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Abstract

We show that delay-differential equations (DDE) exhibit universal bifurcation scenarios, which are ob-
served in large classes of DDEs with a single delay. Each such universality class has the same sequence 
of stabilizing or destabilizing Hopf bifurcations. These bifurcation sequences and universality classes can 
be explicitly described by using the asymptotic continuous spectrum for DDEs with large delays. Here, we 
mainly study linear DDEs, provide a general transversality result for the delay-induced bifurcations, and 
consider three most common universality classes. For each of them, we explicitly describe the sequence of 
stabilizing and destabilizing bifurcations. We also illustrate the implications for a nonlinear Stuart–Landau 
oscillator with time-delayed feedback.
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1. Introduction

Delay-differential equations (DDEs) are important mathematical models in many application 
areas, including optics [1–5], physiology and infectious disease modeling [6–11], mechanics 
[12–16], neuroscience [17–19], and others. More recently, DDEs have become a focus in some 
areas of machine learning, such as reservoir computing [20–25] or deep neural networks [26,27].

Here we study how time-delay affects the stability of equilibria. This problem commonly 
arises in the above mentioned applications when the time-delay is a parameter. Although the 
equilibrium of a DDE remains unchanged upon variation of the time-delay, its stability may 
change. The recent work [28] provides the necessary and sufficient conditions for DDEs with 
multiple delays to be absolutely stable or hyperbolic, i.e., its equilibrium does not have any 
destabilizing or stabilizing bifurcations as time-delay changes, see also the works [28–35] related 
to this property. This behavior can also be called delay-independent stability.

The DDEs that are not absolutely stable in the sense of [28] exhibit sequences of stabilization 
or destabilization bifurcations as time-delay changes. Often, these bifurcations lead to complex 
dynamical behaviors [2,36–40] or to an increasing coexistence of multiple periodic solutions 
[41]. Moreover, the bifurcation scenarios seem to be similar in many cases, and it seemed to 
us that different studies had to reinvent the same bifurcation scenarios in different systems over 
and over again. We show here that the majority of DDEs with one delay indeed have only a few 
bifurcation scenarios, and these scenarios can be explicitly described. This leads to the main idea 
of this paper: introducing the universality classes of linear DDEs, such that each universality 
class has the same behavior of the critical eigenvalues, which can be explicitly described once 
for the whole class. In a sense, the absolutely hyperbolic DDEs from [28] would represent the 
universality class “0”.

Our classification relies on the notion of asymptotic continuous spectrum (ACS) for DDEs, 
which was originally introduced for DDEs with large delays [42–48], but, as we show here, it 
plays a crucial role for describing the bifurcation scenarios for arbitrary delays. An important 
feature of ACS is that it is rather easy to calculate.

The structure of this manuscript is as follows: Section 2 introduces the main notations, in-
cluding the asymptotic continuous spectrum. Section 3 gives necessary and sufficient conditions 
for the occurrence of delay-induced Hopf bifurcations. The transversality theorem gives explicit 
conditions for the transversality and the direction of change of the critical roots of the charac-
teristic equation with the change of the time delay. In Sections 4 to 6, we introduce three basic 
universality classes of linear DDEs and give necessary and sufficient conditions for a DDE to 
belong to each class. Furthermore, for each class, we give explicit results on the existence and 
transversality of the critical roots of the characteristic equation. The theory is illustrated with 
several examples. In Section 7, we show the implications of our results for an example of a 
nonlinear Stuart–Landau oscillator with time-delayed feedback. A brief discussion and possible 
further extensions are presented in Section 8.

2. Model and notations

We start with the general nonlinear delay differential equation (DDE)

ẋ(t) = F (x(t), x(t − τ)) , (1)
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where F :Rn ×Rn �→ Rn is continuously differentiable in its arguments, x(t) ∈Rn, and τ > 0 is 
the time delay. When studying the linear stability of equilibria the DDE (1), the linearized system

ẋ(t) = Ax(t) + Bx(t − τ) (2)

is obtained, where A = ∂F
∂x(t)

, B = ∂F
∂x(t−τ)

∈ Rn×n. Although the main subject of this study is 
the linear DDE (2), we also illustrate the implications of our results for a nonlinear example in 
Sec. 7.

The stability problem for (2) can be reduced to the characteristic quasipolynomial [33,49]

χ(λ) = det
[
λI − A − Be−λτ

] = 0. (3)

With changing time-delay τ ≥ 0, the number of unstable characteristic roots of DDE (2) can 
change due to the following mechanism.

Definition 2.1 (Delay-induced transverse crossing). The DDE (2) undergoes delay-induced 
transverse crossing at τ = τH if there exists a family of roots λ(τ) = α(τ) ± iμ(τ) of the char-
acteristic equation (3) such that α(τH ) = 0 and dα(τH )

dτ
�= 0.

We also distinguish between stabilizing and destabilizing transverse crossing.

Definition 2.2 (Stabilizing and destabilizing transverse crossing). The delay-induced transverse 
crossing is stabilizing if dα(τH )

dτ
< 0, and destabilizing if dα(τH )

dτ
> 0.

The following definitions are known from the theory of DDEs with large delays [28,42,44–
46]. To provide motivation and a better intuition for these definitions, we apply the following 
ansatz

λ = γ (ω)

τ
+ iω,

with γ, ω ∈R in the characteristic equation (3)

det

[(
γ (ω)

τ
+ iω

)
I − A − Be−γ (ω)−iωτ

]
= 0. (4)

Denoting φ(ω) = ωτ and assuming a large time-delay γ � τ , we get an approximate equation

det
[
iωI − A − Be−iφ(ω)

]
= 0, (5)

which motivates the following definition.

Definition 2.3 (Generating polynomial). We define

pω(Y ) := det [iωI − A − BY ] (6)

to be the generating polynomial.
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Note that pω(Y ) is a polynomial in Y ∈ C, ω ∈ R and also pω(e−iφ(ω)) = 0 is equivalent to 
the approximate characteristic equation (5).

Next, we give the definition of the asymptotic continuous spectrum, i.e., the curves that de-
termine the DDE spectrum for large delays. As we will show in this work, this spectrum plays a 
crucial role in describing transverse crossings and their type for any finite time-delays.

Definition 2.4 (Asymptotic Continuous Spectrum, ACS). The asymptotic continuous spectrum 
(ACS) is given by

λACS(ω) =
{

1

τ
γj (ω) + iω : R �→C, j = 1, . . . ,m

}
, (7)

where γj (ω) = − ln
∣∣Yj (ω)

∣∣ , (8)

and Yj (ω) are roots of the generating polynomial (6) pω(Yj (ω)) = 0. The points ω are excluded, 
for which the polynomial is degenerate with pω(Y ) ≡ det [iωI − A] for all Y .

The computation of the ACS is reduced to a simple polynomial root finding with a degree less 
than or equal to the number of components in the DDE. Note also that the spectrum is symmetric 
with respect to the complex conjugation for DDEs with real coefficients. The ACS is completely 
described by the real-valued functions γj (ω), which determine the (rescaled) real part of the 
spectrum.

3. Critical characteristic roots and transversality theorem

One of the most important properties of the ACS is that the roots ωH of the functions γj (ω)

are the only possible crossing frequencies, when considering τ as a parameter. More precisely, 
the following transversality theorem holds.

Theorem 3.1 (Transversality Theorem). Let λc = iωH (ωH > 0) be a critical simple character-
istic root of the linear DDE (2) for τ = τH . Then there is a delay-induced transverse crossing of 
this characteristic root at τ = τH if and only if there is a branch of ACS with γ (ωH ) = 0 and 
d

dω
γ (ωH ) �= 0. Moreover,

• if d
dω

γ (ωH ) < 0, then the crossing is destabilizing with d
dτ


[λ(τH )] > 0,

• if d
dω

γ (ωH ) > 0, then the crossing is stabilizing with d
dτ


[λ(τH )] < 0.

Proof. Firstly we note that λc = iωH being the characteristic root is equivalent to

0 = det
[
iωH I − A − Be−iωH τH

]
= det

[
iωH I − A − Be−iφH

]
= pωH

(
e−iφH

)
, (9)

or Y(ωH ) = e−iφH and γ (ωH ) = 0. The existence of a nontrivial branch Y(ω) of ACS follows 
from the assumption that λc is simple. Hence the necessary condition holds. Let us show the 
sufficient condition.

Using the following notation

P(z,Y ) = det [zI − A − BY ] = 0 (10)
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and by differentiating the characteristic quasipolynomial (3), we get

∂τ λ = −∂τχ

∂λχ
= − −λe−λτ ∂Y P

∂zP − τe−λτ ∂Y P
.

The denominator of the obtained expression is nonzero for a simple root λ = iωH . Next, we 
evaluate the above expression at λc = iωH and the time-delay τ = τH

∂τλc|λc=iωH ,τ=τH
= − −iωH e−iφH ∂Y P

∂zP − τH e−iφH ∂Y P
= iωH

∂zP
∂Y P

eiφH − τH

= − iωH

∂zY ′|z=iωH
eiφH + τH

,

where φH = ωH τH and Y ′ is a root of the polynomial (10), i.e., p(z, Y ′) = 0. Note that Y(ω) =
Y ′(iω) is the root of the generating polynomial (6). Using ∂ωY = i∂zY

′, we have

∂τ λc| λc=iωH ,τ=τH
= − iωH

−i ∂ωY |ω=ωH
eiφH + τH

.

Further we use Y(ω) = e−γ (ω)−iφ(ω) and obtain

∂ωY (ω)|ω=ωH
= −e−iφH

[
∂ωγ (ωH ) + i∂ωφ (ωH )

]
,

and hence

∂τ λc|λc=iωH ,τ=τH
= − iωH

τH − ∂ωφ (ωH ) + i∂ωγ (ωH )
.

Taking the real part

d

dτ

[λ(τ)]

∣∣∣∣
λ=λc,τ=τH

= −ωH ∂ωγ (ωH )

(τH − ∂ωφ (ωH ))2 + (∂ωγ (ωH ))2 . (11)

We observe that the sign of the term −ωH∂ωγ (ωH ) determines the transversality and the direc-
tion of the crossing. Since ωH > 0, we have d

dτ

[λ(τ)]∣∣

λ=λc,τ=τH
> 0 for ∂ωγ (ωH ) < 0 and 

d
dτ


[λ(τ)]∣∣
λ=λc,τ=τH

< 0 for ∂ωγ (ωH ) > 0. The proof is complete. �
Note that we are considering the situation where the coefficients of the DDE (2) are real, so 

the critical eigenvalues appear in pairs ±iωH . Therefore, it is sufficient to consider ωH > 0 to 
determine the crossing direction.

As the delay-induced transverse crossings can only be caused by the ACS, the following 
theorem follows from the above result.

Theorem 3.2 (Universal sequence of crossing events / Bifurcation Theorem). Let a curve of the 
ACS crosses the imaginary axis at iωH , i.e., γj (±ωH ) = 0 for some j ∈ N and d

dω
γj (ωH ) �= 0. 

Then the delay-induced crossings of the characteristic multipliers in system (2) occur with λH =
iωH at the following values of time-delays
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τk = 1

ωH

(φH + 2πk), k ∈Z, (12)

where

φH = − arg
[
Yj (ωH )

]
, (13)

and Yj (ωH ) is a corresponding root of the generating polynomial pωH
(Y ) = 0. This crossing is 

destabilizing, if d
dω

γj (ωH ) < 0 and stabilizing if d
dω

γj (ωH ) > 0.
If there are no other branches of ACS with γ (ω) = 0, the above mentioned crossings are the 

only delay-induced transverse crossings in (2).

Proof. The proof follows from the observation that

det
[
iωH I − A − Be−iωH τk

]
= det

[
iωH I − A − Be−iφH

]
= pωH

(
e−iφH

)
= pωH

(Yj (ωH )) = 0,

and the transversality Theorem 3.1. �
We have shown that a transverse intersection of the critical characteristic roots with changing 

τ is only possible at the intersection points of ACS with the imaginary axis. Besides the critical 
roots mentioned in Theorem 3.2, other types of critical roots can appear in system (2), but they are 
all not delay-induced, and they do not change with time delay τ and do not lead to bifurcations. 
For example, if iω ∈ σ(A) with the eigenvector vω and vω ∈ kerB , then iω is the non-delay-
induced characteristic root of the quasipolynomial (3) for all time delays τ . It is an interesting 
open question whether other cases are possible, but we do not address this question in this paper.

4. Universality class I

Starting from this section, we will define universality classes for linear DDEs that exhibit 
universal bifurcation scenarios. These universality classes are determined solely by the qualita-
tive features of their ACS. In particular, the ACS of class I is shown schematically in Fig. 1. A 
curve of such a spectrum crosses the imaginary axis at two points ±iωH and has a single un-
stable component for ω ∈ (−ωH , ωH ), while the remaining parts of the ACS are stable. Such a 
situation is common in applications [39,46,50,51]. Note that the classification is given for linear 
DDEs. Given a nonlinear DDE, it is natural to apply the classification to a particular equilibrium 
of a nonlinear system and its linearization.

Definition 4.1 (Class I asymptotic spectrum). We define the asymptotic spectrum to be of uni-
versality class I ACS if there exist ωH > 0 and j ∈ N such that one branch of the ACS satisfies 
γj (±ωH ) = 0, γj (ω) > 0 for all ω ∈ (−ωH , ωH ), and γj (ω) < 0 for all ω �∈ [−ωH , ωH ]. Also, 
γk (ω) �= 0 for all k �= j and ω ∈R.

Definition 4.2 (Class I DDEs). We define the linear DDE (2) to be of universality class I if it has 
the ACS of universality class I.
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Fig. 1. Schematic representation of class I asymptotic continuous spectrum (ACS). λ = ±iωH are the only possible 
critical characteristic roots.

The structure of the ACS and the Bifurcation Theorem 3.2 lead to the following explicit and 
complete description of the behavior of critical characteristic roots in the class I DDEs.

Corollary 4.1 (Bifurcation scenario in class I DDEs). Assume that a linear DDE (2) is of uni-
versality class I. Then the system has a sequence of destabilizing delay-induced crossings of the 
critical characteristic roots with λc = ±iωH for the following time-delays

τ = τk = 1

ωH

(φH + 2πk) , k = 0,1,2, . . . , (14)

where φH is defined by Eq. (13). Moreover, there are no other transverse delay-induced crossings 
of the characteristic multipliers in this system.

In the following, we present several types of DDEs belonging to the universality class I. In 
particular, we will see that scalar DDEs is always of class I or class 0, where 0 stands for the 
absolute hyperbolicity [28].

4.1. Scalar DDEs

We start with the following scalar equation

ẋ(t) = ax(t) + bx(t − τ), a, b ∈R. (15)

The corresponding characteristic equation is

λ − a − be−λτ = 0, (16)

and the generating polynomial (6) iω − a − bY = 0 is linear with the single root

Y = iω − a

b
.

Hence, the ACS consists of one curve λACS(ω) = γ (ω)
τ

+ iω, where

γ (ω) = − ln

∣∣∣∣ iω − a
∣∣∣∣ = −1

ln
a2 + ω2

2 . (17)

b 2 b
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Fig. 2. Asymptotic continuous spectrum for the scalar DDE (16).

Function (17) is even and has a single maximum γmax = γ (0) = − ln
∣∣ a
b

∣∣, see Fig. 2.
In particular, Definition 4.1 is satisfied for γmax > 0, or, equivalently, for |b| > |a|. In this 

case, system (15) is an example of the universality class I DDE.
The value of ωH is found from the condition γ (ωH ) = 0, leading to

ωH =
√

b2 − a2,

where we have taken a positive root. The phase φH is given by Eq. (13)

φH = − arg

[
iωH − a

b

]
= arg

[
−a

b
− i

√
1 −

(a

b

)2
]

.

According to Corollary 4.1, transverse destabilizing crossings or characteristic roots of (16)
with λc = ±iωH occur for the following time-delays

τk = 1

ωH

(φH + 2πk) =

= 1√
b2 − a2

(
arg

[
−a

b
− i

√
1 −

(a

b

)2
]

+ 2πk

)
, k = 0,1,2, · · · . (18)

Fig. 3 shows the spectrum for different values of the critical delays under the condition 
|a| < |b|. The expression (18) leads to the following explicit result for the dimensionality of 
the unstable manifold for (15).

Corollary 4.2 (Dimension of the unstable manifold in a scalar DDE). If |b| > |a|, the dimension 
Du of the unstable manifold of the equilibrium in system (15) is given by the integer number

Du = 2

⌈
1

2π
(τωH − φH )

⌉
+ ν = 2

⌈
1

2π

(
τ
√

b2 − a2 − arg

[
−a

b
− i

√
1 −

(a

b

)2
])⌉

+ ν,

(19)
where arg(·) is the minimal positive argument of the complex number, 
·� is the ceiling function, 
and
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ν =
{

1, for a + b > 0,

0, for a + b < 0.

If |b| < |a|, it holds Du = ν.

Proof. Let us set τ = 0. Then obviously Du = ν. Consider now the case |b| < |a|. In this case, 
the ACS does not cross the imaginary axis and, hence, there are no transverse crossings and Du
does not change with τ .

In the case |b| > |a|, Theorem 4.1 describes all possible transverse crossings. No other (de)sta-
bilization is possible, since λ = 0 cannot be the characteristic root for |b| > |a|. Hence, at each 
τk a pair characteristic roots destabilizes, starting from τ0. This implies that

Du = 2(k + 1) + ν for τk < τ ≤ τk+1. (20)

The latter inequality can be written as

1

ωH

(φH + 2πk) < τ ≤ 1

ωH

(φH + 2π (k + 1))

or

k <
1

2π
(ωH τ − φH ) ≤ k + 1. (21)

The inequality (21) together with (20) implies (19). �

4.2. Two-variable linear DDE

Here we provide conditions for two-variable DDEs to belong to the universality class I and 
thus to possess the bifurcation “scenario” as described in Corollary 4.1. Consider the two-variable 
linear equation (2) with

A =
(

a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, (22)

and aij , bij ∈R, i, j = 1, 2. The corresponding generating polynomial (6) reads

det(B)Y 2 + [C − iω Tr(B)]Y + det(A) − iω Tr(A) − ω2 = 0, (23)

where

C = det(A + B) − det(A) − det(B). (24)

We will consider the cases det(B) = 0 and det(B) �= 0 separately. First of all we exclude the 
case C = Tr(B) = det(B) = 0. Then, the characteristic equation (3) is reduced to

det(A) − λTr(A) + λ2 = 0,
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Fig. 3. The spectrum of the scalar DDE (15) with a = −0.5, b = −1, and (a) τ = τ0 = 2.4184; (b) τ = τ1 = 9.6736; (c) 
τ = τ8 = 60.4600, where τk is given by (18). The dashed line denotes the curve of the asymptotic continuous spectrum. 
The case (a) corresponds to the first pair or eigenvalues becomes critical, (b) the second pair, and (c) to the case when 
8 pairs of eigenvalues are unstable and the 9th pair is critical. The critical frequency and the phase are ωH = 0.866 and 
φH = 2.0944.

which is simply the characteristic equation for the instantaneous part, and the time-delay has no 
effect on the spectrum. Therefore, in the following we assume that C, Tr(B), and det(B) do not 
vanish simultaneously.

Case 1: If det(B) = 0, then the single root of the generating polynomial (23) is

Y(ω) = iω Tr(A) + ω2 − det(A)

C − iω Tr(B)
, (25)

and the single curve of the ACS is given by

γ (ω) = − ln

∣∣∣∣ iω Tr(A) + ω2 − det(A)

C − iω Tr(B)

∣∣∣∣ . (26)

The value of ωH is found from the condition γ (ωH) = 0, which leads to

ω4
H + ω2

H

[
(Tr(A))2 − (Tr(B))2 − 2 det(A)

]
+ (det(A))2 − C2 = 0, (27)

and
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ω2
H = −TAB + det(A) ±

√
2 det(A)TAB + T 2

AB + C2, TAB := (Tr(A))2 − (Tr(B))2

2
. (28)

The phase φH is

φH = − arg

[
iωH Tr(A) + ω2

H − det(A)

C − iωH Tr(B)

]
. (29)

The two-variable DDE (2) with coefficients (22) and det(B) = 0 is of class I if and only if the 
roots (28) are real and simple. It is straightforward to check that the latter is equivalent to the 
condition (det(A))2 − C2 < 0. Hence, we obtain the following lemma:

Lemma 4.1 (Condition for two-variable DDE with detB = 0 to be class I). The two-variable 
DDE (2) with coefficients (22) and det(B) = 0 is of class I if and only if

|det(A)| < |C|. (30)

Case 2: If det(B) �= 0, the roots of the generating polynomial (23) are

Y1,2(ω) = 1

2 det(B)

(
iω Tr(B) − C ± √

z(ω)
)

, (31)

where

z(ω) = ζω2 + η + iωκ, (32)

ζ = 4 det(B) − (Tr(B))2, (33)

η = C2 − 4 det(A)det(B), (34)

κ = 4 Tr(A)det(B) − 2 Tr(B)C. (35)

With the notations

K±(ω) = −C ± 

(√

z(ω)
)

, H±(ω) = ω Tr(B) ± �
(√

z(ω)
)

,

the roots can be rewritten as

Y1,2(ω) = 1

2 det(B)

[
K±(ω) + iH±(ω)

]
, (36)

and the real part of ACS is determined by

γ1,2(ω) = −1

2
ln

[
K2±(ω) + H 2±(ω)

4(det(B))2

]
. (37)

The value of ωH is found from the condition γ1(ωH ) = 0 or γ2(ωH ) = 0, which is equivalent 
to
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[
K2+(ωH ) + H 2+(ωH )

4(det(B))2 − 1

][
K2−(ωH ) + H 2−(ωH )

4(det(B))2 − 1

]
= 0. (38)

The following lemma holds.

Lemma 4.2 (Condition for two-variable DDE with det(B) �= 0 to be class I). The two-variable 
DDE (2) with coefficients (22) and det(B) �= 0 is of class I, if and only if equation (38) possesses 
only one pair of simple roots ωH and −ωH . In this case, Theorem 3.2 holds with

φH = − argY1(ωH ) = arg

[
K+(ωH ) − iH+(ωH )

2 det(B)

]
(39)

if the simple root ωH is the root of the first term in (38), and

φH = − argY2(ωH ) = arg

[
K−(ωH ) − iH−(ωH )

2 det(B)

]
(40)

otherwise.

Although Lemma 4.2 provides an exact criterium, it is not explicitly stated in terms of the 
coefficients of the DDEs. The following lemma gives simpler necessary conditions.

Lemma 4.3 (Necessary conditions for two-variable DDE to be class I). If DDE (2) with the 
coefficient matrices (22) belongs to the universality class I, then the following conditions are 
satisfied

det(B) �= 0, |C| > |det(A) + det(B)|, (41)

where C = det(A + B) − det(A) − det(B).

Proof. We first note that η > 0 (see Eq. (34)) under the assumptions of the lemma. Indeed, if 
otherwise, then z(0) < 0 (which can be calculated by Eqs. (32)–(35)), Y1(0) = Y ∗

2 (0) (where 
Y ∗

2 (0) denotes the complex conjugation of Y2(0)), and thus γ1(0) = γ2(0), which contradicts the 
class I DDE definition. Further, we have

γ1,2(0) = −1

2
ln

∣∣∣∣ 1

4(det(B))2

(|C| ± √
η
)2

∣∣∣∣ . (42)

For the universality class I, it is necessary that

−1

2
ln

∣∣∣∣ 1

4(det(B))2

(|C| − √
η
)2

∣∣∣∣ > 0 > −1

2
ln

∣∣∣∣ 1

4(det(B))2

(|C| + √
η
)2

∣∣∣∣ , (43)

which is equivalent to

(|C| − √
η
)2

< 4(det(B))2 <
(|C| + √

η
)2

. (44)

The latter inequality leads to |C| > | det(A) + det(B)|. Thereby the proof is complete. �
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Fig. 4. The spectrum of the two-variable delay system with the parameters (45) and the delay τ6 ≈ 28.6. The dashed line 
denotes the curve of the asymptotic continuous spectrum.

4.3. Example for the case det(B) = 0

To illustrate the two-variable DDEs of universality class I, we consider the following param-
eter values

A =
( −0.6 0.2

0.2 −2

)
, B =

(
1 −1
−1 1

)
. (45)

As a result, we obtain ωH ≈ 1.2893 from (28) and φH ≈ −0.856 from (29). Then, according 
to Corollary 4.1, the characteristic equation has transverse destabilizing crossings with a pair of 
purely imaginary roots ±iωH for the following time-delays:

τk = −0.664 + 4.871k k = 0,1,2, · · · .

Fig. 4 shows the spectrum for τ6 ≈ 28.6. The number of unstable eigenvalues for τ ∈ (τk−1, τk)

is 2k − 1 for k = 2, 3, · · · .

4.4. Example for the case det(B) �= 0

It is instructive to consider two cases: (a) negative C (see Eq. (24)), and (b) positive C, both 
satisfying the necessary condition (41). Each of these cases will correspond to the qualitatively 
different behavior of ACS at ω = 0.

(a) : A =
(

1 −2
4 −3

)
, B =

( −3 4
−2 1.55

)
. (46)

It is straightforward to check that (41) holds and C < 0. We also obtain ωH ≈ 4.088, φH ≈
−2.977, leading to the following values of the critical time-delays

τk ≈ −0.733 + 1.536k, k = 0,1,2, · · · .

Fig. 5(a) shows the corresponding roots of the characteristic equation and the ACS.
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Fig. 5. Example of the spectrum for the two-variable delay system (2) with det(B) �= 0. The coefficients are given in (46)
for (a) and (47) for (b). Delay values are (a) τ = τ9 = 13.091, (b) τ = τ10 = 32.06. The spectrum in (a) corresponds to a 
negative value of C (see Eq. (24)) and (b) to a positive value of C.

Fig. 6. Schematic structure of universality class II asymptotic spectrum.

(b) : A =
(

2 1
3 1

)
, B =

(
2 −1
1 1

)
. (47)

Here we obtain similarly that C > 0 and (41) holds, and ωH ≈ 1.919, φH ≈ −1.286, leading to

τk ≈ −0.670 + 3.273k, k = 0,1,2, · · · .

Fig. 5(b) shows the roots of the characteristic equation. The asymptotic continuous spectra in (a) 
and (b) differ qualitatively for the unstable part, but this does not change the bifurcation scenarios 
and the universality class.

5. Universality class II

The universality class II, which appears commonly in applications, corresponds to the ACS 
shown in Fig. 6 (a) and (b). This spectrum has two unstable parts (ωH2, ωH1) and (−ωH1, −ωH2), 
i.e., γj (ωHm) = γh(−ωHm) = 0 for some j, h ∈ N and m = 1, 2. Such type of spectrum leads to 
oscillatory instability and an Eckhaus phenomenon in systems with large time delays [39,42,46,
52,53].
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Definition 5.1 (Class II ACS). We define the ACS to be of universality class II if there exist 
two positive real numbers ωH1 > ωH2 > 0 such that the branches of the asymptotic continuous 
spectrum satisfy the following conditions:

For some j, h ∈N ,
(i) γj

(
ωHm

) = 0 (m = 1, 2), γj (ω) > 0 for all ω ∈ (ωH2, ωH1).
(ii) γh

(−ωHm

) = 0 (m = 1, 2), γh(ω) > 0 for all ω ∈ (−ωH1, −ωH2).
(iii) ωHm and −ωHm are regular points of the functions γj and γh, i.e., d

dω
γh

(−ωHm

)
and 

d
dω

γj

(
ωHm

)
exist and are nonzero.

(iv) For all remaining values of ω and the branches of the ACS not mentioned in (i)-(iii), the 
ACS is negative.

Two possible cases of class II spectrum are illustrated in Fig. 6: Fig. 6(a) for j = h and 
Fig. 6(b) for j �= h.

Definition 5.2 (Class II DDEs). We define the DDEs (2) to be of universality class II if its ACS 
is of universality class II.

We note that Definition 5.1 implies that 
∣∣Yj (ωHm)

∣∣ = 1 and 
∣∣Yh(−ωHm)

∣∣ = 1 (m = 1, 2). We 
further define

φHm = − arg
[
Yj (ωHm)

]
, m = 1,2. (48)

Theorem 3.2 implies the following.

Corollary 5.1 (Bifurcation scenario in class II DDEs). Assume the DDE (2) is of universality 
class II. Then system (2) possesses delay-induced transverse crossings of the characteristic roots 
at λc = ±iωHm for the following values of time-delay

τ
(m)
k = 1

ωHm

(
φHm + 2πk

)
, k = 0,1,2, · · · , (49)

where m = 1, 2 and φHm are defined by Eq. (48). Moreover, there are no other delay-induced 
transverse crossings in the system. The crossings for m = 1 are destabilizing and for m = 2
stabilizing, i.e.,

d

dτ

[λ(τ)]

∣∣∣∣
λ=±iωH1 ,τ=τ

(1)
k

> 0,
d

dτ

[λ(τ)]

∣∣∣∣
λ=±iωH2 ,τ=τ

(2)
k

< 0.

In contrast to class I systems, class II systems can have two pairs of critical characteristic roots, 
which may lead to double-Hopf bifurcations in nonlinear DDEs. The condition for this is τ (1)

k =
τ

(2)
l with some k, l ∈ N . The following theorem provides a countable number of conditions for 

the appearance of two pairs of critical roots.

Proposition 5.1 (Two pairs of critical characteristic roots in class II DDEs). Assume that DDE 
(2) is of universality class II. Then the characteristic equation (3) possesses two pairs of purely 
imaginary roots ±iωHm, m = 1, 2 if and only if
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Fig. 7. Example of the spectrum for the two-variable delay system (2) with coefficients (51), τ = 19.051, α = 0.5, 
β = 4.5, and ϕ = 1.5.

1

ωH1

(
φH1 + 2πk

) = 1

ωH2

(
φH2 + 2πl

)
, for some k, l ∈N. (50)

5.1. First example for universality class II

We consider DDE (2) with the following matrices

A =
( −α β

−ϕ 0

)
, B =

( −α −β

0 −ϕ

)
, (51)

where α = 0.5, β = 4.5, and ϕ = 1.5. The real part of ACS is given by Eq. (37) with det(B) =
0.75, Tr(B) = −2, C = −6, z(ω) = −ω2 + 15.75 − i25.5ω (see Eqs. (32)–(35)). We also obtain 
φH1 = 2.481, φH2 = −0.492, ωH1 = 4.085, ωH2 = 0.977, and the sequence of critical time-
delays are

τ
(1)
k = 0.607 + 1.537k, τ

(2)
k = −0.5036 + 6.4278k, k = 0,1,2, · · · .

Fig. 7 shows the roots of the characteristic equation and the ACS for τ = τ
(1)
12 = 19.051.

5.2. Second example for universality class II

Here we present an example with the spectrum shown in Fig. 6(b). For this we consider system 
(2) with the parameters

A =
(

α β

−β α

)
, B =

(
μ 0
0 μ

)
, (52)

where α, β , and μ are real parameters with β > 0 and μ �= 0. A similar system appears via a 
linearization in [42]. The corresponding characteristic equation is

(λ − α − μe−λτ )2 + β2 = (
λ − α − μe−λτ + iβ

) (
λ − α − μe−λτ − iβ

) = 0, (53)
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and the generating polynomial has two roots

Y1,2 = −α

μ
+ i

(
ω ± β

μ

)
.

Hence the ACS is composed of two curves given by

γ1,2(ω) = −1

2
ln

[
α2 + (ω ± β)2

]
+ ln |μ|. (54)

The following condition for the system to be of universality class II is straightforward.

Proposition 5.2 (Condition for system (2), (52) to be of class II). System (2) with matrices (52)
belongs to the universality class II if and only if the following conditions are satisfied

|α| < |μ|, α2 + β2 > μ2. (55)

Proof. Firstly, we have

γ1,2(0) = −1

2
ln

[
α2

μ2 + β2

μ2

]
. (56)

From (54), we obtain

ωH1 = β +
√

μ2 − α2, ωH2 = β −
√

μ2 − α2. (57)

Then, for the system to belong to the universality class II, it is necessary that γ1(0) = γ2(0) =
γ (0) < 0, which leads to α2 + β2 > μ2. Finally note that the condition |α| < |μ| is necessary 
and sufficient for the existence of two real positive roots ωH1 > ωH2 . �

The phases φHm are given as

φH1 = − argY1(ωH1) = arg

[
−α

μ
− i

2β + √
μ2 − α2

μ

]
, (58)

φH2 = − argY1(ωH2) = arg

[
−α

μ
− i

2β − √
μ2 − α2

μ

]
. (59)

Corollary 5.1 implies that transverse crossings with λc = ±iωHm occur for the following time-
delays:

τ
(1)
k = 1

ωH1

(
φH1 + 2πk

) = 1

β + √
μ2 − α2

arg

[
−α

μ
− i

2β + √
μ2 − α2

μ
+ 2πk

]
, (60)

τ
(2)
k = 1

ωH2

(
φH2 + 2πk

) = 1

β − √
μ2 − α2

arg

[
−α

μ
− i

2β − √
μ2 − α2

μ
+ 2πk

]
, (61)

k = 0,1,2, · · · .
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Fig. 8. Spectrum of the two-variable delay system (2) with coefficients (52), τ = τ
(2)
5 = 24.363, α = 0.5, β = 3.5, and 

μ = 2.2.

Fig. 9. Schematic structure of the class III asymptotic spectrum.

Let us illustrate the spectrum for specific parameter values α = 0.5, β = 3.5, μ = 2.2. Using 
Eqs. (57)–(59), we have φH1 = −1.6254, φH2 = −1.6734, ωH1 = 5.6424, ωH2 = 1.3576 and the 
sequence of critical characteristic roots appear for

τ
(1)
k = −0.288 + 1.113k, τ

(2)
k = 1.233 + 4.626k, k = 0,1,2, · · · .

Fig. 8 shows the roots of the corresponding characteristic equation and the ACS for τ = τ
(2)
5 =

24.363.

6. Universality class III

The universality class III, which appears commonly in applications, corresponds to the 
asymptotic spectrum shown in Fig. 9 with two unstable parts (−ωH, 0) 

⋃
(0, ωH ), γj (0) = 0, 

γj (±ωH ) = 0, j ∈N . Such spectrum is common for systems with symmetries such as the Stuart–
Landau system with time delay [42,53–58] or the Lang–Kobayashi laser model [43,59–67].

Definition 6.1 (Class III ACS). The ACS is of universality class III if there exist ωH > 0 and 
j ∈ N such that a branch of the ACS satisfies γj (0) = 0 and γj (±ωH ) = 0, γj (ω) > 0 for all 
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ω ∈ (−ωH , 0) 
⋃

(0, ωH ), and γj (ω) < 0 for all ω �∈ [−ωH , ωH ]. Moreover, γk (ω) �= 0 for all 
k �= j and ω ∈R.

Definition 6.2 (Class III DDE). DDEs (2) is of universality class III if its ACS is of universality 
class III.

As in the previous cases, Definition 6.1 implies that 
∣∣Yj (ωH )

∣∣ = 1 and we define

φH = − arg
[
Yj (ωH )

]
. (62)

The following corollary of the Theorem 3.2 for the class III DDEs describes the sequences of 
transverse crossings (bifurcations) in such DDEs.

Corollary 6.1 (Bifurcation scenario in class III DDEs). Assume that the DDE (2) is of univer-
sality class III. Then the characteristic equation (3) has a characteristic root λ0 = 0 for all 
time-delays if and only if det(A + B) = 0. Also, the system possesses destabilizing transverse 
crossings of the characteristic roots with λc = ±iωH for the following time-delays

τk = 1

ωH

(φH + 2πk) , k = 0,1,2, · · · , (63)

where φH is defined by Eq. (62). Moreover, there are no other delay-induced transverse crossings 
of the characteristic roots in (2).

Proof. The root λ0 = 0 is only possible if

det [A + B] = 0. (64)

This is the case when Yj (0) = 1 or, equivalently, ϕH = 0. The remaining statement follows from 
Theorem 3.2. �
6.1. Two-variable example of DDE of universality class III with det(B) = 0

We remind that there exists only one curve of the ACS for det(B) = 0 in the case of two-
variable DDE. Using Eq. (25) from Sec. 4.2, the single root of the generating polynomial at 
ω = 0 is

Y(0) = −det(A)

C
, (65)

and the asymptotic continuous spectrum at ω = 0 is

γ (0) = − ln

∣∣∣∣det(A)

C

∣∣∣∣ . (66)

Then, the condition γ (0) = 0 leads to |C| = | det(A)|. Further, the condition γ (ωH ) = 0, ωH �= 0
is equivalent to
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Fig. 10. The spectrum of the two-variable delay system (2) with the coefficients (69) belongs to universality class III. An 
example of the spectrum for τ = τ10 = 15.87 and the ACS are shown.

ω2
H + (Tr(A))2 − (Tr(B))2 − 2 det(A) = 0 (67)

as it can be seen from Eq. (27). Then, the DDE (2) with (22) and det(B) = 0 is of class III if and 
only if equation (67) possesses a pair of simple roots ωH and −ωH . The latter is equivalent to 
the condition (Tr(A))2 − (Tr(B))2 < 2 det(A). Hence, we obtain the following result.

Lemma 6.1. The two-variable DDE (2) with coefficients (22) and det(B) = 0 is of class III if 
and only if

|det(A)| = |C|, (Tr(A))2 − (Tr(B))2 < 2 det(A). (68)

As a numerical example of universality class III with det(B) = 0 we consider

A =
(

1 −2
4 −3

)
, B =

(
2 −1
−2 1

)
, (69)

for which we have ωH = 3.873 and φH = −1.3181. Then the destabilizing transverse crossings 
of the critical roots occur for the following time delays:

τk = −0.34 + 1.621k, k = 0,1,2, · · · .

Fig. 10 shows the roots of the characteristic equation for τ10 = 15.87 together with the ACS.

6.2. Two-variable example of DDE of universality class III with det(B) �= 0

We obtain the following two necessary conditions for a DDE to be of universality class III 
with det(A + B) = 0 and det(A − B) = 0 respectively. Although it looks like these conditions 
are also sufficient, we were not able to prove this.

Lemma 6.2. Let DDE (2) with coefficients (22) and det(B) �= 0 and det(A + B) = 0 belong to 
the universality class III. Then the following conditions hold
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|det(A)| > |det(B)|, (70)

2

[
ν2 − ν1 Tr(B) +

(
ν1

ν2

)2

det(B)

]
+ ν2

1 < 0, (71)

where

ν1 = Tr(A) + Tr(B), ν2 = det(B) − det(A). (72)

Proof. From Eq. (31), the roots of the generating polynomial (23) at ω = 0 are

Y1,2(0) = 1

2 det(B)

(−C ± √
η
)
, (73)

and the values of the asymptotic continuous spectrum at ω = 0 are

γ1,2(0) = −1

2
ln

∣∣∣∣ 1

4(det(B))2

(|C| ± √
η
)2

∣∣∣∣ . (74)

Since p0(1) = 0 is equivalent to det(A + B) = 0, where pω(Y ) is the generating polynomial (6), 
the condition det(A + B) = 0 implies Y2(0) = 1 and γ2(0) = 0. The necessary condition for the 
universality class III is that the ACS of the two-variable DDE (2) with (22) consists of two curves 
such that γ1(0) < γ2(0) = 0. Hence, we obtain η > 0, Y2(0) = 1, |Y1(0)| > 1, and

(|C| − √
η
)2 = 4(det(B))2 <

(|C| + √
η
)2

. (75)

Using the expressions for C and η, as well as the condition det(A + B) = 0, the inequality (75)
is reduced to | det(A)| > | det(B)|.

Next, we compute the second derivative of the branch of the real part γ (ω) of ACS at ω = 0. 
For this we differentiate (23) with respect to ω as

−2ω − i [Tr(A) + Y2 Tr(B)] − iω Tr(B)∂ωY2 + 2Y2 det(B)∂ωY2 + C∂ωY2 = 0. (76)

Substituting Y2 = 1, ω = 0 and det(A + B) = 0 in (76), we obtain

∂ωY2(0) = i
Tr(A) + Tr(B)

det(B) − det(A)
= i

ν1

ν2
. (77)

The second derivative of (23) with respect to ω is

−2 − 2i Tr(B)∂ωY2 − iω Tr(B)∂ωωY2 + 2
[
Y2∂ωωY2 + (∂ωY2)

2
]

det(B) + C∂ωωY2 = 0,(78)

which leads to Y2 = 1, ω = 0, and det(A + B) = 0 to

∂ωωY2(0) = 2

ν2

[
1 − ν1

ν2
Tr(B) +

(
ν1

ν2

)2

det(B)

]
. (79)
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Fig. 11. Example of the spectrum for two-variable delay system (2). The coefficients are given in (80) and the time-delay 
value is τ = τ20 = 30.086.

Then, the second derivative of γ is

d2γ2

dω2 (0) = |∂ωY2(0)|2 − |∂ωωY2(0)| .

For the universality class III, it is necessary that γ ′′
2 (0) > 0 leading to |∂ωY2(0)|2 > ∂ωωY2(0). 

The latter inequality, combined with (75), (77), and (79), give the conditions of the lemma. �
Remark 6.1. The conditions of Lemma 6.2 are reduced to det(A) > det(B) in the case of 
∂ωY2(0) = 0 (i.e., ν1 = 0).

We give a numerical example of universality class III with det(B) �= 0, det(A + B) = 0, and

A =
(

1 −2
4 −2.2

)
, B =

( −1 −0.2
−4 3

)
. (80)

We obtain det(A) = 5.8, det(B) = −3.8, Tr(A) = −1.2, Tr(B) = 2, ν1 = 0.8, and ν2 = −9.6. It 
is easy to verify that conditions (70) and (71) are satisfied. Further, we calculate φH = −1.379, 
ωH = 4.13, and the sequence of the delay-induced transverse crossings of the characteristic roots 
occur at the time-delays

τk = −0.334 + 1.521k, k = 0,1,2, · · · .

Fig. 11 shows the roots of the characteristic equation of the above two-variable linear system and 
its spectrum curves for τ = τ20 = 30.086.

The second necessary condition is given by the following result.

Lemma 6.3. Let the two-variable DDE (2) with coefficients (22) and det(B) �= 0 and det(A −
B) = 0 belongs to universality class III. Then the following conditions hold
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C2 > max
{
4 det(A)det(B),2 det(A)det(B) + 2(det(B))2}, (81)

2

[
ν4 + ν3 Tr(B) +

(
ν3

ν4

)2

det(B)

]
− ν2

3 > 0, (82)

where

ν3 = Tr(A) − Tr(B), ν4 = det(A + B) − det(A) − 3 det(B). (83)

Proof. The necessary condition for the universality class III is that the ACS of DDE (2) with co-
efficients (22) consists of two curves such that γ1(0) < γ2(0) = 0. Hence we have η > 0 (see 
eq. (42)). Also det(A − B) = 0 implies Y2(0) = −1, since p0(−1) = det(A − B) = 0. The 
condition γ1(0) < 0 implies |Y1(0)| > 1, and so, similarly to the proof of Lemma 6.2, we can 
show that (75) holds. Simple calculations show that (75) is equivalent to C2 > 2 det(A) det(B) +
2(det(B))2. Furthermore, η > 0 is equivalent to C2 > 4 det(A) det(B). Hence, we have shown 
the condition (81).

Next, substituting Y2 = −1, ω = 0 into (76), we obtain

∂ωY2(0) = i
Tr(A) − Tr(B)

det(A + B) − det(A) − 3 det(B)
= i

ν3

ν4
. (84)

Further, using (78) with Y2 = −1 and ω = 0, we obtain

∂ωωY2(0) = 2

ν4

[
1 + ν3

ν4
Tr(B) +

(
ν3

ν4

)2

det(B)

]
. (85)

Similarly to the proof of Lemma 6.2, we obtain

d2γ2

dω2 (0) = |∂ωY2(0)|2 + |∂ωωY2(0)| .

Since the obtained second derivative must be positive, we have |∂ωY2(0)|2 +∂ωωY2(0) > 0. Then, 
combining (75), (84), and (85), straightforward calculations lead to the conditions (81)–(82). �
Remark 6.2. Conditions of Lemma 6.3 are reduced to C2 > max{4 det(A) det(B),

2 det(A) det(B) + 2(det(B))2} and ν4 > 0 in the case ∂ωY2(0) = 0 (i.e., ν3 = 0).

We give here a numerical example of universality class III with det(B) �= 0, det(A − B) = 0, 
and

A =
(

1 −2
4 −3

)
, B =

(
1 −0.5
4 −3

)
. (86)

It is easy to check that conditions of Lemma 6.3 are satisfied, and ACS belongs to the universality 
class III with critical delays

τk = 0.584 + 1.924k, k = 0,1,2, · · · .
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Fig. 12. Example of the spectrum for two-variable delay system (2). The coefficients are given in (86) and the time-delay 
is τ = τ15 = 29.44.

Fig. 12 shows the roots of the characteristic equation of the above two-variable linear system and 
its ACS.

7. Nonlinear model example: Stuart–Landau oscillator with time-delayed feedback

7.1. Asymptotic continuous spectrum analysis

In this section we consider the Stuart–Landau model [41,42,54–57,68,69] with time-delayed 
feedback. This is a paradigmatic model for studying the interplay between oscillatory instability 
(Hopf bifurcation) with a time delay. This example also illustrates how the Hopf bifurcation 
scenario in a DDEs of universality class II follows from our results. The system reads

ż(t) = (α + iβ)z(t) − z(t)|z(t)|2 + z(t − τ), (87)

where α and β are real parameters, z(t) : R �→ C is a complex variable. The system has two real 
variables: the real and the imaginary parts of z.

We start with the stability analysis of the trivial equilibrium z = 0 by considering the lin-
earized system

ż(t) = (α + iβ)z(t) + z(t − τ). (88)

The corresponding characteristic equation is

λ − (α + iβ) − e−λτ = 0, (89)

and the generating polynomial

pω(Y ) := det [iω − (α + iβ) − Y ] = 0 (90)

has a single root

Y = iω − α − iβ.
389



Y. Wang, J. Cao, J. Kurths et al. Journal of Differential Equations 406 (2024) 366–396
Fig. 13. ACS for Eq. (88) with β = 1 and different α: unstable (α = 0.8), critical (α = 1), and stable (α = 1.2).

Hence the real part of ACS reads

γ (ω) = − ln |Y(ω)| = −1

2
ln

[
α2 + (ω − β)2

]
. (91)

We can see that the asymptotic continuous spectrum implies instability for |α| < 1 [42], see 
Fig. 13.

In this case, system (88) is an example of the universality class II DDE under the conditions 
of |α| < 1 and α2 + β2 > 1. Since we consider the system in a complex form, only one curve 
of ACS is present. If we used the real form with two variables 
(z) and �(z), we would have 
obtained two complex conjugated curves of the ACS as in Fig. 6(b).

The critical frequency ωH is given by the root of γ (ωH ) = − 1
2 ln

[
α2 + (ωH − β)2

] = 0, 
leading to

ωHm = β ±
√

1 − α2, m = 1,2.

The phase φH is given as

φHm = − arg
[
±i

√
1 − α2 − α

]
, m = 1,2.

Corollary 5.1 for the class II DDEs implies that there are transverse crossings of the charac-
teristic roots of (89) with ±iωHm occurring for |α| < 1 and the following time delays:

τ
(m)
k = 1

ωHm

(φHm + 2πk)

= − 1

β ± √
1 − α2

(
arg

[
±i

√
1 − α2 − α

]
+ 2πk

)
, k = 0,1,2, · · · . (92)

Moreover, τ (2)
k are stabilizing and τ (1)

k are destabilizing. The time-delay values τ (m)
k correspond 

to the stabilizing and destabilizing Hopf bifurcations of the Stuart–Landau system, respectively. 
iωHm are the frequencies of the Hopf bifurcations. Fig. 14 illustrates the spectrum for these 
bifurcation moments.
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Fig. 14. Spectrum and the ACS for time-delayed system (87) for the following two cases: (a) α = 0.8, β = 1, and 
τ = τ

(1)
6 = 21.989; (b) α = 0.8, β = 2, and τ = τ

(2)
6 = 28.7.

7.2. Bifurcating periodic solutions and their stability

We now describe the bifurcation scenario with increasing τ . If the ACS crosses the imaginary 
axis (the case of universality class II), Hopf bifurcations occur and lead to the appearance of 
periodic solutions. Due to the equivariance of (87) with respect to the transformation z → zeiφ

for any φ ∈ S1, typical periodic solutions in (87) have the form z(t) = aeiωt with the amplitude 
a and frequency ω. Substituting this ansatz into equation (87), we obtain

iωH = α + iβ − a2 + e−iωτ ,

or, equivalently,

a = √
α + cos (ωτ), (93)

ω = β − sin (ωτ) . (94)

Using (93)–(94), the amplitudes a versus time-delay τ of the periodic solutions can be paramet-
rically represented as a(φ) and τ(φ), where

a(φ) = √
α + cos (φ), (95)

τ(φ) = φ + 2πk

β − sin (φ)
, k ∈ 0,1,2, . . . (96)

Case |α| < 1. In this case DDE (87) is of universality class II. Fig. 15 shows the resulting 
diagrams of the amplitudes a with respect to time delay τ . We observe the Hopf bifurcations 
as predicted by Eq. (92). The Hopf bifurcations also correspond to the condition a = 0, i.e., 
α + cos(φm) = 0, m = 1, 2, and

τ
(m)
k = φm + 2πk

, k = 0,1,2, . . . , (97)

β − sin(φm)
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Fig. 15. Dependence of the amplitude a on the bifurcation parameter τ with |α| < 1. The parameters of the equations 
(95) and (96) are respectively: (a) α = −0.8, β = 2; (b) α = 0.8, β = 2; (c) α = 0.8, β = 1. The branches of periodic 
solutions are bounded in τ for β > 1, but all branches are disconnected for β = 1.

where ωm = β − sin(φm) is the Hopf frequency, see Eq. (92). The periodic solutions exist for 
α + cos (φ) > 0. Moreover, as the Hopf bifurcations at τ (1)

k are destabilizing, the branch of 

periodic solutions is emerging from these points (a = 0, τ = τ
(1)
k ) in the bifurcation diagram. 

Accordingly, the Hopf bifurcations at τ (2)
k are stabilizing, and the branches are terminating there.

We note additionally that the branches of periodic solutions are bounded in τ for β > 1. 
Hence, they form so-called bridges of periodic solutions connecting the corresponding Hopf 
bifurcation points as in Fig. 15(a) and (b), see also [70]. However, for β = 1, all branches are 
disconnected as in Fig. 15(c). This can be understood from Eq. (96), since the denominator 
approaches zero for some values of φ.

Case −∞ < α < −1. This case corresponds to the absolute (delay-independent) stability [28]
of the equilibrium z = 0 and, hence, there are no Hopf bifurcations for positive delays τ . If a pe-
riodic solution exists in this case, it can nether be continued to τ = 0 nor to any Hopf bifurcation 
with the fixed point.
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Fig. 16. Dependence of the amplitude a on the bifurcation parameter τ with α ≥ 1. The parameters of the equations (95)
and (96) are respectively:(a) α = 1.8, β = 2; (b) α = 1.8, β = 1. There are periodic solutions but no Hopf bifurcations 
for positive delays. The periodic solutions are connected for β > 1 but disconnected for β = 1.

Case α ≥ 1. For this case, there is one periodic solution for τ = 0, but no Hopf bifurcations for 
positive delays, see Fig. 16(a) and (b).

8. Conclusions

We show that linear DDEs with one delay possess universal destabilization / stabilization sce-
narios as time-delay is varied. These scenarios lead to universal cascades of Hopf bifurcations 
in the corresponding nonlinear DDEs. The universality classes, corresponding to the same sce-
nario, are determined with the help of the asymptotic continuous spectrum, which can be rather 
calculated.

Although the number of potential universality classes is unlimited, we determine three most 
common universality classes (I to III) and describe their bifurcation scenarios. The universality 
classes are naturally extended by the class “0” of absolutely hyperbolic DDEs introduced in [28], 
which do not exhibit any bifurcations for any value of delays.

All our results are illustrated by numerous simulation examples. In addition, we present an 
example of the nonlinear Stuart–Landau model with time-delayed feedback and show how the 
“bridges” or periodic orbits connect the stabilizing and destabilizing Hopf bifurcations.

We believe that our results can be useful for studying many applied problems where the time-
delay appears as a parameter. A possible interesting extension could be the study of time-varying 
or state-dependent delays, where the delay would traverse through a cascade of Hopf bifurcation, 
which we have described here.
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