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Swarmalators are oscillators that can swarm as well as sync via a dynamic balance between their spatial prox-
imity and phase similarity. Swarmalator models employed so far in the literature comprise only one-dimensional
phase variables to represent the intrinsic dynamics of the natural collectives. Nevertheless, the latter can indeed
be represented more realistically by high-dimensional phase variables. For instance, the alignment of velocity
vectors in a school of fish or a flock of birds can be more realistically set up in three-dimensional space, while
the alignment of opinion formation in population dynamics could be multidimensional, in general. We present
a generalized D-dimensional swarmalator model, which more accurately captures self-organizing behaviors of a
plethora of real-world collectives by self-adaptation of high-dimensional spatial and phase variables. For a more
sensible visualization and interpretation of the results, we restrict our simulations to three-dimensional spatial
and phase variables. Our model provides a framework for modeling complicated processes such as flocking,
schooling of fish, cell sorting during embryonic development, residential segregation, and opinion dynamics in
social groups. We demonstrate its versatility by capturing the maneuvers of a school of fish, qualitatively and
quantitatively, by a suitable extension of the original model to incorporate appropriate features besides a gallery
of its intrinsic self-organizations for various interactions. We expect the proposed high-dimensional swarmalator
model to be potentially useful in describing swarming systems and programmable and reconfigurable collectives
in a wide range of disciplines, including the physics of active matter, developmental biology, sociology, and
engineering.
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I. INTRODUCTION

The aim of complex systems science is to understand
the underlying dynamical processes that are responsible for
a plethora of self-organizing collective behaviors stemming
from microscopic collectives in various branches of science
and technology, including systems biology [1,2], climate sci-
ence [3,4], complex networks [5,6], ecology [7], and social
studies [8,9] in an effort towards increasing their resilience
and effective utilization. In the field of complex systems sci-
ence, there has been a recent, growing interest in studies on
swarming dynamics that have captured the essential features
of several natural collectives and their intrinsic dynamics
with potential applications [10–17]. Swarmalators represent a
class of systems that can self-aggregate spatially (swarm) and
simultaneously adjust their internal rhythms (synchronize)
through a delicate balance between their spatial proximity and
phase similarity, representing the latter. Pioneering contribu-
tions were made by Igoshin et al. and Tanaka et al. in modeling
the dynamics of chemotactic oscillators [18–20], and by Levis
et al. in describing the dynamics of revolving agents [21,22].
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The recent surge in swarmalator studies has revealed a
plethora of collective dynamical states that mimic the self-
organizing dynamics of natural [23,24] and technological
[25–27] collectives ranging from spermatozoa [23] to drones
and robots [28–30]. A recent study by O’Keeffe et al. [10]
elucidated that a static phase wave (SPW) is qualitatively
similar to the “asters” formed by ferromagnetic colloids [31],
whereas an active phase wave (APW) has the characteristic
features of “vortex arrays” formed by populations of sper-
matozoa [23]. Generalization of the swarmalator model [10]
by including nonidentical frequencies, chirality, and local
coupling unveiled several new spatiotemporal regimes, in-
cluding interacting phase waves, vortices, and beating clusters
[12]. It was also shown that many of these self-organizing
patterns resemble qualitatively patterns exhibited by cellular
self-organization [32,33], flocking patterns of Quincke rollers
[26,34], and the various life stages of slime mold [35]. An
attempt was made recently to arrive at an analytical descrip-
tion of the synchronized state and the existence condition for
a few of the states using a basic model [16]. Other extensions
have been made by including a Gaussian function for short-
range repulsive interaction [13], delayed interactions [15], and
pinning [17].

One of the prospective applications of reconfigurable swar-
malators is their locomotive utility [10]. For instance, the
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collective metachronal waves known to facilitate biological
transport [36,37] of populations of cilia are similar to APWs
and splintered phase waves (SPPWs). In particular, recon-
figurable microrobot swarms, a perfect real-world example
of swarmalators, can be used for biomedical applications in-
cluding targeted drug delivery [29,30,38]. Very recently, a
swarmalator model was shown to exhibit the essential features
of programmable self-organization of heterogeneous micro-
robot collectives [39]. It has also been pointed out that no
other active matter model is as concise as the minimalistic
swarmalator model, which offers such a diverse set of emer-
gent collective behaviors [12].

Given the tremendous potential real-world applications
of swarmalators, the model employed in the aforemen-
tioned studies invariably comprises evolution equations for
two-dimensional spatial variables and the one-dimensional
Kuramoto model [40] governing phase dynamics. However,
most of these studies generalized their results to three-
dimensional spatial variables, where the phase evolves on a
unit circle in accordance with spatial proximity, but it lacks
an orientational degree of freedom, which is a key component
of almost all real-world swarmalators, e.g., spin orientation
in ferromagnetic collides [41], velocity vectors of flocks of
birds [42,43], schools of fish, swarms of drones, etc. The
orientation degree of freedom is an intrinsic feature of all
systems described by spherical polar coordinates, in which
the orientation vector is specified by both polar angle θ and
azimuthal angle φ. The internal state of such systems must
inevitably be described by the orientation vector represented
in terms of θ and φ in three dimensions (3D) to represent those
systems more accurately (see Fig. 1), which is missing in the
existing studies on swarmalators.

To capture the self-organizing spatiotemporal patterns and
to understand their underlying mechanisms of the natural col-
lectives more accurately, we introduce here a D-dimensional
swarmalator model governed by D-dimensional spatial and
D-dimensional orientation vectors, in general, for predic-
tive fidelity of the self-organizing behaviors of real-world
collectives, where the alignment of their orientation vectors
represents their intrinsic dynamics. For a more sensible vi-
sualization and interpretation of the results, we restrict our
simulations to 3D spatial and 3D phase variables. We show
that in view of the inseparable dynamics of θ and φ governing
the spatial proximity and vice versa in 3D, our model indeed
facilitates a repertoire of exotic self-organizing behaviors (see
Table S1) that are specific to our model and generalize those
states observed by the aforementioned studies, with similar
settings but with only a 1D phase variable representing the
intrinsic dynamics to higher dimensions.

II. MODEL DESCRIPTION

The proposed D-dimensional swarmalator model is repre-
sented by

ẋi = vi + 1

N − 1

N∑
j=1

{1 + J (σ i · σ j )} x j − xi

|x j − xi|α

− x j − xi

|x j − xi|β + ξx
i (t ), (1a)

FIG. 1. 3D phase and its visualization. (a) Orientations σ i and
σ j of ith and jth swarmalators, respectively, can be represented as
vectors pointing on a unit sphere. (b) Deriving the analogs of sin(ρi j )
and cos(ρi j ) in terms of orientation vectors σ i and σ j . Here ρi j is
the angle of inclination of orientation vectors, cos(ρi j ) is simply
the projection of σ j on σ i, and sin(ρi j ) is the y-component of σ j .
(c) Each swarmalator is represented by a cone with its apex pointing
along its orientation vector. (d) The heat map, encoding the degree
of orientation of the vectors, which in turn is determined by the polar
phase (θ ) and the azimuthal phase (φ), is used to color the cones
in accordance with the distribution of the initial conditions, which
facilitates the identification of distinct collective states even when
the cones are masked behind a dense set of cones.

σ̇ i = W iσ i +
N∑

j=1

Ki j

[
σ j − (σ j · σ i )σ i

|x j − xi|γ
]

+ ξσ
i (t ), (1b)

where i = 1, 2, 3, . . . , N is the number of swarmalators, xi

is the D-dimensional position vector of the ith swarmalator,
σ i is its orientation vector on the D-dimensional unit hy-
persphere (see Fig. 1) characterizing the intrinsic dynamics
of the swarms, and vi is its self-propulsion velocity. Note
that the evolution equation for σ i in the absence of the dis-
tant dependent kernel is the D-dimensional Kuramoto model
[43,44] (see Sec. S1 of the Supplemental Material [45] for its
derivation). In the context of flocking and swarming models,
σ i can be interpreted as the unit vector along the velocity
vector of the ith swarmalator [43], while in the context of
social interactions, the alignment of opinion dynamics could,
in general, be multidimensional [43,44].

The first and second terms in Eq. (1a) correspond to the
spatial attraction and repulsion, respectively. Spatial attraction
between the swarmalators depends on the degree of orienta-
tion and the parameter J . The repulsive interaction is essential
to maintain the minimum separation between agents. The
nature of the distance-dependent spatial interactions can be
tuned with the exponents α, β, and γ . The distant-dependent
kernels in Eq. (1a) act like a van der Waals interaction for
β > α that ensures the long-range attraction and short-range
repulsion.
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Consequently, altering these parameters will only affect the
equilibrium distance between the swarmalators as depicted in
Fig. S7. Therefore, the states reported in our study can still be
observed across different sets of α, β, and γ values, which
may slightly shift their spread in the two-parameter phase
diagrams.

W i is the antisymmetric angular velocity D × D matrix of
the ith swarmalator, which can be represented in 3D as

W i =

⎛
⎜⎝

0 −ωi,3 ωi,2

ωi,3 0 −ωi,1

−ωi,2 ωi,1 0

⎞
⎟⎠, (2)

where ωi = (ωi,1, ωi,2, ωi,3) represents the angular velocity of
the ith swarmalator. The coupling strength Ki j is given as

Ki j =
{
εa/Ni for |x j − xi| � R,

−εr/Nr for |x j − xi| > R,

where εa is the attractive phase coupling strength, εr is the
repulsive phase coupling strength, R is the vision radius, Ni is
the number of swarmalators inside the vision sphere of the
ith swarmalator excluding it [refer to Sec. S1 of the Sup-
plemental Material [45] and Fig. 1 of the manuscript for a
derivation of Eq. (1b)]. ξx

i (t ) and ξσ
i (t ) are the Gaussian white

noise with zero mean and strengths dxk and dσk character-
ized by 〈ξxk

i (t )|ξxk
i (t ′)〉 = 2dxk δ(t − t ′) and 〈ξσk

i (t )|ξσk
i (t ′)〉 =

2dσk δ(t − t ′), respectively, where k = 1, 2, 3, . . . , D. Note
that σ i has to be normalized at each time step to ensure it is a
unit vector because of ξσk

i (t ).
Swarmalators in most real-world swarms only exchange

interactions with their Ni-nearest neighbors that are within
their sphere of influence, resulting in the notion of vision ra-
dius. Swarmalators within the vision sphere tend to align their
internal state, whereas the others Nr = N − Ni − 1 have the
natural tendency to repel each other. In the following, we will
provide details on the methods involved in the simulation, data
visualization, and employed order parameters to characterize
various collective dynamical states.

III. METHODS

A. Numerical simulations and visualization

We have numerically solved Eq. (1) using the Runge Kutta
fourth-order integration scheme with a step size of 0.1. Initial
conditions for the position vectors are randomly drawn from a
3D box of length 2 with each side being uniformly distributed
between [−1, 1], and for the orientation vectors they are ran-
domly drawn from the uniform distributions θ ∈ [0, π ] and
φ ∈ [0, 2π ). We have fixed vi = ωi = 0 ∀ i, dxk = dσk = 0,
α = 1, β = 3, γ = 1, N = 100, and distinct self-organizing
behaviors are classified in the (J, R) parameter space in the
range of J ∈ [−1, 1] and R ∈ [0, 2] throughout the manuscript
unless otherwise specified. Note that the parameters α, β,
and γ will only affect the equilibrium distance between the
swarmalators. Therefore, the states observed in our study can
still be observed across different sets of α, β, and γ values,
which may slightly shift their spread in the two-parameter
phase diagrams.

Each swarmalator is represented by a cone with its apex
pointing along the orientation vector. The degree of the

orientation of the ith swarmalator is encoded in σ i, which is
represented using the color code in the heat map in Fig. 1(d).
We have used the Mayavi Python package for the 3D visual-
ization of swarmalators. To test the robustness of the collective
states observed in our high-dimensional swarmalator model,
we have used zero mean white noise with varying noise
strengths (dxk , dσk ). We have observed that the self-organized
states are resilient despite the presence of noise.

B. Order parameters

We have used distinct order parameters to characterize
and classify distinct self-organizing collective behaviors (see
Table S1). The synchronization order parameter quantifies
the degree of coherence among the orientation vectors of the
swarmalators, which can be defined as the norm of the average
orientation of all the swarmalators, represented as

S = 1

N

∣∣∣∣∣∣
N∑

j=1

σ j

∣∣∣∣∣∣, (3)

where σ j is the orientation vector of the jth swarmalator.
The synchronization order parameter S varies in the range
[0,1]. The asynchronized state will have S = 0, whereas the
synchronized state is characterized by S = 1. Intermediate
values of S between 0 and 1 quantify the degree of coherence
among the orientation vectors.

The orientation parameter quantifies the degree of align-
ment of the orientation vector of the ith swarmalator with
respect to its position vector (see Fig. S1). The orientation
parameter used to distinguish distinct spiky states such as a
flower state, a twisted state, and a star state can be defined as

 = 1

N

N∑
i=1

xi.σ i

|xi||σ i| , (4)

where xi is the position vector of the ith swarmalator. The
orientation parameter  can vary in the range [−1, 1]. The
star state (see Table S1), in which all swarmalators have
orientations pointing radially outwards from the sphere, is
characterized by  = 1. An inverted star state (in which all
swarmalators would point radially inwards) is characterized
by  = −1. Intermediate values of  characterize the degree
of orientation of the swarmalators in spiky states such as a
flower state and a twisted state.

The collective states with a spherical cavity (see Fig. S1)
as their core, such as in spiky states and active phase waves,
are characterized using the hollowness parameter defined as

H = min {|xi|}
max {|xi|} , i = 1, 2, . . . , N. (5)

The hollowness parameter H can vary between 0 and 1. Solid
spherical states, such as a static phase wave, and synchronized
states are characterized by H = 0. Intermediate values of H
between 0 and 1 quantify the degree of spherical cavity form-
ing the core of the collective states.
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Asymptotically active states are characterized using the
kinetic energy parameter defined as

E = 1

N

N∑
i=1

ẋ2
i . (6)

The nonzero values of E indicate that the collective state is
dynamic, whereas near-zero values indicate that the collective
state is static. The kinetic energy parameter is depicted as a
function of time for the spinning cluster, active phase wave,
and static synchronized state in Fig. S2.

C. K-means clustering approach

Clustering is one of the interesting intrinsic features of our
model. The swarmalators self-organize to form synchronized
clusters for suitable parameters. We have used the heuristic
elbow curve method [46] in K-means clustering to quan-
tify the number of clusters using the spatial and orientation
data.

K-means clustering is an unsupervised machine-learning
algorithm that segregates data into K clusters [47,48]. For
implementation of this algorithm, the “kmeans” function from
the scikit-learn python library is used. The algorithm works by
randomly choosing K points called centroids and iteratively
reassigning each data point to the cluster whose centroid is
closer to it in terms of Euclidean distance. For further itera-
tions, the clusters mean is taken as their new centroid. The
process is repeated until the Frobenius norm of the difference
in the cluster centers of two consecutive iterations is less than
a threshold value.

In particular, the swarmalators are classified based on their
locations and phases X = (x1, x2, x3, σ1, σ2, σ3) into clusters
C = {C1,C2, . . . ,CK},

ψ =
K∑

K ′=1

NK ′∑
i=1

∣∣X K ′
i − μK ′ ∣∣2

, (7)

where μK ′
is the center of K ′ cluster, and ψ is the clustering

error. We run the K-means clustering algorithm for our data
with different values of K ranging from 1 to 20, and we evalu-
ate the clustering error or variance. The intuition is that every
increment in the value of K will surely result in a decrease
in variance ψ but would have diminishing returns. At some
point, when the value of K crosses the true number of clusters,
the diminishing returns will be significant enough that it can
be seen as an “elbow” in the (K, ψ ) plot (see Fig. S3). The
elbow point, Kbest, can be numerically calculated by find-
ing the maximum change of slope η(K ) in the (K, ψ ) plot,
where

η(K ) =
[
ψ (Ki−1) − ψ (Ki )

ψ (Ki ) − ψ (Ki+1)

]
, and

Kbest = argmaxK [η(K )].

The estimation of the number of clusters from the change
of slope of the (K, ψ ) plot is depicted in Fig. S3 for two,
three, and five clusters. The distinct clusters of the orientation
vectors maximize their separation due to the strong repulsive
interaction among the clusters constituted by the dissimilarly
orientated vectors as shown in their time traces in Fig. S4.

In the following, we will discuss more important types of
interactions among the orientation vectors of the swar-
malators, while others are presented in the Supplemental
Material [45].

IV. RESULTS

A. Competitive interaction

In this section, we will unravel the collective dynamical
states that emerge due to the competitive interaction be-
tween the attractive and repulsive couplings characterized
by εa = εr .

1. Characterization of dynamical states

Distinct self-organizing collective behaviors and their dy-
namical transitions are depicted in Figs. 2(a)–2(c) as a
function of the vision radius R for three different values of
J = −0.9, 0.1, and 0.9, respectively, and for εa = εr = 0.5.
The synchronization order parameter S, hollowness H , kinetic
energy E , number of clusters Nc, and orientation parameter
 including the K-means clustering are used to characterize
and classify the distinct collective dynamical states. Note
that Nc ∈ (1, 5) is normalized to Nc ∈ (0, 1), so that Nc = 0
corresponds to a single cluster, Nc = 0.2 corresponds to a
two-cluster, and so on. In Fig. 2(a), the static asynchronous
region in the range of R ∈ (0, 0.375] for J = −0.9 is charac-
terized by the null value of S, E , Nc, and a very small value
of H ≈ 0.1. Since the swarmalators are randomly oriented
in the static async (SA) state, the orientation parameter also
acquires  = 0. A sudden spike in the value of the kinetic
energy parameter at R = 0.375 elucidates the active nature of
the collective state “active core static spiky state” (ACSPW)
in the range of R ≈ (0.375, 1.8]. In this range of R, the values
of the order parameters S, Nc, and H remain very low. The
orientation parameter fluctuates about  = 0 from positive
to negative values due to the active nature of the core (see
the next section for an explanation of the active nature of the
core). A turning tube (TT) is observed for R > 1.8, which is
characterized by a large value of S and H , whereas the param-
eters , H , and Nc acquire very low values. The snapshots of
all these states are depicted in Fig. 3, while all the observed
dynamical states in this manuscript are tabulated in Table S1
along with their acronyms.

In Fig. 2(b), there is a transition from SA to static sync (SS)
via a spiky state (SP) and a chimera (CH) as a function of R
for J = 0.1. SA in the range of R ∈ (0, 0.375] is characterized
by near null values of all five parameters, which manifests as
SP states as R is increased further. The spiky states consist
of flower and twisted states, which are hollow in nature. For
instance, see Fig. S5D for the hollow nature of the flower state.
The hollowness parameter acquires H ≈ 1 in the range of R ∈
(0.375, 1.4], while the orientation parameter takes some finite
value. The other parameters in this range of vision radius take
very low values near zero. The SP state manifests as a chimera
state for R ∈ (1.4, 1.8]. As the latter state is characterized by
coexisting coherent and incoherence domains (see Figs. S5E
and S6), the synchronization order parameter acquires S ∈
(0.2, 0.98) in accordance with the degree of the synchronized
domain. The hollowness parameter for a CH state acquires
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FIG. 2. Dynamical transition using order parameters. The dy-
namical transitions leading to distinct self-organizing collective
behaviors as a function of the vision radius R for (a) J = −0.9,
(b) J = 0.1, and (c) J = 0.9. The synchronization order parameter
S, hollowness H , kinetic energy E , number of clusters Nc, and orien-
tation parameter  are used to characterize and distinguish distinct
dynamical states. The parameters are fixed as εa = εr = 0.5 and
N = 100. See the main text for a more detailed explanation.

some finite but rather low value. As R is increased further
beyond R = 1.8, CH manifests as an SS state characterized
by S = 1. The other parameters are negligibly small in this
range of R. See Fig. S6B for the change in the synchroniza-
tion order parameter S and the orientation parameter  as a
function of R corroborating the CH and its transition to an SS
state.

In Fig. 2(c), there is a transition from an active phase wave
(APW) to SS via the multicluster (MC) state as a function of
R for J = 0.9. E is rather high characterizing the APW. Nc =
0.2 elucidates that the MC is a two-cluster state, while the
finite values of the other order parameters in the MC region

characterize the nature of the cluster. For a sufficiently large
R, MC manifests as SS as corroborated by a large value of the
synchronization order parameter S.

2. Phase diagram

Now, for a global perspective, we unfold the influence of
the competitive attractive and repulsive interactions among
the orientation vectors on the intriguing self-organizing dy-
namics in the (J, R) parameter space. Some of the fascinating
self-organized convergent multistable symphonies by the
swarmalator collectives are depicted and demarcated in Fig. 3.
The dynamical regions in the phase diagram are character-
ized by the order parameters as in Fig. 2. Swarmalators with
the angle of inclination ρi j ∈ (π/2, π ) (refer to Fig. 1) are
strongly attracted for J < 0 and hence the collectives display
a static async (SA) for small R, as the majority of the swar-
malators lie outside R with the tendency to repel each other.
Swarmalators with ρi j ∈ (0, π/2] are attracted strongly for
J > 0 and exhibit SA for small R and J (see Fig. S7 and
refer to the text S2 for its explanation on spatial interaction
between two swarmalators). Nevertheless, swarmalators with
nearby σ are strongly attracted above appreciable J , even for
small R, to self-organize to display a phase wave, which is
active (APW) (see Fig. 3) due to the competitive repulsion
among the orientation vectors and weak spatial attraction as
the majority of them lie outside R.

Ni increases progressively proportional to R resulting in
the manifestation of multiclusters (MC) from APW as R is
increased, which eventually merges together to manifest as a
single static synchronized cluster above a large R as shown
in Fig. 3. The sufficient condition for synchronization can be
obtained as R > 1/

√
1 − J (see Sec. V for a detailed deriva-

tion). Refer to Table S1 for a description of the acronyms for
observed states.

Now, each cluster in MC becomes sparse as J is decreased
in the intermediate range of R, due to a low degree of spatial
attraction, and eventually the MC gather together with their
preferred orientation to showcase spiky states. Two such spiky
states, namely twisted and flower states, are depicted in Fig. 3,
where the orientation vectors are radially pointed outwards
from the axis of symmetry in the flower state and vice versa in
the twisted state. See Figs. S5F and S8B for a more detailed
view of a flower state and a twisted state, respectively. Note
that the emergence of SP states is extended even for J < 0,
although it is sparser than those for J > 0, as there lies a
net positive spatial attraction for small |J| and hence there
is a meager local synchronization for the SP state to persist.
Further decrease in J , in the same range of R, facilitates an
active core static phase wave with a turbulent core and the
outer shell as the SPW.

A strong attraction among the Nr swarmalators for
J < 0 manifests the asynchronous core, while the synchro-
nized swarmalators within R are weakly attracted, leading to
the SPW. Now, the swarmalators in the core that fall within R
tend to synchronize and eventually repel outside of R to get
asynchronized, which are again attracted, both due to J < 0,
reinforcing the effect resulting in the active core.

An increase in R from SP for J > 0 increases Ni resulting
in the synchronized core, and the remaining Nr swarmalators
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FIG. 3. The synchronization order parameter S is depicted in the two-parameter (J, R) phase diagram for competitive attractive and
repulsive interactions for εa = εr = 0.5. The left panel depicts the evolution of a chimera state as the vision radius R increases from R = 1.4
to 1.8. The snapshots of the swarmalators depicting distinct collective dynamical states are shown in the top and bottom panels. These states
are characterized using order parameters (S,, Nc, E , H ).

form a SPW shielding the core. Such a coexistence of coherent
and incoherent domains is known as a chimera. The coherent
core increases with R and eventually CH manifests as SS for a
large R (see Fig. 3). CH and SS transform to a turning tube for
J < 0, as the spatial attraction among the incoherent domain
is stronger, which remains rolling with Ni like the active core
in ACSPW.

It is important to emphasize that the observed self-
organizing behaviors are robust against Gaussian noise
(Fig. S8). Note that the observed collective states displayed
by the swarmalators are in the absence of angular velocity
ωi = 0. Nevertheless, we have also unraveled the dynami-
cal states of chiral swarmalators [12] by including angular
frequencies. Phase diagrams for two orthogonal angular fre-
quencies (ω1 = [1, 0, 0] and ω2 = [0, 1, 0] distributed equally
among all N swarmalators) and distributed orthogonal angular
frequencies are depicted in Figs. S9B and S9C, respectively,
for the competitive interaction. Refer to Sec. S4 of the Supple-
mental Material [45] for the explanation of the latter figures.
Emerging dynamical behaviors for the attraction-dominated
(εa > εr) competitive interaction are depicted in Fig. S10,
those for repulsion-dominated (εr > εa) competitive interac-
tion are depicted in Fig. S11 for ωi = 0 ∀ i, two orthogonal
angular frequencies (ω1 = [1, 0, 0] and ω2 = [0, 1, 0]), and
distributed orthogonal angular frequencies. Refer to Secs. S4–
S5 of the Supplemental Material [45] for their corresponding

discussions. The heat maps of the employed order param-
eters corresponding to Figs. S10A– S11A are shown in
Fig. S12.

B. Extreme R and local attractive coupling

Swarmalator collectives exclusively display SS (SA) for
Ni = N − 1 (Nr = N − 1) as all of them experience only local
attractive (global repulsive) phase coupling [see Fig. 4(a)].
Nevertheless, the collectives exhibit alluring patterns for ex-
clusive local attractive coupling among the orientation vectors
as a function of R especially for J < 0 [see Fig. 4(a)]. Here,
we uncover a transition from SA to SPW in contrast to the
transition from SA to APW in the competitive interaction as a
function of J in the low range of R as the influence of spatial
proximity is absent on the swarmalators that lie outside R.
SPW manifests as SS via MC as R is increased for J > 0.
There is a transition from SA to SS via a mixed synchro-
nized state (MSS) as R is increased for J < 0. SS becomes
more and more dense (sparse) for J > 0 (J < 0) [Figs. 4(a),
A–D] as the spatial attractive coupling strength increasingly
becomes stronger (weaker) as J is increased (decreased). MC
of similar sizes are formed for R = 0.5 with a weak spatial
attraction within the clusters and a strong spatial attraction
among the clusters, resulting in the MSS. The size of some
of the synchronized clusters increases with R that are spatially
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FIG. 4. (a) Synchronization order parameter S is depicted as the heat map for εa = 0.5 and εr = 0 in the (J, R) space. Refer to the text
for details. (b) Swarmalators with orthogonal angular frequencies. Simulations are performed for N = 100, εa = 0.9, εr = 0.1. The pumping
state is a dynamic state in which swarmalators compress and expand in a rhythmic pattern.

sparse [see Fig. 4(a), F and G]. See Fig. S13 (S14) and text S6
(S7) for a comparison with two orthogonal angular frequen-
cies, and distributed orthogonal angular frequencies for local
attractive coupling (global repulsive coupling).

C. Competitive interaction with quenched disorder

Next, we explore the effect of quenched disorder, W iσ i,
on the swarming dynamics due to the competitive interac-
tions among the orientation vectors. We consider equally
distributed orthogonal angular frequencies ω1 = [1, 0, 0] and
ω2 = [0, 1, 0] for sustained precession of the orientation vec-
tors. The swarmalators quench their precession (movie S8)
leading to nonchiral collective states as in Figs. 3 and 4(a)
for other choices of ωi. Effectively, W iσ i in Eq. (1b) induces a
dispersion among the orientation vectors that leads to distinct
chiral states with precessing swarmalators [see Fig. 4(b)].
The influence of R and J is similar to that discussed in
Fig. 4(a). For low values of R, disordered spin (DS) man-
ifests as spinning spiky (SSP) states above a critical value
of J > 0. From SSP, a synchronized spinning state (SSS) is
formed via a multicluster bouncing spin (MCBS) state as R is
increased. A pumping state (PS) mediates the transition from
DS to SSS. The density of SSS decreases as J → −1 as in
Fig. 4(a). Precessing orientation vectors recursively result in
their coherence and decoherence, which dynamically estab-
lishes dense and sparse synchronized clusters, respectively.
The dense clusters repel each other, whereas the swarmalators
in the sparse clusters that fall within their R are synchronized,
resulting in the reinforcement of MCBS for J > 0. A similar
mechanism underlies the onset of PS for J < 0, where recur-
sive coherence and decoherence result in sparse synchronous

and dense asynchronous collectives dynamically resulting in
the PS.

V. THEORETICAL ANALYSIS

A. Maximal separation between two clusters

The maximal distance between the two-cluster state can
be deduced in the limit of large J as follows. Let ζA, ζB

be the two populations of the swarmalator collectives that
form two clusters A and B, respectively, and let NA, NB be
their respective cardinal numbers. In steady state, the mean
velocity of each cluster is zero, and consequently the sum of
the velocities of all the swarmalators constituting the cluster
A can be expressed as

∑
i∈ζA

ẋi = 1

N − 1

∑
i∈ζA

N∑
j=1

[
1 + J (σ i · σ j )

|xi j |α − 1

|xi j |β
]

xi j .

The second summation can be explicitly expanded as intr-
acluster and intercluster interactions as

∑
i∈ζA

∑
j∈ζA

[
1 + J (σ i · σ j )

|xi j |α − 1

|xi j |β
]

xi j

+
∑
i∈ζA

∑
j∈ζB

[
1 + J (σ i · σ j )

|xi j |α − 1

|xi j |β
]

xi j = 0. (8)

The first term in the above summation corresponds to the
interaction within the cluster A, whereas the second term in the
summation corresponds to the interaction between the clusters
A and B. Representing the first and second summations as A1
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FIG. 5. Dynamics of two swarmalators. (a) Cluster separation
of a two-cluster state with varying J . The solid red line is the an-
alytical prediction, and the open circles are the simulation result.
(b) Dynamics of the swarmalator model for N = 2 for competitive
interaction among the orientation vectors. The heat map illustrates
the synchronization order parameter estimated from the evolution of
the orientation vectors. The sufficient condition for synchronization
was shown to be R > |x12| = 1/

√
1 + J (σ1 · σ2 ). The analytical crit-

ical curve R = 1/
√

1 ± J , depicted in the figure, agrees well with the
simulation results.

and A2, respectively,

A1 =
∑
i∈ζA

∑
j∈ζA, j 
=i

xi j + x ji

2

[
1 + J (σ i · σ j )

|xi j |α − 1

|xi j |β
]
. (9)

Since A1 = 0, following (8) and (9), A2 = 0. Let DIC be the
intercluster distance, such that |xAB| ≈ DIC,

⇒ A2 =
∑
i∈ζA

∑
j∈ζB

[
1 + J (σ i · σ j )

Dα
− 1

Dβ

]
xi j .

Since swarmalators within both clusters A and B are syn-
chronized, σ i = σA and σ j = σB ∀ i ∈ ζA and j ∈ ζB,

⇒ A2 =
[

1 + J (σA · σB)

Dα
IC

− 1

Dβ

IC

] ∑
i∈ζA

∑
j∈ζB

xi j .

Since A2 = 0 and
∑

i∈ζA

∑
j∈ζB

xi j 
= 0, one can obtain the
intercluster distance as

Dβ−α

IC = 1

1 + J (σA · σB)
.

For the chosen values of the parameters α = 1 and β = 3,
the intercluster distance turns out to be

DIC = 1√
1 + J (σA · σB)

.

Maximal cluster separation is obtained when σA · σB =
−1. Analogously, minimal cluster separation can be obtained
when σA · σB = 1. Accordingly, the maximal and minimal
separation between the two clusters are Dmax = 1/

√
1 − J and

Dmin = 1/
√

1 + J , respectively. Since clusters would surely
merge and synchronize once R > Dmax, the sufficient con-
dition for the emergence of static sync turns out to be R >

1/
√

1 − J , which is numerically verified in Fig. 5(a), and the
analytical estimate matches well with the simulation results.

B. Dynamics of two swarmalators

The equation of motion for the spatial dynamics in the case
of two swarmalators is represented as

ẋ1 = {1 + J (σ1 · σ2)} x2 − x1

|x2 − x1|α − x2 − x1

|x2 − x1|β ,

ẋ2 = {1 + J (σ2 · σ1)} x1 − x2

|x1 − x2|α − x1 − x2

|x1 − x2|β .

The evolution equations governing the dynamics of orien-
tation vector (internal states) are given as

σ̇1 = k12

[
σ2 − (σ2 · σ1)σ1

|x2 − x1|γ
]
,

σ̇2 = k21

[
σ1 − (σ1 · σ2)σ2

|x1 − x2|γ
]
.

For spatially static steady states, ẋ1 = 0 and ẋ2 = 0, and
therefore the equation of motion corresponding to the spatial
dynamics can be expressed as

x2 − x1

|x2 − x1|α
[
{1 + J (σ1 · σ2)} − 1

|x2 − x1|β−α

]
= 0.

Since (x1 − x2) 
= 0, we get

|x2 − x1|β−α = 1

1 + J (σ1 · σ2)
. (10)

Substituting the above for the spatial separation between
the two swarmalators in the evolution equation for the orien-
tation vectors, the latter can be expressed only in terms of the
orientation vectors as

σ̇1 = k[1 + J (σ1 · σ2)]
γ

β−α [σ2 − (σ1 · σ2)σ1],

σ̇2 = k[1 + J (σ1 · σ2)]
γ

β−α [σ1 − (σ1 · σ2)σ2].

The above equations completely describe the static states.
Note that Eq. (10) turns out to be the exact separation be-
tween the two clusters, DIC = 1/

√
1 − J . Here, in the case

of two swarmalators, the sufficient condition for synchroniza-
tion is exactly the same as that deduced from the two-cluster
state. Two swarmalators can display a static syc (SS), static
asyc (SA), and static phase wave, which cannot be distin-
guished from SA. In the region described by the condition
1/

√
1 − J < R < 1/

√
1 + J [see Fig. 5(b)], the swarmala-

tors will have intermediate synchronization in the negative J
region due to oscillations arising from the alternative synchro-
nization and desynchronization when they enter and leave the
vision radius.

VI. SELF-PROPELLED SWARMALATORS

In this section, we describe the collective dynamics of self-
propelled swarmalators (vi 
= 0). Vicsek’s model has been
widely used to describe phase transitions in the system of
self-propelled particles, although the model is based on simple
interaction rules and nicely captures the flocking behavior
of birds, fish, and bacterial swarming. The coherent state
arises in the case of high density, and the direction of mo-
tion is inherently the direction of orientation. In contrast,
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the Kuramoto model based orientation (phase) dynamics is
advantageous in that it can control the synchronization by
varying the coupling strength between agents. Additionally,
the swarmalator model can treat the orientation and the di-
rection of movement independently, which can play a crucial
role in more advanced systems such as a swarm of drones
[49] and microrobot collectives [38]. The orientation vector
can be any system variable that needs to be synchronized to
facilitate cooperation (e.g., swarm-based sensing and tracking
[50]) among agents. In the context of drones, σ i can be ori-
entation sensors, a camera, actuators, or it can be the physical
orientation of the drone itself, while in magnetic microrobots
the orientation may represent the direction of polarity. The
self-organizing behavior of swarmalators can be utilized in
performing specific coordinated operations by tuning suitable
parameters.

Schooling of fish

To elucidate that the swarmalators can capture flocking
behavior, we display the defensive maneuver of a real school
of fish by including self-propelling velocity and modifying the
repulsive interaction among the orientation vectors to include
the centripetal inclination of the fish towards their center
of mass to evade predation. These collective behaviors offer
several advantages, such as enhanced predator defense and
increased foraging efficiency [51]. The orientation vector de-
scribing the internal state of a swarmalator can be interpreted
as the heading direction of the swarmalator (fish). We choose
the self-propulsion velocity along the orientation of the
agent as

vi = ciσ i,

where ci is the mapping coefficient for self-propulsion veloc-
ity. Hence the spatial dynamics in Eq. (1) can be modified as

ẋi = ciσ i + 1

N − 1

∑
j=1

{1 + J (σ i · σ j )} x j − xi

|x j − xi|α

− x j − xi

|x j − xi|β + ξx
i (t ). (11)

Bait-ball or milling of a school of fish maintains their social
boundary with some radius L with respect to their center of
mass.

During schooling, fish maneuver their orientation such that
they stay inside this social structure (L) to increase their
chance of survival [52]. The evolution equation corresponding
to the orientation vector can be represented as

σ̇ i = W iσ i +
N∑

j=1

εa

Ni

[
σ j − (σ j · σ i )σ i

|x j − xi|γ
]

− F i. (12)

Note that W i = 0, and the repulsive coupling among the
orientation vectors in Eq. (1) is replaced by the term Fi, which
is expressed as

F i = xc
i − (xc

i · σ i )σ i∣∣Lx̂c
i − xc

i

∣∣ , (13)

where xc
i = xi − xc represents the position of the ith swar-

malator with respect to their center of mass, xc = ∑N
i=1 xi/N .

The term F i can be considered as the force that enforces the
centripetal inclination of the school of fish, which makes it
possible for them to maintain the dense bait-ball formation
to evade their predators [53]. Typical configurations observed
during the schooling of fish are the swarm state, the polarized
state, and the milling state. In the case of milling, swarmala-
tors (here fish) show coordinated rotational motion, and in a
polarized (crystal) state the fish are aligned.

We have used the experimental data [54] to depict the
snapshots of crystal and milling behavior [55,56] of a school
of fish in Figs. 6(a) and 6(c). The self-organizing dynamics of
our model mimic very well the observed crystal and milling
behaviors as depicted in Figs. 6(b) and 6(d), respectively. To
quantitatively describe the observed collective behaviors of a
school of fish, we use three order parameters, namely a syn-
chronization parameter (S), spatial vorticity (�x), and phase
vorticity (�σ ). The synchronization parameter provides the
measurement of the alignment of individuals in the group. To
measure the rotational motion of the fish, we use vorticity pa-
rameters [57]. Spatial vorticity (�x) is calculated using spatial
velocity, and it is useful for capturing the vorticity arising due
to the lateral motion, while the phase vorticity is calculated
using the orientation vectors, and it is useful for measuring
the vorticity due to motion along the heading direction. The
spatial vorticity is defined as

�x = 1

N

∣∣∣∣∣
N∑
i

x̂c
i × v̂i

∣∣∣∣∣, (14)

where x̂c
i is the unit vector corresponding to the position vector

of the ith swarmalator with respect to their center of mass
xc, and v̂i is the unit vector of the spatial velocity of the ith
swarmalator. Phase vorticity is defined as

�σ = 1

N

∣∣∣∣∣
N∑
i

x̂c
i × σ i

∣∣∣∣∣. (15)

Both vorticity parameters, �x and �σ , can vary in the range
0–1. Quantitatively, the milling state is characterized by high
vorticity (�x ≈ 1, S ≈ 0), while the polarized state is char-
acterized by the high value of the synchronized parameters
(S ≈ 1, �x ≈ 0). In the swarm state the fish are not ordered,
nor do they form vorticity, and hence this state is character-
ized by feeble spatial and phase vorticities (�x ≈ 0, �σ ≈ 0)
and a negligible value of the synchronization order parameter
(S ≈ 0).

The synchronization S and the spatial vorticity �x order
parameters, for both the experimental and the simulation data
[see movies S25 (simulation) and S26 (experiment) depicting
the evolution of the dynamical states and the order parame-
ters], are shown in Figs. 6(e) and 6(f) (Fig. S15), respectively.
Heat maps of the order parameters in (J, R) space are shown
in Figs. S16 and S17. The null value of S(�x) and the unit
value of �x(S) corroborate the milling (crystal) behavior for
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FIG. 6. Real-world parallels. (a) Experimentally observed [54] polarized (crystal) state for 300 golden shiners in shallow water at t = 330.
(b) Polarized state in our swarmalator model for N = 300, R = 1.0, J = 0.7, εa = 0.9, εr = 0. (c) Experimentally observed milling state
at t = 1450. (d) Milling state observed in the proposed swarmalator model for N = 300, R = 0.2, J = 0.3, εa = 0.7, εr = 0. (e), (f) Time
evolution of synchronization (S) and spatial vorticity (�x ) order parameters characterizing polarized and milling states, respectively, from both
experimental [S(expt) and �x (expt)] and model [S(model) and �x (model)] data with noise strength (dxk = 0.005, dσk = 0.005).

t > 300 (t > 700) in Fig. 6(e) [Fig. 6(f)]. The striking simi-
larities of S and �x for both the experimental and the model
data establish the significance of our model in predicting very
well the dynamics of a school of fish both qualitatively and
quantitatively.

VII. DISCUSSION

We have proposed a D-dimensional swarmalator model
and unveiled a rich variety of multistable collective behaviors,
tabulated in Table S1 of the Supplemental Material [45], in
the phase diagrams. Most of these collective behaviors are
manifested only in the proposed generalized model (1), where
as only some of them are reported in the literature. We have
defined suitable order parameters to characterize and classify
the distinct self-organized collective states. As pointed out, the
SPW and APW qualitatively resemble the “asters” observed
in magnetic colloids and the “vortex arrays” formed by pop-
ulations of spermatozoa, respectively. Notably, spiky states
bear a striking resemblance to the “skyrmions” observed in
magnetic materials [58], which are a potential candidate for
future data-storage solutions and other spintronics devices.
It is likely that other detected behaviors may be identified
in several real-world systems. The qualitative resemblance
will set the stage for a deeper theoretical investigation of the
minimalistic swarmalator model with essential extensions.

We have provided evidence of our model’s strong po-
tential. In particular, we have extended the original model

to successfully capture the schooling behavior of fish. We
strongly believe that our model can be used to unfold the
underlying mechanism behind self-organizing properties of
micro- and nanoswimmers, self-propelling agents, microrobot
collectives, etc. In particular, the transportation properties
of microrobot collectives can be better controlled using our
model for more precise drug delivery and other biomedi-
cal applications. Furthermore, strategic formation by drones
and precise control of their collective functions using our
model can be used for security purposes, rescue operations,
explorations, etc. There may be a specific interest in studying
reconfigurable microrobots for potential applications, includ-
ing understanding self-healing structures.
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