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C L I M AT O L O G Y

Uncertainties too large to predict tipping times of 
major Earth system components from historical data
Maya Ben- Yami1,2*, Andreas Morr1,2, Sebastian Bathiany1,2, Niklas Boers1,2,3*

One way to warn of forthcoming critical transitions in Earth system components is using observations to detect 
declining system stability. It has also been suggested to extrapolate such stability changes into the future and 
predict tipping times. Here, we argue that the involved uncertainties are too high to robustly predict tipping 
times. We raise concerns regarding (i) the modeling assumptions underlying any extrapolation of historical results 
into the future, (ii) the representativeness of individual Earth system component time series, and (iii) the impact of 
uncertainties and preprocessing of used observational datasets, with focus on nonstationary observational cover-
age and gap filling. We explore these uncertainties in general and specifically for the example of the Atlantic Me-
ridional Overturning Circulation. We argue that even under the assumption that a given Earth system component 
has an approaching tipping point, the uncertainties are too large to reliably estimate tipping times by extrapolat-
ing historical information.

INTRODUCTION
In response to future anthropogenic forcing, some Earth system com-
ponents might undergo abrupt transitions. These components have 
come under focus as so- called tipping elements, which are systems 
that can abruptly change their state under small changes in forcing. 
This can happen, for example, for systems that exhibit multistability, 
implying that they could abruptly transition between alternative sta-
ble equilibrium states when a critical forcing threshold is passed (1, 2). 
Such systems include the Amazon rainforest, the Antarctic ice sheets, 
the Greenland ice sheet (GIS), and the Atlantic Meridional Overturn-
ing Circulation (AMOC). Evidence that these Earth system compo-
nents can indeed abruptly change states comes both from Paleoclimate 
evidence and from theoretical arguments that transitions can occur 
under future anthropogenic forcing (2). Transitions of these tipping 
elements would have severe impacts on climate, ecosystems, and soci-
eties from local to regional scales, and their research is thus of high 
priority. However, both the probability of future tipping and the de-
gree of warming or other forcing factors under which this might hap-
pen remain highly uncertain (3, 4). This is in part due to the lack of 
such abrupt transitions in the recent observational records and in part 
due to the difficulty of modeling such nonlinear systems using com-
prehensive coupled climate models. Beyond persisting concerns that 
these models are biased toward excessive stability (5), they are de-
signed for climate projections with given forcing scenarios, not for 
predicting individual events in time.

Despite the lack of critical transitions in the observational record, 
historical observations can still be used to inform us on the changes 
in stability of Earth system components. When changes in forcing 
cause multistable systems to approach a transition to a different state, 
they typically exhibit so- called critical slowing down (CSD), in which 
their response to perturbations changes in a characteristic manner 
(6). The most commonly used CSD indicators are the variance and 
autocorrelation of a time series (7), which increase as the system’s 

stability decreases. In addition, Boers (8) introduced the autoregres-
sive restoring rate λ as a CSD parameter, since λ can be estimated in 
a way that accounts for nonstationary driving noise. These indicators 
have been used to identify CSD changes in many systems, including 
the GIS (9), the AMOC (8, 10), and parts of global vegetation cover 
(11, 12), in particular the Amazon rainforest (13). As CSD occurs 
when a system’s stability declines on the approach of a critical transi-
tion, the identification of these changes can be seen as a warning of 
such an approaching transitions, and so they are often called early 
warning signals (EWS) (7).

It may seem natural to take an extra step and use the statistical 
changes in historical data not only to show a historical and poten-
tially ongoing destabilization but also to extrapolate into the future 
and predict a tipping time. Although the utility of such predictions, if 
robust, would be undeniable, the problem lies in the multiple levels 
of uncertainty inherent to such extrapolations from historical data. 
In this work, we focus on three types of uncertainties: (i) the model-
ing assumptions underlying methods for tipping time prediction; (ii) 
the representativeness of the typically low- dimensional observations, 
e.g., in terms of fingerprints, of suggested multistable Earth system 
components that are complex, large, spatially extended, and thus 
high- dimensional systems; and (iii) the impact of uncertainties and 
preprocessing on observational datasets, with focus on nonstation-
ary observational coverage and the way gaps are filled.

Below, we will first introduce the three sources of uncertainty in 
detail and show how they, in general, pose substantial problems for 
predicting tipping times of any Earth system component. Thereafter, 
we will go into further detail and exemplify the various difficulties in 
predicting tipping times from historical data by showing how the dif-
ferent factors influence the predicted tipping time for the AMOC. For 
the latter, we will focus on a maximum likelihood estimation (MLE) 
method that was recently introduced by Ditlevsen and Ditlevsen 
(2023) (14) (hereafter DD23), who applied it to a sea surface tem-
perature (SST)–based fingerprint of the AMOC and predicted that 
the AMOC would tip around the middle of the 21st century. We 
show that the described uncertainties are too large to predict a tip-
ping time for the AMOC. Although some of the quantitative results 
of this work are specific to the AMOC, we show that these types of 
uncertainties will be present in any attempt to extrapolate a future 
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tipping time of proposed Earth system tipping elements from his-
torical data.

RESULTS
Sources of uncertainty in tipping time prediction
Modeling assumptions
Any method used to predict a tipping time will use past information 
to extrapolate into the future. To do this, one must make assumptions 
about the system in question and how it will evolve. Different meth-
ods for predicting the tipping time make different assumptions, and 
in this section, we will show how the methods fail when these as-
sumptions are broken. We will investigate two methods building on 
conventional CSD- based EWS and one recently introduced maxi-
mum likelihood approach (14). All three methods assume that the 
system in question is well- described by a one- dimensional (1D) fold- 
type normal form bifurcation and that the evolution of the control 
parameter is linear in time (see Materials and Methods for details):

1) AC(1) extrapolation method: The lag- 1 autocorrelation [AC(1)] 
is a commonly used CSD indicator, as it increases when a system ap-
proaches a bifurcation point. For a normal form bifurcation, we can 
use the known relationship between the AC(1), the local restoring 
rate γ, and the control parameter α to extrapolate when the system 
will reach the critical value of α.

2) λ extrapolation method: The AC(1) extrapolation method as-
sumes the noisy disturbances to be stationary in time. However, real-
istically, these disturbances exhibit nonstationary time correlations. 
This can be accounted for by basing the extrapolation on the autore-
gression parameter λ obtained by regressing the increments of the 
system state Xt+Δt − Xt onto the states Xt themselves, using a method 
that accounts for driving red noise of varying correlation strength 
(8). Similarly to the above, in the case of a normal form bifurcation, 
we can then use the known relationships between λ, γ, and α to ex-
trapolate to the time when α crosses its critical value.

3) MLE method: Third, we investigate the maximum likelihood es-
timator for fold- bifurcation normal form systems originally proposed 
in DD23 (14). In this approach, the probability density of discrete time 
increments in the nonlinear fold- bifurcation model is approximated 
by a discretization scheme. The model parameter choice of maximum 
probability, based on the observed discrete time increments, is ob-
tained through an optimization routine.

The most fundamental assumption made in all these methods is 
that the system in question can undergo tipping for a given forcing. 
However, not all systems can undergo tipping, and as the methods 
assume tipping, they are susceptible to false positives. We now apply 
the three methods to time series generated by a linear model without 
any bifurcation but with an added mean trend, forced with red noise 
that increases in correlation strength (see Materials and Methods). 
The first and third method above predict tipping for this system 
(Fig. 1). For such a linear system, the ideal method would give the tip-
ping time as infinite (i.e., no tipping time). However, the MLE method 
always predicts a finite tipping time, and the AC(1) extrapolation only 
gives an infinite tipping time for about a quarter of the cases. The gen-
eralized least squares (GLS)–based regression method is designed to 
account for nonstationary correlated noise, and its results do not indi-
cate a notable decrease in system stability. Despite that, it still gives a 
finite tipping time for about half of the cases. This is due to the estima-
tion of the slope—since the extrapolation method relies on extending 
an estimated slope regardless of its significance, the estimated slope 
will center around 0 but, because of the noise, λ will in practice slight-
ly increase or decrease around 50% of the time (Fig. 1). On the basis 
of any reasonable statistical significance test, one would rightly con-
clude that the system in question does not approach a critical transi-
tion. Although the risk of false positives is reduced when using the 
GLS- based regression method to infer λ, one can still not rule out that 
λ would increase (note that we define λ to be negative so an increase 
toward zero is interpreted as loss of local stability) for other reasons 
than the system approaching a bifurcation point; e.g., the local restor-
ing rate of a linear model with only one equilibrium can increase as 
the result of stretching out the basin of attraction in the vicinity of the 
equilibrium, resulting in increasing λ although, by construction, the 
system would not be able to tip.

Even if the system can undergo tipping, many internal and exter-
nal complexities can cause the above methods to be substantially bi-
ased. We examine the methods’ performance in the most commonly 
used model for a system with a bifurcation: the fold normal form bi-
furcation. In reality, we cannot assume that the fold normal form is 
applicable to climate tipping elements, as we will discuss specifically 
for the AMOC in the next section. Nevertheless, here, we show that 
tipping point prediction can fail even when the assumption of this 
simple model holds.

The normal form of a fold- type bifurcation is given by

A B

Fig. 1. Tipping time estimation for data stemming from a linear model with no possibility of tipping. (A) A time series of an Ornstein- Uhlenbeck (OU) process driven 
by nonstationary red noise (Rn) is shown. A nonlinear decreasing mean trend is added to the resulting time series realization. Such low- frequency variability is commonly 
observed in natural systems and need not indicate an approach toward a tipping point. it could likewise be due to an only partly observed oscillation. (B) the three methods 
for estimating the tipping time are used on 104 trajectories of the linear system: Ac(1) extrapolation (orange), λ extrapolation (pink), and the Mle method (turquoise). the 
distributions are estimated using standard Gaussian kernel density estimation and then scaled to the fraction of times estimated between 1000 and 5000. numbers in the 
figure corners show the percentages of estimates outside the figure range and at infinity. Although no tipping is possible, the method relying on the Ac(1) and the Mle 
approach purport such an existence in a large fraction of cases, as shown in the pie charts on the right. the method relying on a GlS model comes close to the ideally ex-
pected performance of indicating tipping in 50% of the cases, which is due to an underlying constant stability being symmetrically estimated (see the text).
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where x is the system state, b is a timescale parameter, and α is the bi-
furcation parameter of the system. The stable equilibrium x∗(α) =

√

α 
is characterized by a linear restoring rate of γ = 2b

√

α . Under the as-
sumption that the system is forced by white noise, one can devise the 
model- specific extrapolation of the bifurcation parameter by examin-
ing log[AC(1)]2 ∼ α and log(λ + 1)2 ∼ α. If this bifurcation parameter 
evolves linearly, then this gives a more adequate estimation of the tip-
ping time than linearly extrapolating the indicators themselves (see 
Materials and Methods). The DD23 MLE method was also developed 
specifically for this model structure. In Fig. 2A, we give the distribu-
tions obtained by applying the different methods to 104 sample time 
series of length 2000 time units each, all from a fold normal form with 
white noise and linear forcing. The method proposed by DD23 per-
forms best, which is to be expected, as that method makes use of the 
known model structure in a statistically optimal way. The two methods 
relying on extrapolating trends in CSD indicators are biased toward 
too early tipping times and exhibit large spread. This is mostly due to 
the propagation of estimation errors of AC(1) and λ through the inver-
sion log(·)2 with respect to their relation to α and through the subse-
quent linear regression. While this estimation error could be avoided 
by fitting the exponential directly, such a fit comes with its own sub-
stantial errors.

As already seen above (Fig. 1), assuming that uncorrelated noise 
is driving the system (which in realistic situations is indeed rarely 

justified) can lead to complications when attempting to estimate the 
tipping time. Accordingly, the first and third methods are biased to-
ward too early tipping times when applied to data from a fold normal 
form system driven by red noise with increasing correlation strength 
(Fig. 2B). For the AC(1) extrapolation, this bias adds on top of the 
estimation error described above. In contrast, for the λ extrapolation 
method using the GLS model, the nonstationary red noise does not 
induce an additional bias on top of the estimation bias. Last, for the 
MLE method, there is a clear shift toward too early tipping times 
compared to the white noise case.
Stationarity of past trends
In addition to making assumptions about the underlying dynamical 
model, to predict a future tipping time, we also have to assume how 
the forcing of the system will change in the future. In particular, all of 
the methods above rely on the fact that the forcing will continue to 
evolve in the same way it has in the past.

It is typically not easy to identify the exact climate variable that acts 
as the primary forcing parameter for a given climate tipping element. 
For example, while one might assume that global mean temperature 
(GMT) might be appropriate for the Greenland and Antarctic ice 
sheets, all the involved processes and the different latitudinal temper-
ature distributions indicate that this would likely be an oversimplifica-
tion (15). Similarly, for the Amazon rainforest, one might think that 
mean annual precipitation is the likely forcing parameter, but the 
rainfall seasonality and dry season length play important roles as well 
(16, 17). For the AMOC, the effective freshwater flux in the north 
Atlantic could be considered the key control parameter, but again, given 

dx

dt
= −b(x(t)2 − α) (1)

A B

DC

Fig. 2. Tipping time estimation for data stemming from different variations of the fold- bifurcation normal form (FNF) model. (A) the distributions are derived from 104 
model trajectories (see Materials and Methods for all model equations). the three methods used are Ac(1) extrapolation (orange), λ extrapolation (pink), and the Mle 
method (turquoise). in (A), the model is driven by white noise (Wn) and a linearly evolving forcing α. this constitutes the case for which all considered estimation methods 
were designed. For the Mle method, the accumulation of estimates at time 2000 is rooted in the method’s inherent optimization constraints. A tipping time earlier than the 
time series end at time 2000 is not possible in this framework, and the optimization terminates at this value. (B) Results for a model driven by nonstationary red noise (Rn) 
with increasing correlation strength and a linearly increasing forcing. the model investigated in (C) exhibits a nonlinear trend of the bifurcation parameter, which deceler-
ates as time progresses. the time series underlying the results of (D) are identical to those of (A), barring an added white measurement noise (Mn), whose strength de-
creases as time progresses, mimicking reduced observational uncertainties over time. note that the two cSd- based methods remain biased toward too early tipping time 
estimates, while the Mle methods is, in this case, biased toward too late estimates. All distributions are estimated using Gaussian kernel density estimation and scaled to 
the fraction of times estimated between 1000 and 5000. numbers in the figure corners show the percentage of estimates outside the figure range and at infinity.
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that this is a spatially extended system with shifting regions of deep water 
formation, it is unclear how to define an accurate control parameter in 
detail (18). For any of these systems, there is no evidence that their con-
trol parameters, even if known, would be linearly dependent on 
GMT. Furthermore, although the logarithm of the atmospheric CO2 
concentration (and hence its radiative forcing) has increased linearly 
since 1850, it is unlikely that this linear increase will continue. The only 
scenario under which log(CO2) would continue to increase linearly is 
the extreme of Shared Socioeconomic Pathway 5.85 (SSP5.85) (fig. S1), 
a scenario in which there is not only no climate mitigation but also a 
rapidly growing fossil fuel–based economy (19).

In addition, while anthropogenic global warming is usually as-
sumed to be driving climate systems toward a tipping point, it is not 
the only substantial factor altering their conditions. For example, de-
forestation can be a large factor in destabilizing tropical rainforests 
(20–22). Such time- varying influences cannot be represented by a 
linearly evolving control parameter. Thus, while the conceptual view 
of only one external control parameter evolving linearly toward a 
critical value is sometimes sufficient to describe the historical time 
evolution of a given climate system, we argue that it is too simplistic 
to allow for an estimate of the tipping time.

The three extrapolation methods discussed above assume a linear 
trend in the bifurcation parameter α. They therefore produce biased 
results when applied to time series of a model whose bifurcation pa-
rameter changes nonlinearly, e.g., in a decelerating manner. Fig-
ure 2C shows the corresponding estimation results. In principle, any 
extent of misinterpretation of observations is possible if the underly-
ing evolution of a system toward a tipping point cannot be assumed 
to be stationary.
Representativeness of measurements for underlying dynamics
The above modeling uncertainties arise when one assumes that the 
time series used are a direct representation of the climate system in 
question. In practice, that is rarely the case. Tipping elements in the 
climate are complex, spatially extended systems with many degrees of 
freedom, and it is always a crude simplification to describe their dy-
namics by a 1D observational time series. Moreover, it is often unclear 
whether the relevant dynamical properties of the system in question 
are captured well by the available measurements. For example, the 
Amazon rainforest is observed using different remotely sensed vege-
tation indices, but it remains hard to tell which one is appropriate for 
understanding its stability (11, 23). The problem is further compli-
cated by the relatively short time span of many climate observations. 
Tipping elements such as the polar ice sheets or the AMOC evolve 
over long timescales, and so, time series of a hundred years or more 
would be necessary to understand and predict their dynamics. When 
there are no direct measurements on such long timescales, studies use 
different proxies (“fingerprints”) for the systems. These fingerprints 
are climate variables that have some physical connection to the system 
of interest and are thus, to some extent, correlated with the changes of 
the system. For example, ice core–derived Greenland melt rates have 
been used as a fingerprint for ice sheet height and SST patterns as a 
fingerprint for the AMOC streamfunction strength (9, 24). Similarly, 
satellite- derived vegetation indices should be interpreted as—uncertain 
and potentially biased—fingerprints of the actual vegetation dynam-
ics (11, 23). Fingerprints that are useful for understanding the evolu-
tion of the mean trend are not necessarily useful for predicting tipping 
times. In conclusion, there are often no fingerprints available with the 
precision required for predicting tipping times, as we will discuss for 
the AMOC in the next section.

Effect of dataset preprocessing and underlying uncertainties /
nonstationary coverage
In addition to the uncertainties arising from the modeling approach 
and the choice of fingerprint, there are also substantial uncertainties 
in CSD indicators that originate from the dataset preprocessing steps 
and the nonstationarity of observational data coverage (23, 25, 26). 
The number of available climate observations has grown exponen-
tially since 1850 (27, 28), especially with the increase of remote sens-
ing measurements since the 1970s. In earlier years, these measurements 
are often concentrated in a small number of areas on the globe, result-
ing in uneven and sparse global coverage until at least the mid- 20th 
century (28). Therefore, to produce globally complete datasets, re-
searchers often merge a number of different instrumental records and 
fill in the gaps in data using a processing procedure. The bias correc-
tion for the different measurements and the infilling methods often 
prioritize the accuracy of the mean trend over the accuracy of the 
higher- order statistics [see, for example, (23, 29–32)].

This can cause problems for the detection of CSD (23, 25, 26, 33) 
and especially for the calculation of the future tipping time. Any cal-
culation of the future tipping time is strongly reliant on the time evo-
lution of the data’s higher- order statistics, and the dataset preprocessing 
can induce artificial trends in these statistics. To this point, we show 
the effect of adding white measurement noise of a decreasing ampli-
tude to the synthetic model data of the fold normal form and estimate 
tipping times using the introduced methods. Figure 2D shows how 
a small amount of observational uncertainty can incur substantial 
changes in the estimations. One real- world example of such an effect 
is the merging of multiple satellite signals. The change in signal- to- 
noise ratio from one satellite to the next can cause an artificial in-
crease in autocorrelation (23). Another issue emerges when missing 
data are infilled with some sort of principal components analysis, in 
which case there will be more artificial smoothing in earlier times due 
to the lack of data, and so quantities like the variance could increase 
artificially (26, 29). In the next section, we will discuss such dataset 
uncertainties in detail for the AMOC SST fingerprints.

Uncertainties in predicting the AMOC tipping time
We now address these uncertainties for the specific case of predicting 
the tipping time of a system by applying DD23’s MLE- based method 
to SST- based fingerprints of the AMOC (14). We choose to use DD23’s 
methodology because among the three discussed methods, it per-
forms best for a fold normal form with white noise (Fig. 2A) and was 
designed for AMOC tipping time prediction.
Modeling assumptions
There has long been a discussion about whether the AMOC, when 
investigated as a complex system under external forcing of, e.g., GMT 
(or better, regional freshwater forcing), exhibits multiple stable states 
(34–36). Transitions between such stable states could be bifurcation 
induced and thus abrupt and irreversible. The so- called fold bifurca-
tion constitutes a minimal example of such behavior. For instance, the 
conceptual Stommel model of the AMOC features a fold bifurcation 
(34). Taking this reasoning another step further, the application of the 
MLE method assumes that the 1D observable of AMOC strength is 
well represented by the following normal form model

where Xt is the system state at time t, α is the external control parameter, 
b is a timescale parameter, m is a translation parameter, and the 
white noise term σdWt represents noisy perturbations within the 

dXt = −b((Xt −m)2 − α)dt +
√

bσdWt
(2)
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system. A similar simplification has been applied to more complex 
AMOC models in multiple studies (37, 38) and is justified by arguing 
that all fold bifurcations are topologically equivalent to this model. 
This, however, is only true locally, in potentially very close proximity 
to the bifurcation point, while the proposed estimation method banks 
on the assumption that it would hold in arbitrary distance to the bi-
furcation point. On the basis of the arguments brought forth, we do 
not see a direct constraint on the dynamics away from the tipping 
point. When applying the MLE method to data of the closely related 
2D Stommel- Cessi AMOC model (39), one obtains a considerable 
bias in tipping time estimates toward earlier times (Fig.  3A). This 
should be seen as an indication that even models with an underlying 
fold bifurcation structure, yet not following the very specific normal 
form model equation above, produce time series which, when apply-
ing the MLE method, yield biased tipping time estimates.

The AMOC exhibits pronounced decadal variability (40). Before 
the commencing of the destabilisation at time t0, the AMOC is assumed 
to resemble paths of a stationary stochastic process X defined by

When applying their MLE method to the AMOC, DD23 estimates 
a value of 2b

√

α ≈ 3.1 [year−1] , corresponding to a characteristic cor-
relation time of 0.32 [year]. In contrast, frequency spectra of AMOC 
evolutions in general circulation models show strongest variability 
between 5 and 100 years [e.g., figure 6 in (41)]. Such pronounced ad-
ditional variability on long timescales is not captured by the above 
Ornstein- Uhlenbeck model. Internal variability independent of the 

model noise will thus cause large excursions from the transient mean. 
The proposed method is not equipped to incorporate the impact of 
these excursions on the estimated tipping time, since they may be 
misinterpreted as trends toward a tipping point. This exposes the esti-
mation method to risks of false alarms of a similar nature as in Fig. 1. 
In addition, recent application of DD23’s MLE method to AMOC tip-
ping in a complex climate model (42) has shown that the tipping time 
prediction is very sensitive to the time interval analyzed due to the 
decadal variability of the AMOC, and most 150- year windows cannot 
accurately estimate the tipping time.

Moreover, for quantitative extrapolations of tipping time, any sim-
plifying assumptions on the driving noise would need to be carefully 
checked. Since disturbances to the equilibrium state are themselves of 
atmospheric and oceanic origin, time correlation of the noise should 
be taken into consideration, e.g., via a red noise model (8). Nonsta-
tionary red noise present in the system can incur substantial biases in 
the estimation of the tipping time and even result in false alarms of an 
approaching bifurcation (as seen in Figs. 1 and 2B).
Assumptions on future AMOC forcing
Previously, we discussed the fact that not only can we not assume 
the future evolution of the forcing of climate tipping elements to be 
known, we also cannot assume that the forcing evolved linearly in the 
past. This is also true for the AMOC: Several studies show that radia-
tive anomalies due to aerosol pollution likely attenuated the AMOC 
weakening of the past decades (43, 44), and such changes cannot 
be modeled with a linearly changing control parameter. Moreover, 
the GMT forcing itself influences the AMOC due to many different 
nonlinear mechanisms, e.g., via thermal expansion, a strengthening 

dXt = −2b
√

α(Xt −m)dt +
√

bσdWt
(3)

A B C

E FD

Fig. 3. Tipping time estimation for data stemming from variations of the conceptual Stommel- Cessi (SC) model. the distributions depict the estimations of the 
tipping time for 104 model runs (see Materials and Methods for model equations). (A) tipping times estimated from data obtained from the 2d Stommel- cessi model with 
a linear forcing parameter. (B) Same as (A) but using a nonlinear forcing which decelerates over the integration time span. this is a model setting with practical relevance, 
as the anthropogenic changes forcing the AMOc cannot be assumed to be constant. (C) Same setting as (A) but with white measurement noise added, with constant 
(green) increasing (light brown) and decreasing (dark brown) amplitude. As above, distributions are estimated with Gaussian kernel density estimation and then scaled 
to the fraction of times estimated between 1000 and 5000. numbers in the figure corners show the percentages of estimates outside the figure range and at infinity. 
the tipping time estimates in each panel are biased because the data does not stem from the exact intended model expected by the Mle method of dd23. (D to F) the 
Quantile- Quantile (QQ) plots beneath each panel give the model fit of the derived maximum likelihood model to the data of one sample. the tipping time estimate of the 
respective sample is indicated by the triangle in the top panel. A comparison of the QQ plots suggests that time series stemming from the 2d Stommel- cessi model are 
similarly well- modeled by the proposed fold normal form model with white noise forcing as the AMOc time series of dd23 [figure 6F in (14)].
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hydrological cycle, as well as sea ice and ice sheet melt (with the influ-
ence of the latter in the historical period still under debate) (45, 46). 
The effective freshwater flux might serve as a better forcing parameter 
(35, 47), but we do not have long- term measurements of this parameter, 
and there is evidence that it does not linearly depend on GMT; e.g., 
Greenland runoff increases nonlinearly over time (48, 49).
Representativeness of the subpolar gyre SSTs for AMOC
Because of the lack of long- term observations, various fingerprints 
have been proposed (50). The most commonly used fingerprint for 
the AMOC is based on SSTs in the subpolar gyre (SPG), and a modi-
fied version of this fingerprint is used by DD23 to predict AMOC 
tipping. This fingerprint is based on the assumption that the so- called 
warming hole in the North Atlantic, an area which is cooling as op-
posed to the global warming trend detected essentially everywhere 
else, is caused by a weakening of the AMOC (51–54). The classical 
fingerprint is defined as the SSTs averaged over the SPG area minus 
the global SST mean (24, 51) and has often been referred to as the 
“SPG Index.” However, that term is also used in the literature to de-
scribe indices related to the characteristics of the SPG circulation 
(55). In this work, we therefore call this AMOC fingerprint the SPG- 
based AMOC index.

This index has been supported by two lines of evidence. First, 
across models, the historical trends in the SPG- based AMOC index in 
CMIP6 models correlate with the trends in the AMOC streamfunc-
tion (at various latitudes), in the sense that models with higher AMOC 
strength trend also have higher SPG- based AMOC index trends (24, 
44). Second, the SPG- based AMOC index time series itself is corre-
lated with the AMOC streamfunction time series at various lag times 
(depending on the study either the maximum of the streamfunction is 
taken or its value at different latitudes) (51, 56–58). However, both 
these correlations have been shown to be highly nonstationary and 
are sensitive to the time period, to the forcing scenario and to the 
underlying processes (56, 58). This is likely due to the fact that the 
warming hole is not driven solely by the AMOC but is a result of both 
changes in ocean heat transport and changes in atmospheric forcing 
(59–63). This partial connection of the SPG to the AMOC is supported 
by recent studies using the Overturning in the Subpolar North Atlantic 
Program, which have shown that the Labrador Sea and the SPG play 
a smaller role in North- Atlantic deep water formation than previously 
thought (64, 65).

The nonstationarity of the correlation between AMOC stream-
function and the SPG- based AMOC index does not imply that this 

index is not useful for studying the stability of the AMOC, as the SPG 
still plays a crucial role in the AMOC and would thus be sensitive to 
its stability changes (26, 45, 66, 67). Signs of CSD in the SPG region 
thus still likely indicate a destabilization of the AMOC. However, the 
nonstationarity does reduce the fingerprint’s usefulness for exact pre-
dictions of tipping times. This is particularly true due to the lack of 
agreement over the precise nature of this nonstationarity, which 
means that we have no way of accounting for it when using the finger-
print. We believe that for predictive purposes, including those based 
on extrapolation, it is problematic to fit a simple bifurcation model 
representing the AMOC to a fingerprint whose correlation with the 
AMOC changes over the time period under consideration.

To obtain a better representation of the AMOC, different proposed 
fingerprints should be compared. The uncertainty in fitting a model to 
the SPG- based AMOC index alone can then be inferred by compar-
ing the results of the CSD analysis and extrapolation for the different 
fingerprints. There is a long list of identified AMOC fingerprints in 
the literature, and many of them as robust and commonly used as the 
SPG- based AMOC index (50, 57). When one applies DD23’s MLE 
method to one of these other fingerprints, the so- called dipole finger-
print (68), the estimated tipping time varies considerably and some-
times even goes to infinity (Fig. 4 and tables S1 and S2). Since there is 
now no consensus on which of these fingerprints better represents the 
AMOC, the range of estimated tipping times highlights substantial 
uncertainty in such estimations.

It should also be noted that there is growing evidence supporting 
the SPG as a potential tipping element separate from the AMOC (1, 69, 
70). Although an SPG collapse occurs only in some coupled climate 
models under future warming scenarios, these models are among the 
best in representing the stratification in the SPG (69, 70). We cannot, 
therefore, disregard the possibility that CSD in the SPG- based AMOC 
index is in reality an indication of an approaching SPG tipping point 
and not an AMOC tipping point. The only way to avoid this uncer-
tainty is to include additional AMOC fingerprints which do not rely 
on SPG SSTs (8).
Uncertainties from the SST datasets
We have shown in a conceptual example how simple forms of measure-
ment noise can cause complications for the estimation of the tipping 
time (see Figs. 2D and 3C). For the prediction of an AMOC tipping 
time, the main source of uncertainty arising from the SST datasets is 
caused by the infilling methods. For example, in their study, DD23 uses 
the HadISST1 SST dataset, which has been infilled using reduced space 

Fig. 4. Range of tipping times. tipping times estimated using dd23’s Mle method. the best estimate of the tipping time is calculated for the classical SPG- based AMOc 
index (plus), the fingerprint used by dd23 (circle), and the dipole index (star). We use three different observational SSt datasets for this analysis: hadiSSt1 (turqoise), 
eRSStv5 (orange), and hadcRUt5 (blue). in addition, the blue violins show the tipping times for each of the 200- member uncertainty ensemble of hadcRUt5. (See fig. S2 
for a version of the tipping time calculation applying an additional penalization; cf. section S2 of dd23 for details). the plotted values can be found in tables S1 and S2.

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 06, 2024



Ben-Yami et al., Sci. Adv. 10, eadl4841 (2024)     2 August 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

7 of 11

optimal interpolation (RSOI) (29). RSOI uses a set of global empirical 
orthogonal functions (EOFs) and includes regularizing terms when fit-
ting the EOFs to the data. This is done to avoid spurious large ampli-
tudes in data- scarce regions and times but means that the fit tends to the 
zero anomaly where there is no information. Although noninterpolated 
in  situ data are subsequently added to the RSOI reconstruction, this 
only improves the variance where there is enough data—in data- scarce 
times and regions, the variability is damped by RSOI. Together with 
other steps of the preprocessing, this causes the variance in HadISST1 
to artificially increase [see (26, 29)].

To highlight the effect of dataset processing methods on the tipping 
time calculation, we use DD23’s MLE method to calculate tipping times 
for the AMOC, using three different datasets: the previously mentioned 
HadISST1 (29), HadCRUT5 (30), which uses a Gaussian process–based 
statistical method for infilling, and ERSSTv5 (32), which uses empirical 
orthogonal teleconnections for infilling. All of these dataset methods re-
sult in different variance and autocorrelation time series (see Fig. 5), as 
does the noninfilled HadSST4 (28). The variance is especially affected 
by the various preprocessing methods of the different datasets—only in 

HadISST1 does the variance increase over the whole time period—and 
as noted above, this increase is at least partly artificial. It is therefore not 
possible to determine the actual variance trend of north Atlantic SSTs 
before the 1970s. While the autocorrelation and the restoring rate are 
arguably still functional indicators given the dataset properties [see 
(26)], DD23’s MLE method relies on the variance and does not take 
these uncertainties, the nonstationary observational coverage and the 
different gap filling procedures into account.

When applying DD23’s MLE method to their version of the 
AMOC fingerprint but calculated from alternative SST datasets, we 
obtain tipping times ranging from the 2000s for HadISST to the 3000s 
for ERSSTv5. If this analysis is extended to different AMOC finger-
prints (see the previous subsection), then the tipping times range 
from the 2000s to beyond the year 4700 for ERSStv5 (table S2). Last, 
if we apply the method to HadCRUT5’s 200- member uncertainty 
ensemble, we get multimillennial uncertainty ranges with, for some 
cases, almost a quarter of the tipping times going to infinity (table S1). 
This shows that the fingerprint definition and the dataset choice can 
cause huge uncertainties.

CBA

D E F
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Fig. 5. Variance and autocorrelation for different SST datasets and AMOC fingerprints. the rows from top to bottom show the monthly AMOc fingerprints (A to 
C), variance (D to F), and autocorrelation (G to I). the columns from left to right show the values for the fingerprint from dd23 (left), the classical fingerprint from 
caesar et al. (24) (middle, SPG- based AMOc index), and the AMOc dipole fingerprint (50) (right). the dipole is defined as averaged SSts in 45° to 80°n, 70°W to 30°e minus 
SSts in 0° to 45°S, 70°W to 30°e. the time series are shown for four different datasets: hadiSSt1 (turqoise), eRSStv5 (orange), hadcRUt5 (blue), and hadSSt4 (pink). in (A) 
to (c), the AMOc fingerprints are offset by 3 K from each other for better visibility. All cSd indicators are computed using a window size of 50 years. note that the variance 
shows overall decreases in most cases, partly due to the nonstationary data coverage (26). in addition, note that the calculation of the SPG- 2xGMt fingerprint in this work 
is slightly different from in dd23 (see Materials and Methods).
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DISCUSSION
Regardless of the Earth system component under consideration, it is 
inevitable that at least some of the assumptions discussed above will 
be broken in reality and that the types of uncertainties addressed in 
this work will indeed arise when attempting to extrapolate tipping 
time from past historical data. First, simplified modeling assumptions 
will almost always be necessary for extrapolation, since the future be-
havior of the system will be different depending on the governing 
dynamics. Past data can inform us about the relevant model, but typi-
cally, many different models can match the data, as seen above. Second, 
the problem of finding a time series that accurately represents the 
dynamics of the system is common to all tipping elements. Last, the 
problems caused by nonstationary data coverage and data processing 
methods described above are unavoidable, since data processing is 
always necessary to assimilate and calibrate observations and proxies, 
especially for longer records.

However, it is important to emphasize that the criticisms in this 
work apply to attempts to predict the exact tipping time of tipping 
elements such as the AMOC, based on extrapolating from uncertain 
data. CSD detection in terms of trends in robust indicators such as the 
autocorrelation or the restoring rate is much less sensitive to the dis-
cussed uncertainties, whereas the variance should indeed be used 
with caution (8, 25, 26). In principle, CSD is applicable to any sort of 
dynamical system that is approaching a transition induced by a codi-
mension one bifurcation. In addition, fingerprints that are not an ex-
act representation of a dynamical system will still show CSD as long as 
the stability of the subsystem they represent is connected to the stabil-
ity of the overall system. Crucially, the uncertainties presented in this 
work can be taken into account by using multiple different fingerprints 
and propagating the dataset uncertainties to the CSD analysis. Such 
an analysis has already been applied to the AMOC by Ben- Yami et al. 
(26), who found that CSD in AMOC fingerprints in terms of a restor-
ing rate tending toward zero, is still significant although the trends in 
the CSD indicators have a large spread. Taking into account the same 
observational uncertainty spread for the tipping time, however, gives 
time ranges from 2050 to infinity, practically making this prediction 
noninformative. This is because tipping time prediction is not only 
more sensitive to uncertainties but also relies on more assumptions 
and in particular presumes that there will be a tipping time in the fu-
ture. Therefore, for the prediction method to be useful, it needs to 
narrow down the future range of tipping times to an informative 
range. In contrast, a detection of CSD does not make statements about 
future tipping, only about the fact that the system is now less stable 
than it was in the past.

Although the example we put most focus on was the predicted 
tipping time of the AMOC, the work of Boers and Rypdal (2021) (9) 
(hereafter BR21) could also be interpreted as a prediction of tipping 
time for the central- western part of the GIS. The same kinds of un-
certainties apply to that work. BR21 derive the potential landscape 
of the ice sheet height by fitting a previously introduced nonlinear 
model (71), which makes many assumptions. The change in ice sheet 
height is calculated from average annual melt rates obtained from 
three ice cores in central- western Greenland, and in addition to un-
certainties in the underlying data that are difficult to quantify, it is 
highly uncertain how well this location represents the whole ice sheet 
(49). A potential tipping time could be identified with the bifurcation 
point of the fitted model (red vertical dashed line in figure 3 of BR21). 
However, the uncertainties from the assumptions of the simplified 
model and the reconstruction uncertainties imply that the estimated 

bifurcation point should not be understood as an estimate of the ac-
tual critical threshold and should certainly not be translated into a 
tipping time (9).

We have discussed multiple sources of uncertainty in the predic-
tion of future tipping times of Earth system components. These un-
certainties are as follows:

1) The modeling assumptions underlying the methods for tip-
ping time estimation

2) The viability of extrapolating past forcing trends into the future
3) The reliability of using indirect fingerprints to predict tipping 

times of climate tipping elements
4) The uncertainties that arise from the bias and preprocessing in 

observational datasets with measurement uncertainties and gaps
The latter two points above may be addressed in time by improved 

Earth system observations and waiting (possibly for hundreds of years, 
depending on the characteristic timescale of the system) until suffi-
ciently long records are available. Regarding the first point, it is unclear 
whether the highly nonlinear and complex dynamics governing the 
proposed tipping elements will ever be reliably modeled at the accu-
racy needed for tipping time prediction. Last, regarding the second 
point, it will never be possible to know the change in future forcing, so 
any extrapolation will always be uncertain as it would assume a spe-
cific future scenario.

In addition, we have described in detail how these uncertainties 
manifest for the specific example of predicting a future AMOC tip-
ping time, using the MLE method introduced by DD23 (14):

1) The modeling assumptions underlying DD23’s MLE method 
for tipping time predictions are too simple and do not necessarily 
hold for the AMOC. We have shown that breaking these assump-
tions by, e.g., changing the dynamical model for the AMOC or the 
model for the forcing introduces large biases in the tipping time esti-
mation (Fig. 4). In particular, their method also predicts a tipping 
time for a linear model that cannot tip, if forced by red noise with 
increasing correlation strength.

2) The connection of the SPG- based AMOC fingerprint (com-
puted from SSTs) to the AMOC is uncertain and nonstationary and 
therefore is problematic for exact predictions of tipping times. Using 
different SST fingerprints with the HadISST dataset can change the 
predicted tipping time by 70 years (table S2).

3) The inherent uncertainties of SST datasets and the preprocess-
ing methods used to fill in missing data can be nonstationary and 
thus affect higher- order statistics such as the variance or autocorrela-
tion. In particular, the HadISST dataset used by DD23 is known to 
have an artificial variance increase. Using different SST datasets and 
their uncertainty ensembles, the tipping time varies by thousands of 
years (tables S1 and S2).

In the foreseeable future, points 2 and 3 will essentially form im-
passable barriers to predicting the time of a future AMOC collapse 
from historical data. The available data are simply not accurate or 
precise enough to make such an extrapolation.

In conclusion, we showed that the uncertainties discussed in this 
work are too large to allow for reliable estimates of the tipping time of 
major Earth system tipping elements, including the AMOC, the po-
lar ice sheets, or tropical rainforests, based on extrapolating results 
from historical data. We emphasize that these uncertainties, originat-
ing from underlying modeling or mechanistic assumptions as well as 
from the used empirical data, need to be taken into account and 
propagated thoroughly before attempting to estimate a future tipping 
time of any potential Earth system tipping element.
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MATERIALS AND METHODS
AMOC fingerprints
For each of the four used SST datasets, we compute three different 
SST- based fingerprints of the AMOC. First, the index introduced by 
DD23, which is obtained by averaging SSTs over the SPG region and 
then subtracting twice the global mean SSTs. Here, the SPG region is 
defined as in (24). Second, the original version of this index, intro-
duced by Caesar et al. (24), where the global mean SSTs are only sub-
tracted once. Third, we use the so- called dipole fingerprint, which is 
obtained by subtracting average SSTs of a large region in the south-
ern hemisphere Atlantic ocean (0° to 45°S, 70°W to 30°E) from aver-
age SSTs in a large region in the northern hemisphere Atlantic (45° to 
80°N, 70°W to 30°E). For computing the spatial averages for the 
HadISST data, we mask out all values of grid cells covered by sea 
ice following (8, 24) and also use a weighted mean to account for the 
dependence of the grid cell size on the latitude.

Formulae for conceptual models
Here, we give the formulae of all models which have been integrated 
to obtain time series data for the subsequent analyses in Figs. 1 to 3. 
The abstract models of the first two figures were integrated for a total 
simulation time span of 2000 time units and sampled at time step 1. 
For the first 1000 time units, the dynamics are held constant, i.e., no 
evolution in the bifurcation parameter or the noise is present. At time 
t0 = 1000, these nonstationarities commence. They are aimed toward 
a horizon of tc = 3000. The ramp duration is thus τr = 2000. For the 
application in the AMOC setting, we emulate AMOC time series 
data from the year 1870 to 2021 and generate these at a monthly time 
step, i.e., 1/12 years. We emphasize, however, that there is no season-
ality in these simulated time series. The ramp parameters are t0 = 
1924, tc = 2125, and thus τr = 201.

The linear model of Fig.  1 is an Ornstein- Uhlenbeck process 
driven by another Ornstein- Uhlenbeck process. After the integra-
tion, a mean trend is added to the dynamics.

where dWt is the white noise forcing, making the Ornstein- Uhlenbeck 
process U a red noise forcing. Θ is the Heaviside function, γ = 0.2 
is the linear restoring rate, κ = 0.023 is the noise strength, and 
τnoise
0

= 1∕3 and τnoise
tc

= 2 determine the linear evolution of the noise 
correlation. Further, τr determines both the ramp of the noise correla-
tion and of the added trend. The original fold bifurcation normal 
form model with white noise forcing is given by the following equa-
tion for dXt. The equations for α(t) define different forcings: linear 
forcing [αlin(t)] or decelerating forcing [αslow(t)]

Here, b = 0.1 is a timescale parameter, σ = 0.05 is the amplitude of 
the noise, α0 = 1 is the value of the bifurcation parameter before the 
start of the linear ramp, and Θ is again the Heaviside function. The red 
noise model underlying Fig.  2B uses the same noise term as in the 
above linear model but with κ = 0.0045 , τnoise

0
= 1∕4 and τnoise

tc
= 10.

Instead of the fold bifurcation normal form, a specialized model 
might be more suitable to represent AMOC dynamics. To this end, we 
implement the dimensionless version of the 2D Stommel- Cessi model 
(39) given by

with b = 0.1, ε = 0.01, σ = 0.04, and η2 = 7.5. The two white noise 
terms acting on the components are independent. α(t) decreases from 
α0 = 5 to αtc = 1.128. This decrease is linear or nonlinear for the anal-
yses of Fig. 3 (A and B), respectively. All of the models were integrated 
using the Euler- Maruyama scheme to obtain time series data.

Estimation methods for time of tipping
Three approaches to estimating the tipping time have been dis-
cussed and compared quantitatively in the Results section. We refer 
to them here as (i) AC(1) extrapolation, (ii) λ extrapolation, and (iii) 
the MLE method introduced by DD23. All of them build on the as-
sumption that the system in question is well- represented by a 1D 
fold- type bifurcation in its normal form. The corresponding model 
equation is given by the deterministic part of Eq. 8. Methods 1 and 
3 also assume the given stochastic white noise part of the same equa-
tion, while method 2 relies on a model suited for both white and 
nonstationary correlated (red) noise. We give here a more detailed 
description of the first two methods. For more information on the 
third method, we refer to (14), where it was originally proposed.

The synthetic time series underlying the comparison of the methods 
in the Results section consist of a stationary and a nonstationary part 
each. The MLE method uses both parts to fit a model of a linear control 
parameter ramp starting from a known time t0. The extrapolation 
methods use only the nonstationary part after a known time t0 as a 
basis for the linear fits.

1. AC(1) extrapolation: Before the annihilation of a system’s equi-
librium point, the negative feedbacks defining said equilibrium weak-
en with respect to the positive feedbacks. This results in a decrease of 
the restoring rate with respect to small noisy disturbances. If these 
disturbances are assumed to be stationary in time, the the lag- 1 auto-
correlation [AC(1)] can serve as a measure of system stability, as it can 
be shown to be a function of the linear restoring rate γ, i.e., the ampli-
tude of the continuous linearized dynamics around the equilibrium 
point. In particular, when linearizing the dynmics under the assump-
tion of white noise forcing, one arrives at the Ornstein- Uhlenbeck 
equation representing the evolution of small disturbances under a 
negative linear feedback or linear restoring rate, γ

dXt = −γXtdt + κUtdt (4)

dUt = −
1

τnoise (t)
Utdt + dWt (5)

τnoise(t)=τnoise
0

(1−Θ[t− t0](t− t0)∕τr)+

τnoise
tc

Θ[t− t0](t− t0)∕τr
(6)

x
trend(t) =

√

1 − Θ[t − t0](t − t0)∕τr (7)

dXt = −b(X2
t
+ α(t))dt +

√

bσdWt
(8)

αlin(t) = α0(1 − Θ[t − t0](t − t0)∕τr) (9)

αslow(t) = α0(1−Θ[t− t0](t− t0)∕τr)
1.5 (10)

dXt = b( − Xt(1 + η2(Xt −Yt)
2) + α(t))dt +

√

bσdWX

t (11)

dYt = b( − ε−1(Yt − 1) − Yt(1 + η2(Xt −Yt)
2))dt +

√

bσdWY

t

(12)

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 06, 2024



Ben-Yami et al., Sci. Adv. 10, eadl4841 (2024)     2 August 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c l e

10 of 11

The discrete time approximation of these linearized dynamics is 
Xt+Δt = exp (−γΔt)Xt + ηt, where ηt denotes the noise. The AC(1) of 
discrete samples of this stochastic process is thus given by AC(1) = 
exp (−γΔt). Here, Δt denotes the time step between subsequent mea-
surements, which we set equal to one in our simulations. As we approach 
the tipping point γ → 0, and thus, the AC(1) parameter approaches +1. 
Linearizing the fold- bifurcation normal form in Eq. 8, one sees that 
γ = 2b

√

α , where α is the bifurcation parameter. Thus, α is approxi-
mately linearly related to log[AC(1)]2. Observing the latter quantity 
and extrapolating its best linear fit toward the bifurcation threshold, 
which for the fold normal form is at αtc = 0, yields an estimate of the 
tipping time.

2. λ extrapolation: To account for possible nonstationary time 
correlation in the driving noise, Boers (8) estimated system stability 
via regressing the increments Xt+Δt − Xt onto Xt using a GLS method 
designed for models driven by red noise of varying correlation 
strength. This regression gives the autoregression parameter λ in a 
model driven by discrete time red noise

where ρ symbolizes the correlation parameter of the red noise, and ϵ 
is the white noise. For correlation parameter ρ close to zero, i.e., η 
close to white noise, it can be shown that the relation λ = AC(1) − 1 = 
exp (−γΔt) − 1 holds approximately. Hence, as γ → 0 from above, we 
have that λ → 0 from below. Similarly to the above, the tipping time 
can thus be estimated by taking the time at which the linearly ex-
trapolated log(λ + 1)2, as an estimate of the bifurcation parameter α, 
crosses the critical value α = 0. In the present applications, the quan-
tities log[AC(1)]2 and log(λ + 1)2 are estimated in rolling windows 
centered around every 50th time series entry with a length of 100 
time series entries each.

Supplementary Materials
This PDF file includes:
Figs. S1 and S2
tables S1 and S2
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