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Abstract. A deterministic complex system that slowly passes through a generic fold-type (saddle-node) bifur-
cation can be reduced to one-dimensional dynamics close to the bifurcation because of the centre
manifold theorem. It is often tacitly assumed that the same is true in the presence of stochastic-
ity or noise so that, for example, critical slowing down (CSD) indicators can be applied as if the
system were one-dimensional. In this work, we show that this may not be the case; specifically, we
demonstrate that noise in other dimensions may interfere with indicators of CSD, also referred to as
early warning signals (EWS). We point out a generic mechanism by which both variance and AC(1),
as well as other EWS, can fail to signal an approaching bifurcation. This can in principle occur
whenever one noise source drives multiple components of the system simultaneously. Even under the
favourable assumptions of uncoupled deterministic dynamics and stationary noise, observables of the
system can then exhibit false negative or false positive CSD indications. We isolate this phenomenon
in an example that represents a generic two-dimensional fold-type bifurcation setting.
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1. Introduction. Many physical systems exhibit abrupt transitions or are suspected to
harbour the potential for them [22, 1, 16, 28, 5, 23]. There has been an increased interest in
the analysis and detection of bifurcation-induced transitions [6, 4, 8, 9, 26, 12]. Such events
occur if the system’s current equilibrium state vanishes in response to an external change
to the underlying dynamics. The simplest model for bifurcation-induced transitions is that
of a one-dimensional fold-type bifurcation [29, 31, 15]. This approach is reasonable if there
is one essential component of the system experiencing negative feedback on its fast time-
scale disturbances. Moreover, bifurcation theory tells us that this is one of only two possible
generic one-parameter bifurcations of an attracting equilibrium, the other being the Hopf
bifurcation. Close enough to such a bifurcation, one can rigorously and generically reduce the
deterministic system to a one-dimensional model on a centre manifold. The negative feedback
on this essential component weakens in advance of the critical transition brought about by the
external change in dynamics. The resulting observational characteristic of slower and weaker
responses to perturbations is called critical slowing down (CSD). If the model component
undergoing such a bifurcation is a direct observable of the physical system, one can hope
to employ the conventional techniques for detecting CSD, i.e. searching for positive trends in
variance or lag-1 autocorrelation (AC(1)) in the time-series data. These trends are also referred
to as early warning signals (EWS) in the literature, and a robust theoretical groundwork exists
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[19, 20, 22, 7]. Close to a fold-type bifurcation of a one-dimensional system whose state is
denoted by x ∈ R, one can approximate the dynamics by the topological normal form:

ẋ(t) = −x2 + α

For α > 0, this admits one stable equilibrium at x∗(α) =
√
α and one unstable equilibrium,

whereas for α < 0, it admits no equilibria. Linearising around the respective equilibrium point
gives

ẋ(t) = −2
√
α(x(t)− x∗(α)) +O

(
(x(t)− x∗(α))2

)
.

Adding Gaussian white noise to model the omitted fast dynamics of the original high-
dimensional physical system [32, 18], the problem of determining the statistical character-
istics of the process reduces to the analysis of a one-dimensional Ornstein-Uhlenbeck process:

dXt = −2
√
α(Xt − x∗(α))dt+ σdWt,

where W is a Wiener process supported on the filtered probability space
(Ω,F , (Ft)t∈R+ ,P). For variance and AC(1) of the observable X, one finds in the station-
ary limit

Var [X] =
σ2

4
√
α
, ACX(1) = exp(−2

√
α),

which both increase as α > 0 decreases towards the bifurcation at α = 0.
Whether the above model simplification is valid for a given multi-dimensional physical

system depends on several factors. For example, if the type of bifurcation is Hopf rather
than fold, the functional expressions of variance and AC(1) will differ and may not allow for
their use as EWS [8]. If the noise driving the multi-dimensional dynamics is not coupled
to the centre manifold, EWS may stay silent [3]. A further complication that has not been
considered previously is that even if there is a centre manifold corresponding to a fold-type
bifurcation and directly impacted by white noise, the observable available for analysis need
not be this component. Rather, it may be a function of multiple components of the system.
Insofar as the system can be represented by a multi-dimensional random dynamical equation,
we should expect the noise disturbances within the system to drive multiple components
simultaneously. The alternative to such a general setup is the specific case of independent
noise terms, each driving only one system component, which is an unwarranted assumption for
many physical systems and can essentially be disregarded as unrealistic. We will investigate
the implications of these generalisations in the context of critical slowing down. Following the
previous considerations of the one-dimensional fold normal form, we proceed by introducing
an uncoupled state variable y with stationary dynamics.

(1.1) ẋ(t) = −x2 + α, ẏ(t) = −y

This system constitutes the most reductive representation of a two-dimensional fold-type
bifurcation exhibiting an abrupt transition. There is no coupling between the two deterministic
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equations of motion. Around the equilibrium point (x∗(α), y∗(α)) = (
√
α, 0), the linearised

dynamics are

(
ẋ(t)
ẏ(t)

)
≈
(
−2

√
α 0

0 −1

)(
x(t)− x∗(α)

y(t)

)
.

When introducing additive white noise to this multi-dimensional setting, we are, in general,
given three degrees of freedom in the form of the respective noise-couplings σX , σY and c:

(
dXt

dYt

)
=

(
−2

√
α 0

0 −1

)(
Xt − x∗(α)

Yt

)
dt+

(
σX c
0 σY

)(
dWX

t

dW Y
t

)

Note that a matrix with an additional coupling of the white noise term dWX to dY can always
be renormalised to an upper-triangular matrix. Similarly, any third white noise term could
always be represented in the above model equation containing two white noise terms. We call
c the cross-coupling of the noise, which, as discussed above, will be non-zero in the general
case. We will see that introducing only this additional coupling to the model can have grave
implications on the ability to detect the approach of a bifurcation through conventional CSD
methods. This is the – rather generic – case if the externally observable quantity is not the
destabilising dimension X itself, but rather an observable Ψ = f(X,Y ) of the system. In
general, any non-linear function f can occur as an observable. We choose the subset of linear
observables as our object of study to show that the described phenomenon of failing EWS
already occurs for such a simple functional relationship between the system’s constituents and
the observed quantity.

(1.2) Ψt := cos(β)Xt + sin(β)Yt

Eq. (1.2) covers all possible linear combinations of X and Y , and the phenomenon is imper-
vious to an absolute scaling of the observable.

Section 2 below is dedicated to an analytical derivation of the statistical properties of Ψ and
an assessment of the potential for deceitful CSD indications. Having identified possible pitfalls
to the EWS in variance and AC(1) based on a linearised system, we check that those predicted
behaviours indeed manifest in non-linear systems by integrating the dynamical system in
Eq. (1.1) with added noise and analysing the resulting time series data in Section 3.

2. Statistical properties of the observable Ψ under linearised dynamics. To generalise
the linear setting to applications beyond the particular parametrisation of the normal form
given in the previous section, we now write the 2D-Ornstein-Uhlenbeck process in question
generally as

(
dXt

dYt

)
=

(
−λX 0
0 −λY

)(
Xt

Yt

)
dt+

(
σX c
0 σY

)(
dWX

t

dW Y
t

)
(2.1)

=: A

(
Xt

Yt

)
dt+Σ

(
dWX

t

dW Y
t

)

The deterministic linear dynamics are still uncoupled, and we have carried along the cross-
coupling c of the noise terms. Without loss of generality, we have also centred the dynamics
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of the X dimension around 0. In its stationary limit the zero-mean process (X,Y )T has the
following covariance matrix

V := E
[
(Xt, Yt)

T (Xt, Yt)
]
=

(
σ2
X+c2

2λX

σY c
λX+λY

σY c
λX+λY

σ2
Y

2λY

)

This can be obtained by solving the continuous-time Lyapunov equation

AV + V AT +ΣΣT = 0.

Adopting the initial condition (X0, Y0)
T ∼ N (0, V ), the process is stationary, and the time-

covariance matrix for all τ ≥ 0 is given by

R(τ) := E
[
(Xt, Yt)

T (Xt+τ , Yt+τ )
]
= exp(τA)V

Note that R(τ) for τ ̸= 0 will in general not be a symmetric matrix, since E [XtYt+τ ] =
E [Xt+τYt] if and only if c = 0 or λX = λY :

R(τ) =

(
σ2
X+c2

2λX
exp(−λX |τ |) σY c

λX+λY
exp(−λX |τ |)

σY c
λX+λY

exp(−λY |τ |) σ2
Y

2λY
exp(−λY |τ |)

)
.

The same holds true for the time-correlation matrix

r(τ) =




exp(−λX |τ |) 2c√
σ2
X+c2

√
λXλY

λX+λY
exp(−λX |τ |)

2c√
σ2
X+c2

√
λXλY

λX+λY
exp(−λY |τ |) exp(−λY |τ |)




For any linear observable Ψ(β) = cos(β)X +sin(β)Y of the 2D-system, we may now compute
the variance and the autocorrelation function in the stationary limit:

Var [Ψ] = cos2(β)V1,1 + sin2(β)V2,2 + 2 cos(β) sin(β)V1,2,

where Vi,j is the respective entry of the covariance matrix V . For the autocorrelation in time,
we have:

ACΨ(1) := E [ΨtΨt+τ ] /Var [Ψ]

= (cos2(β)R(τ)1,1 + sin2(β)R(τ)2,2 + cos(β) sin(β)(R(τ)1,2 +R(τ)2,1))/Var [Ψ]

As expected from the uncoupled nature of the deterministic dynamics, if we choose β = 0,
i.e. Ψ = X, we essentially retrieve the conventional quantities from the one-dimensional case.
Also, not surprisingly, if we only inspect the second dimension Ψ = Y , the variance and AC(1)
will not depend on the destabilisation of X, i.e. λX → 0, and can not function as EWS. See
Table 1 for explicit expressions.
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Table 1: Edge cases of the linear observable setting. The conventional EWS information is
perfectly conserved in the first case and entirely lost in the second.

β Ψ Var [Ψ] ACΨ(1)

0 X (σ2
X + c2)/2λX exp(−λX)

π/2 Y σ2
Y /2λY exp(−λY )

In all other cases, the observable Ψ consists of some amplitude of X and Y , i.e. β ̸= kπ/2
for k ∈ Z. Even here, the EWS seem to be reliable at first glance. We have

Var [Ψ]
λX→0−−−−→ ∞, ACΨ(1)

λX→0−−−−→ 1.

These increases are monotonic in proximity to the bifurcation, where λX = 0. More precisely,
for any parameter setting λY > 0, σX > 0, σY > 0 and c ≥ 0, there exists a λ∗

X > 0 with the
property that both variance and AC(1) are monotonically increasing as λX decreases from
λ∗
X to 0. In that sense, there still is a time span in the advent of the fold-type bifurcation,

in which the linearised dynamics predict a clear increase in both variance and AC(1), making
them applicable as EWS in this case.

However, the practical caveat to this finding is the value of λ∗
X and the behaviour of the

EWS before this threshold. We give the following example, which illustrates that using EWS
has potential pitfalls and may lead to a misinterpretation of the actual destabilisation in the
underlying dynamics. For this, choose λY = 1, σX = 0.1, σY = 2 and c = 1, meaning

(
dXt

dYt

)
=

(
−λX 0
0 −1

)(
Xt

Yt

)
dt+

(
0.1 1
0 2

)(
dWX

t

dW Y
t

)
,(2.2)

and examine the observable Ψ(β) associated with the mixing angle β = −π
4 , i.e.

Ψt = 2−1/2(Xt − Yt). Figure 1 shows the variance and AC(1) of Ψ as a function of the
destabilising eigenvalue λX . Although the expected increasing behaviour can be observed
when decreasing λX from λ∗

X ≈ 0.6 towards 0, both CSD indicators, in fact, decrease as long
as λX decreases toward λ∗

X . It is this veiling of the critical slowing down of the X dimension
that we would like to point out in this work.

The underlying prerequisite of the phenomenon explored above is the following configura-
tion: The noise component dW Y is positively coupled to both dimensions of the deterministic
dynamics. At the same time, the observable Ψ is defined such that the two linear components
have opposing signs. This leads to the disturbances in X and Y interfering with each other in
the summary observable Ψ. We show with the following Lemma that this effect is ubiquitous
with respect to the specific parameter choices.
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Figure 1: (a) Variance and (b) AC(1) of the observable Ψ for β = −π
4 in the linearised setting

described in the main text. While these two classical CSD indicators ultimately increase to
their expected limits ∞ and 1 respectively as λX → 0, the behaviour up until that increase
can be deceitful with respect to critical slowing down.

Lemma 2.1. Consider the linear stochastic differential equation (2.1) with non-zero con-
stants λY , σX , σY and c. There exists an open interval of observation angles β ∈ (β1, β2)
for which both variance and AC(1) of Ψ defined through Eq. (1.2) decrease with a decreasing
λX ∈ (λ1

X , λ2
X).

Proof. We can find such an interval of observation angles β ∈ (β1, β2) close to the choice Ψ =
Y , i.e. β = π/2. We have already derived analytical expressions of Var[Ψ] and ACΨ(1). They
are smooth functions of the system’s parameters. The quantities decrease with a decreasing
λX if their partial derivative with respect to λX is positive. We find at the trivial choice of
Ψ = Y that for all λX ∈ R

(2.3) ∂λX
Var[Ψ]

∣∣∣
β=π/2

= 0 and ∂λX
ACΨ(1)

∣∣∣
β=π/2

= 0

Furthermore, we find that the derivative of these quantities with respect to the observation
angle β is non-zero and equal in sign for both of the quantities when choosing λX = λY :

∂β∂λX
Var[Ψ]

∣∣∣
β=π/2, λX=λY

= − cσY
2λ2

Y

and ∂β∂λX
ACΨ(1)

∣∣∣
β=π/2, λX=λY

= −ce−λY

σY

Depending on the signs of c and σY , there will be an interval (π/2, β2) or (β1, π/2) for which
the quantities of Eq. (2.3) are positive at λX = λY . Since these two quantities are continuous
in λX , they will also be positive for all λX in an interval (λY − δ, λY + δ). This concludes
the proof. Note that the chosen interval is not the only region for which the phenomenon
discussed in this work is prevalent (see Figure 2c). □

The Lemma implies that, as long as we have a cross-coupling c ̸= 0, the phenomenon
persists for all generic choices of σX , σY , c and λY . On the other hand, the extent to which it
quantitatively inhibits the use of EWS in an application setting will heavily depend on these
values. Giving a general guideline of which configurations exhibit a lengthy and pronounced
decrease in variance and AC(1), even though CSD would imply an increase, is not feasible
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given the number of degrees of freedom. We provide a Python script with which the prevalence
of the effect can be assessed for different parametrisations. Central to this script is the radial
plotting of the approach to the critical value λcrit

X = 0 from different angles β (see Figure 2
and its description).

Figure 2: Contour plot of (a) the variance and (b) AC(1) for different values of β and λX

in the 2D-Ornstein-Uhlenbeck setting of (2.2). The distance from the centre constitutes the
value of λX while the angle around the circle is β. The radius of the plots and, therefore,
the maximal value of λX is 4. The second concentric circle marks λX = 2. The colour of the
contour plot is red where the radial derivative of the respective quantity towards the centre
is positive and blue where it is negative. In this sense, all blue regions represent the angles
β and values of λX where deceitful CSD indications are prevalent. Figure (c) is a top-down
view of the two contour plots. The blue and red regions are those where variance and AC(1)
agree on the respective trend. In the purple regions, the trends disagree. The green line shows
the trajectory towards the middle for a fixed β = −π

4 , meaning from the second circle on, it
is the same line as plotted in Figure 1 for variance and AC(1), respectively.

3. Observations in model data. After identifying potential pitfalls to employing variance
and AC(1) on linear observables of the linearised system, we test these predictions on synthetic
data of the true fold bifurcation in Eq. (1.1). To this end, we integrate the following system
of stochastic differential equations using the Euler-Mayurama scheme.

(
dXt

dYt

)
=

(
−X2

t + α(t)
−Yt

)
dt+ ε

(
0.1 1
0 2

)(
dWX

t

dW Y
t

)

α(t) = 1− 11

10

t

T

(3.1)

Over the time span of T = 104, this integration is performed at a time-step of δt = 1/30 and
subsequently sampled at every 30th value. In order to ensure that premature noise-induced
tipping is restricted to a relatively short period before the bifurcation, we introduce the noise-
scaling parameter ε = 0.1. For better illustration, we artificially introduce a second stable
state for X past the bifurcation point. These dynamics are omitted in the SDE (3.1). The
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results for the linear observable

Ψt = cos(β)Xt + sin(β)Yt =
1√
2
(Xt − Yt)

with β = −π
4 are given in Figure 3. Even though the dynamics are now non-linear and

non-autonomous, the contemporary linearised system still allows for a good assessment of the
expected time-series statistics. The corresponding estimators of variance and AC(1) indeed
give the expected results. The quantities decrease with time, even though the destabilisation
of the system in the dimension of the X component should conventionally incur an increase.
The interference of the shared driving noise in the linear observable Ψ constitutes a break with
the necessary modelling assumptions for CSD detection via variance and AC(1) in a single
observable. Note that similarly, a stabilisation of the system, i.e. an increase in λX , would
cause the variance and AC(1) to increase. This is a setting in which a false alarm with respect
to CSD would be raised.
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Figure 3: (a) - (c) Sample paths ofXt, Yt and Ψt following the SDE (3.1) in the main text with
β = −π

4 . Up until the purple dashed line, after which noise-induced tipping may frequently
come into play, the variance and AC(1) of Ψ are each estimated over windows of length
N = 1000. The averaged results over 10 runs are plotted in (d) and (e) respectively, along
with their theoretically computed values from considerations of the linearised model. Their
decrease would be misinterpreted as a stabilisation of the system rather than an approach of
an abrupt transition. In (f) - (i), alternative indicators for CSD are calculated. These are
(f) the maximum of the observed power spectral density (PSD) [8], (g) the linear restoring
rate estimated through a Langevin approach [25], (h) a generalised least squares estimator
for an AR(1) model [4] and (i) the linearised restoring rate estimated via the PSD [24].
These quantities, too, exhibit the respective opposite trend of what would be expected of a
destabilising system.
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4. Discussion. We consider a generic fold-type bifurcation in a class of multi-dimensional
dynamical systems, where we assume that noise drives multiple components of the system.
We demonstrate that such a setup can easily produce observables that, because of internal
noise interference, exhibit deceiving trends in variance and lag-1 autocorrelation with respect
to CSD. Such false or missed alarms have been shown to be an issue in systems driven by
non-stationary or non-white noise [14, 21, 4, 7, 27, 24, 25] or systems exhibiting deterministic
coupling [8, 3]. It has also been shown that a misrepresentation of the natural system as
a fold-type bifurcation with direct noise influence [17, 11] or issues with the availability of
time series data [13, 2, 30] may lead to similar problems. This work introduces a previously
unknown complication with the detection of CSD via variance and AC(1), as well as other
techniques [8, 25, 4, 24, 10] (see also Figure 3f-i). Even though the severity of the effect
described here depends heavily on the relative values of the systems restoring rates and noise
couplings, its presence is ubiquitous (see Lemma 2.1). Furthermore, if present, the effect can
only be ruled out by choice of a different observable Ψ, which is often not achievable in the
observations of natural systems.

Whenever possible, a sufficient physical understanding and previous model validation
should confirm that the conventional assumption of a directly observed noisy dynamical sys-
tem along its centre manifold is warranted. In this case, the presented results do not call into
question the expressiveness of the conventional EWS.

Data Availability. Visit the GitHub repository LinearObservablesCSD to access the code
used to generate all figures in this manuscript.
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