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Global economic impact of weather 
variability on the rich and the poor

Lennart Quante    1,2, Sven N. Willner    1, Christian Otto    1 & 
Anders Levermann    1,3 

Temperature and precipitation variability and extremes impact production 
globally. These production disruptions will change with future warming, 
impacting consumers locally as well as remotely through supply chains. Due 
to a potentially nonlinear economic response, trade impacts are difficult 
to quantify; empirical assessments rather focus on the direct inequality 
impacts of weather extremes. Here, simulating global economic interactions 
of profit-maximizing firms and utility-optimizing consumers, we assess risks 
to consumption resulting from weather-induced production disruptions 
along supply chains. Across countries, risks are highest for middle-income 
countries due to unfavourable trade dependence and seasonal climate 
exposure. We also find that risks increase in most countries under future 
climate change. Global warming increases consumer risks locally and 
through supply chains. However, high-income consumers face the greatest 
risk increase. Overall, risks are heterogeneous regarding income within and 
between countries, such that targeted local and global resilience building 
may reduce them.

Climate change already causes considerable economic impacts1,2. 
In addition, increasing extreme events3,4 and changing variability5,6 
will continue to disrupt economic activity and growth7–10. Overall, the 
impacts of climate change are unevenly distributed across the globe11. 
Econometric studies on the impacts of temperature variability and 
extremes8 as well as rainfall on economic activity9 find large regional 
heterogeneity in macroeconomic impacts.

With regard to the socioeconomic dimension of impacts, low- 
income populations suffer more under climate change12,13, which may 
become a roadblock to poverty eradication without appropriate adap-
tation14. Showing the bidirectional interconnection of climate change 
and inequality, it may also hinder mitigation efforts15. One driver of ine-
quality of weather extremes is exposure, as exemplified by landslides 
mainly affecting mainly informal settlements16, larger flood exposure 
for countries with lower incomes17 as well as for lower incomes within 
the United States18, and exposure to storms and resulting floods affect-
ing disenfranchised populations more strongly19. Empirical studies on 
the relationship between inequality and climate change have identified 
a regressive impact of heat extremes20 and increased macroeconomic 

inequality between countries21. Further studies on weather extremes 
find that, within countries, low-income groups are impacted more 
severely than their high-income counterparts22. For example, rainfall 
extremes have been shown to enhance inequality23.

Here we focus on consumption risks along two dimensions of 
inequality by income: (1) within countries and (2) between countries. 
Production disruptions are driven by temperature and rainfall vari-
ability and extremes. These disruptions propagate through supply 
chains up to the final consumer. While we compare the risks associ-
ated with changing climate conditions over a three-decade period, 
our simulations do not project overall economic development and 
resulting risks. Instead, this study can be interpreted as a stress test 
under changing climate conditions to identify risk factors, which con-
tribute to higher vulnerability of specific consumer groups or ‘hotspot’ 
regions. In this assessment, socioeconomic conditions (trade relations, 
economic capacity and incomes) are kept fixed, such that we do not 
model long-term impacts or adaptation. We use an updated version of 
the Acclimate model24, which simulates trade relations between firms 
up to utility-maximizing consumers, disaggregated to five income 
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supply chains between regions with profit-maximizing firms in  
26 sectors up to the final consumption (Fig. 1b). Final consumption  
is disaggregated to five income quintiles within countries, which  
optimize consumption utility under a constrained budget. On the basis 
of empirical studies on the income dependence of consumption33,34, 
we assume low-income quintiles to spend larger shares of their  
budget on hard-to-substitute necessities such as food, while this 
spending share declines with increasing income. Between countries, 
we distinguish four income groups, according to the World Bank’s 
income level classification35 (Supplementary Fig. 1c): low-income 
countries (LICs), lower medium-income countries (LMICs), upper 
middle-income countries (UMICs) and high-income countries (HICs). 
To assess short-term impacts in Acclimate, we compare consump-
tion quantities with the undisturbed state of the economic network 
(‘baseline’). We quantify consumption risks via the consumption  
loss expected on one in ten days, that is, the 90th percentile of  
baseline relative consumption reductions (refer to Methods for  
further details).

Results
Inequality of risks by income quintile
We find that lower-income quintiles face higher loss risks for all  
country income levels and across changing climate conditions (Fig. 2). 
Heterogeneity within countries is larger in UMICs and HICs, where  
the risks of the lowest-income quintile are about twice as large as  
for the highest-income quintile (Fig. 2b,d). By contrast, in LICs, low- 
income groups face a smaller additional loss risk of about 30%  

quintiles by country. The dynamics result from propagation of eco-
nomic disruptions, for example, due to weather extremes, along supply 
chains. Previously, Acclimate has been used to, for example, assess 
the global economic response to river floods25 or the amplification  
of extreme weather-induced consumption losses through repercus-
sions in the global supply network26.

An overview of the data and metrics used is shown in Fig. 1a. We use 
econometric estimates8,9 to approximate the impacts of temperature 
and precipitation variability and extremes on daily production for 
three economic sectors—agriculture, manufacturing and services. 
From these estimates, we generate an impact ensemble based on three 
emissions pathways (representative concentration pathways27 2.6, 
7.0 and 8.5) for five climate models of the sixth round of the Climate 
Model Intercomparison Project (CMIP6)28, which are bias corrected 
towards observational data29 and provided by the Inter-Sectoral Model 
Intercomparison Project30. Aggregating these grid-level impact esti-
mates, we generate production disruption time series for the regions 
considered in the Acclimate model. On the basis of these production 
disruption time series, we estimate the climate-driven changes in 
production levels for three decades (recent past (2011–2020), present 
(2021–2030) and near future (2031–2040)). Since most of the future 
warming is already committed to by past emissions due to the inertia 
of the climate system and since differences between emissions path-
ways are within natural variability for this time frame31,32, we do not 
distinguish between the emissions pathways.

We then use Acclimate24 to simulate the short-term indirect 
repercussions of these direct production disturbances along global 
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Fig. 1 | Schematic overview of data, methods, modelling and main results. a, Details on data inputs. b, The flow from weather impact ensemble through the 
Acclimate economy to impacts on consumers. c, Analysis methods and a summary of main results. More details are provided in Extended Data Fig. 1. Credit: icons in b, 
www.pixaby.com (clouds) or canva.com (all other).
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(Fig. 2a and Supplementary Tables 3–5 provide the corresponding data). 
This within-country inequality is grounded in the differences in the sub-
stitutability among the different goods, resulting from unequal base-
line shares of consumption (Extended Data Fig. 2). Since low-income 
consumers spend a larger share of their budget on hard-to-substitute 
necessary goods, they are more vulnerable to supply shocks. By con-
trast, high-income consumers spent larger shares of their budget on 
easier-to-substitute goods, such that they suffer smaller reductions 
of consumption. The risk factor of higher consumption of necessities 
by lower-income groups is supported by empirical evidence33,34,36. In 
addition, inequality in consumption patterns might induce market 
mechanisms, where higher-income consumers can afford higher prices 
for necessities, thereby inflating prices and pressuring lower-income 
groups, either locally or along supply chains. Importantly, relative 
risks to consumption are more concerning for low-income consum-
ers living close to the subsistence line compared with consumers with 
higher incomes. These inequalities in risks are robust to variations in 
risk percentile levels (Supplementary Figs. 1–5).

We complement our analysis of consumption risk changes by ana-
lysing changes in the full distribution of consumption losses (Extended 
Data Fig. 3). Under the climate conditions of 2011–2020, median con-
sumption quantities are just slightly below baseline levels (and even 
very slightly above for the wealthiest quintile in HICs and UMICs) 
(Supplementary Table 6). They further decline with global warming in 
the present-day and near-future periods (Supplementary Tables 7 and 
8), which suggests an amplification of consumption risks under global 
warming as detailed in the following. The lowest-income quintiles per-
ceive the largest risks across all three study periods. The high baseline 
levels of inequality with more than 40% of consumption concentrated 
on the highest incomes (Extended Data Fig. 2) imply a weighting by 
baseline consumption shares, showing that the aggregated risk to the 
macro-economy is dominated by high-income quintiles (Extended 
Data Fig. 4).

Heterogeneous risks between countries
UMICs and LMICs (Fig. 2b,c) face about double the risks of LICs or  
HICs (Fig. 2a,d). While these differences emerge from the interaction  
of a multitude of factors, we focus on three risk factors that differen
tiate countries grouped by income level.

First, local climate impacts are highly heterogeneous, especially 
with respect to seasonal weather patterns. Since overall economic 
impact is dominated by heat extremes in Northern Hemisphere 
summer (Supplementary Figs. 6 and 7), summer heat extremes 
(Supplementary Figs. 8 and 9) and their repercussions coincide 
with seasonal rainfall extremes driven, for example, by monsoon 
systems in subtropical countries (Supplementary Figs. 10 and 11). 
This coincidence probably leads to a compounding effect in LICs, 
LMICs and UMICs, which are located mostly in the subtropics, as 
opposed to HICs, which are located mostly in the mid-latitudes of 
the Northern Hemisphere.

Second, assessing the origins of baseline consumption for each 
income level up to the second-order trade flows (Extended Data Fig. 5), 
we find that consumption is sourced mostly from countries of the same 
income level, except for LICs importing most consumption goods from 
higher-income countries. This dependency on countries of the same 
income level increases with income, from ~75% for LMICs and ~80% for 
UMICs to ~95% for HICs. By contrast, the self-dependency of LICs is 
much lower (~12.5%) since they import most of their consumption from 
HICs (~65%). Thus, despite similar climatic conditions, LICs’ diversified 
sourcing of consumption—especially the large share of imports from 
resilient HICs—may reduce risk by reduced exposure to local impacts 
in comparison with LMICs and UMICs.

Third, comparing characteristics of economic production by 
income level, HICs have the largest baseline production (Fig. 3a), UMICs 
(including China) fall in a similar range, while LMICs and LICs have 
orders of magnitude smaller production capacity. Impacts on pro-
duction are distributed heterogeneously; here the 90th percentile 
production disruption in UMICs is about twice as large as in other 
countries (Fig. 3b). This production disruption translates into an actual 
production reduction (Fig. 3c), with some dampening due to increased 
production through activation of idle capacities and replacement of 
regional supplies by remote supplies. Notably, HICs show the largest 
dampening, hinting at a more efficient compensation of production 
disruptions, enabled by large production capacities and their central 
position in the supply network. Finally, these production losses trans-
late into reductions in final consumption, where HICs again show a 
comparably stronger dampening from production to consumption 
risk (Fig. 3d).
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Fig. 2 | Heterogeneous risks by country income level and between income 
quintiles. a–d, Consumption risks (90th percentile of consumption losses) by 
income quintile (colour code) for LICs (a), LMICs (b), UMICs (c) and HICs (d) for 
the past decade (2011–2020; leftmost bars), the present decade (2021–2030; 
middle bar) and the near-future decade (2031–2040; rightmost bars). Income 

quintiles are numbered from lowest income (first) to highest income (fifth). 
Middle lines, boxes and whiskers denote median values, 25th–75th percentile 
ranges and 17th–83rd percentile ranges with respect to climate model ensemble 
(n = 15; 5 climate models × 3 shared socioeconomic pathway (SSP) emission 
scenarios), respectively.
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To explain this stronger dampening of direct impacts in HICs, we 
compute the correlation of production and consumption as a proxy 
for the resilience of consumption to domestic production disruptions 
(Fig. 4). This correlation is considerably lower for HICs, revealing a 
comparably weaker spillover from impacts on domestic production 
to consumption risk.

In conclusion, consumers in LMICs and UMICs face the largest 
risks due to a combination of three risk factors: (1) the seasonality of 
production disruptions and resulting deviations, which are probably 
aggravated by concurrence of global heat stress with seasonal regional 
impacts driven (Supplementary Figs. 6 and 7), (2) strong trade depend-
encies between LMICs and UMICs, respectively (Extended Data Fig. 5) 
and (3) a comparably strong transmission of risk from production to 
consumption (Fig. 3).

We next illustrate some risk factors by comparing exemplary 
countries within each country income level (see Supplementary 
Table 2 for a risk summary for all countries). Among LICs (Supplemen-
tary Fig. 13), North Korea shows the highest consumption risk (~2.1%), 
driven by its very limited supply-chain integration and the resulting 
strong self-dependencies, as indicated by the high correlation between 
domestic production and consumption (~0.82). For comparison, the 
consumption risk of Syria is roughly one-third lower (~1.31), probably 
due to Syria’s lower self-dependency (~0.51).

For LMICs, we contrast Ukraine and Uzbekistan with the Philippines  
(Supplementary Fig. 14) and observe a risk-enhancing effect of 
within-country inequality. Within-country inequality is higher in the 
Philippines than in Ukraine and Uzbekistan. It seems plausible that 
inequality contributes to the Philippines’ consumption risk being 
twice as high as production risk, whereas, in Ukraine and Uzbekistan, 
consumption risk is about 25% lower than production risk.

Similarly, regarding UMICs (Supplementary Fig. 15), in strongly 
directly impacted and comparably equal Iraq and Kazakhstan, risk is 
dampened from production to consumption (by ~−20% and ~−50%, 
respectively), whereas it increases slightly from production to con-
sumption in Colombia and Thailand, which are also strongly directly 
impacted but more unequal. This risk-enhancing effect of inequality 
may result from domestic competition for necessary consumption 
goods in times of crisis, where high-income consumers can afford 
higher prices and thus low-income consumers face additional price 
increases.

In HICs (Supplementary Fig. 16), supply chains seem more impor-
tant than local disruptions. Consumption risks for Spain and Germany 
are similar, but Germany faces larger direct impacts and production 
risks. This suggests that Germany’s larger economy and central position 

in supply chains enables effective consumption risk mitigation. This is 
also illustrated by the relatively weaker risk dampening from produc-
tion to consumption in New Zealand and Japan, which have less-central 
positions in the supply-chain network. For the case of New Zealand, 
the low correlation between domestic production and consumption 
risk but a small dampening between production and consumption risk 
probably indicates a higher sensitivity to imported risks. Notably, the 
highly interconnected states of the United States are able to almost 
completely avoid risk transmission from production to consumption.

Overall, this illustrative comparison of countries reveals that 
dependence on domestic production, within-country inequality and 
competition for goods may increase risks for consumers, whereas an 
advantageous position along supply chains can moderate these risks.

Global risk amplification in a warming climate
Under recent climate conditions (2011–2020), consumption risks are 
distributed heterogeneously across the globe, with Mongolia facing 
the highest consumption risk. By contrast, the United States is facing 
comparably low consumption risks. To show the regional heterogeneity 
of within-country risk inequality, we map the risk difference between 
the lowest- and highest-income quintiles averaged across climate 
conditions of all three decades (Extended Data Fig. 6). We find that 
the lowest-income quintile faces larger risks than the highest-income 
group in almost all countries. Regarding regional heterogeneity,  
the large inequalities of risk in Latin America, South Africa and the 
Philippines are probably driven by high economic inequality.

Comparing consumption risk levels under recent (2011–2020), 
present (2021–2030) and near-future (2031–2040) climate conditions, 
we find an increase in risk for all country income levels and income quin-
tiles with global warming. While the lowest-income quintiles continue 
to face the highest risks, the consumption risks from weather extremes 
and variability disrupting production increase for all income levels and 
income quintiles (Fig. 5). On the level of individual countries (Fig. 6), 
we find increasing risks for most countries with changing climate, but 
these risk increases are heterogeneous (Fig. 6b,c). The United States 
is subject to the strongest relative increases in consumption risks, 
which can be attributed to their low risk levels under recent climate 
conditions (2011–2020).

In LICs, median consumption risks increase by 15% (17th to 83rd 
percentile: 6–26%) for all income quintiles (Fig. 5a) from recent 
(2011–2020) to present (2021–2030) climate conditions. In HICs over 
the same period, the median risk increases more strongly for the 
highest-income quintile (27% (14–35%)) than for the lowest-income 
quintile (17% (8–24%)) (Fig. 5b). LMICs show the smallest median risk 
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amplification, ranging from 11% (6–15%) for the lowest-income quintile 
to 15% (10−17%) for the highest-income quintile (Fig. 5c). The already 
highly exposed UMICs show a heterogeneous increase in median risks 
between 14% (6−19%) for the lowest-income quintile and 20% (12−25%) 

for the highest-income quintile. For the near-term future climate, these 
trends continue for all country income levels and income quintiles, 
while uncertainty increases due to larger variation between ensemble 
members. LICs face a comparably small median risk amplification 
with large uncertainty (28–36% (–2 to 52%)). Here the 16.6th percen-
tile of the highest-income quintile shows even a slight decrease of 
median risk of 2.4%. All other country income levels face heterogene-
ous risk increases between income quintiles—most pronounced in  
HICs, where the highest-income consumers face a median risk increase 
of 51% (28−80%) compared with 28% (12−41%) for the lowest-income 
quintile (Supplementary Tables 9 and 10). This heterogeneously 
increasing risk across income quintiles within countries—in contrast 
to the higher baseline exposure of low-income quintiles—does not 
mitigate the high risk exposure of low-income consumers, but shows 
that the higher resilience of higher incomes might be offset by increas-
ingly adverse climate conditions, leading to macroeconomic risks due 
to the large share of total consumption by high-income consumers. 
Again, this finding remains robust under variations of the considered 
loss percentiles (Supplementary Figs. 17–21).

Discussion
We have performed a global analysis on the distributional impacts of 
temperature and precipitation variability and extremes through direct 
production disruptions, trade-induced supply failures and associated  
price effects across (1) different income groups of countries and  
(2) income quintiles of consumers within each country.

Our finding that lower-income populations within countries face 
larger climate-related risks is in line with econometric studies on regres-
sive impacts of weather extremes22,23. Using a dynamic supply-chain 
model, we can extend these previous studies by capturing the remote 
trade-related consequences of climate impacts. This allows us to study 
the complex differences in risk factors across the different income 
groups of countries as well as between individual countries, which 
result from the interaction of impact distributions, capacity to com-
pensate for lost production, and market and supply-chain effects. 
An important consequence of the large inequality between low- and 
high-income consumers is that the same relative losses are likely to be 
more harmful to low-income consumers. Despite considering devia-
tions in consumed quantity rather than dollars spent, this aggravates 
the higher risks for low-income groups. The importance of accounting 
for trade-related risks has also been highlighted recently during the 
COVID-19 pandemic37,38. Accounting for indirect effects complements 
recent work on long-term impacts of weather variability and extremes on 
economic growth39. While this assessment is based on the same under-
lying econometric damage estimates8,9, the different mechanisms and 
timescales of impacts considered lead to complementary results. Most 
important, ref. 39 studies the long-term impacts of climate on output 
growth throughout the twenty-first century as described by the shared 
socioeconomic pathways32,40, which—by design—do not account for 
the impacts of climate change on development. We complement this 
long-term perspective focused on output growth by a risk assessment of 
short-term consumption losses resulting from the spreading of produc-
tion deviations through the global trade networks. To isolate the impact 
of changing climatic conditions from the impact of economic develop-
ment, we keep the baseline economic conditions, that is, the undisturbed 
production and consumption levels and the trade network, fixed.

With regard to limitations, our consumer model is simplistic, 
assuming myopic utility-optimizing behaviour without savings. Assum-
ing savings are distributed at least as unequally as consumption, this 
limitation would imply a potential underestimation of inequality 
effects between income quintiles since higher income might enable 
large savings, increasing resilience to short-term shocks. This buffer-
ing effect of savings is counterbalanced by the assumption of a static 
consumption budget, implying no impacts on income from short-term 
economic disruptions. Further, when examining inequality, social 
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relations play an important role41. In particular, high-income countries 
and high-income populations within countries have more means to 
cope with impacts than their respective low-income counterparts, 
be it through adaptation to local climate change impacts or possibly 
adaption of trade relations42. In addition, regarding adaptation to 
future risks, higher incomes are likely to enhance adaptive capacity43. 
As it is based on global trade relations, our study cannot include those 
that are not part of such relations. In particular, our results do not allow 
drawing direct conclusions about livelihoods based on subsistence (for 
example, smallholder farmers). Still, for these groups, direct impact 
due to climate change is the crucial factor44 and more local studies45 
focusing on local conditions complement global risk assessments. 
Should these groups join global trade networks, they are likely to also 
face trade-related risks such as those discussed in this study. Hence, 
our results have to be interpreted within this economic scope, such 
that the risks we identify are only a part of the overall climate-related 
risks to consumers.

Our comparison of consumption risks under changing climatic con-
ditions reveals a broad range of factors contributing to risks for consum-
ers, either locally or along supply chains. Most important, we observe 
the following risk factors, going from more local to more global factors:

•	 Higher vulnerability of low-income consumers due to focus on 
consumption of necessary goods.

•	 Higher vulnerability of countries that depend strongly on  
domestic production.

•	 Risk-enhancing effects of within-country inequality may be 
driven by market effects, where high-income parts of the popula-
tion crowd out low-income groups. This effect could also occur 
between countries at different income levels.

•	 The interaction of local seasonality of extremes and global  
seasonal patterns may increase risks in regions where seasonal 
weather extremes coincide with global repercussions of Northern 
Hemisphere heat stress.

•	 Trade dependencies can reduce risks, when consumption is 
sourced mainly from less-affected regions (for example, for LICs 
from HICs), but also enhance risks, when consumption is sourced 
mainly from strongly impacted regions as is the case for LMICs 
and UMICs.

•	 While current risk levels are lowest for high-income consumers, 
climate-driven risk increases may be largest. This may reduce 
adaptation advantages of higher-income consumers and thus 
result in substantial macroeconomic risks.

Typically, the risk profile of a country or an income group of con-
sumers within a country is determined by a combination of several of 
these and other risk factors. Our analysis may therefore help to identify 
tailored adaptation priorities for local measures and multi-lateral 
cooperation on risk reduction through trade.

In summary, our study offers the following policy-relevant 
insights. First, climate-related risks for consumers are widespread 
and affect most countries, already in the present climate (Figs. 2  
and 6a) and maybe more in the near future under ongoing anthro-
pogenic warming (Figs. 5 and 6c). This underscores the importance  
for countries to develop and implement national adaptation  
plans46. Second, our study reveals how important it is that these efforts 
go beyond the local measures that are typically employed to cope  
with, and build resilience to, disasters12,47,48 and include effective  
measures to build resilience against weather-induced supply-chain 
disruptions. While potential supply-chain disruptions should be con-
sidered, diversified trade relations lead to reduced dependencies 
on locally produced goods and thus can be an effective means  
to mitigate local climate risks to consumers. Third, while impacts 
intensify heterogeneously, poverty alleviation to reduce vulner
ability of lower-income quintiles should remain a priority since risk 
levels remain by far the highest for lower-income quintiles, stressing  
the importance of reaching the Sustainable Development Goal on 
poverty eradication49. Further, our country-by-country comparison 
reveals that increased resilience to climate-related consumption  
risks could be an important co-benefit of policies reducing within- 
country inequalities.

While increasing risks for lower-income groups hinder poverty 
eradication and the reduction of inequalities, risks for higher-income 
groups may result in substantial macroeconomic losses. Thus, adapta-
tion to the increasing volatility in local production and resulting trade 
shocks due to weather variability and extremes should be strength-
ened. Reducing risk factors may serve to mitigate the risks to consum-
ers and the wider economy.
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Fig. 5 | Heterogeneous risk increase by country income level and between 
income quintiles. a–d, Changes in consumption risk (90th percentile of 
consumption losses) by income quintile (colour code) for LICs (a), LMICs (b), 
UMICs (c) and HICs (d). Bars show amplification for the present decade (2021–2030, 
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past decade (2011–2020). Income quintiles are numbered from lowest income 
(first) to highest income (fifth). Middle lines, boxes and whiskers denote median 
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to climate model ensemble (n = 15; 5 climate models × 3 SSP emission scenarios), 
respectively.
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Methods
Acclimate
To model the spreading of indirect losses in the global supply net-
work, resulting price effects and consumption responses, we use the 
agent-based global supply-chain model Acclimate24 (Fig. 1), which is 
designed to simulate short-term economic shocks and resulting devia-
tions from a baseline undisturbed economy. As baseline data for the 

model, we use global national multi-regional input–output tables of 
the EORA project50. In addition, disaggregating China to province and 
the United States to state-level resolution51, we obtain a network with 
264 regions (excluding regions with poor data quality). We consider 
26 regional sectors and final consumption, which we dissaggregate 
into five income groups (income quintiles) of consumers per region. 
Each of the quintiles is modelled as a representative utility-optimizing 
agent and has three consumption baskets of ‘necessary’, ‘relevant’ 
and ‘other’ goods, which are imperfect substitutes (see Supplemen-
tary Table 1 for a classification of the 26 EORA sectors into the three 
baskets). Substitutability between goods is described by constant 
elasticity of substitution (CES) utility functions, as detailed in the 
following section or in ref. 52. To dissaggregate by income quintiles, 
the final consumption from the EORA tables is distributed by income 
share35, assuming the shares of basic food items consumed from the 
EORA sectors agriculture, food production and fisheries are equal per 
capita and re-balancing remaining sectors. While this is a simplified 
representation of consumption inequality within countries, its main 
feature of a more variable consumption for higher-income groups 
while lower-income groups depend mainly on few necessary goods is 
grounded in the established theory of Engel’s law33,34,36.

Utility function for Acclimate consumers. We use a two-level CES 
utility function for each income quintile of consumers to describe 
imperfect substitutability between the different categories of  
goods (consumption baskets). The CES function for the representative 
consumer for income quintile q in country r reads

Urq =
⎛
⎜
⎜
⎜
⎝

B
∑
i=1

⎛
⎜⎜
⎝
bi

1
θ [

Mi

∑
k=1

(ak

1
σi xk→rq

σi−1
σi )]

σi
σi−1 ⎞

⎟⎟
⎠

θ−1
θ ⎞
⎟
⎟
⎟
⎠

θ
θ−1

, (1)

where xk→rq denotes consumption of good k for the considered repre-
sentative consumer, maximizing its utility across its B consumption 
baskets. Further, σi for i ∈ {1, …, B} denotes the substitution elasticities 
of consumption in basket i, and θ denotes the elasticity of inter-basket 
substitution. Further, the share of good k in basket i for k = 1, …, Mi reads

ak =
x⋆k→rq

∑Mi
i=1 x⋆ i→rq

, (2)

where Mi denotes the number of goods in basket i, and the basket share 
factor bi reads

bi =
∑Mi

i=1 x⋆ i→rq

∑M
i=1 x⋆ i→rq

, (3)

where M denotes the overall number of sectors and (⋅)⋆ denotes the 
baseline state.

In our simulations, we consider M = 26 EORA sectors grouped  
into B = 3 consumption baskets for necessary, relevant and other  
goods (Supplementary Table 1). We choose the corresponding  
consumption substitution elasticities σnecessary = 0.25, σrelevant = 2, 
σother = 8, and θ = 0.5 for the elasticity of inter-basket substitution.

Estimation of direct production losses
We generate impact time series on the basis of recent subregional 
and sectoral econometric analysis with respect to temperature8  
and precipitation9. These works provide yearly marginal effects for 
the period 1979–2018 (ref. 8) respectively up to 2019 (ref. 9) on the 
basis of the subnational economic data of the DOSE dataset covering 
three economic sectors (agriculture, manufacturing and services)53. 
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To this end, we combine bias-adjusted29 CMIP6 climate data from  
five climate models—GFDL-ESM4, IPSL-CM6A-LR, UKESM1-0-LL, 
MPI-ESM1-2-HR and MRI-ESM2-0—using model data from the historical  
scenario (1979–2014) to match the DOSE estimation period with  
the sectoral subnational marginal effects based on the DOSE data to 
estimate daily impact functions. Since the econometric estimates used 
to calibrate the damage functions are based on historic observational 
reanalysis data, the use of bias-corrected data, which is corrected  
to match observational data better, ensures consistency between  
the training data and the data used to project impacts.

Using least-squares minimization, we estimate free parameters of 
generic daily damage functions such that the aggregated daily damages 
are fitted to the yearly damages for the calibration time of the yearly 
functions (1979–2014). Since the yearly estimates necessarily include 
some indirect effects, we make the rather conservative assumption 
that half of the observed damages are caused by indirect effects. Since 
these are simulated within Acclimate, we reduce the estimated daily 
forcing by 50% to avoid double counting. Using these subnational 
parameter estimates, we generate future impacts for each impact 
channel based on climate model data by applying the damage functions 
with their regionalized parameters on a grid-cell level, aggregating to 
the reduction in daily production capacity (forcing) for country r and 
sector s, fr,s(x), using population as a proxy weight for economic activity.  
The resulting impact time series are independent by design, such 
that we can combine the damage time series di(x) by multiplication 
to get the total forcing fr,s(tas, pr). To reduce daily fluctuations due to 
the approximate nature of our daily damage functions, we use a 7 day 
rolling mean of the forcing time series as input shock time series for 
our loss propagation model. This approximates the non-resolved 
short-term lag between regional climate impact and economic  
production reduction.

This approach necessarily is not precise on a daily estimate, but in 
the aggregate it reproduces the core features such as seasonality and 
fluctuations of impacts. We provide detailed equations with regard to 
the estimation procedure in the following section.

In summary, while our impact estimation introduces multiple 
uncertainties, the resulting impact estimate benefits from the sub-
national resolution of econometric estimates as well as the sectoral 
specification distinguishing agriculture, manufacturing and services 
as mapped to EORA sectors in Supplementary Table 1. These two key 
features of sectoral and regional specification are fitting for the qualita-
tive assessment of consumption impacts we conduct here. Especially to 
assess changing risks in a changing climate, we consider only deviations 
from recent climate conditions with the same damage parameteriza-
tion; thus, the detected differences are not dependent on the exact 
specification of impact parameters.

Description of impact channels
We estimate five independent impact channels on the basis of econo-
metric estimates of the impacts of temperature variability and extreme 
temperatures8 as well as precipitation and its extremes9.

We estimate the impacts of extreme temperatures using a  
quadratic threshold function,

d(Tdailyr ) = αr,s max (0, (Tdailyr − Theatr,s ))
2

+βr,s max (0, (Tcoldr,s − Tdailyr ))
2
+ γr,s.

(4)

This damage function corresponds to the damages for changes in daily 
mean temperature. Since there is econometric evidence for threshold 
behaviour, we choose to estimate a baseline effect γr,s, critical tempera-
ture Theatr,s  for heat-related damages with coefficient αr,s, as well as a 
critical temperature Tcoldr,s for cold-related damages with coefficient 
βr,s. To show the resulting spatial heterogeneity of the parameters, 
Supplementary Fig. 24 depicts the critical heat temperature deviation 

from the regional historical mean temperature, and Supplementary 
Fig. 25 shows the respective αr,s coefficient. While thresholds for  
heat stress are higher in more tropical regions, indicating regional 
adaptation to higher temperatures, the impact coefficients are larger 
for these regions as well, indicating the more severe impact of  
heat stress at higher baseline temperatures. For cold stress, in most 
regions the effects are negligible, with exceptions of very small impacts 
in high-latitude or more continental regions (Supplementary Figs. 26 
and 27).

For daily temperature variability, we estimate the deviation from 
the monthly mean9 and use a simple linear functional form with slope 
αr,s,

d(Tdailyr ) = αr,s(|Tdailyr − Tmeanmonth |) + βr,s. (5)

We use a similar damage function for damages caused by daily rainfall 
exceeding the 99.9th percentile of precipitation, that is,

d(prdailyr ) = αr,smax (0,prdailyr − P99.9 (prr,s)) + βr,s, (6)

and for wet day (rainfall > 1 mm) precipitation,

d(prdailyr ) = αr,smax(0,prdailyr − 1mm) + βr,s. (7)

For the effect of mean annual total rainfall, we calculate the deviation 
of the rolling annual total starting at day i from the long-run mean of 
annual total rainfall from 1979 to 2014 m1979−2014(prannual) (the estimation 
period for the marginal effects) and again estimate a linear relationship,

d(prdailyr )(i) = αr,s (
i+364
∑
t=i

(prdailyr (t)) −m1979−2014(prannual)) + βr,s. (8)

Specifying these functional forms, we use climate model data from 
the calibration period of the marginal effects parameters (1979–2014) to 
estimate the parameters for each subnational region and sector. First, 
we calculate the annual time series for Y years of the respective yearly 
marginal effect i as MEi(r, s)(year). Now we estimate the parameters 
of the specified function di(r, s) minimizing the mean squared error,

MSE =
(MEi(r, s)( y) − ∑t∈ydi,r,s (xr(t)))

2

Y , (9)

where xr(t) is the subnational aggregate of the daily climate variable  
for the impact function. To proxy the distribution of economic activity, 
we weight all grid-level-based data by a fixed population grid54.

These subnational parameter estimates are then used to generate 
impact time series on the basis of bias-corrected CMIP6 climate model 
simulation data28,29 for all regions of Acclimate. Here the impact in 
each grid cell is weighted again by population54 as a proxy for spatial 
distribution of production.

Since our downscaling of yearly damage estimates to daily data 
includes interannual indirect effects along supply chains that amplify 
the yearly impact, we reduce the magnitude of the resulting produc-
tion disruption by a rather conservative estimate of 50% due to indi-
rect effects to avoid double counting of indirect damages from the 
estimation procedure. Since the marginal effects are independent by 
definition, we combine them by multiplication into an overall impact. 
For the main simulations, we use a rolling average of 7 days to account 
for potential short-term lags in the impacts. For an alternative window 
size of 14 days, we find qualitatively similar, but due to the very strong 
smoothing of extremes and especially variability, considerably smaller 
risks in Supplementary Figs. 28–30—due to very small initial risk levels, 
relative amplification is large, especially for low- and high-income 
regions. While this forcing specification neglects high-frequency 
impacts, the qualitative patterns between country income levels 
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remain in Supplementary Fig. 29, thus strengthening the robustness 
of the trade-network-related heterogeneities between regions.

Considering potentially consecutive impacts, while our estimates 
of direct impact are agnostic to the temporal evolution of forcing, the 
supply-chain propagation model we employ would result in a stronger 
impact of consecutive impacts compared with disjoint same-level 
single-day impacts. While this neglects potential threshold processes 
caused by, for example, floods occurring only after a certain amount 
of total rainfall, supply-chain effects are likely to be one of the main 
drivers of consecutive impacts being larger than individual events.

Seasonal characteristics of the resulting production disruptions 
are shown in Supplementary Fig. 6—Northern Hemisphere summer 
dominates the forcing, which is strongest for UMICs. In summary, while 
the estimation methodology can be improved in future work, we are 
confident that the seasonal and sectoral differentiation is a possible 
realistic simulation of current and future impacts of extreme tempera-
tures and temperature variability, as well as rainfall and its extremes.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in the 
public repository for this publication (https://doi.org/10.5281/
zenodo.8250110) (ref. 55). The EORA multi-region input–output data 
are available from worldmrio.com. Region shapefiles used for plot-
ting are openly available from the GADM (v.4.1) project56 at gadm.org.

Code availability
Analysis code is available in the public repository for this publication  
(https://doi.org/10.5281/zenodo.8250110) (ref. 55). The utility- 
maximizing consumer module v.3.4.0 of the Acclimate model is  
available as open source via Github (https://doi.org/10.5281/zenodo. 
12751087) (ref. 57).
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Extended Data Fig. 1 | Detailed schematic of used data, simulation approach, 
and main results. a used data, b summary of production disruption impact 
generation, c map of World Bank income level classification, d sketch of 

Acclimate modelling structure, and e summary of main results. Illustrations 
under the free license of www.pixaby.com(clouds) or canva.com (all other).  
Maps use GADM (v4.1) boundaries.

http://www.nature.com/natsustain
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https://www.canva.com/policies/content-license-agreement/
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Extended Data Fig. 2 | Varying inequality between country income levels. Baseline shares of consumption by income quintile. a Low income countries, b high 
income countries, c lower middle income countries, and d upper middle income countries.

http://www.nature.com/natsustain
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Extended Data Fig. 3 | Heterogeneous consumption distribution by country 
income level and between income quintiles. Baseline relative consumption 
by income quintile. Left 2011–2020, middle 2021–2030, and right 2031–2040 
climate. Middle line shows median, box (25th, 75th) percentile, whiskers (5th, 95th)  

percentiles w.r.t. climate model ensemble (n = 15; 5 models x 3 SSPs). Subfigures 
show results by country income level: a Low-income countries (LIC), b lower 
middle-income countries (LMIC), c upper middle-income countries (UMIC), and 
d high-income countries (HIC).
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Extended Data Fig. 4 | High income risks dominate under weighting by share 
of total consumption. Percentile by income quintile. Left 2011–2020, middle 
2021–2030, and right 2031–2040 climate. Middle line shows median, box (25th, 
75th) percentile, whiskers (17th, 83rd) percentiles w.r.t. climate model ensemble 

(n = 15; 5 models x 3 SSPs). Subfigures show results by country income level:  
a Low-income countries (LIC), b lower middle-income countries (LMIC), c upper 
middle-income countries (UMIC), and d high-income countries (HIC).
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Extended Data Fig. 5 | Heterogeneous imports of consumption goods 
by baskets and country income level. Panels show percentage of value 
originating from the different country income levels (color code) including 
second order suppliers for a low-income countries (LIC), b lower middle-income 

countries (LMIC), c upper middle-income countries (UMIC), and d high-income 
countries (HIC). Bars show total consumption and the individual categories of 
consumption goods.
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Extended Data Fig. 6 | Risk inequality between 1st and 5th quintile. Difference 
between the 90th percentile of consumption losses of lowest minus highest 
income in baseline relative consumption (%). Combined data for all decades of 

the ensemble median difference between lowest and highest income quintile. 
Grey shading indicates countries with low data quality or without data. Maps use 
GADM (v4.1) boundaries.
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