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The anticipation of bifurcation-induced transitions in dynamical systems has gained relevance in
various fields of the natural, social, and economic sciences. When approaching a co-dimension 1
bifurcation, the feedbacks that stabilise the initial state weaken and eventually vanish; a process
referred to as critical slowing down (CSD). This motivates the use of variance and lag-1 auto-
correlation as indicators of CSD. Both indicators rely on linearising the system’s restoring rate.
Additionally, the use of variance is limited to time- and state-independent driving noise, strongly
constraining the generality of CSD. Here, we propose a data-driven approach based on deriving a
Langevin equation to detect local stability changes and anticipate bifurcation-induced transitions in
systems with generally time- and state-dependent noise. Our approach substantially generalizes the
conditions underlying existing early warning indicators, which we showcase in different examples.
Changes in deterministic dynamics can be clearly discriminated from changes in the driving noise.
This reduces the risk of false and missed alarms of conventional CSD indicators significantly in
settings with time-dependent or multiplicative noise. In multi-dimensional systems, our method can
greatly advance the understanding of the coupling between system components and can avoid risks
of missing CSD due to dimension reduction, which existing approaches suffer from.

I. INTRODUCTION

A mechanistic understanding of complex high-
dimensional physical systems is essential for assessing the
risk of abrupt regime shifts, for example in ecological,
climatic, social, or financial systems. Such shifts may oc-
cur when critical forcing thresholds, which correspond to
underlying bifurcation points, are crossed [1–4]. Reduc-
ing complex systems to a low-dimensional summary ob-
servable Xt has leveraged impressive modelling capabil-
ities [5–8]. This is particularly important because obser-
vations are typically available in the form of multivariate
time series of just a few dimensions.

Commonly, the dynamics of the summary observable
Xt ∈ Rn is approximately separated into a determin-
istic component A(Xt, t)dt and a stochastic component
B(Xt, t)dWt that represents the action of the omitted
dimensions. This results in the Langevin equation

dXt = A(Xt, t)dt+B(Xt, t)dWt. (1)

Even though, in principle, the stochastic component
can take more complicated forms, we restrict our-
selves to the case where W is an uncorrelated Wiener
process supported on the filtered probability space
(Ω,F , (Ft)t∈R+

,P) and refer to existing extensions to the
case of correlated noise [9, 10].

This framework facilitates a mathematical description
of abrupt regime shifts in terms of dynamic bifurcations
in low-dimensional dynamical systems [2, 11]. Prior to
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the transition, the deterministic drift A(Xt, t) embodies
negative feedback mechanisms keeping the system in a
stable equilibrium [12–14]. The explicit time dependence
of A(Xt, t) reflects the changing forcing levels that act
on the system from the outside and alter the determin-
istic, coarse-grained dynamics. At the bifurcation point,
i.e. at the critical level of forcing, the currently occupied
equilibrium state is annihilated and the system abruptly
transitions to another stable state.
For co-dimension 1 bifurcations, it is well known that a

weakening of the negative feedback precedes an eventual
abrupt transition [2, 15]. This will, heuristically speak-
ing, result in a weaker and slower response to the pseudo-
random perturbations stemming from the unresolved dy-
namics. This phenomenon is referred to as critical slow-
ing down (CSD), and it manifests in an increase of the
statistical quantities of variance and lag-1 autocorrela-
tion (AC(1)) of the observable in the components ex-
hibiting stability loss [2, 16–18]. These two quantities
are therefore often employed to anticipate bifurcation-
induced abrupt transitions, and their simultaneous in-
crease has been suggested as an early warning signal
(EWS) [2, 3, 19]. Mathematically, CSD can be described
by approximating the negative feedback around a stable
equilibrium as a linear restoring rate. Denoting the time-
dependent equilibrium state of a one-dimensional observ-
able Xt by x∗(t), we arrive at the Ornstein–Uhlenbeck
model [20]

dXt = −λ(t)(Xt − x∗(t))dt+ σdWt.

The linearised negative feedback λ(t) weakens during
CSD while the noise-coupling strength σ is assumed to
remain constant. This results in the following expressions
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for variance and AC(1),

Var [X] =
σ2

2λ

λ→0−−−→ ∞

ACX(1) = exp(−λ∆t)
λ→0−−−→ 1,

(2)

where ∆t > 0 is the sampling time step of the data.
Detection of CSD is usually preceded by a reduction of
the system to a one-dimensional observable, either by
leveraging physical understanding or employing princi-
ple component analysis [16, 21] in order to identify a
linear combination of components which may be experi-
encing stability loss. In such a reduction, crucial infor-
mation about system stability may be lost. The method
presented herein is applicable directly to data from higher
dimensional systems (or to multivariate data) and thus
avoids this preprocessing step.

We will nevertheless, for illustrative purposes, first
treat the problem of estimating local system stability in
the one-dimensional dynamical system denoted by

dXt = a(Xt, t)dt+ b(Xt, t)dWt, (3)

such that the linearised negative feedback takes the form

λ(t) := −∂xa(x
∗(t), t). (4)

The extension of the discussed estimation methods to the
general, higher-dimensional setting of Eq. (1) is discussed
in the Methods section.

Time- or state-dependent driving noise can lead to
both false negative and false positive EWS [9, 22, 23].
Therefore, understanding the evolution of the diffusion
term b(Xt, t)dWt is crucial for reliable statements on
stability changes derived from data. Given that in real-
world situations, the assumption of time- and state-
independent noise is hardly justifiable, a more general
theoretical framework advancing CSD to the case of time-
and state-dependent noise is called for.

In particular, a methodology is needed to extract from
the observable a more holistic picture of both the deter-
ministic dynamics of the system and the driving noise.
The derivation of the variance and AC(1) in (2) hinges
on the a priori assumption of linear feedback. In applica-
tions, the system might explore parts of the state space
where non-linearities in the feedback are not negligible
anymore, putting the validity of Eq. (2) into question. In
contrast, the linear restoring rate λ directly captures the
desired information of local stability and should therefore
be considered the key quantity to measure system stabil-

ity and detect CSD. To obtain an estimation λ̂, we per-
form a spatially local linear fit to the estimated function

â(x) [24, 25] in some neighbourhood around x̂∗ = Ê[X]
(see Methods and Supplementary Material (SM) 1). A
similar approach has recently been proposed in [26]. We
carry the concept to multiple dimensions and include an
estimation of the diffusion matrix BB⊤(x, t) to supple-
ment the standard CSD indicators and to avoid false pos-
itives and false negatives caused by changes in the driving

noise. In particular, we discuss situations where the con-
ventional CSD indicators give an ambiguous or mislead-
ing picture. We show how the method proposed herein
conclusively resolves these ambiguities.

II. METHODS

It can be shown that the drift and diffusion coefficients
A and B have the following representation in terms of the
increments ∆Xt := Xt+∆t−Xt of the process X [24, 27–
33]:

A(x, t) = lim
∆t→0

1

∆t
E [∆Xt|Xt = x] ,

BB⊤(x, t) = lim
∆t→0

1

∆t
E
[
∆Xt∆X⊤

t |Xt = x
]
.

If the stochastic differential equation (SDE) (3) exhibits
effective time independence, i.e. A(x, t) ≡ A(x) and
B(x, t) ≡ B(x) in some observation time span and if
the sample path of X is available at sufficiently small
time steps ∆t > 0, one may estimate A(x) and BB⊤(x)
by replacing the above ensemble average by the mean
of the observed increments. The law of large numbers
yields consistent estimators that converge to the true A
and BB⊤, omitting here a small bias stemming from the
non-zero ∆t.
We generalise the definition of local system stability

λ in Eq. (4) from the one-dimensional setting to the
multi-dimensional setting of Eq. (1). Consider the Ja-
cobian matrix of A at an equilibrium point x∗ ∈ Rn with
A(x∗, t) = 0. Such an equilibrium point is stable if and
only if all eigenvalues (−λk+ iωk)k=1,...,n of the Jacobian
matrix DA(x∗, t) exhibit negative feedback −λk < 0. Ac-
cordingly, we regard the set of (λk)k=1,...,n as a measure
of system stability.
We obtain an estimation of A and BB⊤ from time se-

ries data using the respective estimators given in [25, 34].
A multivariate ordinary least squares regression is per-
formed to extract an estimate of the matrix DA (see
SM 1 for details). The real parts of the corresponding
eigenvalues are then assessed in their time evolution. In
a windowed time series analysis, negative trends in any of
the λk would indicate a destabilisation of the equilibrium
state, which may point to an upcoming abrupt transition.
The windows must be short enough to justify the required
time independence of the dynamics within each individ-
ual window and yet comprise a sufficient amount of data.
The windowed estimation of A(x, t) and BB⊤(x, t) then
reveals potential temporal changes in the system’s sta-
bility.
We will show that the estimation of the diffusion ma-

trix BB⊤ may in certain situations explain peculiar be-
haviour in the conventional CSD indicators, such as si-
multaneously decreasing variance and increasing AC1. If
instead of local stability, here measured by λ, one wishes
to examine mean exit times from stable equilibria [35],
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the estimated diffusion matrix BB⊤ has additional im-
portant implications [36].

III. RESULTS

First, we will examine the merits of the proposed

CSD indicator λ̂ on the estimated drift coefficient in a
conceptual, one-dimensional system subjected to time-
dependent noise. Second, we will adopt a two-dimensional
predator-prey model with state-dependent noise from the
literature and perform a multi-dimensional analysis.

A. Fold bifurcation with time-dependent noise

The prototypical structure employed for conceptualis-
ing abrupt transitions in many natural systems is the fold
bifurcation [2, 37]. Consider therefore the SDE defined by

dXt =
(
−X2

t + α(t)
)
dt+ σ(t)dWt, (5)

where α is the bifurcation parameter and σ the noise
strength. For positive α > 0, there exists a stable equilib-
rium at x∗(t) =

√
α which vanishes at the critical thresh-

old αcrit = 0 (see Fig. 1a). We simultaneously ramp down
the noise strength σ(t). Such an evolution should be un-
derstood as a change in the nature of the omitted fast
dynamics, which cannot be ruled out in many applica-
tions [38, 39].

The temporal evolution of the variance and AC(1) can
be approximated by Eq. (2) after linearising the system
around the time-dependent equilibrium x∗(t) (red lines
in Fig. 1b and c):

Var [Xt] ≈
σ(t)2

4
√
α(t)

, ACX(1) ≈ exp
(
−2

√
α(t)∆t

)
.

The time-dependent noise thus induces a deceiving down-
ward trend in the estimated variance of the system
(Fig. 1b) alongside increasing AC(1) (Fig. 1c). The con-
flicting indications given by variance and AC(1) would
mislead the observer to conclude that no significant EWS
is present. In contrast, the estimation of the linearised
feedback λ (Fig. 1d) clearly indicates a weakening of lo-
cal system stability and thus the presence of CSD.

The apparently inconsistent results of the conventional
CSD indicators can be understood and reconciled by ex-
amining the structure of the drift and diffusion coeffi-
cients a(x, t) = x2 − α(t) and b(x, t) = σ(t) and their
evolution in time. The true quantities for the functions
a(x, t) and b(x, t) at different times t are plotted in Fig. S1
in SM 1 along with the estimations obtained during the
procedure outlined in the methods section. After disclos-
ing the time dependency of the diffusion coefficient in
Fig. S1c, the diverging trends in variance and AC(1) can
be correctly interpreted in a CSD assessment. The de-
crease in variance can be attributed to the decreasing
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FIG. 1. Application of CSD indicators for synthetic data gen-
erated by the model (5) in the main text. (a) Sample paths for
zero noise (red) and with noise (black). The noise strength σ
is ramped linearly from 0.2 to 0.06 over the integration time
span. (b), (c) Conventional CSD indicators of variance and
lag-1 autocorrelations (black) are calculated on detrended
windows and plotted along with the theoretical values (red)
obtained from the time-local Ornstein–Uhlenbeck linearisa-
tion. The shaded bands represent the 68% confidence inter-

vals on N = 1000 samples. (d) Estimator λ̂ as proposed in this
work, along with the true value λ = −∂xa(x

∗(t), t) (red). All
estimations were performed on running windows of length 102

consisting of 103 data points, considering the sample time-
step is ∆t = 10−1. A traditional analysis using the variance
and AC(1) would lead to a missed alarm, given their oppos-
ing trends; in contrast, the CSD methodology proposed here
clearly detects the forthcoming bifurcation and correctly at-
tributes the negative variance trend to the decreasing ampli-
tude of the driving noise σ(t).

noise strength, and the approach of a bifurcation can
be confirmed. In an analogous setting featuring no bi-
furcation but an increasing noise strength, the incurred
increase in variance can be attributed correctly and the
false alarm that a conventional CSD analysis would raise
can be avoided.
The statistical quality of the estimator λ̂ with respect

to its distribution width is similar to that of the conven-
tional indicators and sufficiently good to ensure a high
likelihood of a statistically significant trend. This can be
argued by checking that the confidence intervals at the
beginning and the end of the estimator time series do not
overlap (see also SM 2).

B. Predator-prey model with state-dependent
noise

Following the work of Bengfort et al. [40], we examine
a predator-prey model for oceanic plankton populations
(see SM 3 for details). Since Bengfort et al. consider this
model under the assumption of no external disturbances
in the form of noise, we adopt a noise model from a re-
lated study [41]. Because environmental variability usu-
ally does not influence the population sizes directly, but
rather their growth rates, a multiplicative noise term is
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FIG. 2. Application of the CSD indicators on time-series data
obtained from the predator-prey model of [40]. (a) Sample
paths of the prey population P (black) and the predator
population Z (grey). The stable and unstable equilibria of
P in their dependence on turb(t) are plotted in red. (b) and
(c) show the means of the conventional CSD indicators vari-
ance and AC(1) over N = 1000 samples. (d) Real parts −λ1,2

corresponding to the estimated eigenvalues of the local Jaco-
bian matrix. The eigenvalues have been assigned (by colour)
to the two populations, as the corresponding eigenspace basis
aligns very well. All estimations were performed on running
windows of length 100, meaning 5000 data points at sampling
rate ∆t = 2 · 10−2.

often employed [42–45]. This leads us to investigate the
following system of SDEs

dPt = ξ−1

(
rPt

(
1− Pt

K(turb)

)
− aP 2

t

h(turb)2 + P 2
t

Zt

)
dt

+ ξ−1/2σPPtdW
P
t ,

dZt =

(
aP 2

t

h(turb)2 + P 2
t

Zt −mZ2
t

)
dt+ σZZtdW

Z
t ,

under the external forcing of ocean turbulence. Due to
the quadratic mortality term mZ2 of the predator pop-
ulation Z, this system can exhibit multiple stable equi-
libria and bifurcations as indicated in Fig. 2a. The two
white noise terms are assumed to be independent and
their strengths σP and σZ are chosen such that noise-
induced tipping only occurs in close proximity to the bi-
furcation point.

Here, we examine the performance of the conventional
and the newly proposed CSD indicators as the system
approaches this bifurcation. Fig. 2a shows sample paths
for the predator and prey populations along with the
stable and unstable equilibria of the prey population P
as implied by the parameter value turb at time t.
The most common approach to the assessment of CSD

in a multi-dimensional system such as this one is to first
reduce the system to one dimension [8, 46, 47]. The cen-
tre manifold theorem states that in close proximity to a
critical bifurcation, the direction of lowest stability will
be the one to experience further destabilisation. For this
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FIG. 3. Prey population taken as a one-dimensional system
(a) and corresponding drift and diffusion coefficients a(P, t)
(b) and b(P, t) (c) for different time slices. In (b) and (c) the
functions are plotted in their P -dependence, while the time t
is represented by the respective colour of the plot, as indicated
in (a). The dashed lines in (b) represent the best linear fits
performed on the estimated a(P, t). Annotated is the value of

the estimator λ̂ on each window of data, i.e., the negative of
the slope of the respective linear fit. Similarly, linear fits in
(c) are shown to illustrate the apparent state-dependence, in
addition to a linear fit of the entire data (grey dashed).

reason, a principle component analysis is often performed
to determine a linear combination of system components
that exhibits the largest variance or AC(1) and can thus
be suspected to be of the lowest stability [16, 17, 21].
However, as can be seen in the example at hand, away
from the immediate proximity of the bifurcation point,
the destabilising direction need not be the direction of
lowest stability. Here, the identified direction of stability
loss would be closely aligned with the predator popu-
lation Z, as it operates on a slower time scale. This is
problematic, as this dimension is relatively impervious
to changes in the control parameter turb and will not
exhibit CSD (grey curves in Fig. 2b and c).

To circumvent this issue, one should therefore per-
form a comprehensive stability analysis on the multi-
dimensional time series.

This is achieved by examining both eigenvalues of the
local equilibrium dynamics as shown in Fig. 2d. The real
part of the larger eigenvalue can be seen to substan-
tially decrease. This provides evidence for a destabili-
sation along the more stable direction in the eigenspace.
Note that the conventional approach of focusing on the
direction of largest eigenvalue would miss this destabili-
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sation.
Investigating again the conventional variance and

AC(1) CSD indicators in Fig. 2b and c, AC(1) seems
to indicate a destabilisation along the dimension of the
prey population P but the trend of the observed variance
seems to indicate the opposite. This contradiction can be
resolved by performing an analogous analysis of the drift
and diffusion coefficients for the one-dimensional time se-
ries of P as in the first example above (see Fig. 3). This
reduction in dimension can now be motivated by the fact
that the vector in eigenspace corresponding to the weak-
ening eigenvalue in 2d lies predominantly in the direction
of P . The slopes of the estimated drift coefficient shown
in Fig. 3b decrease as the system moves towards the bi-
furcation, agreeing with the estimations in Fig. 2d. A
clear state-dependence can be identified in the estimated
diffusion coefficient (Fig. 3c). Together with the observa-
tion of a diminishing mean state in the prey population,
it can be concluded that the decrease in variance in 2b
was due to a reduced noise amplitude and can thus be
reconciled with the increase in AC(1).

IV. DISCUSSION

Variance and AC(1) are often used in combination to
assess whether or not a system is approaching a criti-
cal transition. In general, a positive result is considered
robust when both indicators show a significant positive
trend. We have shown here that in the presence of time-
or state-dependent noise amplitudes, the variance of the
system may actually decrease in the advent of a bifur-
cation. If a monitored system shows a decreasing trend
in variance alongside an increasing trend in AC(1), this
would typically not be considered a robust EWS, leading
to a missed alarm. An increase in noise strength over time
could, on the other hand, lead to a false alarm in form
of an increasing variance in systems with no underlying
bifurcation. We have also shown that common methods
in dimension reduction can lead to missed alarms, as the
destabilising system component may not be the least sta-
ble to begin with.

To overcome these problems, we have proposed a
method based on deriving a Langevin equation from the
observed dynamics. Our approach allows us to separate
the effects of possible CSD dynamics contained in the
drift coefficient from changes in the noise represented by
the diffusion coefficient. It also allows for a more holistic
investigation of multi-dimensional systems, without fur-
ther mechanistic simplifications (see SM 4 for a second
example to this point, which shows in particular that the
proposed method works for periodic multi-dimensional
systems that are problematic for the conventional CSD
indicators). We showed that our approach avoids the pit-
falls that a conventional CSD analysis suffers from in
these examples.

We have shown that in the presented one-dimensional

application, the statistical quality of the estimator λ̂ is

of the same order as that of the estimators for variance
and AC(1) (see also SM 2 for further discussion). How-
ever, one important caveat bears mentioning: While for
the estimators of variance and AC(1), the length of the
time series is the only determining factor of convergence,
the estimators for the drift and diffusion coefficients also
require small sampling time steps 1 ≫ λ∆t > 0 in or-
der for their bias to be small. In general, the estima-

tor λ̂ proposed here will still contain information about
CSD even in settings of large sample time steps ∆t, but
the signal-to-noise ratio may prohibit its employment
as a CSD indicator. Areas of application where systems
are potentially susceptible to tipping and where high-
frequency data may be available for analysis could be
electricity grids [48–50], financial markets [51–53], atmo-
spheric circulation systems such as monsoons [54, 55],
ecosystems and vegetation systems such as the Amazon
rainforest, [56–59], ocean circulation systems [3], or ice
sheets [60, 61].
Our method should be understood as a more gen-

eral, reliable, and circumspect indicator of CSD com-
pared to the widely used variance and AC(1). Our ap-
proach is appropriate in settings of generally time- and
state-dependent driving noise, where the combined con-
ventional indicators fail. Moreover, the ability to examine
time series in their multi-dimensional complexity con-
stitutes a considerable improvement in the comprehen-
sion of the system compared to one-dimensional sum-
mary statistics.

DATA AVAILABILITY

Supplementary Material is available for download at
the online version of this manuscript. The implementa-
tion of the estimators introduced in this work is avail-
able in the GitHub repository KramersMoyalEWS. Also
included is the code employed to generate all figures in
the main text and the Supplementary Material.
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SUPPLEMENTARY MATERIAL

1. Details on the estimator λ̂

Here, we give a detailed description of the local sta-

bility measure λ̂ in n-dimensional systems. For n = 1,

https://github.com/andreasmorr/KramersMoyalEWS.git
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FIG. S1. Estimated drift and diffusion coefficients a(X, t) and
b(X, t) [25] for the one-dimensional fold bifurcation exam-
ple in the main text. The functions are plotted in their X-
dependence, while the time t is represented by the respective
colour of the plot. The dashed lines show the theoretical quan-
tities.

it is the negative of the slope of the estimated drift co-
efficient a around the equilibrium, and therefore always
a real number. For n > 1, the estimation procedure re-
turns n eigenvalues of the local Jacobian matrix of the
estimated drift coefficient in their algebraic multiplicity.
The eigenvalues may be complex, and thus the value of
interest investigated in the main text is the negative of
the real part of the respective eigenvalues.

Prior to any analysis, the windowed time series data
of each of the n dimensions is linearly detrended. For
the assessment of the conventional CSD indicators, the
mean of the data is removed, as they rely purely on the
fluctuations around the equilibrium state. In contrast,
drift and diffusion are assessed without subtraction of
the mean to retain information about the corresponding
state dependence. In order to obtain numerical stability,
the n time series are normalised to a standard deviation
of 1, with no implication on the subsequent estimations.
For each window, the estimation of the function A(x) is
returned as an array of values

(Â(xi))i=1,...,Mn ,

where M is the number of evenly spaced target bins in
each dimension. The Mn target bins in Rn, therefore,
form a grid on the hypercube spanned by the state space
explored by the time series. For each of these bins, an esti-

mation Â(xi) is calculated using an Epanechnikov kernel

K(x) =
3

4h

(
1− ||x||2

h2

)
, with support ||x|| < h,

with a kernel bandwidth h of 14n/M . Since the estimator

Â(xi) will converge to some (biased) value as the number
of samples Xk∆t in the bin xi tends to infinity, it is clear
that those bins with many samples converge fastest. In
our setting with equilibrium dynamics around one sta-
ble equilibrium x∗, this means that the estimations for
bins closest to x∗ converge fastest, and the quality de-
teriorates for outer bins. For this reason and in order to
curtail the effects of a non-linear drift term, we opt to
only carry 50% of bins centred around the bin containing

x̂∗ = Ê[X] to the subsequent analysis. This is to say, we
select a hypercube with side lengths 50% as large as the
original hypercube. Thus, we are confronted with fixing
three free parameters a priori: The number of total bins
M in each dimension, the percentage m of bins to carry
on either side of the estimated equilibrium x̂∗, and the
kernel bandwidth. In this study, we chose M = 50 and
m = 50%, meaning that for n = 1, we have 25 relevant
bins for further analysis. The bandwidth is chosen as a
function of M and n, as described above. However, the

performance of the estimator λ̂ is not very sensitive to
small changes in these parameters.
To obtain an estimation of the local Jacobian matrix

around the equilibrium point x̂∗, we perform a multivari-

ate ordinary linear regression between (Â(xi)) and (xi)
over i, including an intercept in the design matrix. The al-
gebraic eigenvalues of the resulting matrix are computed
numerically. For n = 1, this procedure is equivalent to

finding a best linear fit (c− λ̂xi) to (â(xi)) over i.

2. Assessing the statistical quality of λ̂

The two applications presented in the main text
demonstrate that CSD manifests itself in a substantial
negative trend of the estimator λ̂ when enough data are
available. In this section, we aim to make this statement
concrete and to compare the indicator’s performance to
that of variance and AC(1). The assessment is based on
the width of the three indicators’ numerical distribution
after application to synthetic data in one dimension. The
top row of Fig. S2 shows the distributions of the esti-
mators that arise from the application of the indicators
to 1000 synthetic time series generated by numerically
integrating a time-homogeneous OU process:

dXt = −λXtdt+ dWt, (6)

To analyse the behaviour of the estimators in a generic
CSD scenario, i.e., a temporal reduction of the restoring
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FIG. S2. Distributions of (a) variance, (b) AC(1), and (c)

the estimator λ̂ on 1000 samples of Ornstein–Uhlenbeck time
series of length T = 100 each (see equation (6)). The sam-
pling time step was set at ∆t = 0.1. This estimation setting
is equivalent to that chosen for the synthetic fold bifurcation
example in the main text. The blue histogram shows the esti-
mator distribution for the OU-parameter λ = 1 and the violet
for λ = 0.1. If the 97.5- and 2.5-percentile of the two distribu-
tions do not overlap, it is highly likely that the corresponding
CSD will be detected by the indicators. The separation in
distribution is investigated for several choices of T and ∆t in
the bottom row of the figure. Green indicates no significant
overlap of the estimator distributions, i.e., a successful CSD
estimation; red the contrary.

rate, we plot their distributions for λ = 1 and λ = 0.1.
If the distributions are sufficiently distinct, the indica-
tors may correctly detect a given reduction of the restor-
ing rate with a high likelihood. For different choices of
window lengths and time steps ∆t, we check numerically
whether this condition is satisfied for each estimator (bot-
tom row of Fig. S2). Being more sensitive at low data
availability, the estimators for variance and AC(1) per-

form better than that for λ̂. Above a window length of
T = 100, this difference is negligible, judging by the pro-
posed metric. The difference may also be less pronounced
when performing the same test on time series generated
by models with non-linear drift or jump-noise, where the
state-locality of our method can alleviate non-linear ef-
fects on the far ends of the state space. Therefore, in a

large range of applications, the estimator λ̂ offers a sta-
tistically equally performant method of assessing CSD
with the additional advantage of robustness with respect
to time- and state-dependent noise, substantial advan-
tages in higher-dimensional settings, as well as settings
featuring non-linear drifts and jumps in the noise.

3. Details on the predator-prey model

The specific model introduced in the main text is a
modification of the Truscott–Brindley model for ocean
plankton populations originally introduced in [62]. Beng-
fort et al. [40] generalised the model by introducing the
environmental parameter of fluid turbulence to the sys-
tem and allowing higher powers in the mortality term of
the predator population. The full system equations are
given by

ξṗ(t) = rp(t)

(
1− p(t)

K(turb)

)
− ap(t)2

h(turb)2 + p(t)2
z(t)

ż(t) =
ap(t)2

h(turb)2 + p(t)2
z(t)−mz(t)2

K(turb) = K0 + cK · turb

h(turb) =
h0

1 + ch · turb

This system has been non-dimensionalised in order to
reduce the number of parameters. However, to retrieve
realistic values of population sizes in units of density, p
and z merely need to be multiplied with constants p0
and z0. The first term on the right-hand side of the prey
population’s evolution ṗ is the population growth rate
as determined by the relationship between the current
population size and the carrying capacity K. Below that
capacity, the population grows and vice versa. The sec-
ond term is the mortality rate of the prey population,
which is simultaneously the growth rate of the preda-
tor population since it is assumed that all death in p and
growth in z occurs through consumption of the former by
the latter. The second term in the evolution of z in the
second equation is the quadratic mortality term alluded
to in the main text. This ultimately facilitates multiple
stable states as opposed to the same model with a linear
mortality term. The turbulence turb ∈ [0, 1] describes the
normalised strength of spatial mixing in the ocean mod-
elled by circular eddies. All parameter values but those
for ξ, cK and ch are adopted directly from [40] and can be
found in Table SI along with a short description of their
interpretation. The parameters cK and ch were increased
by a factor of 2.2 each for the purposes of this study
to facilitate a bigger range of stable prey populations in
the large population regime. The fundamental nature of
the model remains unaltered by this change. Lastly, as
described in the main text, we introduced multiplicative
noise terms commonly used in the relevant literature [42–
45] to model environmental impacts on the growth and
mortality rates of the two populations. This leads us to
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TABLE SI. Parameter values used in the simulation of plankton populations following the model in equations (7).

parameter value description
r 1 growth rate factor of prey P
a 1/9 rate of the predator consuming the prey
m 0.0525 mortality rate of the predator
ξ 0.7 time scale separation between prey and predator evolutions
h0 1/16 factor influencing maximal consumption at zero turbulence
ch 0.88 linear relationship between turbulence and h
K0 0.7 carrying capacity at zero turbulence
cK 0.66 linear relationship between turbulence and K
σP 0.037 strength of noise coupling to P
σZ 0.01 strength of noise coupling to Z

the complete set of model equations:

dPt = ξ−1

(
rPt

(
1− Pt

K(turb)

)
− aP 2

t

h(turb)2+P 2
t

Zt

)
dt

+ ξ−1/2σPPtdW
P
t .

dZt =

(
aP 2

t

h(turb)2+P 2
t

Zt −mZ2
t

)
dt+ σZZtdW

Z
t .

K(turb) = K0 + cK · turb, (7)

h(turb) =
h0

1 + ch · turb
turb(t) = 1− 7

10

t

T
.

4. Additional example of the multi-dimensional
stability analysis

In the example of the two-dimensional predator-prey
model in the main text, it was revealed by the analysis
of the two-dimensional drift coefficient that the dynam-
ics could also be well-represented by two uncoupled one-
dimensional SDEs for the predator and prey population,
respectively. As a result, the CSD analysis was also com-
prehensive after a reduction to the prey dimension. How-
ever, the dynamics of many systems cannot be reduced in
such a way. This is especially relevant for systems exhibit-
ing pronounced oscillations. Using the method outlined
above, we therefore additionally assess the local stability
of a system undergoing a subcritical Hopf bifurcation in
normal form.

dXt =


−

(
µ(t)−

(
X(1)

)2 −
(
X(2)

)2)
X(1) − ωX(2)

−
(
µ(t)−

(
X(1)

)2 −
(
X(2)

)2)
X(2) + ωX(1)


 dt

+ ε

(
1 0
0 1

)
dWt,

where ω = 1, ε = 0.01, and µ(t) decreases linearly from 2
to 0.1 over the integration time of T = 1000. For µ > 0,
the origin is a stable fixed point with eigenvalues −µ±iω.
Furthermore, there is an unstable limit cycle with radius

0 200 400 600 800 1000
Time t

0

1λ̂

(a)

(b)

Time t

0
200

400
600

800
1000

X
(1

)

X
(2

)

FIG. S3. Employing the outlined method for multidimensional
stability analysis. (a) Time series data generated by a model
undergoing a subcritical Hopf bifurcation in normal form. (b)
Estimates of the stability indicators λk. The thick line repre-
sents the mean of the 200 sample estimations. Since the Ja-
cobian matrices at each point in time have complex eigenval-
ues corresponding to the oscillatory dynamics, the eigenvalues
are conjugates and coincide in their real part. The theoretical
value for the negative of this real part is plotted in red.

√
µ and perturbations from the origin decay in the form

of spirals. At µ = 0, the radius of the unstable limit cycle
reaches zero, and the origin turns into an unstable fixed
point. The data was sampled at time steps ∆t = 0.1
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and analysed in windows of length T = 100. The results
are presented in Fig. S3. The real parts of both eigen-
values are known to be −µ(t), and the estimations track
this value relatively closely. A destabilisation of the equi-
librium can clearly be made out. An additional insight

gained via the CSD assessment through the Langevin
equation approach proposed here is that the local sys-
tem exhibits oscillatory dynamics, as identified by the
complex eigenvalues of the Jacobian matrix.
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