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Anticipating bifurcation-induced transitions in dynamical systems has gained relevance in various fields of
the natural, social, and economic sciences. Before the annihilation of a system’s equilibrium point by means
of a bifurcation, the system’s internal feedbacks that stabilize the initial state weaken and eventually vanish,
a process referred to as critical slowing down (CSD). In one-dimensional systems, this motivates the use of
variance and lag-1 autocorrelation as indicators of CSD. However, the applicability of variance is limited
to time- and state-independent driving noise, strongly constraining the generality of this CSD indicator. In
multidimensional systems, the use of these indicators is often preceded by a dimension reduction in order to
obtain a one-dimensional time series. Many common techniques for such an extraction of a one-dimensional time
series generally incur the risk of missing CSD in practice. Here, we propose a data-driven approach based on esti-
mating a multidimensional Langevin equation to detect local stability changes and anticipate bifurcation-induced
transitions in systems with generally time- and state-dependent noise. Our approach substantially generalizes the
conditions under which CSD can reliably be detected, as demonstrated in a suite of examples. In contrast to
existing approaches, changes in deterministic dynamics can be clearly discriminated from changes in the driving
noise using our method. This substantially reduces the risk of false or missed alarms of conventional CSD
indicators in settings with time-dependent or multiplicative noise. In multidimensional systems, our method can
greatly advance the understanding of the coupling between system components and can avoid risks of missing
CSD due to dimension reduction, which existing approaches suffer from.

DOI: 10.1103/PhysRevResearch.6.033251

I. INTRODUCTION

A mechanistic understanding of complex high-dimensional
physical systems is essential for assessing the risk of abrupt
regime shifts, for example, in ecological, climatic, social, or
financial systems. Such shifts may occur when critical forc-
ing thresholds, which correspond to underlying bifurcation
points, are crossed [1–4]. Reducing complex systems to a low-
dimensional summary observable Xt has leveraged impressive
modeling capabilities [5–7]. This is particularly important
because observations are typically available in the form of
multivariate time series of just a few dimensions.

Commonly, the dynamics of the summary observable Xt ∈
Rn are approximately separated into a deterministic compo-
nent A(Xt , t )dt and a stochastic component B(Xt , t )dWt that
represents the action of the omitted dimensions. This results
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in the Langevin equation

dXt = A(Xt , t )dt + B(Xt , t )dWt , (1)

commonly employed as a model for partially resolved dy-
namics. Even though the stochastic component can take more
complicated forms, we restrict ourselves to Gaussian white
noise dW and refer to existing extensions to the case of
correlated noise [8,9].

This framework facilitates a mathematical description of
abrupt regime shifts in terms of dynamic bifurcations in low-
dimensional dynamical systems [2,10]. Prior to the transition,
the deterministic drift A(Xt , t ) exhibits negative feedback
mechanisms keeping the system close to a stable equilibrium
x∗

0 (t ) with A(x∗
0 (t ), t ) = 0 [11–13]. The explicit time depen-

dence of A(Xt , t ) reflects changes in the forcings that act
on the system from the outside and alter the deterministic,
coarse-grained dynamics. At the bifurcation point, i.e., at the
critical level of forcing, the currently occupied equilibrium
state is annihilated and the system abruptly transitions to
another stable state x∗

1 (t ).
It is well known that a weakening of the negative feed-

back precedes the annihilation of an attracting equilibrium
point [2,14]. Heuristically speaking, this results in weaker
and slower responses to the pseudorandom perturbations
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stemming from the unresolved dynamics. This phenomenon
is referred to as critical slowing down (CSD), and it can
manifest in an increase of variance and lag-1 autocorrela-
tion (AC(1)) in one or more components of the observable
[2,15–17]. These two quantities are therefore often employed
to anticipate bifurcation-induced abrupt transitions, and their
simultaneous increase has been suggested as an early warning
signal (EWS) [2,3,18].

We first introduce the notion of local system stability in a
one-dimensional dynamical system denoted by

dXt = a(Xt , t )dt + b(Xt , t )dWt . (2)

Linearizing the deterministic equilibrium dynamics yields the
linear restoring rate

λ(t ) := −∂xa(x∗(t ), t ). (3)

In the annihilation of an equilibrium point, λ vanishes, mo-
tivating its analysis in the context of anticipating critical
transitions. It can be shown that variance and AC(1) of the
observable in this linear framework with time- and state-
independent noise b(x, t ) ≡ σ are given by

Var[X ] = σ 2

2λ

λ→0−−→ ∞,

ACX (1) = exp(−λ�t )
λ→0−−→ 1, (4)

where �t > 0 is the sampling time step of the data. The
extension of the concept of local stability to the general,
higher-dimensional setting of Eq. (1) is discussed in the Meth-
ods section.

Detection of CSD via variance and AC(1) is usually
preceded by a reduction of the system to a one-dimensional
observable, either by leveraging physical understanding or
employing principal component analysis (PCA) in order
to identify a linear combination of components which may
be experiencing stability loss [15,19]. In such a reduction,
crucial information about system stability may be lost [20,21],
and thus methods that avoid deleterious preprocessing are
advantageous.

The derivation of the variance and AC(1) in Eq. (4) hinges
on the a priori assumption of entirely linear feedback. In
applications, the system might explore parts of the state space
where nonlinearities in the feedback are not negligible any-
more, placing the usefulness of Eq. (4) into question. In
contrast, the linear restoring rate λ directly captures the de-
sired information of local stability at the equilibrium point and
should therefore be considered the key quantity to measure
system stability and detect CSD. This approach has been
adopted for one-dimensional systems, e.g., in [9,22–24].

Time- or state-dependent driving noise can lead to both
false negative and false positive EWS [8,25,26]. In particu-
lar, variance is vulnerable to alterations in noise levels. In
contrast, AC(1) reliably increases during CSD, even under
the influence of changing noise strength, provided that the
noise is uncorrelated. Given that in real-world applications,
the assumption of time- and state-independent noise is hardly
justifiable, understanding the evolution of the diffusion term
b(Xt , t )dWt is crucial for assessing stability changes derived
from data. In particular, a methodology is needed to extract

from an observable a more holistic picture of both the deter-
ministic dynamics and the driving noise.

To obtain an estimation λ̂, we first estimate the drift func-
tion a(x). In a second step, we perform a spatially local
linear fit to â(x) [27,28] in a selected neighborhood around
x̂∗ = Ê[X ] (see Methods and Appendix A). We include an
estimation of the diffusion b(x, t ) to supplement the standard
CSD indicators and to avoid false positives and false negatives
caused by changes in the driving noise. In particular, we dis-
cuss situations where the conventional CSD indicators give an
ambiguous or misleading picture. We show how the method
proposed herein conclusively resolves these ambiguities.

We carry the concept to multiple dimensions to obtain a
more generally applicable indicator of CSD that is robust
with respect to time- and state-dependent noise. Conventional
approaches employing PCA to infer information about system
stability may fail in such settings.

II. METHODS

The drift and diffusion coefficients A and B of the n-
dimensional stochastic differential equation (SDE) (1) have
the following representation in terms of the increments
�Xt := Xt+�t − Xt of the process X [27,29–35]:

A(x, t ) = lim
�t→0

1

�t
E[�Xt |Xt = x], (5)

BB�(x, t ) = lim
�t→0

1

�t
E[�Xt�X�

t |Xt = x]. (6)

The former relation generally holds for Markovian processes
with a drift term A, while the latter relation specifically con-
cerns the Gaussian white noise model.

If the SDE in Eq. (1) exhibits effective time independence,
i.e., A(x, t ) ≡ A(x) and B(x, t ) ≡ B(x) in some observation
time span, we can estimate the stationary variance and AC(1)
of each component as well as A(x) and BB�(x) through a law
of large numbers estimator. More concretely, if the sample
path of X is available at sufficiently small time steps �t > 0,
one may estimate A(x) and BB�(x) by replacing the above
ensemble average by the mean of the observed increments.
This yields consistent estimators that converge to the true A
and BB�, omitting here a known bias that stems from the
nonzero �t [32]. We will see that this bias can incur an
unfavorable uncertainty in the estimator λ̂.

We generalize the definition of local system stability λ in
Eq. (3) from the one-dimensional setting to the multidimen-
sional setting of Eq. (1). Consider the Jacobian matrix of A
at an equilibrium point x∗ ∈ Rn with A(x∗, t ) = 0. Such an
equilibrium point is stable if and only if all the eigenvalues’
real parts (−λk + iωk )k=1,...,n of the Jacobian matrix DA(x∗, t )
embody negative feedback −λk < 0. Accordingly, we regard
the set of (λk )k=1,...,n as a measure of system stability. When
an equilibrium point vanishes by means of a bifurcation, at
least one of the λk passes through zero.

We obtain an estimation of A and BB� from time series
data using the respective estimators given in [28,36], where
kernel-based methods are employed to leverage the law of
large numbers convergence. Next, a multivariate ordinary
least-squares regression is performed to extract an estimate
of the matrix DA (see Appendix A for details). The regression
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FIG. 1. Application of CSD indicators for synthetic data generated by the model in Eq. (7). The noise strength σ is ramped linearly
from 0.2 to 0.06 over the integration time span. (a) Sample paths for zero noise (orange) and with noise (divided into colored time series
windows). (b), (c) Conventional CSD indicators of variance and AC(1) (black) are calculated on detrended windows and plotted along with
the theoretical values (red) obtained from the time-local Ornstein–Uhlenbeck linearization. The black lines constitute ensemble means, and
the shaded bands represent the 68% confidence intervals on N = 1000 samples. (d) Estimator λ̂ as proposed in this work, along with the true
value λ = −∂xa(x∗(t ), t ) (red). (e), (f) Estimated functions a(x, t ) = −x2 + α(t ) and b(x, t ) = σ (t ) plotted in their x dependence. The time
dependence is illustrated by the respective color of the plot corresponding to the investigated time series window from (a). The dashed lines
represent the true functions a and b at the respective window-center time. The estimated slope of a is taken to be −λ̂, which can be seen to
diminish over the observation time span. For more details on these estimation routines, see the Methods section or Appendix A. The apparent
time dependence of b helps reconcile the inconsistent signals in variance and AC(1) with respect to CSD that may otherwise lead to a missed
alarm. All estimations were performed on running windows of length 102 time units consisting of 103 data points, considering the sample time
step is �t = 10−1.

is restricted to a neighborhood of the estimated equilibrium
point in order to disregard data points that potentially lie
outside the linear regime. On the one hand, this should give
a more accurate estimate of the local linear stability compared
to conventional methods. On the other hand, such a restriction
effectively reduces the number of data points contributing to
the estimation and can thus incur larger uncertainties. The real
parts of the eigenvalues derived from the estimation of DA
then serve as a measure of stability.

To investigate the evolution of stability in an application
setting, one can assess the eigenvalues of DA locally in time
by partitioning a recorded time series into windows. The win-
dow length should be short enough to ensure approximately
time-independent dynamics within individual windows and
long enough to include sufficient data points for robust esti-
mations of drift and diffusion. Negative trends in any of the
λk computed within these sliding windows would indicate a
destabilization of the equilibrium state, which may point to an
upcoming abrupt transition.

We show that the estimation of the diffusion matrix
BB� may in certain situations explain peculiar behavior
in the conventional CSD indicators, such as simultane-
ously decreasing variance and increasing AC(1). If instead
of local stability, here measured by λ̂, one wishes to ex-
amine mean exit times from stable equilibria [37], the
estimated diffusion matrix BB� provides important additional
information [38].

III. RESULTS

A. Normal-form fold bifurcation with time-dependent noise

The prototypical structure employed for conceptualiz-
ing abrupt transitions in many natural systems is the fold

bifurcation [2,39]. Consider therefore the SDE defined by

dXt = (−X 2
t + α(t )

)
dt + σ (t )dWt , (7)

where α is the bifurcation parameter and σ is the noise
strength. For positive α > 0, there exists a stable equilib-
rium at x∗(t ) = √

α which vanishes at the critical threshold
αcrit = 0 [see Fig. 1(a)]. While decreasing the parameter α

linearly, we simultaneously ramp down the noise strength σ (t )
from 0.2 to 0.06. Such an evolution should be understood as
a change in the nature of the omitted fast dynamics, which
cannot be ruled out in many applications [40,41].

The temporal evolution of the variance and AC(1) can be
approximated after linearizing the system around the time-
dependent equilibrium x∗(t ) [red lines in Figs. 1(b) and 1(c)]:
Var[Xt ] ≈ σ (t )2/4

√
α(t ) and ACX (1) ≈ exp ( − 2

√
α(t )�t ).

In some cases, the time-dependent noise thus induces a de-
ceiving downward trend in the estimated variance of the
system [Fig. 1(b)] alongside increasing AC(1) [Fig. 1(c)].
The conflicting indications given by variance and AC(1)
would mislead the observer to conclude that no significant
EWS is present. The estimation of the linearized feedback
λ [Fig. 1(d)] clearly indicates a weakening of local system
stability and thus the presence of CSD.

The apparently inconsistent results of the conventional
CSD indicators can be understood and reconciled by ex-
amining the structure of the drift and diffusion coefficients
a(x, t ) = x2 − α(t ) and b(x, t ) = σ (t ) and their evolution in
time. The true quantities for the functions a(x, t ) and b(x, t )
at different times t are plotted in Figs. 1(e) and 1(f), along
with the estimations obtained during the procedure outlined
in the methods section. After disclosing the time dependency
of the diffusion coefficient in Fig. 1(f), the diverging trends
in variance and AC(1) can be correctly interpreted in a CSD
assessment. The decrease in variance can be attributed to the
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FIG. 2. Application of the CSD indicators on time-series data obtained from the predator-prey model defined in Eqs. (8) and (9). (a) Sample
paths of the prey population P (black) and the predator population Z (gray). The stable and unstable equilibria of P in their dependence on
turb(t ) are plotted in orange. (b), (c) Means of the conventional CSD indicators variance and AC(1) over N = 1000 sample trajectories. (d) Real
parts −λ1,2 of the estimated eigenvalues of the local Jacobian matrix. The eigenvalues have been assigned (by color) to the two populations,
as the corresponding eigenspace basis aligns very well. (e) Square root of the estimated matrix element (BB�)1,1(P, Z, t ) of the single sample
trajectory shown in (a). It is plotted as a function of P, while Z has been set to the equilibrium value Z∗. This value determines the strength
of the noise coupled to prey population dynamics dP. Each estimation has been performed on the nonoverlapping window marked by the
respective color on the bar in (a). The black dashed line represents a linear fit of all shown functions (BB�)1,1(P, Z∗, t ) with respect to their
dependence on P. All estimations were performed on running windows of length 100 time units, meaning 5000 data points at sampling rate
�t = 2×10−2.

decreasing noise strength, and the approach of a bifurcation
can be confirmed. In an analogous setting featuring no bifur-
cation but an increasing noise strength, the incurred increase
in variance can be attributed correctly, and concerns that the
system is approaching a bifurcation can be unambiguously
dispelled.

The statistical quality of the estimator λ̂ with respect to
its distribution width is similar to that of the conventional
indicators and sufficiently good to detect CSD with a low false
negative rate. This can be argued by checking that the confi-
dence intervals at the beginning and the end of the estimator
time series do not overlap (see also Appendix B for a more
in-depth discussion). The deviation of the sample mean from
the theoretical value of λ [black and red curves in Fig. 1(d),
respectively] originates in the nonzero time step �t = 10−1.
While this does not affect the trend of the estimator time
series, it decreases the signal-to-noise ratio.

B. Predator-prey model with multiplicative noise

Following the work of Bengfort et al. [42], we examine
a predator-prey model for oceanic plankton populations (see
Appendix C for details). Since Bengfort et al. consider this
model under the assumption of no external disturbances in the
form of noise, we adopt a noise model from a related study
[43]. Because environmental variability influences population
growth rates, a multiplicative noise term is commonly em-
ployed [44–47]. This motivates us to investigate the following
system of SDEs:

dPt = ξ−1

[
rPt

(
1 − Pt

K (turb)

)
− aP2

t

h(turb)2 + P2
t

Zt

]
dt

+ ξ−1/2σPPt dW P
t , (8)

dZt =
(

aP2
t

h(turb)2 + P2
t

Zt − mZ2
t

)
dt + σZZt dW Z

t , (9)

under the external forcing of ocean turbulence (turb). Due to
the quadratic mortality term mZ2 of the predator population
Z , this system can exhibit multiple stable equilibria and bifur-
cations as shown in Fig. 2(a). The two white noise terms are
assumed to be independent.

Here, we examine the performance of the conventional and
the newly proposed CSD indicators as the system approaches
the saddle-node bifurcation that annihilates the populated sta-
ble state. Figure 2(a) shows sample paths for the predator and
prey populations along with the stable and unstable equilibria
of the prey population P as implied by the parameter turb at
time t .

The most common approach for the assessment of CSD in a
multidimensional system such as this one is to first reduce the
system to one dimension [48–50]. The center manifold theo-
rem implies that close to a critical bifurcation, the direction
of lowest stability, i.e., the direction dominating the recov-
ery time of the system, experiences further destabilization
[50–52]. PCA is commonly performed to determine a linear
combination of system components that exhibits the largest
variance and can thus be suspected to be of the lowest stability
and therefore undergo further destabilization [15,16,19,53].
However, as can be seen in the example at hand, away from the
immediate proximity of the bifurcation point, the destabilizing
direction need not be the direction of lowest stability. In our
example, methods relying on PCA [15] or maximum autocor-
relation factor (MAF) analysis [19] would identify a direction
closely aligned with the predator direction Z as a potential
candidate for a destabilizing direction. This is problematic,
as this dimension is relatively unaffected by changes in the
control parameter turb and does not exhibit CSD [gray curves
in Figs. 2(b) and 2(c)].

To circumvent this issue, one should therefore perform
a comprehensive stability analysis on the multidimensional
time series. This is achieved by examining both eigenvalues
of the local equilibrium dynamics as shown in Fig. 2(d).
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The λ̂ associated with the more stable eigenvalue can be
seen to substantially decrease. Note that the conventional
approach of focusing on the direction of the most unstable
eigenvalue would miss this destabilization. An assessment
of all principal components and their respective amplitudes
does not alleviate this complication, as PCA could still be
influenced by the dependence of the driving noise on time and
on the system state. Employing the MAF method proposed in
[19,54] and monitoring all autocorrelation factors would be a
good alternative, as the influence of noise is eliminated
through an initial normalization of the data. Fitting a discrete-
time autoregression model to the time series data may also
yield satisfying results [55].

Investigating again the conventional variance and AC(1)-
based CSD indicators in Figs. 2(b) and 2(c), AC(1) purports
destabilization along the dimension of the prey population P,
but the trend of the observed variance seems to indicate the
opposite. This contradiction can be resolved by examining
the estimated diffusion matrix BB� and its evolution along the
observed time series [see Fig. 2(e)]. A clear state-dependence
with respect to the prey population size P can be identified
in the noise amplitude

√
(BB�)1,1(P, Z∗, t ) associated with

dP. Taken together with the observation of a declining mean
state in the prey population while approaching the critical
transition, it can be concluded that the decrease in variance
in Fig. 2(b) was due to a reduced noise amplitude and can
thus be reconciled with the increase in AC(1).

IV. DISCUSSION

The use of variance and AC(1) in combination is a well-
established and by far the most common course of action
to assess whether or not a system is approaching a critical
transition. In general, a positive result is considered robust
when both indicators show a significant positive trend [56].
We have shown here that in the presence of time- or state-
dependent noise amplitudes, the variance of the system may
actually decrease in the advent of a bifurcation. It may also
increase without the system approaching a bifurcation (not
shown). If a monitored system shows a decreasing trend in
variance alongside an increasing trend in AC(1) as it ap-
proaches a bifurcation, this would typically not be considered
a robust EWS, leading to a missed alarm. We have also
shown that common methods in dimension reduction can
lead to missed alarms, as the destabilizing system component
may not be the least stable one at the initial distance to the
bifurcation.

To overcome these problems, we have proposed a method
based on estimating a Langevin equation from the observed
dynamics. Our approach allows us to separate the effects
of possible CSD contained in the drift coefficient from
changes in the noise represented by the diffusion coefficient.
Thereby, inconsistent indications in variance and AC(1) with
respect to CSD can be reconciled. It also allows for a more
holistic investigation of multidimensional systems without
further mechanistic simplifications (see Appendix D for a
second example to this point, which shows in particular that
the proposed method works for and identifies oscillatory
multidimensional systems). We showed that our approach

circumvents the above-mentioned pitfalls that a conventional
CSD analysis suffers from.

The confidence intervals in Fig. 1 suggest that the statis-
tical quality of the estimator λ̂ is of the same order as that
of the conventional early warning indicators. In Appendix B
we investigate the data requirements of the conventional and
novel indicators in a one-dimensional system in more detail.
There, variance and AC(1) can be seen to be favorable in
settings of low data availability, i.e., short time series and
low temporal resolution. In this context, an important caveat
bears mentioning once more: While for the estimator of vari-
ance, the length of the time series is the only determining
factor of convergence, the estimators for the drift and dif-
fusion coefficients also require small sampling time steps
1 
 λ�t > 0 in order for their biases to be small. In general,
the estimator λ̂ proposed here still contains information about
CSD even in settings of large sample time steps �t , but the
signal-to-noise ratio may prohibit its employment as a CSD
indicator. Areas of application where systems are potentially
susceptible to tipping and where high-frequency data are
available for analysis could be electricity grids [57–59], finan-
cial markets [60–62], atmospheric circulation systems such as
monsoons [63,64], ecosystems and vegetation systems such
as the Amazon rainforest [65–68], ocean circulation systems
[3], or ice sheets [69,70]. An analogous comparison of the
indicator’s performance with respect to data availability in
multidimensional systems is more involved. In settings where
the destabilizing direction is directly aligned with an observed
dimension and this dimension is correctly identified, the con-
ventional indicators outperform our novel one, just as seen
in the one-dimensional case. There are, however, also many
configurations in which the conventional methods struggle to
identify CSD (see Appendix B, contrasting Figs. 4 to 5). These
instances should be regarded as more generic, as they occur
when the deterministic eigenbasis is not precisely aligned with
the directions of noise disturbances.

Our method should be understood as a more general, re-
liable, and circumspect indicator of CSD compared to the
widely used variance and AC(1). Our approach is appropri-
ate in settings of generally time- and state-dependent driving
noise, where the combined conventional indicators may easily
fail. Moreover, the ability to examine time series in their
multidimensional complexity constitutes a considerable im-
provement in the comprehension of the system compared to
one-dimensional summary statistics.

Visit the GitHub repository KramersMoyalEWS [71] to
access the code generating all figures in this manuscript.
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APPENDIX A: DETAILS ON THE ESTIMATOR ̂λ

Here we give a detailed description of the local stability
measure λ̂ in n-dimensional systems. For n = 1, λ̂ is simply
given by the negative of the slope of the estimated drift coeffi-
cient a around the equilibrium and is therefore real valued. For
n > 1, the estimation procedure returns n eigenvalues of the
local Jacobian matrix of the estimated drift coefficient in their
algebraic multiplicity. The eigenvalues may be complex, but
only the negative of the real part is considered as an indicator
of local stability.

Prior to any analysis, the windowed time series is linearly
detrended along all n dimensions. As the assessment of the
conventional CSD indicators relies purely on the fluctuations
around the equilibrium state, the mean of the data is disre-
garded. In contrast, drift and diffusion are assessed without
subtraction of the mean to retain information about the cor-
responding state dependence. In order to obtain numerical
stability, the n time series are normalized to a standard de-
viation of 1, with no implication on the subsequent estimation
of λ̂. For each window the estimation of the function A(x) is
returned as an array of values

(Â(xi ))i=1,...,Mn , (A1)

where M is the number of evenly spaced grid points in each
dimension. The Mn grid points in Rn, therefore, form a grid
on the hypercube spanned by the state space explored by the
time series. For each of these grid points, an estimation Â(xi )
is calculated using an Epanechnikov kernel,

K (x) = 3

4h

(
1 − ||x||2

h2

)
, with support ||x|| < h, (A2)

with a kernel bandwidth h of 14n/M. Since the (biased) es-
timator Â(xi ) will converge as the number of samples Xk�t

close to xi tends to infinity, it is clear that those grid points
with many samples in their kernel proximity will see the
fastest convergence. In our setting with equilibrium dynamics
around one stable equilibrium x∗, this means that the esti-
mations for grid points closest to x∗ converge fastest, and
the quality deteriorates for outer grid points. For this reason
and in order to curtail the effects of a nonlinear drift term,
we opt to only carry 50% of grid points in each dimension
centered around the grid point containing x̂∗ = Ê[X] to the
subsequent analysis. This is to say, we select a hypercube with
side lengths 50% as large as the original hypercube. In the
above, three free parameters have been chosen implicitly: The
number of total grid points M in each dimension, the percent-
age m of grid points to carry on either side of the estimated
equilibrium x̂∗, and the kernel bandwidth. In this study we
chose M = 50 and m = 50%, meaning that for n = 1, we have
25 relevant grid points for further analysis. The bandwidth is
chosen as a function of M and n, as described above. However,
the performance of the estimator λ̂ is not very sensitive to
small changes in these parameters.

To obtain an estimation of the local Jacobian matrix around
the equilibrium point x̂∗, we perform a multivariate ordinary
linear regression between (Â(xi )) and (xi ) over i, including an
intercept in the design matrix. The algebraic eigenvalues of
the resulting matrix are computed numerically. For n = 1, this
procedure is equivalent to finding a best linear fit (c − λ̂xi ) to
(̂a(xi )) over i.

FIG. 3. Distributions of (a) variance, (b) AC(1), and (c) the es-
timator λ̂ on 1000 samples of Ornstein–Uhlenbeck time series of
length T = 100 each [see Eq. (B1)]. The sampling time step was
set to �t = 0.1. This estimation setting is equivalent to that chosen
for the synthetic fold bifurcation example in the main text. The blue
histogram shows the estimator distribution for the OU parameter
λ = 1 and the violet for λ = 0.1. If the 95% confidence intervals
of the two distributions do not overlap, it is highly likely that the
corresponding CSD will be detected by the indicators. The separation
in distribution is investigated for several choices of T and �t in the
bottom row of the figure. Green indicates no significant overlap of
the estimator distributions, i.e., a successful CSD detection; red the
contrary.

APPENDIX B: ASSESSING THE STATISTICAL
QUALITY OF λ̂

The two applications presented in the main text demon-
strate that CSD manifests itself in a substantial negative trend
of the estimator λ̂ when enough data are available. In this sec-
tion we aim to make this statement concrete and to compare
the indicator’s performance to that of variance and AC(1).
The assessment is based on the width of the three indicators’
numerical distributions after application to one-dimensional
synthetic data. The top row of Fig. 3 shows the distributions
of the estimators that arise from the application of the indica-
tors to 1000 synthetic time series generated by numerically
integrating a time-homogeneous Ornstein-Uhlenbeck (OU)
process:

dXt = −λXt dt + dWt . (B1)

To analyze the performance of the estimators in a generic CSD
scenario, i.e., a temporal reduction of the restoring rate, we
plot their distributions for λ = 1 and λ = 0.1. If the distribu-
tions are sufficiently distinct, the indicators correctly detect
this reduction of the restoring rate from 1 to 0.1 with a high
likelihood.

For different choices of window lengths T and time steps
�t , we check numerically whether this condition is satis-
fied for each estimator (bottom row of Fig. 3). At low data
availability, the indicators variance and AC(1) outperform
λ̂. Above a window length of T = 100, this difference is
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negligible, judging by the proposed metric. The difference
may also be less pronounced when performing the same test
on time series generated by models with nonlinear drift or
jump noise, where the state locality of our method can al-
leviate nonlinear effects on the far ends of the state space.
Therefore, in a large range of applications, the estimator λ̂

offers a statistically equally performing method of assessing
CSD with the additional advantage of robustness with respect
to time- and state-dependent noise, as well as settings featur-
ing nonlinear drifts and jumps in the noise.

An analogous analysis of indicator performances on data
from multidimensional systems would need to encompass
many more parameter choices. A general setup for a compar-
ison in two dimensions could be

dXt = O

(−λ1 0
0 −λ2

)
O−1Xt dt +

(
σ1 c
0 σ2

)
dWt , (B2)

where O is an orthogonal matrix determining the alignment of
the eigenspace of the inner matrix with respect to the observed
processes X(1,2) and the noise disturbances. A fold bifurcation
could be generically represented in this setting by reducing λ1

to zero while keeping λ2, σ1, σ2, and c fixed. The conventional
indicators of CSD would be vulnerable to a time evolution in
these quantities, as well as a potential time-dependent O(t ),
while our novel method is not. In the most trivial setting of
O = 1, observing X(1) is equivalent to the one-dimensional
setting above. We compare the performance of variance
and AC(1) when computed on the time series of X(1) to the
most pronounced downward trend of λ̂ computed on the
low-dimensional time series of X. As can be seen in Fig. 4,
the performance of λ̂ deteriorates in the transition from 1D
to 2D data. This is likely due to the more sparse estimation
of the function A(·, t ) and the propagated uncertainties in the
more unstable estimations for DA and ultimately λ̂. However,
these enhanced complications in the estimation λ̂ can in many
cases be less severe than the issues arising in the indicators
using variance and AC(1). If the eigenspace is rotated
by 45◦, i.e.,

O =
(

2−1/2 −2−1/2

2−1/2 2−1/2

)
, (B3)

then the mixing of linear restoring rates can mask the effects
of CSD in the variables X(1,2) when considered on their
own. The comprehensive analysis of eigenvalues on the
two-dimensional time series, however, can still identify the
underlying change in system dynamics (see Fig. 5). Since this
misalignment of the eigenspace with the observed dimensions
is the generic case as opposed to the specific choice of
O = 1, we propose that the use of our novel indicator can be
numerically favorable with respect to data requirements in a
wide range of application settings.

APPENDIX C: DETAILS ON THE PREDATOR-PREY
MODEL

The specific model introduced in the main text is a
modified version of the Truscott–Brindley model for ocean
plankton populations originally introduced in [72]. Beng-
fort et al. [42] generalized the model by introducing the

FIG. 4. Distributions of (a) variance, (b) AC(1) on 1000 samples
of X(1) time series of length T = 100 each computed from the 2D
Ornstein–Uhlenbeck model in Eq. (B2) with O = 1. The estimator
λ̂ in (c) was computed on the 2D time series, and the larger of the
two estimated eigenvalue real parts was investigated. The sampling
time step was set to �t = 0.1. The blue and violet histograms show
the estimator distributions for the parameter λ1 = 3 and λ1 = 1,
respectively, while λ2, σ1, σ2 = 1 were identical for both histograms.
If the 97.5 and 2.5 percentile of the two distributions do not overlap,
it is highly likely that the corresponding CSD will be detected by the
indicators. The separation in distribution is investigated for several
choices of T and �t in the bottom row of the figure. Color-coding
according to Fig. 3.

environmental parameter of fluid turbulence to the system
and by allowing higher powers in the mortality term of the
predator population. In their nondimensionalized form the full

FIG. 5. Identical setup as in Fig. 4 but now for the eigenspace
basis defined through the matrix O given in Eq. (B3). The eigenspace
is not aligned with the observed dimensions, leading to a substantial
sensitivity loss in variance and AC(1).
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TABLE I. Parameter values used in the simulation of plankton populations following the model in Eqs. (C5).

Parameter Value Description

r 1 Growth rate factor of prey P
a 1/9 Rate of the predator consuming the prey
m 0.0525 Mortality rate of the predator
ξ 0.7 Timescale separation between prey and predator evolutions
h0 1/16 Factor influencing maximal consumption at zero turbulence
ch 0.88 Linear relationship between turbulence and h
K0 0.7 Carrying capacity at zero turbulence
cK 0.66 Linear relationship between turbulence and K
σP 0.037 Strength of noise coupling to P
σZ 0.01 Strength of noise coupling to Z

system equations read

ξ ṗ(t ) = r p(t )

(
1 − p(t )

K (turb)

)
− ap(t )2

h(turb)2 + p(t )2
z(t ),

(C1)

ż(t ) = ap(t )2

h(turb)2 + p(t )2
z(t ) − mz(t )2, (C2)

K (turb) = K0 + cK turb, (C3)

h(turb) = h0

1 + chturb
. (C4)

The first term on the right-hand side of the prey popula-
tion’s evolution ṗ is the population growth rate as determined
by the relationship between the current population size and the
carrying capacity K . The second term is the mortality rate of
the prey population, which is simultaneously the growth rate
of the predator population since it is assumed that all death in
p and growth in z occurs through consumption of the former
by the latter. The second term in the evolution of z in the
second equation is the quadratic mortality term highlighted
in the main text. This term facilitates multiple stable states as
opposed to the same model with a linear mortality term. The
turbulence turb ∈ [0, 1] describes the normalized strength of
spatial mixing in the ocean modeled by circular eddies. All
parameter values but those for ξ , cK , and ch are adopted di-
rectly from [42] and can be found in Table I, along with a short
description of their interpretation. The parameters cK and ch

were increased by a factor of 2.2 each for the purposes of this
study to support a bigger range of stable prey populations in
the large population regime. The fundamental nature of the
model remains unaltered by this change. Lastly, as described
in the main text, we introduced multiplicative noise terms
commonly used in the relevant literature [44–47] to model
environmental impacts on the growth and mortality rates of
the two populations. This leads us to the complete set of model
equations:

dPt = ξ−1

[
rPt

(
1 − Pt

K (turb)

)
− aP2

t

h(turb)2 + P2
t

Zt

]
dt

+ ξ−1/2σPPt dW P
t .

dZt =
(

aP2
t

h(turb)2 + P2
t

Zt − mZ2
t

)
dt + σZZt dW Z

t .

K (turb) = K0 + cK turb,

h(turb) = h0

1 + chturb

turb(t ) = 1 − 7

10

t

T
. (C5)

APPENDIX D: ADDITIONAL EXAMPLE OF THE
MULTIDIMENSIONAL STABILITY ANALYSIS

For fold-type bifurcations akin to the two exemplary sys-
tems in the main text, the center manifold theorem allows
for an identification of a one-dimensional critical subspace
close to the bifurcation point. On this subspace, the dynamics

FIG. 6. Employing the new method for multidimensional stabil-
ity analysis. (a) Time series data generated by a model approaching
a subcritical Hopf bifurcation in normal form. (b) Estimates of the
stability indicators λk . The thick line represents the mean of the 200
sample estimations. Since the Jacobian matrices at each point in time
have complex eigenvalues corresponding to the oscillatory dynamics,
the eigenvalues are conjugates and coincide in their real part. The
theoretical value for the negative of this real part is plotted in red.
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are topologically equivalent to the normal form of the fold
bifurcation. However, the critical dynamics of many systems
cannot be reduced to a one-dimensional subspace in such a
way. This is especially relevant for systems exhibiting pro-
nounced oscillations. Using the method outlined above, we
therefore additionally assess the local stability of a system
undergoing a subcritical Hopf bifurcation in normal form:

dXt =
(−(μ(t ) − (X(1) )2 − (X(2) )2)X(1) − ωX(2)

−(μ(t ) − (X(1) )2 − (X(2) )2)X(2) + ωX(1)

)
dt (D1)

+ ε

(
1 0
0 1

)
dWt , (D2)

where ω = 1, ε = 0.01, and μ(t ) decreases linearly from 2
to 0.1 over the integration time of T = 1000. For μ > 0,

the origin is a stable fixed point with eigenvalues −μ ± iω.
Furthermore, there is an unstable limit cycle with radius

√
μ,

and perturbations from the origin decay in the form of spirals.
At μ = 0, the radius of the unstable limit cycle reaches zero,
and the origin turns into an unstable fixed point. The data was
sampled at time steps �t = 0.1 and analyzed in windows of
length T = 100. The results are presented in Fig. 6. The real
parts of both eigenvalues are known to be −μ(t ), and the esti-
mations track this value relatively closely. A destabilization of
the equilibrium can clearly be made out. An additional insight
gained via the CSD assessment through the Langevin equa-
tion approach proposed here is that the local system exhibits
oscillatory dynamics, as identified by the complex eigenvalues
of the Jacobian matrix.
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