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1. Background and motivation 
 

Data and data handling is at the core of industrial ecology (IE) and socio-metabolic 

research. With the growth and increasing complexity of IE research, partly driven by 

‘big data’ and machine learning techniques, there is “a desire for better utilization of 

the accumulated data in more sophisticated analyses. This implies the need for greater 

transparency, accessibility, and reusability of IE data, paralleling the considerable 

momentum throughout the sciences” (Hertwich et al. 2018). 

A core aspect of data transparency, accessibility, and reusability is the complete 

traceability of workflows and reproducibility of results, by which we mean 

a system of procedures, documentation, and archiving for the work with data, including the 

identification of data sources, the processing of data, the assessment or model calculation steps, 

and the evaluation of assessment of model results.  

There are four main reasons for installing such a system of procedures, documentation, 

and archiving: 

• Scientific rigor: We must be able to link assessment and model results to raw 

data, to identify assumptions and proxy choices made, also after considerable 

time has passed since the research was conducted. This is a core requirement 

for validating the accuracy of findings through the scientific method, 

particularly amidst the prevalence of machine learning-generated (fake) 

outputs, and for detecting and rectifying errors in the data process. 

• Effective collaboration, update, and hand-over within teams, the IE community, and 

beyond: In addition to making it easier to find and correct errors, a traceable data 

workflow enables effective collaboration by defining data interfaces and 

classifications, and by modularizing research so that work with data can be 

parallelized and experts from different disciplines (with specific data models 

and formats) can easily contribute. It also allows for quick updates of individual 

datasets (because outdated data can be easily identified), and large research 

projects can be handed off to new team members because of a well-documented 

and traceable data flow that is complete, easy to understand, and easy to 

update. The general scientific community (in IE and beyond) would also 

benefit. If data and code are easily available, other colleagues can directly build 

on your work and vice versa. This exchange is a precondition for accelerating 

the spreading of knowledge and increasing the quality and relevance of our 

work. 

• Demand by stakeholders: Publicly funded sustainability science is increasingly 

expected to contribute to a cumulative knowledge base (Pauliuk 2020), which 

includes requirements to make research data accessible and to document 

research workflows. 
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• Higher social trust and impact through higher quality research: Unlike consulting, 

which often lacks transparency standards, scientific sustainability research 

earns the most trust by upholding rigorous quality standards. This includes 

fostering a culture of ongoing verification and error correction. In quantitative 

sustainability science, such a culture can only thrive if the data workflow is 

transparent and reproducible. 

As a first step, “the issue of data transparency was identified by the council of the International 

Society for Industrial Ecology (ISIE) as an important concern. The Society convened the Data 

Transparency Task Force (DTTF) in late 2016 to develop guidance on best practices and 

incentives for sharing IE research data and documenting research workflow. […]“ (Hertwich 

et al. 2018)   

"The goal of the DTTF is to develop guidelines and incentives that encompass the 

whole research process, ranging from documenting input data and assumptions, to 

methodological aspects such as accessible software code, to providing access to 

generated output data.” From (Hertwich et al. 2018). 

Under its mandate, the DTTF did not address the question of traceability and 

reproducibility of the research workflow, and the data badges currently issued by JIE 

are only concerned with the data availability and reusability aspects of a research 

outcome.1 Thus, to receive a (gold) data badge, the authors of an article have to specify 

the input data as well as publication of all research data outcomes of the analysis in a 

human and machine-readable format. How the authors derive the result data from the 

input data must be described in the article according to the state-of-the-art in each 

field, but transparent methodology and good traceability of results is not part of the 

assessment of the work for the data badge.  

 

Good examples from the literature 

Despite the lack of guidelines and standards, we increasingly see industrial ecology research 

articles, which make the full data pipeline publicly available.  

Examples of high traceability of workflows and reproducibility of results range from 

articles that come with a traceable Excel workbook (Mayer et al. 2919; Haas et al. 2023), 

those that include the script used for the analysis (Wolfram et al. 2021), articles using 

R or Jupyter notebooks (e.g., (Vilaysouk et al. 2020; Boulay et al. 2021)), to full software 

suites including the model packaged as a standalone software package (e.g., 

(Kuczenski et al. 2022)). A number of gold-gold badge articles in the Journal of 

Industrial Ecology not only make their input and result data available, but also provide 

                                                           
1 https://jie.yale.edu/data-openness-badges 

https://jie.yale.edu/data-openness-badges
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the analysis and detailed documentation, e.g., (Mayer et al. 2019), (Harpprecht et al. 

2021; van der Meide et al. 2022; Steubing et al. 2022). 

Clearly, parts of the Industrial Ecology community already explore options for a fully 

transparent and open research workflow. The International Society for Industrial 

Ecology (ISIE) and its topical sections should use this momentum to provide 

incentives, good and best practice examples, and guidelines for complete traceability 

of workflows and reproducibility of results. 

 

Expanding on existing guidelines 

In 2021, the SEM (socio-economic metabolism) section of the ISIE (International Society 

for Industrial Ecology) issued guidelines for research involving the method of material 

flow analysis (MFA) (SEM Board 2021).  

In ‘Guideline VI: Data provenance and traceability’ of the guideline document (SEM 

Board 2021), the following is written: 

“The data used for quantitative research undergo many transformations. First, 

they are extracted from their sources (sometimes manually, by reading and re-

typing them!), then revised, amended, reformatted/reshaped, combined, stored 

in different formats, and finally used for calculating model results or indicators 

or for plotting them or presenting them in some other form. Model and 

calculation results are processed into scientific output, typically, by plotting 

aggregated or selected results or by reporting central numerical results in 

scientific reports and papers. 

Documenting data flows across different tools requires special attention. [highlighted 

by the authors of this work] […] 

While documentation procedures are project-specific and have to be adapted to 

each tool chain, only general hints are given here. In particular, MFA 

researchers and practitioners should pay attention to the following steps: 

• Data sourcing: Document the exact locations or identifiers (in documents 

or databases) of all data used, plus the dataset’s version number (if any). 
 

• Data processing: Document the entire research flow: all modification and 

processing of the data into numerical results, both the different data 

treatment steps and the different tools and interfaces used. 
 

• Data visualization and reporting: Document exactly how the data were 

aggregated and visualized for a paper or report. Make sure that each 

number, figure, and table in your paper and the data therein can be 

traced back to the very model and data versions that were used to create 

those visuals in the first place. 
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• Data archiving: Follow the best practice set by the journals you publish in2 

and consider uploading datasets to public archives (e.g., Zenodo). 

These steps are crucial to ensuring exact reproducibility of results, checking 

correctness, updating (modular) calculations, and supporting the re-use of data. 

They also help establish informational independence, because if two MFAs are 

actually based on the same underlying data, they are not providing 

independent information.” 

 

In the meantime, a number of developments for complete traceability of workflows and 

reproducibility of results have occurred in the research community for socio-economic 

metabolism (SEM).  

Many colleagues are working on developing the state of the art of our research towards 

better traceability of results and data, which increases the quality of the work, helps 

with the reuse of data and results, and facilitates updating, correction, teamwork, and 

handover of work to other colleagues. 

In this document, we want to add detail to the general recommendations for data provenance 

and traceability given in (SEM Board 2021), compile a number of working examples, and give 

an outlook on current trends and future development options. 

These specific examples drawn from SEM research are intended to be complementary 

to the many other excellent resources on reproducible research more generally, such 

as The Turing Way.3 

 

  

                                                           
2 e.g., https://jie.yale.edu/data-openness-badges 
3 https://the-turing-way.netlify.app/index.html 

https://jie.yale.edu/data-openness-badges
https://the-turing-way.netlify.app/index.html


10 
 

2.  Five steps for complete traceability of workflows and 
reproducibility of results 
 

In our research, each workflow is unique, however, a standard pattern from raw data 

to processed data and further to model-based results is part of every quantitative 

research project. For this standard pattern, we identified the following general 

procedural steps for complete traceability of workflows and reproducibility of results 

(Box 1, illustrated in Fig. 1). 

 

  
Fig. 1. Illustration of the five steps for complete traceability of workflows and reproducibility 

of results, drawn by our co-author Rick Lupton. Model output often is the new original data 

for subsequent analysis, and it needs to be archived with sufficient reproducibility and 

traceability information. 

 

The list in Box 1 explains these five steps and gives guidelines for their 

implementation. It builds on published concepts for modelling in industrial ecology 

(Pauliuk et al. 2015) in that it uses the same basic steps and adds the specific routines 

that need to be followed4. Details are provided in the following subsections. 

 

 

 

 

                                                           
4 In machine learning and data science, steps 1-3 are commonly referred to as the ETL (extract, transform, load) pipeline. 
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Box 1: Five Step Guideline for Ensuring Data Processing and 

Results Reproducibility 

Each step explains why it is important and gives examples of how it can be achieved. 

1. Ensure the traceability of the original data used, to ensure future access. 

a. Link data to their original sources, using DOIs or other identifiers 

b. Archive downloaded data and keep an inventory of raw data files 

c. For databases: Write a query script, document data version/access date 
 

2. Document how processed data was derived from original data, to trace each 

single data point to its respective original sources and assumption. 

a. For small data, this can happen with equations etc. in a spreadsheet. 

b. For larger data, the processing of raw data should be documented in 

scripts that use standardized data handling routines. 

c. For a broad mix of data sources, data processes (section 3.5) can be used. 
 

3. Keep track of how processed data are combined into datasets that form the 

model parameters, so the origin and processing of all data in the model input 

parameters can be understood.  

a. Keep a record of all modifications to the model parameters, i.e., version-

track the model parameters when changing them. 

b. Keep an inventory and version list of your entire model/assessment 

database, ideally in a traceable online repository such as GitHub. 

c. Databases should see regular backups, and data should ideally not be 

overwritten but kept. 
 

4. Document relevant calculations and model runs, so they can be reproduced. 

a. List tool and package versions used and describe computational 

environments. 

b. Document versions of model components and input data for each run. 

c. Keep track of the results of each relevant run. 
 

5. Link final outputs to the calculations that produced them, so figures and data 

in reports and papers are traceable. 

a. Link results in a report to a model run ID (can again be linked to database 

ID, model version ID, and computational environment ID) 

b. Document exactly how numbers in tables and plots are linked to/derived 

from model results. 

c. Document exactly how numbers in the text are linked to/derived from 

model results. 
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2.1. Details for the five steps of data processing and results 

reproducibility 

In the following section, the five steps suggested above are described and discussed 

in more detail. Section 3 provides a number of good practice examples of how these 

steps can be implemented in research practice, ranging from spreadsheet workbooks 

to comprehensive data processes for specific modeling environments. 

 

Step (1) Ensure the traceability of the original data used 

More and more often, IE researchers build their assessments and models on specific 

archived versions of data sets published in an established data repository or along 

with scientific publications, such as Zenodo. This allows them to (automatically) 

download the data and to specify the DOI (or other identifiers) in their analysis 

scripts. This way, a traceable link between input data and their use in own research is 

established. 

Still, data often is only available through generic API access, via proprietary 

databases, or need to be read and parsed offline. Examples include the digitization of 

historical statistical data, which often happens manually, from scanned books or pdf 

reports. In many cases, these raw data cannot be shared with others. Confidential 

raw data cannot be shared either. API access can lead to another reproducibility 

problem. Many data providers, including most statistical agencies, update the 

numbers of their database under the same API access point, without allowing users 

to trace or switch back to previous versions. Running the same code with these data 

might lead to different results, depending on when it is run. Previous versions of the 

data are often no longer available at all. Moreover, when the license of the API-

download does not allow for republishing them, results can only be reproduced 

locally. Therefore, in the absence of permanent URLs or POI (e.g., DOI) or under 

restrictive licenses, it is advisable to store a local copy of the downloaded data for 

documentation via self-archiving of downloaded data files in a raw data folder (with 

exact source and time stamp). The source files (pdfs, spreadsheets, csv files, images, 

etc.) are archived locally (e.g., in a folder tree by parameter, sector, material, or 

country) so that each data source has a unique relative path in the archive and can be 

accessed at any time. 

 

Step (2) Document how processed data was derived from original data 

Ideally, the whole data process runs through a defined, version-managed, and well-

documented data pipeline to meet the goals outlined above.  

For example, each data file can be accompanied by a log file that contains the 

necessary records to trace each single data point to its respective data process and 

original sources and assumptions. 
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Basic reproducibility can be achieved through thorough documentation of the steps 

to be followed, but it is usually better to make use of tools define precisely and 

automate the steps. These can be plain scripts (e.g., in Python or R, or shell scripts) or 

can make use of task runners such as (Snake)Make, Doit,5 or Targets.6 

Code notebooks such as Jupyter notebooks,7 Quarto,8 Pluto,9 or R Markdown 

documents10 are common ways of combining calculations and their documentation 

and are increasingly used by IE researchers. They can be integrated into reproducible 

workflows using packages such as rrtools,11 see the examples below. These tools 

typically contain model calculations and thus cover steps 2-4 of the general 

guidelines in Box 1. They can also be used for step 5 (make final results in reports 

and papers traceable), see the examples below. 

Semantic data technologies such as RDF are an alternative possible solution to the 

issue of keeping track of data provenance (Germano et al. 2021). 

 

Step (3) Keep track of how processed data are combined into datasets that 

form the model parameters 

A project or model input database should be divided into different data types and 

data files (for larger projects), depending on the origin and the use of the data in the 

model/assessment. To keep an overview of the project’s database, an inventory and 

version list of your entire model/assessment database is needed, including a change 

log that records all additions and changes to the database.  

For example, in a spreadsheet workbook, identify smaller sets of processed data as 

well as input data/parameters clearly in a separate sheet, and keep copies of 

alternative versions. For a larger database, keep a log file (either project-wide or data 

file-specific) that contains a record of all modifications of the model parameters, so 

that one is able to trace each single data point in each model input parameter to its 

respective original sources and assumptions. For larger, data-heavy projects, a 

structured log file format should be used to allow queries against the log entries. 

Depending on the use case, the logging might also need to be done with a database, 

particularly when multiple value changes of specific data entries must be tracked. 

Where possible, prefer simple and text-based formats for storing data and keeping 

track of changes. It is much easier to use tools like git to track changes to a CSV file 

than tracing changes that are hidden in a large Excel workbook. Of course, 

                                                           
5 https://pydoit.org/  
6 https://books.ropensci.org/targets/  
7 https://jupyter.org/  
8 https://quarto.org/  
9 https://github.com/fonsp/Pluto.jl  
10 https://rmarkdown.rstudio.com/  
11 https://github.com/benmarwick/rrtools  

https://pydoit.org/
https://books.ropensci.org/targets/
https://jupyter.org/
https://quarto.org/
https://github.com/fonsp/Pluto.jl
https://rmarkdown.rstudio.com/
https://github.com/benmarwick/rrtools
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sometimes the benefits of organizing data into one workbook may outweigh the 

benefits of easier change-tracking. Especially, since Excel is very useful also when 

collaborating, as many people are used to it and can therefore work with such data. 

Examples for both types of approach are given below. 

 

Step (4) Document relevant calculations and model runs 

Quantitative assessments rely on calculations to derive indicators. To trace these 

indicators back to their data and model origins, it is crucial to establish traceability by 

thoroughly documenting the model calculation process. Typically, each model run 

will create a log file, where the version numbers of all model components and all 

input data are documented, so that the model/assessment results are then linked to 

model and data versions by this log entry. As an alternative, the procedure of 

obtaining results may be documented along with the data, for example, in LCA: 

“These results were obtained with exactly this foreground process data file (link to 

exported foreground data file), this background database version, this software 

version, and on this computer system.” This requirement for model run tracing goes 

hand in hand with the recommendation for FAIR (Findable, Accessible, Interoperable 

and Reusable) research software, as lined out by Barker et al (2022). 

Most research code and analyses evolve incrementally, and during this process, it is 

unknown which version will be the final version. To keep an overview of different 

iterations and ensure reproducibility of previous results, we recommend using some 

form of version control (i.e., git) to document and preserve each step of development. 

Some of the standard tools for version control and scientific repositories are also well 

connected. For example, it is possible to link a GitHub repository to a Zenodo 

archive, which then automatically archives each released version of the model/code.12 

Similar possibilities exist for figshare, osf, and other archives. 

 

Step (5) Link final outputs to the calculations that produced them 

For all display items (figures and tables) as well as all quantitative statements in the 

publication, an explanation should be provided on where exactly these numbers 

come from (e.g., exactly which model run for data shown in figures and tables), or 

how exactly the number mentioned in the text was obtained. (e.g., “The xy Mt of 

CO2-eq stated in the abstract are calculated as the average of column a on sheet b in 

the c result workbook archived under URL d, rounded to the nearest Mt.”) Such 

information could be compiled in the supplementary material. 

LaTeX typesetters like overleaf13 allow for importing numbers and tables into text 

documents via plain text import or hyperlinks, allowing for automatic updating of 

                                                           
12 https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content  
13 https://en.wikipedia.org/wiki/Overleaf  

https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://en.wikipedia.org/wiki/Overleaf
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manuscripts as new data become available. For example, a Python or R script can 

generate a .tex file coding a table with numeric results in it, which is then inserted 

into the final text during each recompilation of the LaTeX document from its source 

code. Next to convenient updating, the link between text document and model code 

via a .tex file allows for tracing the information flow from the model to the paper.   

Notebooks such as Jupyter, and tools like Quarto14 also help with this by allowing 

code that generates a table to be embedded directly in a document, with the results 

automatically embedded into the final LaTeX/PDF/HTML output. 

 

 

 

  

                                                           
14 https://quarto.org/  

https://quarto.org/
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3. Good Practice Examples for Workflow Traceability and 

Reproducibility of Results in Industrial Ecology Research 

Below, we provide a detailed description of several approaches for data provenance 

and traceability. The examples below were provided by members of our community, 

and we list them here as good examples that show what is currently done and what 

development options exist. This list of examples is not exhaustive, and we are happy 

to include other approaches in future updates of this document.  

 

3.1. Spreadsheet calculations 

“In principle, an Excel workbook (stored as .xlsx file) contains and documents (if 

well-structured and annotated) all the above-mentioned steps in an open file format, 

starting from data queries and ending with internal plots and summary tables. In 

practice, however, such workbooks quickly get messy, do not offer enough 

computational capabilities, and cannot handle the given data volume. For many 

research applications, different tools and combinations of tools need to be used 

anyhow.” (SEM Board 2021) 

Although the limitations of spreadsheet software, such as LibreOffice or MS Excel for 

IE research become quickly apparent, they are widely used for smaller projects or for 

auxiliary calculations with specific data as part of larger projects because of their 

practicality and integration of human and machine readability. In Box 2, we propose 

how the general steps for complete traceability of workflows and reproducibility of 

results can be implemented for spreadsheet calculations. 
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The recommendations above also apply when spreadsheet calculations are used as 

part of larger projects, e.g., to document ancillary calculations or when evaluating 

model results. 

One example for a spreadsheet-based workflow is the macro-level circular economy 

assessment presented by Mayer et al. (2019), who document and provide their 

complete workflow as excel file. The workbooks links official data inputs through the 

entire calculation via excel links. The work also contains a pdf documentation with 

all definitions and further information and assumptions. This article was the first to 

get the gold transparency badge from the Journal of Industrial Ecology. 

Box 2: Proposal for the implementation of the five general steps 

for complete traceability of workflows and reproducibility of 

results for spreadsheet calculators (e.g., LibreOffice or MS 

Excel) 

1.   Ensure the traceability of the original data used 

Each spreadsheet workbook should have a separate reference sheet, where the different data 

sources (URL + access date, DOI, etc.) are listed. The calculations in the workbook 

refer (via text or comments) to specific data from these references. 

2.   Document how processed data was derived from original data 

A copy of the original data should be created (e.g., on separate sheets), and all data processing 

and modification shall be coded (using calculations/equations and color codes) or clearly 

explained otherwise, so that all steps between raw data and processed/final data are 

coded and documented in the workbook. It is crucial to avoid typing numbers into cells 

manually when transferring them from other cells. Instead, cells should be linked 

directly, via equations. Data links across workbooks, however, shall be avoided, as 

they break easily when files are moved. 

3.   Keep track of how processed data are combined into datasets that form the 

model parameters 

Each relevant version of the workbook has a unique filename and a version number, ideally 

accompanied by a log sheet, where researchers log and time stamp their activities. 

4.    Document relevant calculations and model runs 

For self-contained spreadsheets, this step is identical with step 3, as the results are 

contained in the same document as the input data and calculations. 

5.    Link final outputs to the calculations that produced them 

Model result figures and tables should be contained in the same workbook so that the links 

between result data and display items are documented. For all quantitative statements in the 

publication, an explanation should be provided on how exactly this number was obtained. 

(e.g., “The xy Mt of CO2-eq stated in the abstract are the average of column a on sheet 
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3.2. Example for spreadsheet data: Material flow analysis of critical 

raw materials by Peng Wang and colleagues at the Institute of Urban 

Environment, Chinese Academy of Sciences 

Critical raw materials are important for global low-carbon and sustainable transition, 

but there is a notable gap regarding their supply chains transparency that prohibit 

robust decision making. Material flow analysis is an important tool for tracing the 

material flows of various raw materials. However, it often malfunctions when it comes 

to certain critical raw material. This is particular due to the lack of data transparency 

along supply chains and the existence of various unregistered mining and trade 

activities. Here, this chapter shows how one can incorporate the guidelines and 

procedures with a recent study of global rare earth flows (Chen et al., 2024), as one 

example of how to collect original data, process it, calculate, and finally interpret the 

results of MFA studies for critical minerals. The following five steps are taken: 

Step (1) Collecting dispersed data under a common system definition 

In this step, a systematic material flow framework was developed, as shown in Fig. 2, 

which clearly identifies the necessary production, consumption, loss, and trade data. 

Multiple data sources, such as national statistical yearbooks, published books, 

academic literature, and industry reports are typical data sources. Notably, trade data 

from UN Comtrade is limited to one general six-digit Harmonized Commodity 

Description and Coding Systems (HS) code, and is often not suitable for the study of 

critical minerals. Accordingly, a higher-resolution (eight/ten-digit HS codes) trade 

data of critical minerals from national customs records was obtained. 

 

Fig. 2. Material flow quantification framework of rare earth flows across stage and national 

borders, showing the data sources directly in the MFA system definition. Image source: Chen 

et al. (2024). 
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Step (2) Documenting how processed data was derived from original data 

In this step, this study provides a detailed table (see Fig. 3) to show how all origin 

data are quantified and converted to metallic equivalents, using mass balance 

principles based on various publicly available statistics and reports. 

 

Fig. 3. One example for detailed description of equations, conversion factors, and data sources 

to support material flow analysis. Image source: Chen et al. (2024). 

Step (3) Documenting relevant calculations and model runs 

In this step, all calculations are based on the mass balance principle, which means the 

total input is equal to the total output for each process in the system Importantly, 

special attention should be given to unregistered production and trade routes of 

critical minerals. The calculation of registered production is mainly production-driven, 

which starts with the mining production estimate and continues with quantifying the 

rest of the flows based on the mass balance principle. A trade-driven approach (based 

on the gap from one the trade record of one country and the other country‘s trade data) 

is followed to quantify the flows along this route. 

Step (4) Result visualization and validation 

In this step, the results of one particular year (e.g., 2020) are derived (Fig. 4). After 

that, dynamic year-by-year results from 2000 to 2022 can be derived with an 

analogue procedure. Validation is achieved by comparing selected aggregated results 

with the results reported by other studies. 
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Fig. 4. Result visualization as a Sankey diagram (for each year from 2000 to 2022). Image 

source: Chen et al. (2024). 

Step (5) Linking final outputs to the calculations that produced them 

In this step, a traceable Excel workbook containing origin data, processed data, the 

calculation equation, and results was provided (Fig. 5). All of the data and results are 

open access in the data file deposited at https://zenodo.org/records/10396895. 

 

Fig. 5. Result visualization for the results of Chen et al. (2024). Image source: Chen et al. 

(2024). 
 

Core reference:  
 

Chen, W.-Q., Eckelman, M. J., Sprecher, B., Chen, W., & Wang, P. (2024). Interdependence in 

rare earth element supply between China and the United States helps stabilize global supply 

chains. One Earth, 7(2), 242–252. https://doi.org/10.1016/j.oneear.2024.01.011  

 
  

https://zenodo.org/records/10396895
https://doi.org/10.1016/j.oneear.2024.01.011
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3.3. Data workflow based around Python at the University of Bath 

(Rick Lupton) 

Our research group uses tools from the Python ecosystem to carry out analysis. Here 

we give some examples of how we use these tools. This is a journey – it can be difficult 

to get everything right alongside the demands of refining research questions, 

collecting data, modelling, presenting findings clearly, and so on. As we gain more 

experience with what works, we are working to embed best practice in our training of 

new researchers and across our projects. 

Overall approach to working with reproducible research repositories 

In our research we structure work around version-controlled git repositories. The first 

choice to make is how to structure these – a repository may be linked to a dataset, a 

model, or a particular analysis. We aim to break up elements of work into chunks 

according to how specialized/reusable they are. Each chunk then naturally focuses on 

a different one of the five steps discussed above. 

For example, a modelling project might involve: 

1. Collection & cleaning of data: this is the most generic/reusable part (steps 1, 2) 

2. Modelling calculations (e.g. MFA reconciliation): this brings in more 

assumptions about the model structure to be used, so is less generic than the 

original data. It results in potentially many detailed outputs, more than would 

be shown in a specific report. It therefore sits at an intermediate stage (steps 3, 

4).  

3. Specific data and figures for a specific document, derived from the model. (step 

5). 

Sometimes the scope of the work is small enough that there is no need to split these 

into separate repositories. But it can be useful, since it allows other researchers who 

are interested to build on the original data to do so more easily, without having to 

figure out how the data integrates into a model or figures they are not interested in 

reusing. It also has the benefit of checking that good practice has been followed in 

documenting and clearly structuring each stage, since otherwise it is difficult to 

disentangle the work into separate repositories. Tools such as Datalad, described 

below, make working with multiple repositories in this way easier. 

One example of this approach in practice is our modelling for a report on UK steel 

flows (Allwood et al, 2019), where data, modelling and figures were arranged across 

three repositories: 

• Collection and cleaning of steel trade data: https://github.com/ricklupton/uk-

steel-trade (Lupton & Serrenho, 2019a) 

https://github.com/ricklupton/uk-steel-trade
https://github.com/ricklupton/uk-steel-trade
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• Modelling: https://github.com/ricklupton/uk-steel-model (Lupton & Serrenho, 

2019b) 

• Report and figures: https://github.com/ricklupton/steel-arising-report (Lupton & 

Serrenho, 2019c) 

For another study comparing datasets on global petrochemicals production and 

emissions (Malkowska et al, 2024), we followed a similar approach where each dataset 

is first converted (in self-contained repositories) into a common RDF-based structure 

(Germano et al, 2021). Each of these converted datasets is potentially useful as a 

building block for further unrelated analysis, so it is useful to have them as separate 

repositories. For example, UNFCCC emissions data is converted in 

https://github.com/probs-lab/unfccc-data.  

Python computational environment (step 4) 

To describe the Python computational environment (the version of Python and all the 

tools and packages needed to run the code), we used Anaconda environments based 

on conda-forge (https://the-turing-way.netlify.app/reproducible-research/renv/renv-package.html, 

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html), or Poetry 

(https://python-poetry.org/). Anaconda is more powerful and allows a wider range of 

scientific packages to be installed across operating systems in a consistent way, but 

Poetry integrates better with the basic Python tools and is simpler if it does all that is 

needed. Pipenv is an alternative tool we have used in the past for the same purpose as 

Poetry. 

• Example: https://github.com/ricklupton/uk-worldsteel-statistics  

• Example: https://github.com/probs-lab/unfccc-

data/blob/3082428645ecd293270bd41b78011cb3e7b9be85/environment.yml   

Reproducible data processing and analysis steps (steps 2–5) 

Different tools can help with documenting the steps needed to reproduce an analysis 

• Make is a classic tool to describe computational steps and the dependencies 

between them (https://github.com/ricklupton/uk-steel-model/blob/v1.0.0/Makefile) 

• Wrapping the full list of steps in a single build script makes it explicit exactly 

what someone needs to do to rerun the analysis (https://github.com/ricklupton/uk-steel-

model/blob/v1.0.0/build.sh) 

• Pydoit (https://pydoit.org/) is an alternative to Make based on Python which 

makes it easier to describe more complex tasks, such as “run this command on every 

country’s data. It saves the result with the same filename in a new folder, but only if 

https://github.com/ricklupton/uk-steel-model
https://github.com/ricklupton/steel-arising-report
https://github.com/probs-lab/unfccc-data
https://the-turing-way.netlify.app/reproducible-research/renv/renv-package.html
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://python-poetry.org/
https://github.com/ricklupton/uk-worldsteel-statistics
https://github.com/probs-lab/unfccc-data/blob/3082428645ecd293270bd41b78011cb3e7b9be85/environment.yml
https://github.com/probs-lab/unfccc-data/blob/3082428645ecd293270bd41b78011cb3e7b9be85/environment.yml
https://github.com/ricklupton/uk-steel-model/blob/v1.0.0/Makefile
https://github.com/ricklupton/uk-steel-model/blob/v1.0.0/build.sh
https://github.com/ricklupton/uk-steel-model/blob/v1.0.0/build.sh
https://pydoit.org/


23 
 

the input data has changed more recently than the existing outputs” 

(https://github.com/probs-lab/probs-ontology/blob/v1.5.2/dodo.py). 

Storing and retrieving specific versions of large data files (step 1, step 5)  

Sometimes the data files themselves are too large in size or too numerous to want to 

store them in the same place as the analysis code and documentation. For example, we 

use Github extensively to store and share code and documentation, but git and Github 

work less well when storing large quantities of data, especially when there are 

different versions of the data files to track over time (e.g. as new input data is 

published, or model outputs are updated). We use a tool called Datalad 

(https://www.datalad.org/) to help keep track of versions of data files. This allows for: 

• Fetching only the specific data files you want, to avoid downloading lots of data 

you don’t need 

• Tracking and switching between versions of large data files easily. 

• Linking output data from one analysis as input data to another, automatically 

retrieving the previous outputs when needing to run the new analysis – this makes it 

easier to work with multiple repositories, as described above 

• Storing data in a separate location from your code and documentation; the data 

can be stored in a private location if necessary, allowing as much reproducibility as 

possible even when some input data is confidential. 

These features come with some costs – there is more to understand and learn, which 

may not be worth it in every case. But the ability to set up a copy of an analysis on a 

new researcher’s computer and automatically retrieve the exact versions of the 

necessary input data in a single command is useful. 

For example, our UNFCCC-data repository15 describes how copies of the correct 

version of all the input files needed can be retrieved by running a single command. 

                                                           
15 https://github.com/probs-lab/unfccc-
data/blob/3082428645ecd293270bd41b78011cb3e7b9be85/DEVELOPING.md#data-access  

https://github.com/probs-lab/probs-ontology/blob/v1.5.2/dodo.py
https://www.datalad.org/
https://github.com/probs-lab/unfccc-data/blob/3082428645ecd293270bd41b78011cb3e7b9be85/DEVELOPING.md#data-access
https://github.com/probs-lab/unfccc-data/blob/3082428645ecd293270bd41b78011cb3e7b9be85/DEVELOPING.md#data-access
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Box 3: Proposal for the implementation of the five general steps 

for data workflows based around Python, by Rick Lupton 

1.   Ensure the traceability of the original data used 

a. Where possible, link data to their original sources in long-term archives 

using DOIs. Use tools such as Datalad to automate fetching the correct 

version of data, and to fetch only the specific files needed (example: 

https://github.com/probs-lab/unfccc-data) 

b. Alternatively, archive downloaded original data files within the project in 

a “raw data” folder which is clearly separate from processed data and 

model outputs. 

2. Document how processed data was derived from original data 

a. Use Python scripts which read the original data and write a new version 

to a separate folder. Use task runners like “doit" to help to make sure all 

necessary processing steps have been re-run when input data or scripts 

change, but avoid unnecessary re-running when nothing has changed. 

3. Keep track of how processed data are combined into datasets that form the 

model parameters 

a. We tend to use a mix of input data files and modelling code, which are 

stored in a version-controlled git repository. Each snapshot of the 

repository therefore represents all the inputs to the model. However, in 

reflecting on how our approach fits with these five steps, this may be an 

area that could be improved, since the full set of input parameters and 

assumptions may be scattered across several files and scripts and not easy 

to see in one place. 

b. Input data must be linked back to its original/processed source and/or 

assumptions, in the form of code comments, additional columns in 

spreadsheets, etc. 

4. Document relevant calculations and model runs 

a. To recreate the computational environment, we typically use Anaconda 

“environment.yml” files or the Poetry Python environment manager to 

specify exactly the version of each package or tool needed to run the 

analysis. To make sure this really works, testing between team members 

on different computers is important, attempting to follow the process and 

checking that nothing is missing from the environment or out of date. 

b. By working in a git repository, when data files are not too large, model 

results can be committed to the repository alongside the input data and 

code. In this way, the model code, input data, and resulting outputs are 

clearly tied together, and different versions of outputs can be easily 

compared. 
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Box 3 ctd.:  

4.    Document relevant calculations and model runs (ctd.) 

c.       When data files are too large to store them directly in git, Datalad 

helps to  keep the same workflow while allowing the actual data to be 

stored elsewhere (e.g., on a network drive) 

5.    Link final outputs to the calculations that produced them 

c. To document exactly how numbers in tables and plots are linked 

to/derived from model results, we typically produce plots using scripts or 

Jupyter notebooks which can be easily re-run. The code of these scripts 

traces which model outputs are used to create them. 

d. Although it would be nice to do everything using tools such as Quarto 

with embedded inline code to create fully reproducible documents, 

currently we work in a more pragmatic way where final reports are often 

created manually. A complete README file for the notebooks or scripts 

which produce the figures then sets out which figure is produced by each 

notebook. 
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3.4. Data workflow based around R at the Social Metabolism and 

Impacts research group at PIK, Germany 

In our FutureLab Social Metabolism and Impacts at the Potsdam Institute for Climate 

Impact Research, we have been working for several years to implement reproducible 

workflows for all our projects and publications. We strive for at least full 

computational reproducibility, which means that others can obtain the same results 

using the same data and code, because we believe that a well-designed reproducible 

research pipeline helps the researchers themselves, their collaborators, and the 

scientific project as a whole. However, we also recognize that it is not easy to find a 

one-size-fits-all approach to computational reproducibility in a highly inter-

disciplinary research group, where people conduct very different kinds of research. 

We have found that such a process can only be introduced gradually and requires a 

lot of active discussion and mutual learning. This is especially true given that the skills 

needed, such as data management, software development, and visualization, are 

becoming increasingly important in research practice, but are often not taught at 

universities. 

One-click reproducibility 

We aim for what we call one-click-reproducibility. This means we want to go from 

from raw data to the finished report or scientific article with a single click (or 

command). For this, it is important to avoid any manual data manipulation (e.g., in 

EXCEL) or figure creation (e.g., in Inkscape). In our group, we use literate 

programming with R and RMarkdown for analysis and documentation and Gitlab for 

publication. RMarkdown allows generating reproducible documents (MS Word, pdf, 

html, etc.) by weaving together executable code and textual elements based on plain 

text markdown. The use of plain text (e.g., Markdown or LaTeX) has the additional 

advantage of allowing for version control (e.g., using git) for manuscript writing. 

Overall, in our view, a fully reproducible research pipeline requires publication of all 

data, software code, the R environment and the wider computational environment.  

We use the rrtools package for creating a reproducible research compendium. The 

rrtools package takes care of setting up your git repository, a project folder structure, a 

README file describing the project, and required license files. It relies on the renv 

package to make your R environment reproducible and allows setting up a docker 

container to preserve your entire computational environment.  

For small empirical projects, the analysis code is included directly in the RMarkdown 

file or in individual scripts stored in the compendium. If the code base developed is 

reused across publications or projects, we encourage the creation of a dedicated R 

package for that code. R package development is supported by a number of tools that 

make code development, documentation, and testing much easier than simply writing 



27 
 

individual scripts. For projects that require code with long runtimes, we recommend 

using the targets package, which keeps track of internal code dependencies and speeds 

up execution by rerunning only code affected by recent changes. 

The following list contains several example repositories for recent publications, 

where we applied most or all of these principles: 

Pichler, P.-P., Jaccard, I. S., Weisz, U. & Weisz, H. International comparison of health care 

carbon footprints. Environ. Res. Lett. 14, 064004 (2019). 

Jaccard, I. S., Pichler, P.-P., Többen, J. & Weisz, H. The energy and carbon inequality corridor 

for a 1.5 °C compatible and just Europe. Environ. Res. Lett. 16, 064082 (2021). 

Belmin, C., Hoffmann, R., Elkasabi, M. & Pichler, P.-P. LivWell: a sub-national Dataset on the 

Living Conditions of Women and their Well-being for 52 Countries. Sci Data 9, 719 (2022). 

Belmin, C., Hoffmann, R., Pichler, P.-P. & Weisz, H. Fertility transition powered by women’s 

access to electricity and modern cooking fuels. Nat Sustain 5, 245–253 (2022). 
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Box 4: Example for the implementation of complete traceability 

of workflows and reproducibility of results using R/Quarto  

1. Ensure the traceability of the original data used 

Place data in the raw data folder of your project and document each file in a text file 

or a preprocessing script (incl. URL + access date, DOI, etc.). Download results of 

API calls (e.g., World Bank) into raw data folder if data version can’t be specified. 

2. Document how processed data was derived from original data 

Use a clearly named preprocessing script for all preliminary transformations on your 

raw data, and (optionally) store the result in a separate folder for derived data. It is 

often beneficial to store preprocessed data and avoid loading raw data outside of the 

preprocessing to ensure that data that is loaded multiple times throughout the 

project is always identical.  

3.   Keep track of how processed data are combined into datasets that form the 

model parameters  

Use version control (git) with verbose commit messages. This makes sure code and 

parameter setup can be reproduced later.  

4. Document relevant calculations and model runs 

In addition to versioning your own code, you should document your computational 

environment. This can be done in several ways. The simplest is to store the version 

of R and the version of any packages you use, either in a file or using a package like 

renv (https://rstudio.github.io/renv/). More thoroughly, create a docker image of the 

entire computational environment, including a snapshot of the operating system and 

all the libraries and packages needed to run the code). 

5.    Link final outputs to the calculations that produced them 

Create all figures/tables and your manuscript using Quarto/Rmarkdown documents, 

this will ensure that these elements all update automatically with code/data changes. 

Do not hardcode result numbers into your manuscript text, use inline code instead. 
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3.5. Data workflow by Simon Schulte, Industrial Ecology Freiburg, 

based on R 

My R-based workflow resembles the one from PIK described in chapter 3.4 by 

building on the same principle of "one-click reproducibility". It undergoes constant 

development, as limitations emerge to my current solutions and I discover new tools, 

hence, I am only sharing a snapshot of my current setup here. 

I use renv to build a virtual environment with all R package dependencies tracked by 

version number. For subsequent code users, renv installs the required versions of all 

packages. For each project, I have one config file (through the configr R-package), 

where a version number has to be specified besides all relevant global settings of 

variables and paths. Each script reads and writes to a designated subfolder, only 

storing intermediate results for that version number. Each time, a copy of the script 

itself is saved in the same intermediate results folder so that the intermediate results 

can be traced both by its version number and the file that created the output. 

Experiences with literate programming: 

During my doctoral studies, I experimented with literate programming tools 

(Rmarkdown and Quarto) to write reports, scientific publications and presentations 

embedding R code. Literate programming tools, such as Quarto, can create dynamic 

documents that can be recreated when the input data or calculations change. In 

Quarto, this is achieved by creating figures, tables, and numbers within the 

document itself using R, Python, or Julia code chunks. Thus, instead of writing "[...] 

accounts for 20% of global GHG emissions," you write, e.g., "[...] accounts for `r x[1] / 

sum(x)` of global GHG emissions" if the variable x stores a vector of global GHG 

emissions differentiated by emission sources. Each time x is updated, the document 

can be recreated, and the numbers in the text are updated accordingly. 

For very small projects, all calculations can be done within the same quarto 

manuscript. For larger projects, it is advisable to do computationally expensive 

calculations beforehand in one (or several) R/Python/Julia scripts and only load the 

final results into the Quarto script. Each time the model is re-run and new results are 

created, the Quarto script can be executed, and all numbers, figures, and tables are 

automatically updated. 
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Quarto has the advantage that 

• figures, tables and numbers that appear in the manuscript are fully traceable 

• it saves time updating the manuscript when data changes 

• it is less error-prone because it prevents that one simply forgets about 

updating numbers/figures/tables 

• it supports R, Python and Julia code chunks 

• it supports multiple output formats: PDF or LaTeX for scientific publications, 

HTML for presentations or websites, MS Word, and MS PowerPoint. Hence, 

you can create a presentation or dashboard from your paper without much 

additional effort.  

• it allows for version control with git 

 

Despite these advantages, collaborating with co-authors is a yet unresolved 

obstacle. As of today, there is no tool that I am aware of that makes collaborative 

editing and commenting on manuscripts as convenient as Google Docs or 

Overleaf. This applies in particular to those collaborators who are not familiar with 

quarto/R and are mainly interested in editing the written text rather than the 

underlying calculations. There is an R-package called trackdown that automates the 

upload of quarto files as GoogleDoc, which then can be shared among collaborators 

and edited/commented. However, compared to Overleaf, there is no side-by-side 

preview of the final PDF version of the manuscript. Moreover, all figures and tables 

generated within the quarto document are not included in the Google Doc file, 

making it hard for collaborators to grasp the full content of the paper. Note that there 

is an ongoing discussion on implementing a collaborative platform for Quarto 

(https://github.com/quarto-dev/quarto-cli/discussions/405). 

Moreover, there exist some tools within the R universe that I have not tried out yet 

but which seem to provide some benefits for reproducibility:  

- targets: A pipeline tool for computationally demanding projects 

- rocker: A tool to package an R program and all dependencies into a container. 

Compared to renv, it also takes care of dependencies that are not R packages. 

  

https://github.com/quarto-dev/quarto-cli/discussions/405
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3.6. Example for spreadsheet data: ODYM Data Processes (ODP) and 

the RECC model traceability steps 

ODYM – The Open Dynamic Material Systems Model is an open source framework 

for material systems modeling programmed in Python. The description of systems, 

processes, stocks, flows, and parameters is object-based, which facilitates the 

development of modular software and testing routines for individual model blocks 

(Pauliuk and Heeren 2020). ODYM MFA models can handle any depth of flow and 

stock specification: products, components, sub-components, materials, alloys, waste, 

and chemical elements can be traced simultaneously. ODYM features a new data 

structure for material flow analysis, based on a newly developed data model for 

industrial ecology research (Pauliuk et al. 2019). All input and output data are stored 

in a standardized file format and can thus be exchanged across projects.  

The databases and model calculations for ODYM-based projects can be complex, such 

as in the RECC (Resource Efficiency – Climate Change mitigation framework) model 

for circular economy scenarios (Pauliuk et al. 2021), which is why custom procedures 

for complete traceability of workflows and reproducibility of results were designed. 

3.6.1. The general steps for complete traceability of workflows and 

reproducibility of results in the RECC model framework.  

Figure 6 visualizes the traceability steps for the RECC model. While the workflow for 

data and result transparency goes from the original data sources to the final result 

documented in papers or reports, the tracing of results and data back to the original 

sources or model configuration goes the other way. 

 

Fig. 6: Workflow with steps for complete traceability of numerical results in the RECC model.  

The data transparency workflow was designed from the right side in Figure 6, by 

asking, at each research step: “Have I documented all the information to trace the 

results back to their original source and to reproduce my findings?” and documenting 

the information accordingly. Then, in the research practice, the workflow is the 

opposite, as shown on the left side of the figure.  
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In Box 5, we describe the implementation of the general steps for complete traceability 

of workflows and reproducibility of results in the RECC model for dynamic MFA. 

Box 5: Implementation of the five general steps for complete 

traceability of workflows and reproducibility of results in the RECC 

model for dynamic material cycle scenario analysis 

In the RECC model database, each model parameter is stored in a separate .xlsx file that 

follows a certain template structure, the elements of which are described below.  

1. Ensure the traceability of the original data used 

Each model parameter file has a reference sheet, where the links to the DOI or other 

identifiers of the used data are listed and described (like ‘Table 3 in DOI xxx’ or 

‘Supplementary Figure X for article DOI xxx’). Where suitable, the original data files are 

archived in a separate raw data archive, which is part of the project’s hosting 

institution's research data management, and the relative path of the archived raw data 

file is documented on the reference sheet. 

2. Document how processed data was derived from original data 

Each model parameter file has a log sheet, where the ODYM data process (ODP, see 

documentation below) documents exactly how the different source data are converted 

(copied, reformatted, with or without additional assumptions or ancillary calculations) 

into the parameter values. The OPD documentation links to the version number of the 

parameter file. 

3. Keep track of how processed data are combined into datasets that form the model 

parameters  

Each model parameter file has a unique filename and a version number, which are listed in the 

RECC model’s config file, so that each model configuration, which consists of 100+ 

model parameter files, is documented as a list of parameters including their exact 

versions. 

4. Document relevant calculations and model runs 

Each RECC model run creates a UUID and a separate result folder, where the current model 

configuration file (and with it the complete parameter and version list) is saved as a 

copy, the used model code version is documented (via Git commit ID), and a result 

summary is archived. 

5. Link final outputs to the calculations that produced them 

Result figures and tables are created by scripts and config files that are part of the RECC Git and 

Zenodo repositories. This way of structuring the result evaluation allows to trace the data 

flow from the result folders to the figures and tables. Each report or paper has a log 

table (part of the .xlsx workbook with all the plot and table data) that exactly 

documents/traces how the figures and tables were created and how each single 

quantitative statement in the paper was derived from the detailed quantitative results. 
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The details of the different steps follow from the specific setup of the RECC model 

structure. A central characteristic of the RECC model database is the use of data with 

highly varying volumes (from a single number to hundreds of thousand of parameter 

values in a single file) from a wide and very diverse set of data sources, ranging from 

specific tables in journal papers to ancillary model calculations with their own specific 

documentation. 

 

Step 1 is thus straight forward: All these raw data sources need to be listed and 

intermediate steps (such as Excel workbooks supplied by colleagues or difficult to 

access supplementary material) be archived. See Figure 7 for a screenshot of a sample 

reference sheet of a RECC model parameter file.  

 

 
Fig. 7: Screenshot of the ref (reference) sheet of a RECC parameter file. 

 

The crucial step 2, the logging routine for the different RECC model parameters, is 

documented below.   

 

In step 3, the parameter list in the RECC model’s config file is defined to select the right 

set of parameters and their exact versions. The config file lists the parameter file names 

so that there is a documented link between each model configuration and a specific 

model database. 

 

In step 4, the model, when executed, documents its own run, by creating a UUID and 

a separate result folder for each single model run, where the valid model config file is 

saved (as a copy, and with it the complete parameter and version list), the used model 

code version is documented (via the Git commit ID), and the result summary is 

archived. A scenario definition file links all scenario runs that are defined and executed 

by the RECC model scripts with their corresponding result folders, so that a 1:1 match 

between each scenario definition (consisting of model version, database version, and 

model config settings) and each result folder is established.  

 

In step 5, the result evaluation and documentation, model result figures and tables are 

created by scripts and scenario evaluation config files that are part of the RECC Git 

and Zenodo repositories. These RECC results evaluation scripts have built-in features 

that document (in RECC results evaluation log files) exactly which model results were 

analyzed by which scripts and what the exact results (figure and table file names and 

time stamps) are. Each report or paper has a log table (part of the .xlsx workbook with 

all the plot and table data) that exactly documents/traces how the figures and tables 

were created (from the RECC results evaluation log) and how each single quantitative 
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statement in the paper was derived from the detailed quantitative results. As the RECC 

model is being developed, more and more steps are automated to reduce manual and 

error-prone documentation work. 

 
3.6.2. Linking original data to processed data with the ODYM Data Processes 

(ODP) 

The ODYM Data Processes (ODP) represents a specific implementation of step 2 in the 

general framework, the link of each single data point to its original data sources, and 

the documented data processing steps in between.  

In the RECC model, the more than 120 individual parameter files consist of lists or 

tables with a multi-index to describe the meaning of the numbers. Fig. 8 below, for 

example, shows the data table for a building stock parameter, where the building stock 

(in million m²) is specified by year and region and broken down into age-cohorts and 

different building types. The data comes in table format but it has a hierarchical multi-

index for both rows and columns. In a parameter that gives the stock for many 

different regions and types, a larger number of different data sources will be used to 

obtain the different parameter values. Fig. 8 shows a typical situation, where the 

individual numbers are marked with different colors, depending on what sources they 

come from.  

For the different colors, not only the sources vary but also the way the data were 

processed. For example, it may be that one source has the data in the right resolution 

so they just need to be copied over. Another data source may only contain aggregate 

information so that proxy data have to be used in addition to arrive at the required 

level of resolution level. For still other figures, no matching data source may be 

available at all, so that proxy data have to be used or assumptions have to be made. 

 

Fig. 8: Screenshot of the data sheet of a RECC parameter file, with the different colors indicating the 

different data sources and data processes they are linked to. 
 

That means that the color code (or any other identifier linked to each individual data 

point) cannot just simply point to a data source but needs to point to a procedure, 

which in turn may involve a number of data sources, ancillary calculations, and 
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assumptions. Since the data format of the RECC model is that of the ODYM MFA 

software, the traceability documentation applies to all data in ODYM format, and we 

define the formalization of this traceability, the ODYM data process (ODP), as follows: 

Definition: An ODYM data process (ODP) is a research procedure that links data from one 

or more data sources together with ancillary calculations, aggregation or disaggregation, 

and/or assumptions to output data that are contained and formatted in a parameter file in 

ODYM format. 

Below, the requirements and guidelines for the documentation of ODPs are given. 

The following requirements were central for designing the ODP and implementing it 

in the RECC project: 

• Need for a traceable and distributed (across different team members) 

workflow for different raw data that flow into RECC model parameters. 

• The data documentation workflow needs to allow for different parameter 

versions to be branched and later merged from certain departing file. 

• Each single number must be traceable. 

• Flexible procedure from large datasets (100000+ data points from a single 

ODP) down to individual numbers. 

• Model parameter files will contain a patch of data from different data 

processes, plus modifications and corrections for individual numbers. 

• The link between each single number, the corresponding data source(s), and 

the data processing must be documented and traceable. 

• The whole documentation process should be lean and not create much 

overhead. 

• The ODPs need a machine-readable documentation, to facilitate automatic 

generation of reports, that is easy to read and edit for humans. 

From these requirements, we derived the following specifications for documenting 

ODYM data processes (ODPs): 

ODPs are documented in three parts with the following details: 

(1) The ref sheet of an ODYM parameter file (see Fig. 7 for a sample) lists traceable 

links to all data sources (main and ancillary) as well as links to all additional 

calculation tools such as spreadsheets or scripts. These links can be GitHub 

links, paths to a local archive, or links to other sheets contain in the same .xlsx 

ODYM parameter file. 

(2) The log sheet of an ODYM parameter file (see Fig. 10 for a sample) lists a 

definition and description of the different ODYM data process (ODP) used to 

compile the entire dataset (see details below). Each ODP is defined by a UUID 

and by a color. 
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(3) The data sheet of an ODYM parameter file (Fig. 8 for a sample) links each data 

point to the respective ODP using machine-readable color codes. 

 With these three parts, the parameter's data points are linked to the original sources 

(workflow direction, Fig. 9, top). In the retrieval direction (Fig. 9, bottom), the lookup 

direction is the exact opposite of the archiving direction. 

 

Fig. 9: ODYM data processes (ODP): General documentation scheme with three parts in the ref, log, and 

data sheets of the individual ODYM parameter files. 

The central documentation place is the log sheet of the ODYM parameter file (see Fig. 

10 for a sample). Here, the different ODPs are defined (name, type, UUID, color code), 

linked to metadata (date stamp, parameter version, name of researcher), and a detailed 

description is provided together with a link to all references used (data sources, scripts, 

etc.) as listed on the ref sheet.  

 

Fig. 10: Screenshot of the documentation of the ODP on the log sheet of a RECC parameter Excel 

template. The figure shows the documentation of the data processes, with UUID, type, color code, 

links to references, and documentation.  

All together, this information must be complete and detailed enough and correct to 

allow the data users to link each single data point to the correct ODP via the color 
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code, the ODP to all references (data, scripts, workbooks, …) used, and provide 

enough verbal detail and ancillary calculations to make the data processing 

transparent. 

Different types of ODPs were defined to make documentation easy and 

systematic. 

To structure the documentation process that provides the verbal detail and ancillary 

calculations, different types of ODPs are used, depending on various situations for 

the compilation of model input data from a wide variety of sources with different 

methods. These situations include, but are not limited to: data transfer via script, 

manual transfer of a few individual numbers, data transfer with ancillary 

calculations in spreadsheets, assumptions, and more. See Table 1 for details of the 

different ODP types and specific documentation guidelines. 

Table 1: Overview of the different ODYM data processes (ODP) types defined so far. 

No. ODP Type Documentation details 

0 Create Parameter  UUID and initial version number (1.0) 

1 Data-script-

Parameter (for ‘large’ 

data) 

Script (list with path in ref sheet) parses raw data (list with DOI etc. in ref sheet), 

structures them (select, aggregate, …) and saves resulting data to parameter file. 

1a From RECC scenario 

target table 

For the RECC model, a scenario target table with an interpolation script is used 

(Fishman et al. 2021). For parameters generated with this setup, always document 

the version number of the interpolation script and of the scenario target table. 

2 Small data A few individual numbers are extracted from the raw data (list with DOI etc. in ref 

sheet) and processed locally (documented directly in log sheet, with additional 

assumptions) 

3 Medium data Substantial reformatting of raw data is needed, documented on a separate 

workbook or worksheet (list with path in ref sheet). 

4 Assumption Mere assumption without additional references. 

5 Correction Correction of dataset, e.g., calculations or assignment of labels. 

6 Reformatting Reformatting of dataset, typically with a spreadsheet calculator. E.g., add or 

remove a new aspect, change the aspect order, etc., without additional data or 

aggregation/disaggregation. Used also when large data sets are manually 

reformatted (Excel…) after they were imported from other models. 

7 By definition Given by definition, for example, a correspondence table indicating that the 

provinces of a country are part of the country. 

 

Large data are usually imported by a script, and any modifications and filtering of data 

is coded/documented directly in the script or the accompanying configuration file (if 

any). For this case, no new ODP type is defined, instead type 1 (data from script) shall 

be used. 
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3.7 Example for spreadsheet data and Monte Carlo Simulation with 

ODYM: MaTrace-multi and MaTrace-dissipation by Christoph Helbig, 

University of Bayreuth 

An adaptation of the ODYM dataflow was implemented by Christoph Helbig at the 

University of Bayreuth for the two models MaTrace-multi and MaTrace-dissipation. 

(See Nakamura et al. (2014) for details on the MaTrace approach to modelling material 

cycles.) The goal for these models is to trace global metal flows from extraction to 

dissipation and calculate the longevity and circularity of the metals in the global 

economy. In MaTrace-multi, seven major metals are traced simultaneously in a one-

region planetary model, allowing to identify issues of mixing and contamination. In 

MaTrace-dissipation, 61 metals are traced individually in a one-region planetary 

model, allowing us to compare the lifetimes of a large range of metals in the economy. 

The additional challenge during the implementation of this model was that the 

dynamic Material Flow Analysis was meant to include a Monte Carlo (MC) Simulation 

to estimate the uncertainty of key results based on the uncertainty of input parameters. 

The two models emerge from strong collaborations with other researchers, including 

Yasushi Kondo and Shinichiro Nakamura from Waseda University, Tokyo, Japan, and 

Alexandre Charpentier Poncelet, Université de Bordeaux, France. 

In principle, the dataflow of MaTrace-multi and MaTrace-dissipation follows the 

ODYM data process (ODP) from Excel-based datasheets that provide the input 

parameters using the ODYM data sheet templates. Every single datapoint is 

commented with information on the data source and provided with a stats array string16 

that provides a condensed information on the underlying uncertainty distribution that 

will be assumed for the Monte Carlo Simulation. 

The following uncertainty distributions are considered (with required parameters): 

• Lognormal distribution (location, scale): ideal for physical quantities and 

monetary values. 

• Weibull distribution (offset, scale, shape): ideal for lifetime distributions. 

• Beta distribution (alpha, beta): ideal for efficiency, yield, and collection rates. 

• Dirichlet distribution (multiple alpha values, one beta value): multivariate Beta 

distribution, ideal for allocation and split of material flows. (Note that stats 

arrays don't intrinsically support Dirichlet distributions, so this was adapted 

from the beta distributions in this model.) 

The python code for MaTrace-multi and MaTrace-dissipation follows this structure: 

                                                           
16 https://stats-arrays.readthedocs.io/en/latest/index.html   

https://stats-arrays.readthedocs.io/en/latest/index.html
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1. Load python libraries, create results path with timestamp, copy model and 

parameter files, read ODYM configuration, and define model classification. 

2. Read parameters, set up MFA system, and initialize flow and stock variables. 

3. Setup Monte Carlo Simulation to reduce computation time: Because drawing 

random numbers is computationally time-intensive, we want to draw random 

numbers in batches. (Example: it is computationally much faster to use 

scipy.stats.norm.rvs(loc=mean, scale=std_dev, size=samplesize) than to use 

[scipy.stats.norm.rvs(loc=mean, scale=std_dev) for x in range(samplesize)]). 

Therefore, all uncertain parameter arrays that have been created during reading 

the parameter files are subject to random sampling and stored into an array with 

one additional dimension “sample”. Note that this creates arrays of higher 

dimensionality and significantly increases RAM usage of the ODYM code 

because usual sample sizes in Monte Carlo Simulation are 1000 or 10000 for 

statistical reasons. 

4. Pre-calculate survival tables for lifetime distributions to reduce computation 

time: Just as it is computationally efficient to draw random samples in batches, 

it is also useful to evaluate lifetime distributions for all possible cohort-ages 

before the actual material flow calculations. This is already part of the ODP and 

has been taken over to MaTrace-multi and MaTrace-dissipation. 

5. Calculate material flows and stocks without uncertainty using the mean values 

of parameters. 

6. Save pandas dataframes for material flows and stocks without uncertainty as 

Excel result sheets in the previously created results path. 

7. Create graphs from dataframes using matplotlib. 

8. Calculate material flows and stocks with uncertainty using previously 

generated samples of parameters. This requires iterative calculations, one 

parameter set at a time. It is efficient only to save key results to dataframes that 

are later evaluated with percentiles to save memory usage for large dataframes. 

9. Calculate percentiles for key results: For key results, calculate 2.5, 16, 50, 84, and 

97.5 percentiles to get information on confidence intervals. Save these percentile 

dataframes to Excel result sheets. If useful, save mean results, too. 

10. Create graphs from dataframes using percentiles using matplotlib. 

By following this calculation procedure, a single result folder is created that contains 

all information from parameter files in ODYM data format, python code for the specific 

stock and flow model (here: ODYM-MaTrace-multi.py or ODYM-MaTrace-
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dissipation.py), the ODYM packages classes and functions, the result dataframes in Excel 

sheets, and vector graphs created with matplotlib. 

For publication, for both MaTrace-multi and MaTrace-dissipation, the code with input 

and output data and graphs has been fully uploaded to Open Science Foundation 

repositories at the time of acceptance of the corresponding journal articles in the 

version of the accepted manuscript, registered as an archived version, and a DOI has 

been assigned. Therefore, the full dataset and model is published open access.  

Related peer-reviewed publications and OSF registrations: 

Charpentier Poncelet, A., C. Helbig, P. Loubet, A. Beylot, S. Muller, J. Villeneuve, B. Laratte, 

A. Thorenz, A. Tuma, and G. Sonnemann. 2022. Losses and lifetimes of metals in the economy. 

Nature Sustainability 5(8): 717–726. 

Helbig, C. and A. Poncelet. 2022. ODYM-MaTrace-dissipation. Open Science Framework, 

August 30. https://osf.io/cwu3d/ Accessed March 7, 2023. 

Helbig, C., Y. Kondo, and S. Nakamura. 2022. ODYM-MaTrace-multi. Open Science 

Framework, August 30. https://osf.io/r54c6/. Accessed March 7, 2023. 

Helbig, C., Y. Kondo, and S. Nakamura. 2022. Simultaneously tracing the fate of seven metals 

at a global level with MaTrace‐multi. Journal of Industrial Ecology 26(3): 923–936.  
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3.8. The MISO2 model at the Institute for Social Ecology, Vienna: an 

example combining spreadsheets and python workflows, drawing on 

the ODYM ontology and model 

The aim of the MISO2 model (dynamic integrated model of material inputs, stocks and 

outputs) is to cover economy-wide material cycles and stock dynamics across multiple 

materials and end-uses at the national to global level (Wiedenhofer et al., 2024). It was 

developed within the ERC Advanced Grant MAT_STOCKS.17 The project focused on 

the role of material stock patterns for the transformation to a sustainable society, as 

most resource use and GHG emissions stem from building, maintaining and using 

stocks, which deliver fundamental services such as shelter, water and energy supply, 

mobility, and others. Stocks also create long-term lock-ins of resource use patterns 

(land, energy, etc.) and their efficiency of service provision is quite variable, resulting 

in substantial potentials but also limits for a sustainability transformation. 

MAT_STOCKS thereby aims to identify barriers and leverage points for future 

sustainability transformations and achieving the SDGs, and to elucidate the socio-

ecological and political implications of transforming stocks and service provisioning 

(Haberl et al., 2019, 2017).  

When developing MISO2, we aimed for a) long-term coverage of material cycles and 

stock dynamics around the world, b) coverage of multiple materials and end-uses, c) 

enabling linking these quantitative results to other analytical and qualitative research 

streams.  

MISO2 features several innovations beyond the original MISO1 model (Wiedenhofer 

et al., 2019). First, material supply chain processes from raw material extraction, trade, 

processing, stock-building, use phase of material stocks, as well as waste collection, 

recycling and downcycling are explicitly represented, thereby clearly differentiating 

processes, which are linked by physical flows and which utilize stocks. Second, end-

uses are differentiated, using a refined application of the ‘end-use transfer waste input-

output' method originally developed in (Streeck et al., 2023a, 2023b). Third, to 

understand major sources of uncertainty, one-at-a-time sensitivity and uncertainty 

testing is conducted, including Monte-Carlo Simulations for the end-use shares 

modelling, based on a systematic uncertainty assessment of the model input data 

developed previously (Plank et al., 2022a, 2022b). Fourth, MISO2 was implemented in 

the python programming environment and uses the ODYM data ontology and the 

dynamic stock model codebase (Pauliuk and Heeren, 2020). Finally, the model is 

empirically applied to quantify global, country-level stock-flow dynamics for 177 

countries, 23 raw materials, 20 stock-building materials and 13 end-use product 

                                                           
17 https://boku.ac.at/understanding-the-role-of-material-stock-patterns-for-the-transformation-to-a-sustainable-society-
mat-stocks - This research was funded by the  European Research Council (ERC) under the European Union's Horizon 2020 
research and innovation program (MAT_STOCKS, grant 741950). 

https://boku.ac.at/understanding-the-role-of-material-stock-patterns-for-the-transformation-to-a-sustainable-society-mat-stocks
https://boku.ac.at/understanding-the-role-of-material-stock-patterns-for-the-transformation-to-a-sustainable-society-mat-stocks
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groups, from 1900 to 2016 including a spin-up from 1820, yielding the MAT_STOCKS 

database currently in version 1.0  

During the research effort, the system definition for MISO2 was continually refined, 

given data availability, the overall aims of the project, as well as ongoing 

developments regarding specific research questions and methodological possibilities, 

especially regarding end-use differentiations (Streeck et al., 2023a, 2023b). The final 

system definition covers 14 material supply chain processes and stock dynamics, fully 

consistent with the system boundaries established in economy-wide material flow 

accounting (ew-MFA); for the full system definition and further details see 

(Wiedenhofer et al., 2024). Below we give an overview of the workflows developed 

and how they relate to the general guidelines presented above. Overall, the 

development of the model and especially the model input data took ~5 years and 

combined contributions by multiple research assistants, PhD-students, post-docs, a 

dedicated data scientist, and a senior research scientist leading this effort. Each 

intermediate step of the process was published separately and involved substantial 

efforts in exploration, data scoping and experimentation.  

3.8.1 Software architecture and workflows 

The MISO2 model is implemented using Python packages combined into an integrated 

workflow (Figure 11). NumPy is used for numerical computations (Harris et al., 2020), 

SciPy for statistical computations (Gommers et al., 2024), Pandas for handling output 

(team, 2023), and Matplotlib (Team, 2023) / Seaborne (Waskom et al., 2022) for 

visualization. MISO2 uses the data ontology and components of the open dynamic 

stock-flow modelling package ODYM (Pauliuk and Heeren, 2020). MISO2 extends 

ODYM with components for automated input creation, input and output validation, 

uncertainty assessment and Monte Carlo simulations (Figure 11a). MISO2 was built in 

a collaborative GitHub repository incl. versioning and internal code review. A running 

version of the MISO2 code with some example data will be made open access 

accompanying the final publication of the scientific publication currently under 

review, which also contains definitions and equations for each process and sub-

module of MISO2 (Wiedenhofer et al., 2024). 
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Figure 11: Unified Modelling Language (UML) component and activity diagram of model 

steps (Wiedenhofer et al., 2024). 

To handle the high dimensionality of the input data, shorten processing times, and 

handle output aggregations, multi-processing via (McKerns, n.d.) and Dask is used 

(Dask Development Team, 2016). The MISO2 software package is covered by 

integration tests, with some of the core functionality further covered by unit tests. The 

input preprocessing of the end-use shares is handled via R scripts that make extensive 

use of routines and the Tidyverse library (Wickham et al., 2019). To ensure correctness 

of the results, data input and outputs are validated repeatedly through the entire 

workflow (Figure 11b). Validation encompasses both domain-specific methodologies 

such as mass balance checks and outlier identification, and generic approaches, such 

as the verification against negative or ‘Not a Number’ values.  

The MISO2 workflow requires manual data pre-processing, preparation, and 

uncertainty assessment of the model input data, as well as parameter settings by the 

users (Figure 11a). These various data are then structured into the ODYM ontology 

and saved as a versioned model input dataset. The MISO2 software then automatically 

prepares the full model data inputs from partially sparse exogenous input data 

through interpolation and extrapolation (see below), validates its completeness, 

creates survival functions, computes material cycles and stock dynamics, validates all 

model data outputs, and saves into standardized data structures (Figure 11b). 

3.8.2. Handling of exogenous model data inputs 

The data pre-processing workflows and the uncertainty scoring were originally 

developed in (Plank et al., 2022a, 2022b), where we applied a ten-step procedure to 

develop a global-country level material flow database for primary materials extraction 

being processed into stock-building materials. For this purpose, historical yearbooks 

had to be digitized manually and combined with multiple international databases and 
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scientific as well as grey literature. The raw data are stored in excel workbooks and 

then further processed manually, using color coding to indicate inter/extrapolations, 

data sources, as well as assumptions taken. This formal 10-step procedure was 

consistently applied across ~20 materials, 177 countries and ~200 years, following 

conservative, but systematic and transparent rules explained in a separate methods 

paper (Plank et al., 2022b); results and detailed documentation are found in (Plank et 

al., 2022a). 

Then, we developed additional exogenous model input parameters for each process 

and material as defined in the system definition, including losses and waste rates per 

process, recycling rates, downcycling rates, lifetime distributions, as well as end-use 

shares, following a formalized 6-step procedure aligned with the ten steps from (Plank 

et al., 2022b). These are: 1) data collection, 2) uncertainty scoring of each data point, 3) 

assigning collected parameters to our database structure prioritizing data with lowest 

uncertainties, 4) interpolation of data gaps & checks for plausibility, 5) extrapolation 

to non-available years, and 6) assigning uncertainty scores to inter/extrapolations and 

whenever assumptions were necessary. 

 

3.8.3. Scoring and quantifying the uncertainty of model input parameters 

We scored all model data inputs according to their reliability and fit to our system 

definition based on the evaluation framework proposed by (Laner et al., 2016, 2014) 

and operationalized in (Plank et al., 2022a, 2022b). Each datapoint was assessed along 

five independent data quality indicators and scored from 1-4. The criteria are 

reliability, completeness, temporal correlation, geographical correlation and further 

technological correlation; if those did not apply due to lacking (meta)data, expert 

judgment was used and scored from 1-4 based on the quality of the expert judgement.   

Overall, this framework helps structure assessing the uncertainty of heterogenous data 

(sources) and assumptions in a consistent manner, given that many published data do 

not have “measured” uncertainty information. Still, some assumptions are required to 

translate scores into quantitative uncertainty ranges, meaning that resulting 

uncertainty ranges of model outputs do still depend on underlying choices and 

assumptions taken by the researchers.  
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Box 6: Five Step Summary for Ensuring Data Processing and 

Results Reproducibility in MISO2 

1.   Ensure the traceability of the original data used 

Each model input parameter file has a separate reference sheet, containing raw data 

and pre-processed data in separate tabs, including color coded information 

regarding processing steps applied (see above). Complete traceability was not 

achieved, due to the use of historical data sources which had to be digitized 

manually. All original data files are archived in a separate raw data archive of the 

project’s hosting institution's data storage. As a next step, we are currently 

developing more automated procedures to update the input data. 

2.   Document how processed data was derived from original data 

Some data pre-processing occurred manually, using color-coded excel workbooks 

and generalized formal rules as well as partially heuristics (see 10-step procedure 

above). Other data pre-processing was done via Python, using the same generalized 

rules and additional integrity checks (see above). Each fully assembled model input 

dataset has a version ID and is separately stored to ensure reproducibility. 

3.   Keep track of how processed data are combined into datasets that form the 

model parameters 

Each model parameter file has a unique filename and a version number, which are 

listed in the MISO2-ODYM config file. Each model configuration includes the model 

parameter files with their exact versions. In the automated workflow, input data in 

ODYM format is generated from a source file that references the original data 

sources and their assessments. The script automatically tracks the source for each 

data point when the input is created. Updates of the references are carried out 

automatically when data sources or interpolation rules are changed, allowing full 

traceability of input sources and transformations (Fig. 12). 

 

Figure 12: Setting input values, uncertainties and source information from literature 

references. 
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. 

 

Core reference:  
 

Wiedenhofer, D., Streeck, J., Wieland, H., Grammer, B., Baumgart, A., Plank, B., Helbig, C., 

Pauliuk, S., Haberl, H., Krausmann, F., 2024. From Extraction to End-uses and Waste 

Management: Modelling Economy-wide Material Cycles and Stock Dynamics Around the 

World. https://doi.org/10.2139/ssrn.4794611  

  

Box 6 ctd.:  

4.    Document relevant calculations and model runs 

Each MISO2 model run creates a unique identifier and a separate result folder, where 

the current model configuration file (and with it the complete parameter and version 

list) is saved as a copy, the used model code version is documented (via Git commit 

ID), and a result summary is archived 

 

5.    Link final outputs to the calculations that produced them 

Figures and tables are created by scripts and config files which are part of the internal 

extended MISO2 Github repository. Published results are provided as supplementary 

data files exactly as shown and are separately uploaded to Zenodo. 

https://doi.org/10.2139/ssrn.4794611
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4. Discussion and Outlook 

The examples in this document do not represent a standard but a collection of good 

practice examples that shall inspire and trigger further development of reproducible 

research and traceable results.  

The examples provided here have emerged bottom-up in different research groups. 

They have become part of the daily research practice, are accessible, and have become 

part of the training of early career researchers.  

Below, we list and shortly describe other tools that may be worth exploring, discuss 

the further development of own tools and toolchains for our community, and describe 

the responsibilities of different agents in the research community. 

 

4.1. Other tools for higher data transparency 

During the compilation of this report, a number of other tools was reported to us but 

no concrete examples of their application in industrial ecology are documented. We 

list them here so that others can have a look. 

• Simple makefiles can automatically handle steps 2-5 of the guideline (Box 1), 

see https://coderefinery.github.io/cmake/01-make-pipelines/ for an established 

pipeline 

• There are also full data pipeline frameworks, including control and tracing of 

cloud computing and automatic scaling depending on workload, e.g., Prefect - 

https://docs.prefect.io/latest/ or Apache Spark. A curated list of such pipeline 

frameworks is available at https://github.com/pditommaso/awesome-pipeline.  

• One of the most common data pipeline frameworks in research is snakemake, 

which was specifically developed to handle scientific data pipelines 

(https://snakemake.github.io/ ). Using such tools automatically handle steps 

3-5 in Box 1. In particular, documenting data workflows in a structured way 

allows to version control the workflow steps, which includes tracing of model 

parameters and connecting them to data pipeline runs.  

• For handling of distributed data across working environments, the Dat project 

may by interesting: https://docs.datproject.org/ “Dat is a protocol for sharing 

data between computers. Dat’s strengths are that data is hosted and distributed 

by many computers on the network, […] that the original uploader can add or 

modify data while keeping a full history, and that it can handle large amounts 

of data. Datalad (https://www.datalad.org/) helps keep track of versions of data 

files and is basically an alternative to Dat. 

• Dolt is a version management system for data in a database: “Dolt takes “Git for 

data” rather literally. Dolt implements the Git command line and associated 

operations on table rows instead of files. Data and schema are modified in the 

https://coderefinery.github.io/cmake/01-make-pipelines/
https://docs.prefect.io/latest/
https://github.com/pditommaso/awesome-pipeline
https://snakemake.github.io/
https://docs.datproject.org/
https://www.datalad.org/
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working set using SQL. When you want to permanently store a version of the 

working set, you make a commit. Dolt produces cell-wise diffs and merges, 

making data debugging between versions tractable. Effectively, the result is Git 

versioning on a SQL database.” See the following links for details: 

https://www.dolthub.com/blog/2020-03-06-so-you-want-git-for-data/   

https://github.com/dolthub/dolt     

 

4.2. Tools for documenting SEM systems 

SEM systems are often defined using a diagrammatic representation of the system 

processes and material types, with further written description of each process. 

Although this documentation can certainly be written by hand, there are some benefits 

to using tools to generate it, such as including automatic indexing of processes and 

material types defined in the system, and cross-references linking between them. The 

Sphinx documentation tool (https://www.sphinx-doc.org/) is commonly used for 

documenting computer software, generating HTML or PDF output from documents 

in Markdown or other simple formats, but it is very extensible to documenting entities 

in any domain. A Sphinx extension to an MFA system definition creates a description 

of "Processes" and "Objects" (i.e. types of material or good), allowing researchers to 

easily generate nice well-structured documentation of the structure of their SEM 

models, complete with indices and cross-references (e.g., 

https://github.com/ricklupton/sphinx_probs_rdf). This tool was originally conceived 

to produce machine-readable descriptions of the system elements for further 

processing (Germano et al. 2021) but can be used equally just to produce human-

readable documentation for supplementary information to a study, e.g., in Malkovska 

et al. (2024). 

 

4.3. Building our own community tools and toolchains 

Our community needs a discussion to what extent standardized data structures and 

tools for basic MFA calculations are the key to effective, high quality, and traceable 

research in our field. Such a standardized toolchain would start from common 

classifications for materials, products, industries, regions, etc. (see here: 

https://github.com/IndEcol/SEM_classifications), include data formats and templates, 

standardized data processing and modelling routines, and standardized documenting 

of the research workflow. The software community for MFA that has evolved over the 

last years can contribute with the building blocks for such an effort: 

https://github.com/IndEcol/Dashboard?tab=readme-ov-file#material-flow-analysis, as 

well as the reproducibility/traceability examples presented here. 

https://www.dolthub.com/blog/2020-03-06-so-you-want-git-for-data/
https://github.com/dolthub/dolt
https://www.sphinx-doc.org/
https://github.com/ricklupton/sphinx_probs_rdf
https://github.com/IndEcol/SEM_classifications
https://github.com/IndEcol/Dashboard?tab=readme-ov-file#material-flow-analysis
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Education and capacity building 

This guideline document and the collection of good practice examples are one step 

further towards higher traceability and reproducibility in our community. Further 

worked examples, customized and flexible software solutions, and trainings for 

reproducibility will be necessary and developed over the coming years. This material 

shall help spread the mindset and skills for traceability and reproducibility, and we 

expect it to be particularly useful for researchers and institutions that lack the 

resources to develop their own tools and workflows. 

 

4.4. Responsibilities of individual researchers, scientific 

communities, funders, employers, and publishers 

Traceability of results and reproducibility of claims are core scientific values, and all 

researchers need to strive towards their fulfilment to that science can fulfil its promise 

to society: to deliver accurate and reproducible knowledge.  

There is also a major practical advantage that lies in traceable and reproducible 

research: It facilitate cumulative work and hand-over of projects in fluctuating teams. 

Often, the person trying to reproduce your work turns out to be yourself or your team. 

It is simply more professional to work this way! 

Different actors in the scholarly world can contribute to traceable and reproducible 

research. The following list is taken from Pauliuk (2020): 

All researchers need to be able to sense the transition from exploring new ideas or 

approaches (“trying out things”) to proper research with documentation duties, and 

should switch to a professional mode that includes documentation for reproducibility 

and traceability. 

For early career researchers, it becomes easier to connect to, use, and expand 

published material.  

Editors, reviewers, and funders need to insist on method and data transparency, 

reproducibility, and proper data archiving. 

Publishers should highlight and reward sound contributions to cumulative science 

and provide access to supplementary materials in any case and exclude it from 

copyright transfer (for pay-wall publishing). 

Funders and employers also have a major responsibility here! These activities and 

standards need time and resources, which has major implications for project funding 
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which needs to allow for such work. Just think about the work that is required for 

updating time series and/or models, maintaining them, etc. – far too often, one has to 

cross-fund and/or sneakily insert those activities into fancy sounding work packages 

promising all kinds of novelty, instead of being able to position high quality 

reproducible workflows as a strength. 

Employers/universities also need to understand these demands and give the 

appropriate resources, for example also having data scientist positions and proper IT 

support. To really get there, this needs institutional support, not only individual 

initiative. 

Research associations, societies and scholarly communities should develop and 

adopt guidelines for reproducible and traceable research, transfer best practice from 

other disciplines, monitor research practice and available infrastructure, host research 

infrastructure where needed, facilitate exchange formats on cumulative research 

(workshops, special sessions at scientific conferences), and reward salient 

contributions to reproducible and traceable research.  

 

Fully traceable research streams, built with professional tools, will be fun and 

effective! They will strengthen our research community and help with the application 

of our findings in society. 
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