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Abstract
City systems are characterized by the functional organization of cities on a regional or country scale. While there is a relatively good 
empirical and theoretical understanding of city size distributions, insights about their spatial organization remain on a conceptual 
level. Here, we analyze empirically the correlations between the sizes of cities (in terms of area) across long distances. Therefore, we 
(i) define city clusters, (ii) obtain the neighborhood network from Voronoi cells, and (iii) apply a fluctuation analysis along all shortest 
paths. We find that most European countries exhibit long-range correlations but in several cases these are anti-correlations. In an 
analogous way, we study a model inspired by Central Places Theory and find that it leads to positive long-range correlations, unless 
there is strong additional spatial disorder—contrary to intuition. We conclude that the interactions between cities extend over large 
distances reaching the country scale. Our findings have policy relevance as urban development or decline can affect cities at a 
considerable distance.
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Significance Statement

It is well known that the city sizes in a country or region span a wide range of scales, e.g. from thousands to millions. The same holds 
for the area covered by the cities. However, little is known about the location of cities. Are large cities found next to each other, are 
large cities surrounded by small ones, or are they overall positioned randomly? In this article, we study correlations between neigh-
boring city areas, second neighbors, …, from one side of the country to the other. It turns out that there are so-called long-range cor-
relations across the entire countries. This implies that (urban) development is not restricted to the respective region but can have 
influence far beyond.

Competing Interest: The authors declare no competing interest. 
Received: April 8, 2024. Accepted: July 29, 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by- 
nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly 
cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions 
can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please 
contact journals.permissions@oup.com.

Introduction
Cities and urban systems exhibit a range of intriguing statistical 
regularities. Many of them are represented by scaling laws, which 
due to scale-invariance and self-similarity are particularly inter-
esting. Batty (2013) lists seven laws of scaling (1, p.38ff) and one 
of them, Auerbach–Lotka–Zipf (ALZ) Law (2), states that the distri-
bution of city sizes within a country or region follows a power-law. 
However, the distribution says nothing about the location of the 
cities. In other words, different positioning of cities and settle-
ments can have the same size distribution. Where the cities are lo-
cated and how they are related to each other is a different 
property—size and position are complementary.

Little research has been dedicated to the spatial organization of 
city systems. For example, a regular spacing between cities and set-
tlements has been reported (3). Other authors assume random 

locations of cities (4) or report indications of nonrandom location 
pattern (5). Spatial correlations have been found in the growth 
rates of population (6–8). An important concept regarding the or-
ganization of city systems is the Central Places Theory (CPT) intro-
duced by Christaller (9) and extended by Lösch (10). According to 
CPT, the cities are organized in a hierarchical, hexagonal manner, 
such that cities of similar size or importance repulse each other 
(11). CPT is consistent with ALZ Law (12, 13), but its empirical val-
idation is challenging (e.g. (14)). Apparently, city systems do not 
follow the ideal CPT. They are messy, but at the same time not 
completely random. The organization within this stochasticity 
cannot be easily identified. Moreover, higher-order effects, such 
as polycentric urban organization characterized by multiple cen-
ters that are both balanced and in proximity (e.g. (15, 16)), are not 
included in CPT.
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We address this contrast by studying spatial correlations in the 
logarithmic sizes of cities and settlements across scales. A poly-
centric organization is characterized by cities and settlements of 
similar size in proximity, e.g. pronounced regions with large ag-
glomerations and others with small ones. Contrary to this, cities 
can also have alternating sizes, where a small settlement is next 
to a large one, and a less developed region is neighboring an 
urbanized one. Studying land-cover data of European countries, 
we indeed identify long-range correlations (see Methods for a 
comparison and discussion of short-range and long-range correla-
tions). They are a consequence of interactions among city sizes ex-
tending over a large range of scales. However, we find countries 
with positive and countries with negative correlations, but coun-
tries with positive correlations are more frequent, indicating a 
polycentric organization. Positive long-range correlations are con-
sistent with simulations conducted with a simple model inspired 
by CPT. Our results suggest that interventions in one city can af-
fect distant cities, and distant cities can also influence the effect-
iveness of such interventions. Therefore, it contributes to a better 
understanding of spatial correlations in city sizes which is crucial 
for developing effective regional and urban policies.

Data and methods
Data sources
CORINE land cover data (CLC) from Copernicus Land Monitoring 
Service (https://land.copernicus.eu/) for the year 2018 (version 
v.2020_20u1) represents the main data source. It comes in 100 m 
resolution and in GeoTiff format. The coordinate reference sys-
tem is the standard European Coordinate Reference System de-
fined by the European Terrestrial Reference System 1989 
(ETRS89) datum and Lambert Azimuthal Equal Area (LAEA) pro-
jection (EPSG: 3035). The CLC2018 database covers the European 
area of EEA38 countries and the United Kingdom, see CORINE 
Land Cover User Manual (17, p.25). The standard CLC nomencla-
ture includes 44 land cover classes, grouped in a three-level hier-
archy. Five main categories are artificial surfaces, agricultural 
areas, forest and semi-natural areas, wetlands, and water bodies. 
In our work, all cells belonging to the artificial surfaces category 
are aggregated to one urban class, everything else is considered 
nonurban.

We used NUTS (Nomenclature of territorial units for statistics) 
level 1 data of the year 2021 from EUROSTAT (https://ec.europa. 
eu/eurostat/) to delineate countries. The data come in vector for-
mat (spatial shape) and it covers 37 countries (United Kingdom + 
all European Environment Agency member countries except 
Kosovo and Bosnia and Herzegovina).

Network construction
We apply the City Clustering Algorithm (CCA) with distance 
threshold l in order to define city clusters (8, 18). In CCA, any 
two sites (pixels) i and j are assigned to the same cluster if their 
Euclidean distance is smaller or equal to the threshold, i.e. lij ≤ l, 
analogous to Random Geometric Graphs (19). We use an 
R-implementation of CCA (20). With increasing l, at certain point 
lc there is a percolation transition (21–23). In order to avoid a 
system-spanning cluster, we choose values l ≪ lc.

Islands and land masses that are separated from the mainland 
of their corresponding country with a distance larger than 1 km 
are excluded. For example, Sardinia Island (Italy) and Corsica 
Island (France) are removed because the sea represents a natural 

barrier that affects the neighborhood relationships of the cities 
and settlements.

Next, we generate Voronoi polygons around the urban clusters. 
The distance from any nonurban cell within the Voronoi polygon 
to this urban cluster is always smaller than the distance to other 
urban clusters. The concept is the same as Voronoi cells (also 
known as Thiessen polygons in the geographic sciences) for spa-
tial points, only that the Voronoi polygons are created for clusters, 
which have a spatial extent, instead of for points. The algorithm 
loops over every nonurban cell to find its closest urban cluster 
and then allocates it to the Voronoi polygon corresponding to 
the nearest urban cluster. When in some rare cases, the nearest 
urban cluster of a nonurban cell is not unique, then this cell is ran-
domly associated to the Voronoi polygon corresponding to one of 
the nearest urban clusters. We define two urban clusters as neigh-
bors if their Voronoi polygons share a border (based on Moore 
neighborhood). Implausible shortcuts at the coasts are avoided 
by limiting the Voronoi polygons to the land masses (within the 
country border). Based on the neighborhood table of all the urban 
clusters, we construct an undirected, unweighted network (see 
Fig. 1).  For some analysis, we also consider the distance between 
the clusters, which we define as the Euclidean distance between 
the centers of mass of the neighboring clusters.

Analysis of long-range correlations
Then, we apply Shortest Path Fluctuation Analysis (SFA) (24) to 
the networks to characterize the correlation structure of the 
logarithmic cluster sizes (log of pixel count), log mi, along all 
shortest paths between all pairs of cities. For one of the 
longest paths through Germany with i = 1, . . . , N = 170, Fig. 2 illus-
trates the advantage of studying the fluctuation function F(d) (see 
below) instead of studying the auto-correlation function 
C(d) = 1

N−d

N−d
i=1 ( log mi × log mi+d). Figure 2A and B shows the real 

(long-range correlated) logarithmic cluster sizes log mi and a 
(short-range correlated) realization of an AR1 process, respective-
ly. In Fig. 2C, the corresponding auto-correlation functions are 
plotted. Due to the limited statistics with merely 170 data points, 
they fluctuate a lot, so that it is difficult to distinguish between the 
power-law decay for the real data, C(d) ∼ d−0.4 (γ = 0.4), and the ex-
ponential decay for the AR1 data, C(d) = exp( − d/0.97). The scaling 
behavior of the real data can be identified more easily by studying 
the fluctuation function F(d) ∼ dH−1 = d−γ/2 in Fig. 2D, since the 
long-range correlations of the real data are reflected in a nice scal-
ing behavior with slope −γ/2 = 1 − H = −0.2 in the double- 
logarithmic plot, while the short-term correlations of the AR1 
data are reflected in a line crossing over from an initially larger 
slope to 1 − H = −0.5 in the limit of large d. We have also included 
the result for shuffled real data, where uncorrelated behavior is 
reflected by the H = 0.5 (i.e. slope −0.5) since all correlations 
have been destroyed by the shuffling.

In SFA, the standard deviation F of averages of values along 
shortest paths of length d is analyzed. The length is measured in 
terms of network steps. SFA consists of the following steps. (i) 
Find the shortest path between all pairs of nodes. (ii) Calculate 
the average of the logarithmic cluster sizes along the considered 
shortest path. (iii) For a fixed shortest path length d calculate 
the standard deviation of those averages. (iv) Plot this standard 
deviation as a function of path length, i.e. F(d) vs. d. If the values 
associated to the nodes are long-range correlated, then 
F(d) · d ∼ dH, where H is analogous to the Hurst-exponent, i.e. posi-
tive correlations are measured by H > 0.5 and negative ones by 
H < 0.5. If they are uncorrelated then H ≃ 0.5, i.e. F(d) ∼ d−0.5, is 
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found. The exponent H is obtained from ordinary least squares re-
gression to the log-quantities. In order to be able to use the same 
fitting range for various l and different countries, we rescale by 
plotting F(d) as a function of d/D, where D is the length of the lon-
gest shortest path (diameter) of the considered network.

In order to assess the significance of the measured exponents 
H, we apply a shuffling. For the networks extracted from each 
country at each distance threshold, we shuffle the sizes associ-
ated to the nodes (i.e. randomization is done by shuffling the sizes 
associated with the nodes; this preserves the network structure 
and the size distribution) and then repeat SFA. This destroys cor-
relations between the nodes and sizes but preserves all other 
properties including the network itself and the cluster size distri-
bution. We repeat the shuffling 10 times for each network. For the 
estimated H(l) at CCA distance threshold value l of a country, we 
compare H(l) with the average value of the estimated Hs values 
from the 10 shuffling realizations. We test whether H is signifi-
cantly larger (H0: H ≤ μ(Hs)) or smaller (H0: H ≥ μ(Hs)) than the 
Hs-values using the Z-test. Denoting the average of the Hs-values 
as H̅s, for H0: H ≤ μ(Hs), if P(h > H−H̅s

σ(Hs) ) ≤ 0.001 we reject the null hy-
pothesis and consider H to be significantly larger than Hs. 

Similarly, for H0: H ≥ μ(Hs), if P(h < H−H̅s
σ(Hs) ) ≤ 0.001, we reject the 

null hypothesis and consider H to be significantly smaller than Hs.

Modeling central places
We employ a model that generates structures inspired by 
Christaller’s Central Places Theory (CPT) (9, 25, 26) and that re-
sembles the model proposed in (27). It starts (0th iteration) with 
a single point carrying the size s−0+N (0,0.5), where s is a parameter 
that determines how the node size decreases with the iteration, 
and N (0, 0.5) represents a random number drawn from the nor-
mal distribution with μ = 0, and σ = 0.5. At each iteration i > 0, 6 
points are added hexagonally, at distance of 2−i, around the points 
added in the (i − 1)th realization and carry the size s−i+N (0,0.5). 
Points at the same position are removed. After finishing the pro-
cess at ith generation, the distances between the neighboring no-
des are μL = 2−i. For any point P(x, y), we add noise to its 
coordinates, P′(x′, y′) = (x +N (0, npμL), y +N (0, npμL)), where 
N (0, npμL) represents a random number drawn from the normal 
distribution with μ = 0, and σ = npμL, np is another parameter (ran-
ging from 1–300%) that controls the spatial disorder level of the 
structure.

Fig. 1. Illustration of steps to obtain a sequence of city sizes in the Czech Republic. A) Spatial clustering of urban land cover. Urban pixels are clustered 
employing the City Clustering Algorithm (CCA) with a distance threshold of l = 200 m, i.e. any two urban sites belong to the same cluster if their distance is 
smaller than or equal to l. B) Voronoi polygons. Any nonurban site is associated to its closest urban cluster. This set of nonurban sites forms the Voronoi 
polygon of the respective urban cluster. Cells in different shades of gray represent the Voronoi polygons, circles indicate the center of mass of each urban 
cluster. C) Settlement network. Two clusters are considered as adjacent nodes (connected by one edge in solid line) if their corresponding Voronoi 
polygons touch each other. D) Shortest path. The shortest path between any two urban clusters is determined—here an example is highlighted in red. The 
purple rectangle on the map is the outer box of the area shown in the three top panels. E) Sequence of sizes. Along the shortest path (D) the respective 
cluster size (number of grid cells) is plotted on a logarithmic scale vs. the number of steps.
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For each output from the CPT model, we generate a Voronoi 
diagram based on the coordinates of all the nodes and build the 
unweighted and undirected network to connect the nodes when 
their Voronoi polygons touch each other. It has to be noted that, 
to avoid shortcuts between the nodes on the boundary, we clip 
the Voronoi diagram using the convex hull of all the points. This 
prevents two nodes from being considered as neighbors if their 
Voronoi polygons touch each other only outside the convex hull. 
Then, we apply SFA analogous to the real-world data. We use 
shortest paths in terms of Euclidean distance since for small spa-
tial noise the hexagonal structure persists with a multitude of 
shortest paths based on network steps.

Results
Analyzing real-world data
We begin by constructing settlement networks. Since administra-
tive units hamper the identification of neighborhood relations, we 
analyze urban land cover data and define urban clusters. This 
spatial clustering involves a distance threshold l which deter-
mines if two urban sites are part of the same cluster. Examples 
are shown in Fig. 1A. Two urban clusters are then considered 
neighbors, if their Voronoi polygons share a border. In Fig. 1B, cor-
responding Voronoi polygons are exemplified, and in Fig. 1C, the 
respective network is displayed, where (for visualization purpose) 
we use the centers of mass as node positions. This procedure re-
sembles Delaunay triangulation and the neighbors of an urban 
cluster are uniquely defined while being dependent on the aggre-
gation scale represented by l.

If we want to analyze correlations beyond nearest neighbors, 
we somehow need to consider the neighbors of the neighbors 
and so forth. An intuitive way of defining them is the shortest 
path on the network. Figure 1D shows an example of a long short-
est path. The corresponding sequence of logarithmic cluster sizes 
(in terms of area) along this shortest path is provided in Fig. 1E. It 

can be studied analogous to a time series and long-range correla-
tions come along with extended regions of in- or decreased values 
(28, 29). Specifically, positive long-range correlations are reflected 
in a power-law decay of the auto-correlation function C(d) ∼ d−γ 

with distance d and 0 < γ < 1, a power-law decay of the power spec-
trum, P(f ) ∼ f−β with frequency f and β = 1 − γ, and a fluctuation 
function F(d) ∼ dH−1 with H = 1 − γ/2 (Fig. 2 in Methods section). 
Such long-range correlations are due to interactions that extend 
across large spatial scales. They are clearly distinct from short- 
range correlations that would result, e.g. from an auto-regressive 
process.

The shortest path between two urban clusters could be a spe-
cial case. Hence, in order to make best use of the statistics, we 
take into account the shortest path between all pairs of nodes 
which is part of SFA (24) (Methods section). Resulting fluctuation 
functions are depicted in Fig. 3 for l = 200 m. The examples, 
Bulgaria and Germany, clearly exhibit positive long-range correla-
tions, their fluctuation functions decrease more slowly than in the 
uncorrelated case. The corresponding exponents H > 0.5 are also 
very different from those that we obtain for the shuffled data 
Hs ≈ 0.5. We conclude that in these cases neighboring urban clus-
ters have related sizes. The correlations among the clusters ex-
tend at least up to one-third of the size of the countries (i.e. the 
upper limit of our fitting range).

Interestingly, the other examples, Spain and Finland, exhibit 
fluctuation functions that decrease steeper than in the uncorre-
lated case for the shuffled data. The exponents H < 0.5 indicate 
long-range anti-correlations, meaning that neighboring urban 
clusters are alternating in size—again across a large range of spa-
tial scales. For other European countries, we obtain similar re-
sults, not always significant but in most cases H ≠ 0.5 (Fig. 3E). It 
is noticeable that not all coastal countries exhibit negative corre-
lations but almost all countries exhibiting negative correlations 
have extended coasts (an exception is Austria; Slovenia has a 
short coast).
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Fig. 2. Example to illustrate the advantage of fluctuation function over auto-correlation function. A) Logarithmic cluster sizes of one of the longest 
shortest paths for Germany and l = 100. B) Data generated with the auto-regressive model (AR1) using the same correlation length C(d = 1) = 0.356 as 
observed in (A). C) Auto-correlation functions for the records shown in (A) and (B), respectively. D) Fluctuation functions for the records shown in (A) and 
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In Fig. 4, resulting fluctuation functions and exponents are 
shown for various clustering thresholds l. The respective fluctuation 
functions (Fig. 4A–D) widely agree with those of Fig. 3. We see no sys-
tematic dependence when plotting the fluctuation exponents vs. 
the clustering threshold in Fig. 3E. There are some variations but 
the exponents to a large extent remain different from H = 0.5 and 
consistently above or below this limit (except for Czech Republic). 
Increasing the aggregation scale with l corresponds to a coarse- 
graining (Fig. S1) and is comparable to aggregating a monthly time 
series into an annual one. Since power-law correlations are 
scale-invariant, the correlations should not be affected by aggrega-
tion. This is also the case for the correlations among city sizes 
(Fig. 3E) and supports the robustness of our results.

Alternative shortest path
Judging from Fig. 1D one may object that the shortest path follows 
a somewhat curvy and arbitrary route (30). It is also evident that 
the shortest path in terms of network steps gives preference to 
large Voronoi polygons, which can belong to large urban clusters 
but also to small ones in remote areas. Accordingly, we repeat the 
analysis employing the shortest path in terms of Euclidean dis-
tance, i.e. the cumulative distance between the urban clusters is 
minimized. The respective results are shown in Fig. S2. The short-
est path defined by Euclidean distance is very different from the 
one shown in Fig. 1D. But when we compare the estimated expo-
nents from both methods, we obtain a correlation coefficient of 
0.46. Separating the values by distance threshold l we find correla-
tions beyond 0.6 for l = 200 m and l = 300 m and below 0.4 for 
l = 100 m and l ≥ 700 m. The shortest path in terms of Euclidean 
distance is also not ideal as it avoids large Voronoi polygons. 

Nevertheless, the comparison of both variants shows that the re-
sults are similar, indicating that the influence of the actual path is 
marginal.

Modeling long-range correlations in city size
Last, we want to employ a numerical model to test under which 
circumstances long-range (anti-) correlations can emerge in city 
size. Inspired by Central Places Theory (9, 27) we generate struc-
tures consisting of points and associated city sizes. In a self- 
similar manner, six smaller cities surround a respective larger 
one—hierarchically over a range of size scales (Fig. 5A). In order 
to be more similar to real-world structures, we add noise to the po-
sitions and to the sizes (Fig. 5B). We then analyze them analogous 
to the real-world data using shortest paths in terms of Euclidean 
distance (see Data and methods). In Fig. 5C, we plot the resulting 
fluctuation exponents as a function of the magnitude of spatial 
noise (see Fig. S3 for examples of generated structures and result-
ing fluctuation functions). One can see that for a small degree of 
noise we obtain positive long-range correlations which then 
with increasing noise transition to (weak) negative ones and 
asymptotically vanish completely. From these simulations, we 
learn that the model inspired by CPT can lead to long-range corre-
lations. Whether the magnitude of spatial noise is also the driving 
factor of long-range correlations in the real-world data is a com-
plex problem and needs to remain for future research.

Discussion
In summary, we quantify long-range correlations in logarithmic 
city size by combining spatial clustering, Delaunay triangulation, 
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Fig. 3. Fluctuation analysis and resulting fluctuation exponents. A–D) show the fluctuation functions (for l = 200 m) of four example countries (Bulgaria, 
Germany, Spain, and Finland, respectively). The fluctuation functions F are plotted vs. distance d in terms of network steps divided by network diameter 
D. The circles represent the obtained values and the solid line indicates the estimated slope H. The colored symbols stem from analyses where the 
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network and shuffle exercises, only the range of d/D ∈ [0.06, 0.33] (delineated by the vertical dashed lines) is used to estimate the exponents. E) Map of 
estimated slopes H at l = 200 m. The color within the country borders indicates the obtained slopes. Hatched areas represent countries with fewer than 5 
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shuffle exercises, while the size of them informs if the Z-test indicates significance or not, analogous for the green circles but for H < Hs. Many countries in 
central Europe exhibit significant positive long-range correlations, while several others also exhibit negative correlations.
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and SFA (originating from complex networks theory). We obtain 
exponents that significantly differ from the uncorrelated case 
but whether above or below is specific to the considered countries. 

Countries with positive long-range correlations are more frequent 
in Europe suggesting extended regions with large or small cities. 
We note that we have obtained similar, but less stable results for 
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studying city sizes instead of logarithmic city sizes, mainly because 
of the extreme (exponential) variations in the actual city sizes (also 
present in the CPT model). The simulations with the CPT-inspired 
model result in positive long-range correlations for structures 
close to hexagonal organization. This seems counter-intuitive, be-
cause the CPT model is based on inserting small cities around each 
large city in each generation.

Long-range correlations in city size are associated with interac-
tions between the cities and settlements that extend over many 
spatial scales. Certainly, a large city influences its vicinity. But 
the long-range character of the interactions—as revealed by our 
results—indicates that the influence extends far beyond the neigh-
boring cities and settlements. This means, the size of a city or 
settlement is a result of the sizes of many other units, even far 
away. It can be assumed that such interactions not only affect 
city size (here we consider the area)—but also other city features, 
including socio-economic properties (e.g. (31, 32)). Accordingly, 
we also anticipate an influence on regional development and argue 
that such phenomena need to be taken into account by respective 
policies.

It stands out that countries with negative correlations are al-
most exclusively countries with long coasts (not vice versa, 
though). We speculate that the reason is coastal development. 
The coasts represent approximately linear objects along which 
coastal development happens with alternating small and large 
cities. Since many shortest paths follow this structure, the result-
ing fluctuation function exhibits negative correlations.

In continental countries, development happens potentially 
everywhere and many shortest paths rather consist of consecutive 
cities and settlements of similar size. This is best illustrated by sim-
ulations with our CPT-inspired model. Only distinct shortest paths 
exhibit the characteristic alternating structure. Apparently, many 
paths do not follow those distinct patterns but rather consist of ex-
tended segments of small or large cities. As a consequence, the mod-
el results are dominated by paths that do not follow distinct 
(anti-correlated) patterns but rather sequences of correlated sizes 
—which ultimately dominate the resulting fluctuation functions. 
Thus, the six units placed around the central one, having similar 
size, cause this counter-intuitive result.

Positive long-range correlations could also be indicative of devel-
opment axes. Development axes are characterized by (growth) cen-
ters that align along an axis at a large (continental, country, or 
regional) scale (e.g. (33–35)). As such, development axes could be 
understood as a special form of polycentrism and are not explained 
by CPT. They represent more or less developed areas extending spa-
tially and should manifest themselves in spatial correlations. 
Consequently, the long-range correlations in city size that we meas-
ure here could be associated with development axes.

Although in itself consistent, our work also leaves room for im-
provement. When two settlements are separated by a mountain 
range, they might not be perceived as neighbors. Accordingly, in-
cluding further data, such as topographic information, might en-
able a refined neighborhood relation of cities and settlements. 
Similarly, one could include road-network data to define neigh-
bors and networks (e.g. (36)). However, as our results are some-
what robust against the choice of the shortest path, we do not 
expect a dramatic influence from such refinements. For the sake 
of simplicity and consistency, we base the entire analysis on one 
and the same data set (land-cover).

Regarding the simulations with the CPT model, we need to 
note that an important feature is missing, namely the spatial ex-
tent of the cities. In our simulations, all nodes have the same spa-
tial size and only carry an additional attribute representing the 

city size. We cannot exclude that improved simulations, taking 
this factor into account, may lead to different results. However, 
it is plausible that, qualitatively, both versions should lead to 
similar outcomes.

There are many directions in which our work can be extended 
in future research. While there are countries with positive and 
negative long-range correlations, some countries also exhibit an 
absence of correlations in city size. Although the precise mecha-
nisms behind our empirical observations require further investi-
gation, it seems plausible that this absence might reflect a 
simultaneous presence of effects leading to positive and negative 
correlations, compensating each other.

Further work will be necessary to understand the influence of 
historic borders and planned cities. It is plausible that historical 
and political developments affect current city configurations, e.g. 
Eastern Germany, Austria, and the former Yugoslavia. Follow-up 
work could address historic and country-specific questions, e.g. in-
volving sub-national analyses.

Moreover, examining urban land-cover dynamics over time can 
enhance our understanding of how the long-range spatial correl-
ation of city sizes impacts urban development patterns. This might 
be achieved by systematically exploring the spatio-temporal rela-
tionship between urban growth rates and the long-range correlation 
of city sizes.

Certainly, more conceptual work is necessary to discriminate 
and understand polycentrism in the context of Central Places 
Theory. Similarly, the role of inhomogeneities needs to be better 
understood and related to polycentrism. It is very common that 
countries exhibit more or less densely populated regions. To 
what extent do such changes represent noise or fluctuations, 
and to what extent are these systematic nonstationarities?

Methodologically, instead of Delaunay Triangulation one could 
also employ other proximity graphs (37), including Euclidean 
relative-neighborhood graphs (e.g. (38, 39)) or the Gabriel Graph 
(e.g. (40)). A more pragmatic alternative could be to define the net-
work by connecting neighboring cities if they lie within a prede-
fined Euclidean distance (41). Instead of SFA one could explore 
fractal network analysis (42, 43), likely to provide complementary 
exponents. Last but not least, it should be straightforward to ex-
pand the analysis to other countries and continents.

An alternative simulation model could be based on the Dodds 
network discussed by Aste (44). The idea is to cover a continuous 
surface with nonoverlapping circles. After placing circles with a 
constant maximum radius Rmax, smaller circles (always chosen 
as large as possible) fill in the gaps. The spatial organization of 
this system resembles urban systems (3). They also share power- 
law size distributions. The Dodds network is then given by 
connecting the centers of neighboring circles and can be analyzed 
analogously to our Delaunay triangulation. It could also be in-
sightful to study more sophisticated models, like SIMPOP (45) 
which is a multiagent system that can simulate characteristics 
of urban systems instead of imposing them as in our CPT 
implementation.

In the present work we study the correlations in city size. 
Alternatively, one could also investigate the degree correlations, 
for which SFA was developed originally. The degree is the number 
of connections a node has to others. In our context this would be 
the number of neighbors a city has. Then one could also study 
the analog to Aboav’s law. For planar Poisson–Voronoi tessella-
tions, Hilhorst (46) finds that the neighbors of a node with degree 
k have on average degree k′ = 4 + 3

�����
π/k


. As cities are not 

Poissonian an exponent different from −1/2 can be anticipated in 
this relation.
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