤ K ≤ 0.6. As a consequence, within
the examined parameter range of K, the network’s synchronization
behavior is as follows:

• Under the 1 → 1 coupling scheme, synchronization is achieved
when K ≥ 0.161.

• For the 2 → 2 coupling scheme, synchronization emerges for K ≥

0.316.
• With the fast-blinking coupling configuration having τ = 0.02,

synchronization is attained in K ≥ 0.216.

It is worth noting that, like the forced Duffing network, the
3 → 3 coupling case is not investigated in this study since the
forced van der Pol system is originally a two-dimensional sys-
tem. Based on the findings presented in Fig. 12, it can be found
that when the coupling configuration is set to 1 → 1, the network

Chaos 34, 023120 (2024); doi: 10.1063/5.0188366 34, 023120-13

Published under an exclusive license by AIP Publishing

 02 August 2024 08:45:09

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 12. The MSF (left panel) and the synchronization error (right panel) of two coupled forced van der Pol systems in (a) 1 → 1 (for 0 ≤ K ≤ 10), (b) 2 → 2
f(or 0 ≤ K ≤ 10), and (c) fast-blinking (for 0 ≤ K ≤ 0.6, and τ = 0.02) coupling schemes. The system parameters are the same as those in Fig. 1(f), and ini-
tial conditions are randomly distributed around (x0, y0, z0) = (0.1, 0, 0). The zero-crossing point(s) of K, at which 3 < 0, are indicated with the green dashed
line.

achieves synchronization with the smallest value of parameter K,
in comparison with other scenarios, particularly the fast-blinking
coupling. In contrast, Fig. 13 refers to the synchronization anal-
ysis of the forced van del Pol network with adaptive blinking
coupling for 0 ≤ K ≤ 0.5. It can be noticed that when the selec-
tion of coupling is performed without normalization, the network
synchrony is not enhanced since the synchronization is attained
for K ≥ 0.22. However, after applying the normalization process
decreases the critical coupling and synchronization can be observed

for K ≥ 0.11, which is noticeably lower than other coupling
scenarios.

G. Universality assessment

Previously reported results demonstrated that the presented
adaptive scheme yields notable synchronization improvements
compared to constant and fast-blinking coupling schemes. In non-
adaptive coupling configurations, the MSF can be reached, serving
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FIG. 13. The synchronization error of the adaptive blinking forced van der Pol network for 0 ≤ K ≤ 0.5 with N = 2, (a) before and (b) after the normalization process. The
system parameter settings are the same as in Fig. 1(f), and the initial conditions are randomly selected closely around (x0, y0, z0) = (0.1, 0, 0). The value of the coupling
parameter K at which Esync = 0 is marked with the solid arrow.

as a general method to establish synchronization criteria applicable
to networks of any size and topology. Consequently, the calculation
of the MSF for such coupling schemes serves as evidence of their
universality. However, in the proposed adaptive blinking scheme,

achieving the MSF is not feasible due to the inherent indetermin-
istic nature of the couplings. Hence, to ascertain the effectiveness
of this method on larger networks or to evaluate its universal-
ity, we consider a Watts–Strogatz small-world structure.51 This

FIG. 14. (a) The graph-based representation of the employed Watts–Strogatz small-world network structure according to,51 considering N = 20 nodes, a mean degree
of dm = 8 and a rewiring probability of p = 0.4. The synchronization error of the adaptive blinking HR network for 0 ≤ K ≤ 0.1 with N = 20, (b) before and (c) after the
normalization process. The system parameter settings are the same as in Fig. 1(d), and the initial conditions are randomly selected closely around (x0, y0, z0) = (0.1, 0, 0).
The value of the coupling parameter K at which Esync = 0 is marked with the solid arrow.

Chaos 34, 023120 (2024); doi: 10.1063/5.0188366 34, 023120-15

Published under an exclusive license by AIP Publishing

 02 August 2024 08:45:09

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

structure comprises N = 20 HR systems, with a mean degree
of dm = 8 and a rewiring probability of p = 0.4, as depicted in
Fig. 14(a). Utilizing the definition of the adaptive blinking struc-
ture, the synchronization error of the constructed HR network is
presented in Figs. 14(b) and 14(c), before and after incorporating the
normalization factor as outlined in Eqs. (2) and (3). To have a fair
comparison with Fig. 9, the HR systems are set at I = 3.2, r = 0.006,
and s = 4. In addition, the initial conditions are randomly selected
around (x0, y0, z0) = (0.1, 0, 0).

The results shown in Figs. 14(b) and 14(c) indicate that with-
out the normalization process, the network achieves synchrony for
values of K ≥ 0.047. However, when the normalization factor is
introduced into the adaptive blinking process, synchronization is
achieved for K ≥ 0.035, which represents a significant reduction.
These synchronization threshold values closely align with those
presented in Fig. 9. Therefore, it can be inferred that even for
larger networks, here comprising 20 oscillators, the involvement
of the normalized adaptive blinking structure can lead to synchro-
nization at lower coupling parameter values compared to other
schemes, namely, the constant and fast-blinking coupling structures.
In contrast, the unnormalized adaptive blinking scheme does not
consistently guarantee an improvement in synchronization.

IV. DISCUSSION AND CONCLUSION

Time-varying networks, particularly those with blinking
dynamics, offer a versatile framework for modeling and under-
standing complex systems. In these networks, connections and
interactions evolve dynamically over time, reflecting the temporal
nature of many real-world phenomena.52 Blinking networks, char-
acterized by intermittent and transient connections, are particularly
valuable for studying synchronization, stability, and resilience in
various systems.53 They find applications in fields such as neuro-
science, where brain regions exhibit dynamic connectivity patterns,
and in communication networks, where intermittent link quality
is common.53,54 Understanding the dynamics of time-varying and
blinking networks is essential for uncovering hidden patterns, pre-
dicting system behaviors, and designing effective interventions in
domains in different fields. Given this significance, certain inves-
tigations have concentrated on the variability of either coupling
strength55–57 or coupling functions.42,52,53

This research explored a novel time-varying coupling function
within complex networks. The adaptability of this network arises
from the selection of the most efficient coupling scheme at each
time step. This selection relies on assessing the differences in the
nodal variables. This dynamic coupling setup enables synchroniza-
tion with a substantially reduced coupling parameter (synchroniza-
tion cost) compared to when time-constant or periodic blinking
coupling is employed. In the process of adaptive selection, it is
crucial to accurately evaluate the individual contribution of each
variable to synchronization for dependable decisions. Consequently,
prior to choosing the coupling scheme, it is essential to normalize
the average difference associated with each variable based on the
range of solutions within the synchronization state. To illustrate
the enhancement in synchronization achieved through presented
adaptive coupling, the findings were compared with those obtained
from time-constant coupling (i.e., 1 → 1, 2 → 2, and 3 → 3

TABLE I. The summary of findings: Emphasizing the enhancement in synchroniza-

tion within the adaptive blinking scheme, especially when incorporating normalization

factors into the coupling selection procedure, compared to the optimal scenarios of

time-constant coupling and periodic blinking schemes.

Adaptive blinking scheme
Non-adaptive

optimal Before After
Network coupling scheme normalization normalization

Lorenz 3 → 3 K ≥ 1.29 K ≥ 1.26
1.368 ≤ K ≤ 9.236

Rössler 2 → 2 K ≥ 0.1 K ≥ 1.0975
K ≥ 0.157

Chen 2 → 2 K ≥ 3.5 K ≥ 3.2
K ≥ 3.541

HR Fast blinking K ≥ 0.046 K ≥ 0.033
K ≥ 0.0405

Forced
Duffing

1 → 1 or 2 → 2 K ≥ 0.0925 K ≥ 0.0825

K ≥ 0.132

Forced van
der Pol

1 → 1 K ≥ 0.22 K ≥ 0.11

K ≥ 0.161

configurations) and fast-blinking scheme. To this aim, six different
networks consisting of identical systems were examined, including
Lorenz, Rössler, Chen, HR, forced Duffing, and forced van der Pol
systems. The outcomes are briefly presented in Table I. Notably,
fast-blinking coupling demonstrates synchronization improvement
exclusively for the HR networks, whereas time-constant couplings
emerge as the optimal choice in the majority of scenarios. Nonethe-
less, adaptive blinking coupling without the normalization process
leads to enhancement in synchronization except for the HR and
forced van der Pol networks. However, incorporating the normal-
ization factors into the selection process shows substantial synchro-
nization improvement across all cases. This outcome underscores
the significance of selecting the most dependable coupling scheme
at each time step.

An examination of the adaptive blinking scheme within larger
networks was conducted to gauge the method’s universality. In
this regard, a Watts–Strogatz small-world structure containing ten
nodes with HR dynamics was considered. The results revealed that
synchronization enhancement remains discernible even in larger
networks. Note that the outcomes of the larger network were con-
sistent with those observed in two coupled HR systems.

Figure 15 provides insights into the selection of coupling
schemes (from the set of all self-couplings in a d-dimensional sys-
tem) at each instant of the total run time of 10 000 time units. It is
noticeable that once the synchronization threshold is surpassed, sig-
nified by sufficiently minimal Esync, the network upholds its coupling
structure after passing a transient period. The adaptive selection
mechanism maintains synchrony even in negligible synchronization
deviations (Esync ≈ 0). Furthermore, the network tends to retain the
same structure, which is optimal for synchronization maintenance.
Therefore, when a network employing adaptive blinking achieves
synchrony, it remains within its synchronous state.

Chaos 34, 023120 (2024); doi: 10.1063/5.0188366 34, 023120-16

Published under an exclusive license by AIP Publishing

 02 August 2024 08:45:09

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 15. The coupling selection process involving the normalization factors in the network composed of two coupled (a) Lorenz systems for 0 ≤ K ≤ 3 [corresponds to
Fig. 3(b)], (b) Rössler systems 0 ≤ K ≤ 0.25 [corresponds to Fig. 5(b)], (c) Chen’s systems for 0 ≤ K ≤ 10 [corresponds to Fig. 7(b)], (d) HR systems for 0 ≤ K ≤ 0.1
[corresponds to Fig. 9(b)], (e) forced Duffing systems for 0 ≤ K ≤ 25 [corresponds to Fig. 11(b)], and (f) forced van der Pol systems for 0 ≤ K ≤ 0.5 [corresponds to
Fig. 13(b)], over 10 000 time units. In each time instance t, the selected coupling is coded in light purple for 1 → 1 configuration, dark brown for 2 → 2 configuration, and
yellow for 3 → 3 configuration.

The adaptive blinking approach introduced in this study is
not confined to diffusive couplings and can be applied in any net-
work design. However, in the case of other coupling schemes, such
as memristor couplings, which introduce a new system state58,59 or
chemical couplings,60 it is not anticipated that the introduced adap-
tation criteria would necessarily result in enhanced synchronization.
The reason is that the adaptation scheme is designed based on the
nature of diffusive or feedback couplings. Nevertheless, the adap-
tation scheme can be refined and adjusted in accordance with the

specific coupling scheme, and this remains an objective for future
studies. Furthermore, it is noteworthy to highlight that almost all the
numerical results presented in this study were specifically conducted
for two coupled oscillators. Nonetheless, it is important to recognize
that this adaptive blinking approach can be extended to encompass
larger networks, irrespective of their network structure. The con-
cept of adaptive coupling holds promise for further exploration in
diverse scenarios, including identifying the most suitable variable for
the coupling or incorporating weighted adaptive adjustments. This
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suggests potential avenues for future research and applying adaptive
coupling principles in various contexts.
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N. Brede, I. Franović, D. J. Gauthier, S. Goldt, A. Hajizadeh, P. Hövel, O. Karin, P.
Lorenz-Spreen, C. Miehl, J. Mölter, S. Olmi, E. Schöll, A. Seif, P. A. Tass, G. Volpe,
S. Yanchuk, and J. Kurths, “Perspectives on adaptive dynamical systems,” Chaos
33, 071501 (2023).
40R. Berner, T. Gross, C. Kuehn, J. Kurths, and S. Yanchuk, “Adaptive dynamical
networks,” Phys. Rep. 1031, 1–59 (2023).

Chaos 34, 023120 (2024); doi: 10.1063/5.0188366 34, 023120-18

Published under an exclusive license by AIP Publishing

 02 August 2024 08:45:09

https://pubs.aip.org/aip/cha
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2020.10.003
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1098/rsif.2022.0043
https://doi.org/10.1103/PhysRevE.74.026114
https://doi.org/10.1103/PhysRevLett.103.228702
https://doi.org/10.1016/j.neuroimage.2022.118928
https://doi.org/10.1140/epjb/e2004-00110-5
https://doi.org/10.1007/s11071-020-05529-2
https://doi.org/10.1016/j.chaos.2022.112861
https://doi.org/10.1063/5.0057276
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1103/PhysRevE.107.014201
https://doi.org/10.1063/1.1846494
https://doi.org/10.1007/s11071-006-1957-x
https://doi.org/10.1016/S0375-9601(01)00824-6
https://doi.org/10.1063/1.2956986
https://doi.org/10.1007/s11467-022-1161-6
https://doi.org/10.1016/j.physa.2017.12.129
https://doi.org/10.15252/msb.20145218
https://doi.org/10.1016/j.cnsns.2015.11.003
https://doi.org/10.1103/PhysRevE.102.022311
https://doi.org/10.1163/15685373-12340120
https://doi.org/10.1103/PhysRevLett.94.188101
https://doi.org/10.1109/MCAS.2003.1228503
https://doi.org/10.1103/PhysRevE.65.026139
https://doi.org/10.1063/1.2939136
https://doi.org/10.1109/81.974874
https://doi.org/10.1209/epl/i2004-10238-x
https://doi.org/10.1103/PhysRevE.75.056205
https://doi.org/10.1103/PhysRevLett.94.218701
https://doi.org/10.1103/PhysRevLett.128.098301
https://doi.org/10.1209/epl/i2004-10365-4
https://doi.org/10.1103/PhysRevE.71.016116
https://doi.org/10.1103/PhysRevE.83.045101
https://doi.org/10.1103/PhysRevLett.96.164102
https://doi.org/10.1038/srep00099
https://doi.org/10.1038/srep27111
https://doi.org/10.1063/5.0147231
https://doi.org/10.1016/j.physrep.2023.08.001


Chaos ARTICLE pubs.aip.org/aip/cha

41F. Parastesh, K. Rajagopal, S. Jafari, M. Perc, and E. Schöll, “Blinking coupling
enhances network synchronization,” Phys. Rev. E 105, 054304 (2022).
42Z. Dayani, F. Parastesh, F. Nazarimehr, K. Rajagopal, S. Jafari, E. Schöll, and J.
Kurths, “Optimal time-varying coupling function can enhance synchronization in
complex networks,” Chaos 33, 033139 (2023).
43L. Huang, Q. Chen, Y.-C. Lai, and L. M. Pecora, “Generic behavior of master-
stability functions in coupled nonlinear dynamical systems,” Phys. Rev. E 80,
036204 (2009).
44L. M. Pecora and T. L. Carroll, “Master stability functions for synchronized
coupled systems,” Phys. Rev. Lett. 80, 2109–2112 (1998).
45E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci. 20, 130–141
(1963).
46O. E. Rössler, “An equation for continuous chaos,” Phys. Lett. A 57, 397–398
(1976).
47G. Chen and T. Ueta, “Yet another chaotic attractor,” Int. J. Bifurcat. Chaos 09,
1465–1466 (1999).
48J. L. Hindmarsh and R. M. Rose, “A model of neuronal bursting using three
coupled first order differential equations,” Proc. R. Soc. London B 221, 87–102
(1984).
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