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Abstract This paper looks at the co-evolution of toxic industrial pollution and
economic deprivation by means of spillovers from the plant’s production activities.
Geolocalised facility-level data from the European Pollutant Release and Trans-
fer Register (E-PRTR) are used to calculate annual chemical-specific pollution,
weighted by its toxicity. We combine the latter with regional data on employment,
wages, and demographics sourced from Cambridge Econometrics, covering more
than 1200 NUTS-3 regions in 15 countries, over the period 2007–2018. We em-
ploy quantile regressions to detect the heterogeneity across regions and understand
the specificities of the 10th and 25th percentiles. Our first contribution consists in
giving a novel and comprehensive account of the geography of toxic pollution in
Europe, both at facility and regional level, disaggregated by sectors. Second, we
regress toxic pollution (intensity effect) and pollutant concentration (composition
effect) on labour market dimensions of left-behind places. Our results point to the
existence of economic dependence on noxious industrialisation in left-behind places.
In addition, whenever environmental efficiency-enhancing production technologies
are adopted we observe associated labour-saving effects in industrial employment,
but positive regional spillovers. Through the lens of economic geography, our results
call for a new political economy of left-behind places within the realm of sustainable
development.
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1 Introduction

What do facilities such as ex-ILVA in Italy, ArcelorMittal in France, INEOS Chem-
icals Grangemouth in the UK, and Lausitz Energie Kraftwerke in Germany have
in common? They are tangible illustrations of geographies characterised by the co-
evolution of toxic industrial pollution and economic deprivation.

Inspired by those examples, this paper intends to address the geography of left-
behind places from an environmental perspective. The existing literature has pre-
dominantly characterised left-behind places in terms of their economic and political
dimension. We propose a new characterisation of left-behind places as territories in
which socio-economic deprivation, measured as negative employment, wage, and
demographic prospects, coexist with toxic pollution. To achieve this objective, we
empirically examine the relationship between what we ex-ante identify as left-be-
hind places – NUTS-3 geographical units located in the lower percentiles of labour
markets, as measured by employment, wages, and demographic outflows – and toxic
emissions.

The theoretical rationale behind the link between toxic pollution and left-behind
places is that the presence of a highly polluting facility in a given area might ad-
versely affect regional economic development, both in terms of employment segre-
gation in such facility and sector, inducing dependence on noxious industrialisation,
but also in terms of the poor economic trajectory and bad specialisation. The latter
highlights an economic development path unable to divert from a lock-in, potentially
resulting in a decline in employment opportunities over time and a dampening effect
on local labour markets (see relatedly Ash and Boyce 2018; Boschma et al. 2017).

The presence of these facilities exerts a significant influence on a given terri-
tory, giving rise to both direct and indirect links with its economic development and
labour markets. This can be attributed not only to the typically large size of the estab-
lishments but also, more fundamentally, to the materialist and historical roles these
workplaces play in shaping the socio-economic dynamics of the involved regions.
Geographic disparities co-evolve with path-dependent processes, the latter stratifying
along different dimensions: advanced production and complex industrial diversifi-
cation go hand in hand with high-innovative activities and good jobs (Rodrik and
Stantcheva 2021), raising employment opportunities for the “winning” regions. On
the other side, deindustrialisation, deterioration of productive capacity and locked-in
productive activities with low complexity characterise left-behind places, with low-
paid jobs and reduced employment opportunities.

So far, only a few case studies have been conducted in such places in order to
highlight the role polluting activities play (Greco and Bagnardi 2018; Feltrin et al.
2021). In addition, the literature lacks both a quantitative way to identify such places
and a comprehensive mapping of their actual status and evolution. Beyond the eco-
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nomic characterization of social inequality, what happens in terms of environmental
inequality? Far from random order, the distribution of highly toxic industrial ac-
tivity across regions tends to be concentrated as well, and it does so exactly in
places experiencing socio-economic deprivation. In this respect, environmental and
social inequality tend to stratify. More specifically, is toxic pollution linked to socio-
economic inequalities and industrial decay at the regional level?

In order to address such question, we use geolocalised facility-level data from the
European Pollutant Release and Transfer Register (E-PRTR) (European Commission
2006) to calculate annual chemical-specific pollution, weighted by CAS-number
toxicity using the USEtox 2.12 model (Fantke et al. 2017). The E-PRTR contains
environmental data from over 30,000 georeferenced industrial facilities in Europe,
with information on quantities of 91 key pollutants released into air, water, and
land. Our first contribution is therefore to produce a geography of toxic pollution.
Accordingly, nowadays many left-behind places are still heavily dependent on fossil
and other toxic industries, mainly producing metals, minerals, chemicals, and other
raw materials.

Given the geography of toxic pollution, our second contribution is to investigate
the nexus between toxic pollution and the socio-economic spillovers on industrial
labour markets. Therefore, our dependent variables are defined as left-behind places.
Our explanatory variables are two indices of toxic emissions, one accounts for the
sheer quantity of toxic emissions, the other accounts for quality improvements in
the emissions’ mix. To create those indices, we aggregate facility-level pollution by
sector at the regional level. Our analysis covers more than 1200 NUTS-3 regions
for 15 European countries, over the period 2007–2018, and includes high-polluting
traditional industries. Such empirical design allows us to detect potential lock-in
dynamics in bad specialisation strategies. Therefore, our second contribution lies
in identifying the particularities of left-behind places from a socio-environmental
perspective. Third, after mapping toxic pollution to left-behind places, we study
channels and sources of spillovers from industrial activities to the whole regional
economy by moving from the geography of places to the geography of regions.

We build two indices of pollution: a toxic pollution index, weighting the quantity
of pollutants emitted by their toxicity (via CAS number), and a concentration index,
capturing the pollutant portfolio at the facility level. The intensity of pollution, i.e., its
overall toxicity, and the pollutant concentration are contrasted, by means of quantile
regression, against the dynamics of left-behind places in terms of direct sectoral
level links with industrial employment and wages, and indirect regional level links
at the NUTS-3 level. By the latter, we study the potential spatial spillovers in the
regions left behind, in terms of employment, wages, and demographic losses.

We lay out two channels of toxic pollution propagation: a first-order channel
according to which intensity of toxic pollution is positively associated with employ-
ment and wages at the industrial level. Not surprisingly, this result mainly holds
for the lower quantiles of wages and employment distributions, therefore in favour
of the noxious dependence that left-behind places have developed with industrial
decay (Feltrin et al. 2021). A second-order channel according to which the reduc-
tion of the pollutant mix at the facility level, a proxy for technical change or inputs
recombination in the context of environmental efficiency, is negatively associated
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with industrial employment and wages, again with higher magnitudes for the lower
quantiles of the distributions. In this respect, the abatement of toxic pollution via
improved environmental efficiency processes might spur employment reallocation
toward other, less noxious sectors of activity, rather than noxious industrialisation.
We finally document the existence of spatial inequality feedback loops at the re-
gional level, according to which toxic pollution is robustly negatively associated
with net migration from left-behind places. Vice versa, the increasing concentration
of the pollutant mix reduces the probability of relocation from a given place.

The rest of the article is structured as follows. The following Sect. 2 embeds
the environmental dimension of left-behind places into an economic geography
perspective. Sect. 3 describes our data and methods, including how we construct our
explanatory variables. The descriptive evidence in Sect. 4 gives a nuanced account
of the geography of toxic pollution in Europe, both at facility and regional level,
and disaggregated by sector. Sect. 5 explains our estimation strategy and shows
the estimation results, for both the direct links focused on industry, as well as the
indirect links with the regional economy as a whole. Sect. 6 concludes and lays out
several policy considerations.

2 The environmental dimension of left-behind places

The economic geography literature has not yet devoted specific attention to the en-
vironmental dimension of left-behind places and neither to the geography of toxic
pollution. Left-behind places are conceptually not so far from the South regions
in uneven development theory (Prebisch 1950), which builds upon dependence,
power structure, and persistent positional asymmetries (Pavlínek 2018; Leyshon
2021). However, uncovering left-behind places involves expanding the more tradi-
tional economic literature on North-South gaps and unequal development (Cimoli
and Dosi 1995) with a territorial and geographical focus (Boschma et al. 2017).
Such places have in common the experience of economic stagnation or even de-
cline, depressed wages, demographic loss, and a general pattern of abandonment.
This marginalisation was then compounded by the policy tendency to target ur-
ban agglomerations, “smart cities”, and innovative hub-clusters as main engine of
economic growth (MacKinnon et al. 2022).

Furthermore, the geography of discontent and left-behind places are closely re-
lated concepts. With the recent surge of populist and anti-system tendencies around
Europe (Rodríguez-Pose 2018), for instance, the Brexit referendum (Goodwin and
Heath 2016; Antonucci et al. 2017), left-behind places conceptually have received
increasing attention. The ballot box backlash brought to the forefront socio-eco-
nomic issues that have grown out of long-term tendencies, but have often been
neglected by the economics literature. Hence, while deindustrialised, marginalised,
and declining areas have moved out of policy focus, their urgent political relevance
has sparked general renewed policy attention. The following subsections explain the
intersection between a new conceptualization of left-behind places under the lens of
economic geography. We mobilise two broad concepts, namely i) path dependence
and regional lock-ins, and ii) the political economy of left-behind places.
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Path dependence and regional lock-ins constitute key mechanisms elucidating
the materialist dimension of left-behind places. Lock-ins entail place- and history-
dependent paths occurring by means of the continuous reproduction of localised
knowledge and socio-technological regimes. Specialisation, especially in the pro-
duction of less dynamic and less complex products, pushes toward low growth
trajectories and higher vulnerability to economic crises (Dosi et al. 2022).

The properties of sectoral systems of innovations for economic development were
recognised long ago (Malerba and Orsenigo 1996). Traditionally, heavy industries
are expected to differ in their technological regimes of innovation and competition
compared to others (Breschi and Malerba 1997). In fact, they are not susceptible to
either high levels of innovation or intense competition (Tödtling and Trippl 2005).
Therefore, ex-ante heterogeneity of between-sectoral pollution patterns is expected
to be more relevant than within-sectoral ones. However, research on disproportion-
ality (Freudenburg 2005; Collins et al. 2016) and co-pollutant elasticities (Dedoussi
et al. 2019; Zwickl et al. 2021), looking at pollution at the facility-level, finds little
evidence for “technological imperatives of a given sector” to pollute, also when con-
trolling for size. In fact, in general, it seems that major polluters are often within-
sector outliers characterised by a low rate of efficiency, indicating that environmen-
tal damage is often neither economically nor technologically required by the variety
of production techniques available. In this respect, pollution, and particularly high-
scale toxic pollution, is a proxy for low-technological dynamism and absence of
investment in efficient techniques of production, rather than a necessary externality
of the sector.

Consider, for instance, the well-known case of the ex ILVA steel plant in Taranto,
Italy (Greco and Bagnardi 2018). The latter represents a clear combination of lack of
technological upgrading, absence of investment in enhancing techniques of produc-
tion, and purported employment-health trade-off, revealed by an ownership-manage-
rial orientation historically resistant to promote technical progress in the plant. How-
ever, the mono-industrialisation pattern of the area has created a strong economic
dependence in terms of job opportunities. Another example is the once-notorious
Ruhr region in West Germany, especially the cities of Duisburg and Bochum (Fröh-
lich et al. 2022). Nowadays, this region is marked by a high incidence of toxic
pollution and structural weakness, indicating the importance of equity considera-
tions (Arora and Schroeder 2022). Grabher (1993) gives an in-depth explanation
of the lock-in of regional development in the Ruhr area, once a complex industrial
growth pole, deeply specialised in coal, iron, and steel. As we shall show, many
industrial complexes, especially in the energy and steel industry, are still operating
in this area, however, the social contract unraveled, and employment worsened or
disappeared. As Grabher (1993) argues, the “weakness of strong ties” emerges as
the main cause of such lock-in trajectories.

Are left-behind places a necessary cost to pay for economic development? In the
presence of toxic pollution, left-behind places can be considered industrial sacrifice
zones (Lerner 2012). In such contexts, socio-economic erosion is a key agent nec-
essary for the reproduction of spatialities of power marking the difference between
cores and peripheries (Massey 2009). Exposure to toxic harm coupled with the slow
decay of chemical change maintains and reinforces regional divergences. The con-
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cept of sacrifice allows to conceptualise toxic pollution as an intended imposition
of power over a region and its inhabitants, creating an uneven toxic geography, and
implies the “right to pollute” enabled by a naturalised economic power (Freudenburg
2005).

Industries that are dirtier, more dangerous, and more threatening to human health
present a special case for the spatiality of power, as conceptualised by Massey
(2009). Around those industries, social and labour struggles are actually shaped by
their objective relation with capital directed to polluting activities. Given that such
places have materialist interests embedded into the production process, place and
path dependency mutually reinforce each other, and lead to a lock-in of pollution-
dependent growth. Indeed, the geography of toxic pollution might also help to
understand the direction in which the political economy of left-behind places might
manifest by means of the spatial reproduction of power.

Certainly, toxic pollution is not the sole cause of economic decline. Indeed, there
are plenty of places with high levels of exposure to toxicity which are not left behind
from a socio-materialist perspective. In fact, in the following, we distinguish two
different types of exposure to toxicity: an index of total weighted toxicity, which
accounts for a size effect, and an index that measures any type of improvement in
the composition of the portfolio of pollutants, in order to track upgrading trends
in the pollution mix. Left-behind places are measured in terms of levels of the
distribution of employment, wages, and migration flows. They are in the left part
of the empirical distributions of these three labour market variables, depending
on the quantile regression that will be estimated. We expect, following the lock-
in hypothesis, that those areas will be more dependent on toxicity, as a first-order
channel. At the same time, we expect that any path of industrial upgrading will
incorporate less polluting but also more efficient techniques, or input combinations,
and in that require less employment.

3 Data and Methods

Our aim is to give an account of the geography of toxic pollution in Europe, to then
study the co-evolution of toxic pollution on economic deprivation, in particular with
respect to employment, wages, and net migration flows. This allows us to investi-
gate the environmental dimension of left-behind regions. We combine two datasets
in a novel way: facility-pollution data and regional economic data at sectoral level,
covering more than 1200 regions in Europe, over the period 2007–2018. Sect. 3.1 de-
scribes the dataset of facility-specific industrial pollution sourced from the E-PRTR,
from which we calculate two measures at the sector-region-year level. The first
index is the facility-level pollution augmented by its toxicity which informs about
an intensity effect (Sect. 3.2), while the second is a pollutant concentration index
which informs about the mix of the facility pollutant portfolio (Sect. 3.3). Sect. 3.4
presents the industry-level distribution of the constructed indices. Sect. 3.5 describes
the set of outcome variables sourced from Cambridge Econometrics (employment
and wages) and Eurostat (migration), which illustrate the different dimensions of
left-behind places.
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3.1 Industrial facilities, sourced from E-PRTR

We get facility-level pollution data from the European Pollutant Release and Trans-
fer Register (E-PRTR) which provides environmental data from industrial facilities
in European Union Member States, Iceland, Liechtenstein, Norway, Switzerland,
Serbia, and the UK (European Commission 2006). Starting from 2007, the register
has been updated every year with annual data reported by some 30,000 industrial fa-
cilities covering 65 economic activities. Each active industrial facility is required to
provide annual information on the deliberate and accidental quantities of pollutants
released to air, water and land. This data covers 91 key pollutants including heavy
metals, pesticides, greenhouse gases and dioxins. The E-PRTR defines a pollutant
as “a substance or a group of substances that may be harmful to the environment
or to human health on account of its properties and of its introduction into the
environment” (European Commission 2006, Annex I, Article 2, p.74). Hence, the
E-PRTR gives insights into the releases and transfers of regulated substances of the
largest industrial complexes in Europe. Annex I of the E-PRTR Regulation lists 65
activities, grouped into 7 activity sectors.1 The information to which sector a facility
belongs allows for an industry-specific analysis.2

To build our original data set, we select emissions released by air, taking into
consideration both deliberate and accidental emissions, and drop facilities with data
entries for five or fewer consecutive years, as we want to focus on polluters that have
shown some degree of continuity with regard to their presence in and hence possible
impact on the territory.3 Facilities that did not exceed a threshold of emissions as
established by the Commission (2006, pp. 83–86) do not have to report in the
E-PRTR in that specific year (even though these facilities were still operating), which
leads to missing data within the facility-specific time series. If pollution records are
missing in one or more years, but are present before and after, we perform a linear
interpolation in order to control for those missing values.4

We are focusing on the countries where most facilities are located, i.e., countries
with a considerable level of industrial activity. By definition, the nexus industrial
pollution-employment dynamics is less interesting in regions with little to no indus-
trial pollution, as suggested by the E-PRTR data. Hence, to sharpen our analysis, we
drop the countries that belong to the lowest five percent in terms of the number of

1 These sector are: agriculture and leather industry, chemical industry, energy, production and processing
of metals, mineral industry, paper and wood production and processing, waste and waste water manage-
ment.
2 An extensive overview of the E-PRTR classification including a detailed description of all activities
covered by our data can be found in the Appendix, Table 8.
3 The minimum presence in the data set is one year, the maximum 13. On average, a facility has pollution
entries for ten years. Eleven percent of facilities are present in the data base for five years or less. Those
are the facilities that we exclude from the analysis.
4 This is motivated by the assumption that missing values, i.e., gaps, arise from the threshold issue. Missing
years at the beginning or the end of the time period instead indicate the ceased activity of a facility and
therefore are not interpolated. This is analog to the procedure proposed by Rüttenauer and Best (2021b),
being confronted with the same E-PRTR data issue. Linear interpolation however only affects a small
portion of the entire emission data set (1.78 percent), ruling out the threat of a systematic bias.
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polluting facilities. This leaves us with the following 15 countries: Austria, Belgium,
Czech Republic, Germany, Spain, Finland, France, UK, Greece, Italy, Netherlands,
Poland, Portugal, Romania, and Sweden.

The top ten polluting facilities of the four most toxic sectors (energy, metals,
minerals, chemicals), ranked by the sum of emitted pollutants over all years, are
presented in Table 1. It lists the names of the facilities as well as the countries
and cities that host such facilities, which provides a first glimpse of the detailed
information provided by the E-PRTR dataset.

3.2 Measuring toxic pollution

The E-PRTR allows to disentangle pollutants and their underlying toxicity. Indeed, it
is well known that pollutants from industrial facilities are dangerous to human health
and the environment. The amount of pollution and its pollutant mix is a result of the
existing technologies and production processes of the industrial system. Although
progress has been made in terms of reduction of the environmental impacts of toxic
pollution from industry through regulations and bans, the evidence tells us that there
are still innovative search efforts around toxic chemical components (Biggi et al.
2022). Moreover, as we shall see, even banned compounds are still present in the
E-PRTR, for example hexachlorobenzene and polychlorinated biphenyls, which are
banned globally and universally. They belong to the ten most toxic pollutants present
in the data.

In terms of toxicity, the chemical with the highest toxicity in absolute is mercury
and its compounds (HG), which clearly emerges as an outlier being twelve times
more toxic than the average compound in the data set, and is a highly potent neu-
rotoxin that is closely linked to energy production. For instance, in 2020, the EPA
proposed to roll back its Mercury and Air Toxics Standards (MATS) as regulatory
limits on hazardous air pollution from coal-burning power plants (EPA 2019).5 It is
hence crucial to account for pollutant’s toxicity which differs widely across pollu-
tant groups and single compounds. Given the heterogeneous toxicity of the different
pollutants, we weigh pollutants by their toxicity.

We focus on long-term exposure to all pollutants that are known to be dangerous
to human health. Out of the original 91 key pollutants we retain 41 distinct pollutants,
whose toxicity varies by several magnitudes.6 The chemical group of heavy metals is
the most toxic; at the same time, they are frequent due to wide industrial applications.
As said, the data set also shows the presence of several pollutants that have been
banned worldwide since the Stockholm convention from 2001.

We account for the variation of toxicity by weighting the quantity (mass in kilo-
gram) of each pollutant by a toxicity weight that we source from the USEtox 2.12
data base (Fantke et al. 2017), as shown in Eq. 1. We match pollutants with their
respective toxicity via information on Chemical Abstracts Service numbers (short

5 This decision is based on cost-benefit analyses, trying to economically justify industrial contamination
and disregarding the significant health and environmental benefits by reducing a broad range of hazardous
air pollutants, especially mercury, as argued by Aldy et al. (2020), see also Ofrias (2017).
6 The full list of toxic pollutants retained for this analysis can be found in the Appendix, Table 7.
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CAS), which are numerical designations for chemicals of the American Chemi-
cal Society. The same methodology has been applied, for instance, by Rüttenauer
and Best (2021a).7 USEtox is a scientific consensus model endorsed by the UN’s
Environment Programme “Life Cycle Initiative” for characterizing human and eco-
toxicological impacts of chemicals. By matching each pollutant to a toxicity weight,
we enable the comparative assessment of chemicals, i.e., the toxic significance of
releases of different pollutants.

Therefore, at facility level, pollution quantity weighted by toxicity, called Tox
Poll hereinafter, can be defined as:

Tox Pollit D
PX

p=1

Tox Weightp � Quantityipt (1)

for each pollutant p and facility i in year t . In 2007, total weighted toxic pollution
amounted to 1.62 billion tons. In comparison, in 2017, facilities released a total of
1.29 billion tons. The facility-level measure Tox Pollit will then be aggregated by
sector and region later on, which will be our main explanatory variable throughout
the analysis.

Table 2 Summary table of industrial facilities in E-PRTR sample, by country. Toxic pollution is
expressed in millions of tons and weighted by toxicity. The last column “Percentage total toxic pollution”
refers to a country’s share of toxic pollution to all pollution in the data set, and sums to 100. The first row
in the summary table shows the country with the highest level of aggregate toxic pollution

Country Number of Number of Toxic pollution Percentage total

code facilities distinct pollutants emitted toxic pollution

FR 513 33 24874 13.97

ES 382 32 23666 13.30

DE 397 31 23494 13.20

GB 603 38 20385 11.45

PL 273 30 19242 10.81

IT 267 31 13963 7.84

CZ 93 27 11361 6.38

BE 169 37 9957 5.59

GR 37 27 6552 3.68

PT 79 22 6050 3.40

SE 77 25 4786 2.69

NL 137 29 4775 2.68

FI 81 20 4712 2.65

RO 39 17 2265 1.27

AT 32 20 1920 1.08

7 The E-PRTR provides the CAS numbers for a large majority of the present components. We have at-
tributed the missing CAS numbers manually if applicable, collaborating with an organometallic synthetic
chemist to ensure accuracy in the matching. In the case of heavy metals the CAS registry number for the
most stable metal cation was assigned, which matches the form typically encountered and most relevant in
the environment.
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The summary Table 2 illustrates the scope of the E-PRTR data set in terms of
countries, facilities, and distribution of distinct pollutants and toxic pollution in
Europe. Countries are ranked by their number of facilities. While the four larger
economies rank in the top positions, the evidence reveals the presence of eastern
countries such as Poland and Czech Republic – among highly toxic polluted coun-
tries, while Sweden, the Netherlands, and Finland rank in the bottom. Therefore,
the index informs about different polluting strategies and ensuing impacts across
facilities by countries.8

3.3 Concentration index of pollutants

Our analysis covers high-polluting industries (energy, metals, minerals, chemicals,
etc.), largely characterised by low-tech, scale-intensive facilities. Such plants, over
time, might have however invested in technological upgrading, reducing their en-
vironmental impact on the territory, but also employment requirments, as usual in
process innovation. Hence, we investigate whether efficiency-enhancing technolo-
gies are actually labour-saving, being associated with employment losses in indus-
try. Lacking a direct measure of technological adoption, we proxy environmental
technology as the facility-level reduction of the mix of toxic pollutants emitted.
Therefore, we intend the ex-post reduction of pollutant mixes as a proxy for recom-
bination of materials, parts, components, and energy processes able to reduce the
end pollutant mix. For this purpose, our analysis employs a newly created pollution
concentration index that accounts for pollution reduction at the source, i.e., it is an
indicator for cleaner production. Departing from facility-level data, we are inter-
ested in understanding the potential employment forces of pollutant-mix reduction
technologies and processes. In this way, we test for a potential labour-saving effect
of environmental technology.

Fig. 1 Histogram of distinct
pollutants by facility. Source:
Own calculation based on
E-PRTR

8 Note that the data set does not provide any information about the productive output or the profit rates of
such facilities.
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In other words, other than the level of toxic pollution, we are interested in the
pollution portfolio, i.e., in the composition of toxins. In fact, we observe a great
deal of heterogeneity with respect to the number of distinct pollutants emitted at the
facility-level. Fig. 1 shows the histogram of distinct pollutants by facility, ranging
between one and 21, with an average of six pollutants by facility and year.

The literature on co-pollutants with respect to CO2 confirms this finding (Dedoussi
et al. 2019; Zwickl et al. 2021; Boyce 2020), acknowledging very heterogeneous
levels of so-called co-pollutant efficiency for fixed amounts of CO2.9,10 To capture
the heterogeneity of the pollutant portfolio, we construct a Herfindahl-Hirschman
Index (HHI) of the pollutant concentration at facility-year level. It is defined as the
sum of all squared relative pollution shares and is calculated as:

HHIit D
NX

pD1

1

pit

2

; (2)

where p is the number of distinct pollutants and 1
p
is their relative share. The mean

of this facility-level HHI is approx. 0.33.11

The index accounts for the composition effect and in that proxies for the de-
gree of innovativeness (backwardness) of the production process in use. In line with
this, Freudenburg (2005) finds that major polluters are often inefficient producers
of low-value commodities. Hence, this measure goes beyond so-called end-of-pipe
technologies, which are mostly driven by incremental innovations as they are aimed
at mitigating already existing environmental problems. What we aim to capture,
instead, is the implementation of technological and production processes that re-
duce the amount of dangerous, polluting substances introduced into water, land, air,
therefore reducing the danger to society and the environment. Such transition and
conversion processes then lead to changes in the technological-organizational struc-
ture of the plant and can be considered as a form of eco-innovation as described
in Cecere et al. (2014). From the point of view of the firm, adopting new production
processes for pollution prevention can be motivated by cost reduction, productivity
gains, safety issues, waste reduction, and the adaptation to technological change.

To validate the proposed index, we show anecdotal evidence of its use as a proxy
for environmental technology adoption. In Fig. 2, we compare two Polish power sta-
tions over the entire time horizon. The left panel depicts the pollutant concentration
index (smoothed) for the Dolna Odra Power Station, the right panel for the Chorzów
Power Station. Both plants belong to the energy sector, more precisely, they are two
power plants that rank among the highest quantiles in terms of pollution.

9 Co-pollutant efficiency measures the ratio of co-pollutant damages to carbon dioxide emissions. From
a policy point of view, such co-benefits arise when compliance with a regulation leads to reductions in
other pollutants that were not the regulation’s intended target.
10 The E-PRTR does not provide data on industrial output or production, hence those contributions to the
literature use CO2 as a proxy for size.
11 The minimum of the index is approx. 0.05, i.e., implying a relatively equal share of pollutants. Energy
and metals are the two main industries with such a multi-pollutant portfolio.
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Fig. 2 Pollutant concentration
index (smoothed) over time
for Dolna Odra Power Station,
Poland (left panel), and Chorzów
Power Station, Poland (right
panel). The left panel depicts
a case of improved concentration
over time (increase in HHI),
and the right panel of worsened
concentration (decrease in HHI).
Source: Own calculation based
on E-PRTR

In 2017, the Dolna Odra Power Station recorded toxic pollution equal to 211
tons, and the Chorzów Power Station equal to 175 tons, therefore they both show
comparable end-of-period pollution levels. The case in the left panel is an example
of improved concentration over time (from 0.1 to 0.5, i.e., an upgrading case), while
the right panel shows the opposite (from 0.24 to 0.12, i.e., a downgrading case).
The Dolna Odra Power Station is indeed an example of a facility that successfully
decreased its number of distinct pollutants, and (consequently) the overall amount
of toxic pollution. In 2007, the plant emitted 12 different toxic compounds, among
others Arsenic, Cadmium, Chlorine, Chromium, Copper, Lead, Mercury, PCDD,
and PAHs. In 2017, this number shrank to two different compounds, which are
Chlorine and Mercury. Notice, however, that Mercury is the most toxic single
toxin within coal-fired power plants, considered one of the major emission sources.
A 2009 newspaper article announces more ‘clean’ energy from Dolna Odra thanks
to new flue gas desulphurization plants, i.e., a technological upgrade leading to
cleaner gas, with a contract value of approximately 25 million euro (PGE Group
2007). In line with EU standards, it provides technological solutions for thermal and
waste treatment. Generally, flue-gas cleaning describes a set of technologies that
remove S0, S02 and other toxic pollutants (e.g., Arsenic, Selenium, and Mercury),
often needed to comply with emissions’ regulations (Al-Abed et al. 2008).

3.4 Why industries matter

We move toward aggregating facilities at the industry level. In fact, we are inter-
ested in the industry composition with respect to toxic pollution and pollutant groups.
Given that our data set is industry- and pollutant-specific, we are able to disaggregate
and visualise toxicity-weighted emissions by industry by pollutant groups.12 Fig. 3

12 We distinguish between the following pollutant groups: Greenhouse gases, halogens, heavy metals,
(polycyclic) aromatic hydrocarbons ((P)AHs), persistent organic pollutants (POPs), and volatile organic
compounds (VOCs). Note that even though the E-PRTR collects information on CO2, it has no toxic-
ity information for local exposure and hence is not part of our data sample, which focuses on industrial
pollutants known to be dangerous for human health.
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Fig. 3 Total toxic pollution by industry, disaggregated by pollutant groups, and ranked from industry
from highest toxic pollution to lowest, over 2007–2018. Source: Own calculation based on E-PRTR

shows the disaggregation of such pollutant groups by industry. The pollutant group
of heavy metals account for the largest share of toxic pollution across all industries,
except for the chemical, agriculture, and leather industries, whose pollutant portfo-
lios vary significantly. The energy and metal industries are the heaviest polluters,
and their sectoral characteristics show high percentages of heavy metals compared
to other pollutant groups: approximately 50 percent of toxic pollution coming from
energy is associated with the release of heavy metals, while this share increases to
approximately 70 percent for the metal industry (see blue segment of bars).

Within the energy sector, the release of mercury and other highly noxious heavy
metals is mostly associated with coal combustion but also oil-fired power plants (EPA
2019). This makes the alarming case for the biggest industrial emitters of globally-
harming CO2, often situated in proximity to urban zones, being also a highly dan-
gerous local polluter.

Next, we explore the inter-industry variability of our measures of toxic pollution
and how they evolve over time. For doing so, we depict mean toxic pollution, in
logs, and mean pollutant concentration, as by the index HHI, by industry over time
(see Fig. 4). The overall time trend of toxic pollution is slightly decreasing, meaning
that most industries were able to moderately curb their toxic emissions down. The
metal, waste and wastewater, and paper and wood production industries, however,
show a stagnating trend over the period 2007–2018.

The pollutant concentration index is a proxy for technological efficiency at the
sectoral level, e.g., the end effect of the adoption of pollution-abatement technolo-
gies, potentially induced by environmental regulations, that reduce the number of
co-pollutants emitted. As shown below, the index increases over time, i.e., the av-
erage number of pollutants by region and sector decreases as facilities on average
reduce their number of pollutants by approximately 20%: from 0.41 in 2007 to 0.49
in 2018. The HHI measures the production of co-pollutants especially in the energy
sector, where CO2 is the main pollutant. However, for the remaining industries, it is
mainly a proxy for environmental and technological efficiency.
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Fig. 4 Mean toxic pollution
by industry from 2007 to 2018
(upper panel) and mean con-
centration index of pollutants
by industry from 2007 to 2018
(bottom panel). Source: Own
calculation based on E-PRTR

Across-industry variability of both measures is very high. The energy and the
metal industries clearly emerge as the two most pollution-intense and toxic industries
(see blue and dark red line in upper panel), while other sectors contribute very little
to overall levels of toxic pollution, for instance, waste and wastewater (orange line),
and agriculture and leather industry (green line). Average pollution concentration is
more clustered than toxic pollution. With regard to the former, the agriculture and
leather industry emerges as an outlier, with an index close to one, indicating mono
pollution.

The energy industry has the lowest pollutant concentration index, i.e., on average
is the industry that emits the highest number of different toxic pollutants (blue line
in bottom panel), followed by the metal industry (red line in bottom panel).

Higher levels of toxic pollution are on average associated with lower levels of pol-
lutant concentration, i.e., tend to have multi-pollutant portfolios as they emit a great
variety of different chemicals. A scatterplot confirms such an inverse relationship.
Fig. 5 plots unweighted pollutant concentration against toxic pollution. Every dot of
the same color represents one country in our sample. The clear negative relationship
indicates that on average facilities with a multi-pollutant portfolio also are bigger
emitters.

The within-industry clustering, especially evident for industries such as minerals
(see grey cross symbols) or metals (see blue cross symbols), reflects industry-spe-
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Fig. 5 Scatterplot of country averages of pollutant concentration (y-axis) and toxic pollution (x-axis)
across 2007–2018. Source: Own calculation based on E-PRTR

cific pollution patterns and production processes. However, we highlight significant
within-industry variation across countries. For instance, there are countries in the
chemical industry that have comparable levels of toxic pollution but different types
of pollutant mix, i.e., pollutant concentration indices (see, for instance, the vertical
variations of the black triangle symbols).

3.5 Regional Economic Variables: Cambridge Econometrics

Next, we turn to the regional economic variables. With these variables, we aim to
depict the local labour market in left-behind regions, often characterised by precar-
ious employment, underemployment, and demographic changes. The labour market
data come from Cambridge Econometrics, which combines regional and sectoral
data from both Eurostat’s REGIO database and AMECO, which is provided by the
European Commission’s Directorate General Economic and Financial Affairs. The
disaggregated data is available for 27 EU countries (all EU member states except
Malta) at NUTS-3 level and six sectors from 1990 to 2018.13 From this data base,
we use employment (both industry and total) which “covers all persons engaged
in some productive activity” and wages (both industry and total) for the countries

13 These are: A (agriculture, forestry and fishing), B-E (industry), F (construction), G-J (wholesale, re-
tail, transport, accommodation and food services, information and communication), K-N (financial and
business services), and O-U (non-market services).
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and years as in the E-PRTR data. All variables are expressed in logs, to handle the
skewness of the distributions.

In addition, we source population changes from Eurostat’s “demographic balance
and crude rates at regional level”. In specific, we look at crude rate of net migration,
which represents total population changes cleaned for natural changes (births and
deaths). It is expressed as the change of the population in region r over the past four
years.14

4 Geography of Toxic Pollution

Our first contribution consists in giving a novel account of the geography of toxic
pollution in Europe. Below is shown the spatial distribution of the industrial facilities
in our data set. Emission quantity is expressed in kilograms, weighted by human
toxicity of each pollutant, and summed by facility and across all years in the sample,
2007–2018. The size of the dots is proportional to the amount of toxic pollution
released per facility, aggregated into four clusters. The color indicates to which
broad activity the facility is associated, as described in the legend of Fig. 6.

Most industrial facilities are located in France, Spain, Germany, and the UK.
Furthermore, industries are clustered within countries and regions. We thus carry
out our analysis at the sectoral level, not least because sectors are very heterogeneous
with respect to toxicity levels and emission quantities.

Zooming in, the example of Germany (Fig. 6.b) shows that the facilities that emit
the largest amount of toxic pollution are from the energy sector (green large dots).
They mostly belong to coal-fired power stations, located in the Rhine area (state of
North Rhine-Westphalia, Western Germany) and in Lusatia (state of Saxony, Eastern
Germany). However, also other industries are home to major polluting facilities,
for example “Werk Schwelgern”, one of Europe’s biggest steelworks, also located
in the Rhine area (city of Duisburg). Indeed, a recent study on structurally weak
regions in Germany points to the cities of Duisburg and Dortmund – both in the
Rhine area heavily impacted by deindustrialisation –, as well as several areas in
Eastern Germany (Bitterfeld-Wolfen and Vorpommern-Greifswald) (Das Progressive
Zentrum 2022). This anecdotal evidence points to a potential link between the
presence of highly toxic industrial complexes and regional economic deprivation.

The E-PRTR provides geospatial information, i.e., longitude and latitude, for ev-
ery facility. We use the latest Administrative Level data from Eurostat (2021) and use
the same NUTS-3 borders for all years. We attribute a NUTS-3 level code to every
point, i.e., a facility’s geolocation, that falls within a polygon from the shapefile.15

This matching strategy results in a data set of approximately 69.000 industry-region-
year pairs nested within 1.215 NUTS-3 regions (this methodology is explained, for

14 Sect. 2 of the Appendix shows a map of employment at NUTS-3 level in Europe and the descriptive
statistics of the regional economic variables using violin plots, see Figs. 8 and 10, respectively.
15 In this way, offshore facilities get dropped from the data set, for instance oil and gas platforms.
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Fig. 6 Spatial distribution of in-
dustrial facilities in 15 European
countries (a) and of Germany
(b) over 2007–2018. Colour of
the dots indicates industry, size
of the dot indicates quantity of
toxic pollution. Source: Own
calculation based on E-PRTR

instance, in Mohai and Saha 2006). Next, departing from Eq. 1, we aggregate toxic
pollution at industry-region-year level according to the following specification:

Tox Pollsrt D
NX

iD1

Tox Pollisrt; (3)

where i refers to facilities, s to sectors, r to NUTS-3 regions, and t to years.
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Fig. 7 Regional map of toxic
pollution in Europe, in logs,
averaged over 2007–2018.
Source: Own calculation based
on E-PRTR

Fig. 7 displays the distribution of toxic pollution in logs and averaged over the
years 2007–2018 across European NUTS-3 regions in the data set. This map shows
patterns of clustering of toxic pollution: a highly polluted region is likely to be
in geographical proximity to another polluted region. Such clusters are visible in
particular in Spain, the UK, Germany, Poland, the Czech Republic, and Romania.
Moreover, we notice that the polluted regions encompass both urban-deindustrialised
(i.e., Ruhr Valley) as well as rural types of territories (i.e., North Finland).

We proceed in a similar way to regionally aggregate the concentration index of
pollutants (HHI). We aggregate the HHI at sector-region-year level, and weight it
by the contribution of each sector to the overall regional toxic pollution, expressed
as a percentage (see right part of the equation). The weighted sectoral HHI is then
written as:

HHIsrt D
PN

iD1HHIit
Nsrt

� Tox Pollsrt
Tox Pollrt

: (4)

This regional concentration index has a mean of 0.22 and a standard deviation
of 0.25. Once aggregated, the heterogeneity of the HHI becomes especially visible
across industries, with facilities belonging to the energy, metals, and paper industries
having the highest number of distinct pollutants (so-called multi-polluters), and
therefore lower values of the concentration index.
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5 Toxic pollution and labour markets in left-behind places

In the following, we present our econometric specification, divided into direct links,
estimated for the industrial labour market, and indirect links, estimated at the regional
level, including therefore also non-industrial labour markets. In both cases, we are
interested in detecting the links between toxic pollution and employment, wages,
and migration (in the regional estimation), in order to characterise the labour market
associations in left-behind places.

5.1 Econometric Specification

We use quantile regressions as in Koenker and Hallock (2001) to estimate our
dependent variables. Quantile regressions are advantageous because they allow us
to analyse the different roles of toxic pollution for left-behind places, located in
the left tail of the distributions, vis-à-vis the rest. In this way, we take into account
the heterogeneity across regions regarding employment and wage levels, as well as
demographic changes. Furthermore, this estimation method is more robust to outliers
than OLS models and does not require assumptions about the parametric distribution
of the error term (see Koenker and Hallock 2001). We estimate percentile equations
for the 10th, 25th, 50th, 75th, and 90th percentiles. Quantile Regression methods
allow flexibility in the estimation of the coefficients, enabling us to obtain a range
of conditional quantile functions (CQF), which in our case will be given by the
employment, wages, and migration CQF.

Furthermore, we take into account that there are regions in the dataset for which
toxic pollution is zero due to the absence of a large industrial facility in that area.
This implies recoding region-year pairs for which we do not have data on toxic
pollution as zero.16 Hence, our predictor is left-censored, meaning that we can ob-
serve toxic pollution only above a certain threshold, as established by the E-PRTR
regulation (European Commission 2006) and our own methodology that drops non-
continuous polluters. We also find that the average employment and wage difference
between polluted and censored regions is positive. To correct for the censoring, we
introduce a binary indicator variable at region-year level, Indicatorrt, as specified in
Eq. 5.17 Following this approach, we estimate baseline specifications of the following
general form:

LBrt D ˛s C ˛c C ˛t C ˇ1 log.Tox Poll/srt C Indicatorrt C �Xrt C "rt; (5)

where the dependent variable LB, “Left-Behind”, is a vector that takes into consid-
eration three different dimensions of being left behind of a given NUTS-3 region r

in year t : log of employment, log of wages, and net migration. This is regressed on
sectoral toxic pollution, in logs, computed at the regional level. The nested nature

16 For 23.7 percent of the data set, we observe the economic variables, but do not observe the level of toxic
pollution.
17 Note that the indicator takes the value 1 for a censored region, i.e., when there is no observed pollution,
and 0 otherwise.
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of the empirical specification allows for taking into account sectoral heterogeneity,
which emerges as a key facet of the emission data.18 Sectoral toxic pollution is the
amount of pollution weighted by toxicity and emitted at the regional level in sector
s at time t . Indicatorrt is the dummy for the censored regions, for which we do not
observe any toxic pollution. ˛s, ˛c, and ˛t are sector, country and year fixed effects,
respectively. Xrt represents the set of control variables, which are (four-years) lagged
gross value added (gva) per capita and lagged employment.19 Both variables control
for regional economic activity. Gva is a proxy of the sectoral production/demand,
while lagged employment accounts for feedback effects from past levels of employ-
ment.20 Moreover, by including gva, we account for the potential contracting force
that the financial crisis has had, e.g., depressing industrial production, being asym-
metrical across European countries and regions, as laid out in Dijkstra et al. (2015);
Davies (2011); Groot et al. (2011), all pointing to spatial heterogeneity regarding
crisis sensitivity. Finally, standard errors are bootstrapped.

While toxic pollution is a measure of intensity and dangerousness, the concen-
tration index adds the notion of pollutant mix, or negative quality, to the analysis.
On average, sectors with multi-pollutant profiles also have higher levels of toxic
pollution as shown in Figs. 4 and 5. We hence augment the baseline specification by
introducing the pollutant concentration index HHIsrt at sector-region-year level:21

LBrt D ˛s C˛cC˛t Cˇ1 log.Tox Poll/srt Cˇ2HHIsrt C Indicatorrt C�Xrt C"rt: (6)

5.2 Direct links: Industrial labour market

We consider as direct the first-order associations at the industry level. We look at
the links between toxic pollution and pollutant concentration, and industrial labour
markets in terms of employment and wages. Table 3 departs from the baseline
specification as written in Eq. 5. The estimation of different percentiles provides
a nuanced picture of left-behind places (defined as the 10th and 25th percentiles)
vis-à-vis the rest. For employment in industry,22 which we refer to as industry em-
ployment, we find a positive and significant relationship, particularly for the lower

18 We perform a robustness check where we aggregate sectoral toxic pollution by region on the right-hand
side of the equation, hence abstracting from the industrial dimension and focusing solely on the regional
level. This leads to a regional-level empirical specification where the level of analysis is identical on both
sides of the equation. This reduces the sample size approximately by half. The qualitative results with this
alternative setup remain the same compared to the baseline specification, stressing the robustness of our
findings.
19 We carry out a robustness check on the control variables by using different lags, from two to five years.
However, this does not change the qualitative results of the analysis.
20 The inclusion of the lagged employment variable is standard in the estimation of labour demand equa-
tions.
21 A Wald test between the baseline and the augmented specification confirms the statistical significance
between those models.
22 “Industry” refers to industry as a whole and is consistent with the NACE Rev. 2 sectoral definition. It is
the lowest level of aggregation for which NUTS-3 level data is available.
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end of the distribution, i.e., the 10th and 25th percentiles (columns 1 and 2). The link
decreases along the quantiles, becoming even negative in the 90th percentile, even
though not significant. Hence, we find the association to be mostly limited to what
we identify as left-behind places, which are characterised by weak labour markets.
For instance, for the 10th percentile, a 1 percent increase in toxic pollution is associ-
ated with a 0.014 percent increase in industry employment. The result highlights the
economic dependence, above outlined, that left-behind places manifest with noxious
industrialisation. In addition, it points to poor economic trajectories and bad spe-
cialisation in those places whereby industry employment, even though potentially
of poor quality, is directly linked to the presence of noxious facilities. For the re-
gions characterised instead by higher levels of employment, the lack of significance
points to a decoupling between industry employment and toxic pollution. Indeed,
the higher the employment level of a given region, the higher the economic perfor-
mance therein, and the lower will be the burden exerted by bad specialisation, here
proxied by pollution at the sectoral level. Therefore, employment dependence on
toxic pollution overall decreases along the conditional distribution of employment.

For industry wages, a comparable picture emerges. While the coefficient of in-
dustry wages is positive for left-behind places (columns 6 and 7), the association
becomes negative for the higher quantiles. Hence, within regions with low industry
wages, toxic pollution is positively associated with wages, again signaling depen-
dence on the sector, while in regions with already high industry wages, the associa-
tion gets negative. The association for the 10th percentile is comparable in magnitude
with the median, however of opposite sign. The opposing association for left-behind
places vis-à-vis the rest is in line with the notion of spatial inequality feedback
loops as pointed out by Pinheiro et al. (2022). The declining co-evolution of toxic
pollution along the wage distribution, similar to the employment dynamics, suggests
that in high-wage regions, take the example of Bavaria, highly toxic facilities have
a penalizing effect on wages. These results therefore highlight the relationship being
heterogeneous along the conditional distribution of both industry employment and
wages. At the same time, they suggest that OLS estimation clouds such heterogene-
ity, undermining the specialty of left-behind places. Such heterogeneity therefore
strengthens the case for our choice of applying quantile regression to the data.

Furthermore, the indicator for the censored regions is always negative and sig-
nificant and increases monotonically along the employment and wage quantiles.
Hence, in left-behind regions (first two quantiles), the difference in labour market
variables between polluted and non-polluted areas is greater. The negative relation-
ship is mainly due to the degree of industrialisation and industrial activity, which
has a direct effect in terms of both economic development of the area and higher
pollution levels, when compared with e.g., rural areas where industrial activities are
not present. Overall, we document that toxic pollution impacts especially the left-
behind places. Lagged gva per capita is negative in the lower quantiles, indicating
a regional employment change towards sectors other than industry, possibly acti-
vated by noxious deindustrialisation. Lagged employment is always positive, with
high persistent magnitudes which decrease along the distribution.

Generally, left-behind places are considered to be both low-industry employment
and low-industry wages areas (as per our definition, see above), in line with the fact
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that such places often face industrial decline. Indeed, low industry employment is as-
sociated with both areas of deindustrialisation and areas which never industrialised.
The fact that our indicator of pollution intensity is positively associated with em-
ployment and wages only until the median of the distribution does signal that these
territories do experience economic dependence on toxic industrialisation, although
the overall share of industry employment is low. In fact, the intensity of pollution
is not significant in affecting the higher quantiles since they are not dependent on
industrial activity. Furthermore, the association of gva per capita signals that the first
two quantiles are dependent on industry gva, as the sign for employment becomes
negative. This means that when industry increases production, the number of peo-
ple employed in industry decreases, as per productivity gains that are employment-
shedding or as a mark of deindustrialisation paths, while it is positive for areas with
higher industrial employment. This is due to the fact that industrial territories with
complex industries that emit less pollution are generally concentrated in areas with
high employment in the service sector. Take three exemplary cases, North Rhine-
Westphalia in Germany, Auvergne-Rhône-Alpes in France and Emilia Romagna in
Italy. All three regions are in the higher quantiles of industry employment but all
of them are very much service-based areas.23 In order to better understand the cor-
relation between industry and service employment, we construct some additional
descriptive evidence in the Appendix. Fig. 9 shows a map of correlation coefficients
between industry and service employment by NUTS-2 regions. Indeed, the two
variables show high correlation coefficients with an average of 0.7 at the NUTS-2
level. Countries such as Germany, Poland, the UK, and Sweden show relatively
high inter-country heterogeneity. Especially East Germany, the Czech Republic and
Western Poland show relatively lower levels of correlation. The strong correlation
coefficient indicates that left-behind places are not low industry employment areas
because they are specialised in services (substitute positive specialisation) but rather
because they are generally low employment areas, both in industry and in services
(complementary bad specialisation).

Next, we include the pollutant concentration index, as per Eq. 6. Table 4 shows
the augmented specification. The introduction of the additional explanatory variable
does not change the qualitative results with respect to the baseline specification.
Again, we find that sectoral toxic pollution co-evolves with industry employment,
especially in left-behind regions. Looking at the newly introduced variable, sectoral
pollutant concentration, we see that the coefficients are negative along all quantiles.
For instance, looking at the 10th percentile, a 1 percent increase in pollutant con-
centration is associated with a 0.255 per cent decrease in industry employment. This
confirms that the concentration index is a proxy for efficiency-enhancing processes
inasmuch its increase over time signals the elimination of some specific pollutants.

Therefore, technological efficiency gains, proxied by the HHI increase over time,
have a labour-saving trait: if environmental technology increases, that is process
innovations to reduce and abate pollutant emissions, employment in industry de-
creases. As expected, such linkages steadily reduce in magnitude along the quantiles,
meaning that left-behind places, being more dependent on noxious industrialisation,

23 See Table 9 in the Appendix for examples of the correlation between industry and service employment.
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are also exposed to higher labour expelling forces whenever process innovation is
undertaken. The negative employment associations might be the consequence of
a reorganization of productive systems, processes, input recomposition, and new
techniques of production employing a higher capital/labour ratio, mantaining the
control for industry gva. Therefore, the type of technical change we measure, given
the neat negative link with employment, goes well beyond the effect that the in-
troduction of an end-of-pipe technology could have and hence validates our as-
sumptions. The associations with wages are coherent, with negative and statistically
significant coefficients in left-behind places.

Given the importance of industry heterogeneity, we now want to focus on indus-
try-specific pollution to pin down whether the origin of pollution plays a role in
affecting industrial labour markets. Therefore we show in the bottom part of Table 4
a series of dummy variables capturing the sectoral origin of pollution. Considering
that our dependent variables are industrial employment and wages, the associations
are negative, whenever significant, as expected, signaling substitution dynamics in
terms of industrial specialisation and composition across industries. Granted the
overall positive co-evolution with toxic pollution, seen as a sign of economic de-
pendence on noxious industrial specialisation, higher negative signs as in energy
and in waste and wastewater mean that if the area is specialised in those industries,
overall industrial employment eventually declines for transition to non-industrial
employment. In fact, both industries have facilities normally more embedded into
and located closely to urban areas. Their proximity to urban territories prompts
indeed higher possibility of tertiarization of the region.

5.3 Indirect links: regional spillovers

We now move on to present the analysis in terms of indirect links, i.e., the potential
propagation forces of industrial pollution beyond the industrial labour market to
the regional labour market as a whole. In this set-up we also add as a dependent
variable the regional net migration, a proxy for labour force outflows/inflows. In
doing so, we look at the entire bulk of employment and wages in other sectors of
the economy, beyond the industrial one. Associations are therefore expected to be
of lower magnitude, when compared to the previous specification, considering that
our measure of pollution is only related to industrial activities and does not take
into consideration pollution from, e.g., logistics, among the most responsible for
greenhouse gas emissions in the service sector. Therefore, the question we want to
address is the extent to which propagation phenomena from the industrial-polluter
complex exist, and affect other places in the region, beyond left-behind ones.

This time, we directly show in Table 5 the augmented specification including
toxic pollution and the concentration index. The regression table of the baseline
configuration can be found in the Appendix (Table 12). The coefficients for sectoral
toxic pollution are identical for both specifications (employment and wages), nega-
tive and significant across the board, but with a very low magnitude. In contrast to
the industrial labour market, in the regional specification, the negative coefficients
become relevant for the upper part of the conditional employment and, particularly,
wage distributions, in line also with the result of the indicator variable for censored
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Table 6 Indirect links with toxic pollution on regional demographic change, augmented specification
(Eq. 6) for regional net migration, expressed changes

Indirect Effects on Demography

(1) (2) (3) (4) (5)

Dep. Var: Net Migration, Changes

Quantile (%): 10 25 50 75 90

Log(Sectoral toxic pollution) –0.056*** –0.076*** –0.100*** –0.098*** –0.118***

[0.020] [0.015] [0.012] [0.011] [0.026]

Sectoral pollutant concentr. –0.141 0.310*** 0.754*** 0.767*** 1.085***

[0.125] [0.078] [0.079] [0.111] [0.207]

Indicator censored regions –1.150*** –0.449*** 0.519*** 1.002*** 1.640***

[0.180] [0.113] [0.122] [0.118] [0.214]

Log(gva per capita) lagged 1.506*** 2.609*** 3.456*** 3.617*** 4.114***

[0.264] [0.171] [0.138] [0.063] [0.251]

Log(employment) lagged 0.451*** 0.255*** 0.164** 0.082* –0.170**

[0.092] [0.048] [0.064] [0.048] [0.084]

Energy sector –0.367** 0.025 0.218* 0.265* 0.633***

[0.144] [0.106] [0.111] [0.139] [0.230]

Metal industry –0.491*** –0.301*** –0.317** –0.173 0.022

[0.165] [0.090] [0.137] [0.144] [0.194]

Mineral industry –0.354** –0.131 –0.139 –0.191 –0.183

[0.157] [0.101] [0.109] [0.135] [0.186]

Chemical industry –0.228 0.050 –0.046 –0.147* 0.060

[0.179] [0.081] [0.084] [0.077] [0.200]

Waste and wastewater –0.523*** –0.165 –0.214* –0.057 0.078

[0.136] [0.104] [0.126] [0.147] [0.182]

Paper and wood production 0.164 –0.045 0.017 –0.020 0.005

[0.119] [0.076] [0.118] [0.122] [0.202]

Country Effects Yes Yes Yes Yes Yes

Year Effects Yes Yes Yes Yes Yes

Obs. 23,087 23,087 23,087 23,087 23,087

Pseudo R2 0.1383 0.1609 0.17 0.1507 0.1321

Notes: Standard errors are bootstrapped. *** p < 0:01, ** p < 0:05, * p < 0:1

regions. This means that, across more advanced regions in terms of economic per-
formance, the presence of toxic pollution from the industrial sector is negatively
associated with employment and wages when compared to similar high-produc-
tive regions non-exposed (or less exposed considering the E-PRTR construction) to
toxic pollution. In this respect, toxic pollution does represent a clear signal of low-
innovative strategies, rather than a necessary burden that a community must bear.

As expected, the HHI shows positive but weakly significant associations with em-
ployment and wages. The result confirms that the HHI index is essentially a proxy
for industry-level technological improvements, therefore regions experiencing tech-
nological advancement, hereby in terms of abatement of some toxic pollutants, also
benefit from positive, although quite weak, co-evolvements with the labour market.
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Table 6 shows the results for demographic change, again employing the aug-
mented specification in Eq. 6. The results for the baseline specification can be found
in the Appendix (Table 13). Demographic changes are measured as the changes
in net migration, hence overall changes in the population cleaned for its natural
changes, births and deaths, measured across one year. The quantile approach is an
attempt to distinguish between regions of inflows (above median quantiles) versus
regions of outflows (below median quantiles), i.e., representing a stylised dynamic.24

Interestingly enough and in line with results on employment, the coefficient for
sectoral toxic pollution is negative and significant at the 1 per cent level for all
quantiles. The magnitude of the association however increases along the quantiles.
Higher quantiles are associated with regions that have experienced an influx of
inhabitants, i.e., a positive change. Therefore, the higher the influx of migrants
(higher quantiles) the higher the negative co-evolution with pollution. The flip side
is that toxic pollution is associated with a reduction in migration toward a given
region as destination. Lower quantiles, experiencing instead below-median changes,
and therefore being regions of abandonment, also record a negative and significant
co-evolution with toxic pollution, after controlling for the lagged employment and
the value added of the region, as in the other specifications.

The concentration index is instead positive whenever significant, meaning that
higher levels of concentration, i.e., less distinct pollutants, are associated with less
people leaving the region (below the median) or positively affect migration inflows
(above the median). This result is again inline with high levels of HHI as a proxy for
a less polluting, dangerous mix when compared to low levels of HHI representing
a more dangerous mix.

In line with our previous results and interpretation on the industry mix of pollu-
tion, especially the concentration of pollution from the energy sector is negatively
associated with migration outflow (below the median) or alternatively is positively
associated with migration inflow (above the median), as shown by the sector dummy
variable.

The result indicates that the energy sector, being the most proximate to urban,
diversified, and dynamic areas, is a signal of labour market attraction. The oppo-
site holds for traditionally low-innovative sectors such as the metal and mineral
industries, whose toxic emission encourages abandonment of the region, with as-
sociations particularly strong in the lowest quantile of the conditional demographic
change distribution. Therefore, bad specialisation in low-innovative, high-toxic in-
dustries favours economic deprivation of an area.

Overall, the study of the indirect associations of toxic pollution has confirmed
the presence of spatial spillovers ranging from the site of the industrial facilities
toward the entire region. Indeed, our place-based analysis helps to overcome the
productivist fictitious dichotomy between labour market dependence and exposure
to toxic pollution.

24 The distribution of the population change variable has a mean of 2.9, and hence is not centered around
0, otherwise the distribution behaves normally. Hence, for quantiles above the median, the regions can
always be characterised as regions of inflows. The majority, however not all, regions below the median can
be characterised as regions of outflows.
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Related to the question of why or how toxic pollution aligns with economic
deprivation, the first index holds significance. It relies on the weighted amount of
toxic emission by region, functioning as an indicator of regional-level specialisation.
This concentration manifests in specific industrial sectors, captured by their level of
toxicity. Indeed, pollutants are highly sector-specific, as Fig. 1 highlights (also see
various reports by the International Energy Agency, e.g., OECD et al. 2016).

In that way, the first index allows studying the extent to which toxic pollution –
emerging from sectoral specialisation of a given territory – affects the local labour
market. In this context, the theory of territorial lock-in and path dependency upon
high-toxic industrial sectors becomes pertinent: left-behind regions exhibit a stable
and positive relationship with toxicity in terms of employment and wages (compare
Sect. 2). This phenomenon is attributed to the pronounced economic dependence of
the territory on highly-toxic industrial sectors.

Apart from industrial lock-in, it is essential to consider potential paths for up-
grading or downgrading in terms of toxic emissions to comprehend the trajectory
of the territory. In this respect, the second index we propose captures the extent to
which the composition of the pollutant portfolio has changed over time: less toxic
portfolios are a proxy of an upgrading path, vice-versa, more toxic portfolios are
a proxy of a downgrading path. Therefore, the HHI index captures the channels not
of pollution as such, but rather as a proxy of the evolution of the lock-in trajectory.
Indeed, the index presents a stable and negative relationship with employment and
wages at the industry levels only in left-behind places, while it is not significant
in non-left-behind places. The rationale behind this is that it represents a proxy
for technological upgrading of the region, incorporating less emitting but also less
labour-intensive technologies.

6 Conclusions and policy implications

Arguably, the contemporary crises overlapping across social, economic, and eco-
logical spheres are creating systemic inequalities across space. We conceptualise
left-behind regions through economic deprivation and explore their environmental
dimension. We explore the co-evolution of toxic industrial pollution and socio-eco-
nomic deprivation through channels of path dependence, regional lock-ins, and the
labour-saving effects of technology, therefore adopting the lens of economic geog-
raphy and its scope of interpretation as a useful toolbox to address environmental
inequality. Using data for 15 European countries at NUTS-3 level, after providing
one of the first comprehensive attempts to map toxic pollution in Europe, we employ
quantile regression to study how toxic pollution and pollutant concentration impact
disproportionally the left-behind regions.

All in all, our findings trace histories of industrial decay, providing evidence
that persistent exposure to pollution works as a compounding factor aggravating
already existing socio-economic deprivation. This has compelling implications for
sustainable development. We find opposing results for left-behind places vis-à-vis
the rest, pointing to spatial inequality feedback loops. Due to path dependence in
industry, such left-behind places, often materially dependent on toxic industries and
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with a heavily impaired environment, find themselves locked in their poor economic
trajectories, and bad specialisation path they have evolved into. Therefore, for such
left-behind places, the trade-off between health and employment kept being perpet-
uated. In fact, Lerner (2012) uses the term “sacrifice zones” which jointly conceive
environmental toxicity and economic disinvestment. This concept has recently been
developed further by Feltrin et al. (2021) to coin the term “noxious deindustrialisa-
tion” as left-behind places where ongoing pollution and underemployment coexist.

Hence, while the sustained release of industrial toxic pollutants disrupts human,
environmental, and economic health, it maintains the status quo of reproductive and
social disparities. The political economy of left-behind places would suggest that
a transition of technological systems towards a zero-toxic world requires the co-evo-
lution not only of productive forces and technological domains but also of political
structures currently too much favouring inertia. Taken at large, the relationship be-
tween labour, capital, and the environment laid bare in the analysis raises questions
about the environmental and societal sustainability of capitalism (Faber 2008).

The empirical analysis strongly supports the need for a place-sensitive regional
policy, with an urgent focus on left-behind places, which can guide the new Just
Transition Fund (2021–2027) and EU cohesion policy. In order for environmental
and climate policies to even out territorial inequalities, policy-makers have to take
into account local contexts in terms of industrial specialisation, technological lock-
ins, employment segregation as well as the materialist and economic dependence
on highly toxic industries. Moreover, the results of our place-based analysis help
to partially overcome the productivist opposition between labour and environment,
as we show that whenever processes of environmental-technological upgrading are
undertaken, they tend to crowd out workers from the industrial labour market but
are associated with positive regional spillovers, improving labour market variables
overall. Thus, regions where fewer toxic pollutants are emitted are regions with in-
migration flows, while the opposite is true for regions characterised by a highly
diversified, highly polluting mix of pollutants.

Furthermore, it is crucial to understand the policy implications of a labour-saving
effect of environmental technology in polluting industries. A very recent publication
by the International Monetary Fund (IMF) lays out the high geographical concentra-
tion of high-polluting jobs (Bluedorn et al. 2022). However, the report stresses the
issue of labour reallocation, given that individual workers are less likely to success-
fully reallocate to greener jobs, hence compounding the disadvantages of already
left-behind people and places. Behind the impediment of a labour transition away
from toxic and fossil-dependent occupations towards greener ones is the lack of
an industrial policy able to create coordinated policy actions to govern the twin
(technological and ecological) transition (Bianchini et al. 2023). Although growing,
“green jobs” do not represent a sector per se but are rather occupations related to
the production of potentially “greener goods”. However, they hardly might represent
the solution for entire sectors and related supply chains under deep organizational
and productive restructuring, such as automotive. In this respect, place-based policy
initiatives must coexist with coordinated European industrial policies (Cimoli et al.
2009) aiming to build productive but sustainable capacity in the near future. Left-
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behind, peripheral regions ought to be the starting point for this type of policy action,
with guided reconversion and socio-economic upgrading.

Finally, our paper also connects to the broader concept of the geography of
discontent. If toxic pollution contributes to a place being left behind, then the envi-
ronmental dimension might matter for politics, i.e., populist stances, which however
are mostly anti-environmentalist. Instead, left-behind places would have reason to
become subjects in environmental struggles in general and the Green New Deal
in particular, due to their materialist dependencies on toxic economic growth. In
this regard, economists are advised to apply environmental justice approaches to
contemporary environmental challenges. This points to the general need to bring
deindustrialised and marginalised places back into policy focus, apart from their
political relevance.

Future lines of research include, firstly, the use of spatial econometric techniques
to detect spatial correlation processes across left-behind places. Second, a study of
growth patterns at the facility level could be useful to distinguish between “growth
by pollution” and “growth by decontamination” strategies. Thirdly, research could
delve into the materialist histories of left-behind places by looking at micro-level
data on workers, examining labour market outcomes, and intersecting class and
gender dimensions of environmental justice (Faber et al. 2021).

7 Appendix

7.1 Details on E-PRTR data sample: pollutants and sectors

Table 7 Summary table of 41 distinct toxic pollutants and CAS numbers as in our E-PRTR sample, listed
by pollutant groups and ranked according to their USEtox 2.12 toxicity score

Pollutant name Pollutant
CAS

Pollutant group name Toxicity score
(USEtox 2.12)

Tetrachloromethane 56-23-5 Greenhouse gases 0.0000974

Hydrochlorofluorocarbons 593-70-4 Greenhouse gases 0.0000301

Halons 1897-45-6 Greenhouse gases 4.71E-03

Chlorofluorocarbons 75-69-4 Greenhouse gases 1.75E-04

Hydro-fluorocarbons 811-97-2 Greenhouse gases 1.52E-04

Fluorine and inorganic com-
pounds (as HF)

75-02-5 Halogens 0.0000756

Chlorine and inorganic com-
pounds (as HCl)

136-40-3 Halogens 0.0000281

1,1,2,2-tetrachloroethane 79-34-5 Halogens 0.0000205

Mercury and compounds (as Hg) 14302-87-5 Heavy metals 3.49

Cadmium and compounds (as
Cd)

22537-48-0 Heavy metals 0.195

Arsenic and compounds (as As) 17428-41-0 Heavy metals 0.0538

Chromium and compounds (as
Cr)

18540-29-9 Heavy metals 0.0465

Lead and compounds (as Pb) 14280-50-3 Heavy metals 0.0428

Zinc and compounds (as Zn) 23713-49-7 Heavy metals 0.0155
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Table 7 (Continued)

Pollutant name Pollutant
CAS

Pollutant group name Toxicity score
(USEtox 2.12)

Nickel and compounds (as Ni) 14701-22-5 Heavy metals 0.00136

Copper and compounds (as Cu) 15158-11-9 Heavy metals 0.0000892

Benzo(g,h,i)perylene 191-24-2 (Polycyclic) Aromatic Hy-
drocarbons

0.000412

Anthracene 120-12-7 (Polycyclic) Aromatic Hy-
drocarbons

0.000288

Di-(2-ethyl hexyl) phthalate 117-81-7 (Polycyclic) Aromatic Hy-
drocarbons

0.0000228

Xylenes 1330-20-7 (Polycyclic) Aromatic Hy-
drocarbons

6.66E-04

Toluene 108-88-3 (Polycyclic) Aromatic Hy-
drocarbons

2.55E-04

Phenols (as total C) 108-95-2 (Polycyclic) Aromatic Hy-
drocarbons

2.35E-04

Nonylphenol and Nonylphenol
ethoxylates

25154-52-3 (Polycyclic) Aromatic Hy-
drocarbons

2.33E-04

Hexachlorobenzene 118-74-1 Persistent Organic Pollutants 0.000934

Polychlorinated biphenyls 1336-36-3 Persistent Organic Pollutants 0.000519

Pentachlorophenol 87-86-5 Persistent Organic Pollutants 0.000128

Pentachlorobenzene 608-93-5 Persistent Organic Pollutants 0.0000732

Ethyl benzene 100-41-4 Persistent Organic Pollutants 6.98E-03

Polycyclic aromatic hydrocarbons 2243-62-1 Persistent Organic Pollutants 5.03E-03

Vinyl chloride 75-01-4 Volatile Organic Compounds 0.0000617

Naphthalene 91-20-3 Volatile Organic Compounds 0.0000243

Ethylene oxide 75-21-8 Volatile Organic Compounds 0.0000119

Tetrachloroethylene 127-18-4 Volatile Organic Compounds 8.34E-03

Trichloromethane 67-66-3 Volatile Organic Compounds 7.13E-03

Non-methane volatile organic
compounds

100-41-4 Volatile Organic Compounds 6.98E-03

1,2-dichloroethane 107-06-2 Volatile Organic Compounds 5.91E-03

Benzene 71-43-2 Volatile Organic Compounds 5.34E-03

Dichloromethane 75-09-2 Volatile Organic Compounds 3.38E-03

Trichloroethylene 79-01-6 Volatile Organic Compounds 5.54E-04

1,1,1-trichloroethane 71-55-6 Volatile Organic Compounds 4.73E-05

Table 8 Summary table of sectors and description of activity as in Annex I of the E-PRTR

Sector Detailed description of activity as in Annex I of the E-PRTR

Energy sector Coal rolling mills with a capacity of 1 tonne per hour

Energy sector Installations for gasification and liquefaction

Energy sector Thermal power stations and other combustion installations

Energy sector Installations for the manufacture of coal products and solid smokeless fuel

Energy sector Mineral oil and gas refineries

Energy sector Coke ovens

Metal industry Metal ore (including sulphide ore) roasting or sintering installations
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Table 8 (Continued)

Sector Detailed description of activity as in Annex I of the E-PRTR

Metal industry Installations for the processing of ferrous metals, Application of protective fused
metal coats

Metal industry Installation for the production of non-ferrous crude metals from ore, concentrates
or secondary raw materials by metallurgical, chemical or electrolytic processes

Metal industry Ferrous metal foundries with a production capacity of 20 tonnes per day

Metal industry Installations for the production of pig iron or steel (primary or secondary melting)
including continuous casting

Metal industry Installation for the smelting, including the alloying, of non-ferrous metals, includ-
ing recovered products (refining, foundry casting, etc.)

Metal industry Installations for the processing of ferrous metals.

Metal industry Installations for the production and/or smelting of non-ferrous metals.

Metal industry Installations for the processing of ferrous metals, Hot-rolling mills

Metal industry Installations for surface treatment of metals and plastic materials using an elec-
trolytic or chemical process

Mineral industry Installations for the production of cement clinker in rotary kilns, lime in rotary
kilns, cement or lime in other furnaces

Mineral industry Opencast mining and quarrying

Mineral industry Installations for the production of lime in rotary kilns

Mineral industry Installations for the production of cement clinker or lime in other furnaces

Mineral industry Installations for the production of cement clinker in rotary kilns

Mineral industry Installations for the manufacture of ceramic products by firing, in particular roof-
ing tiles, bricks, refractory bricks, tiles, stoneware or porcelain

Mineral industry Installations for the manufacture of glass, including glass fibre

Mineral industry Underground mining and related operations

Mineral industry Installations for melting mineral substances, including the production of mineral
fibres

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Nitrogenous hydrocarbon.

Chemical industry Chemical installations for the production on an industrial scale of basic inorganic
chemicals: Acids.

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Synthetic rubbers

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Sulphurous hydrocarbons

Chemical industry Chemical installations for the production on an industrial scale of basic inorganic
chemicals.

Chemical industry Chemical installations for the production on an industrial scale of basic inorganic
chemicals: Bases.

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Surface-active agents and surfactants

Chemical industry Chemical installations for the production on an industrial scale of basic plant
health products and of biocides

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Dyes and pigments

Chemical industry Chemical installations for the production on an industrial scale of basic inorganic
chemicals: Salts

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals
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Table 8 (Continued)

Sector Detailed description of activity as in Annex I of the E-PRTR

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Organometallic compounds

Chemical industry Installations for the production on an industrial scale of explosives and pyrotech-
nic products

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Simple hydrocarbons

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Phosphorus-containing hydrocarbons

Chemical industry Chemical installations for the production on an industrial scale of basic inorganic
chemicals: Non-metals, metal oxides or other inorganic compounds

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Basic plastic materials

Chemical industry Chemical installations for the production on an industrial scale of phosphorous,
nitrogen or potassium based fertilisers (simple or compound fertilisers)

Chemical industry Chemical installations for the production on an industrial scale of basic inorganic
chemicals: Gases

Chemical industry Installations using a chemical or biological process for the production on an in-
dustrial scale of basic pharmaceutical products

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Halogenic hydrocarbons

Chemical industry Chemical installations for the production on an industrial scale of basic organic
chemicals: Oxygen-containing hydrocarbons

Waste and waster-
water

Installations for the disposal or recycling of animal carcasses and animal waste

Waste and waster-
water

Urban waste-water treatment plants

Waste and waster-
water

Installations for the recovery or disposal of hazardous waste

Waste and waster-
water

Independently operated industrial waste-water treatment plants

Waste and waster-
water

Installations for the incineration of non-hazardous waste

Waste and waster-
water

Installations for the disposal of non-hazardous waste

Waste and waster-
water

Landfills

Paper and wood
production

Industrial plants for the preservation of wood and wood products with chemicals

Paper and wood
production

Industrial plants for the production of pulp from timber or similar fibrous materi-
als

Paper and wood
production

Industrial plants for the production of paper and board and other primary wood
products

Agriculture and
leather industry

Installations for the building of, and painting or removal of paint from ships with
a capacity for ships 100 m long

Agriculture and
leather industry

Treatment and processing intended for the production of food and beverage prod-
ucts from vegetable raw materials

Agriculture and
leather industry

Treatment and processing intended for the production of food and beverage prod-
ucts from animal raw materials (other than milk)

K



Toxic pollution and labour markets: uncovering Europe’s left-behind places 373

Table 8 (Continued)

Sector Detailed description of activity as in Annex I of the E-PRTR

Agriculture and
leather industry

Treatment and processing of milk

Agriculture and
leather industry

Installations for the production of carbon (hard-burnt coal) or electro-graphite by
means of incineration or graphitisation

Agriculture and
leather industry

Slaughterhouses

Agriculture and
leather industry

Plants for the tanning of hides and skins

Agriculture and
leather industry

Intensive aquaculture

Agriculture and
leather industry

Treatment and processing intended for the production of food and beverage prod-
ucts

Agriculture and
leather industry

Plants for the pre-treatment or dyeing of fibres or textiles

Agriculture and
leather industry

Installations for the surface treatment of substances, objects or products using
organic solvents

7.2 Details on regional variables

Fig. 8 Regional map of employ-
ment in 15 European countries,
in logs, at NUTS-3 level, aver-
aged across 2007–2018, showing
the 15 countries in our sample.
Source: Own calculation based
on Cambridge Econometrics
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Table 9 Examples for the correlation between industry and service employment. The depicted
percentages indicate how many of the region-year pairs are within the 50th percentile of the distribution

Percentage of region-year pairs above the median of the distribution for

Industry employment Service employment

Auvergne-Rhone-Alpes (FR) 72 75

Emilia Romagna (IT) 91 86

North Rhine-Westphalia (DE) 76 72

Stuttgart Area (DE) 93 56

Table 10 Descriptive statistics showing the quantiles of industry employment and wages stratified by
urban-rural classification at NUTS-3 level and sourced from Eurostat

Industry Employment and Wages stratified by Urban-Rural Classification

Industry Employment Industry Wages

Quantiles: 10 25 50 75 90 10 25 50 75 90

Share:

% predominantly
urban

14.91 21.67 30.67 35.69 52.84 10.28 29.18 25.57 42.7 42.21

% intermediate 29.23 37.8 38.67 46.83 38.97 42.28 34.28 42.44 34.18 40.63

% predominantly
rural

55.86 40.53 30.67 17.48 8.19 47.43 36.54 31.99 23.12 17.17

Sum % 100 100 100 100 100 100 100 100 100 100

Table 11 Descriptive statistics showing the quantiles of total employment and wages stratified by urban-
rural classification at NUTS-3 level and sourced from Eurostat

Total Employment and Wages stratified by Urban-Rural Classification

Total Employment Total Wages

Quantiles: 10 25 50 75 90 10 25 50 75 90

Share:

% predomi-
nantly urban

10.26 22.31 29.23 28.03 65.96 8.44 32.08 21.27 35.92 52.2

% interme-
diate

33.27 33.39 36.98 54.53 33.31 44.72 33.79 42.65 39.94 32.72

% predomi-
nantly rural

56.47 44.31 33.79 17.44 0.73 46.84 34.13 36.08 24.14 15.08

Sum % 100 100 100 100 100 100 100 100 100 100
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Fig. 9 Map of correlation co-
efficients between industry and
service employment by NUTS-2
regions depicting within-re-
gion correlations, pooled across
all years, based on Cambridge
Econometrics
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Fig. 10 Violin plots for a em-
ployment, industry employment,
wages, industry wages, in logs;
and b population changes eval-
uated over the last four years.
The descriptives refer to the
average across 2007–2018. a
Variables expressed in logs from
Cambridge Econometrics, b
Variable expressed in changes
from Eurostat
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7.3 Details on estimation results
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