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Modeling surge dynamics improves
coastal flood estimates in a global set of
tropical cyclones
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Tropical cyclone-induced storm surge is a major coastal risk, which will be further amplified by rising
sea levels under global warming. Here, we present a computational efficient, globally applicable
modeling approach in which ocean surge and coastal inundation dynamics are modeled in a single
step by the open-source solver GeoClaw. We compare our approach to two state-of-the-art, globally
applicable approaches: (i) using a static inundation model to translate coastal water level time series
from a full-scale physical ocean dynamics into inundated areas, and (ii) a fully static approach directly
mapping wind fields to inundation areas. For a global set of 71 storms, we compare the modeled
flooded areas to satellite-based floodplain observations. We find that, overall, the models have only
moderate skill in reproducing the observed floodplains. GeoClaw performs better than the two other
modeling approaches that lack a process-based representation of inundation dynamics. The
computational efficiency of the presented approach opens up new perspectives for global
assessments of coastal risks from tropical cyclones.

Tropical cyclones (TCs) are one of the most devastating categories of
extreme weather events on earth, with their impact concentrated in coastal
areas. TCs are connected to only 16% of the weather-related records in the
international disasters databaseEM-DAT, but are responsible for 41%of the
damages (1991–2020)1. They are so destructive because they encompass
multiple hazards2–7: high-intensity winds, rain, storm surges, and associated
compound floods. However, so far most global assessments on people
exposed to TCs8,9 as well as TC-induced economic damages10–12 use wind as
the only hazard predictor and neglect floods and rainfall.

To this end, we here focus on modeling the hazard of coastal floods,
which were the primary cause of fatalities resulting from TCs over the
1963–2012 period in the USA13. Under climate change, the risk of TC-
inducedflooding is clearly expected to increase: sea level risewill amplify the
riskof coastalflooding, and increasinglyheavyprecipitationwill increase the
risk of pluvial and fluvial flooding14.

There are different approaches to estimate TC-induced inundated
areas. First, full-scale ocean models such as ADCIRC15,16, COMCOT17,
Delft3D FM18,19, FVCOM20,21, MIKE2122,23, ROMS24,25, or SLOSH26,27

consider not only effects of the atmosphere, astronomical tides, and
waves on hydrodynamics to model coastal water level time series; they
also allow modeling inundation dynamics in the same modeling step.
This has the advantage that they can account for the dynamic interactions
of surges with astronomical tides, short surface gravity waves (wind sea
and swell), or spatially varying surface friction characteristics over land16.

Global flood risk assessments employing these models so far only used
their coastal water level output and not their capability to model flood
extents28–31. This contrasts the clear importance of dynamically resolving
the surge dynamics32–36.

Second, since flow solvers are often optimized to model either large-
scale ocean dynamics, or small-scale estuaries and overland flooding,
uncoupling the coastal surge from the coastal inundation dynamics is a
common approach in coastal flood modeling37. Especially for multi-storm
assessments, computational demand, anddata requirements can be reduced
when the full-scale physical (ocean) models are only employed to produce
the time series of water levels along the coastlines, called hydrographs38. A
computationally less expensive model can then use these as input for the
actual inundationmodeling. In global studies39–41, it is common to use static
(so-called planar, GIS-based, or bathtub-type) inundation models, as, for
instance, the World Resources Institute’s Aqueduct model42. These static
bathtub-type approaches assume that any grid point is inundated if it has an
elevation less than the extreme water level, usually attenuated according to
its distance to the coastline.

Third, fully static and computationally inexpensive one-step approa-
cheshave beenemployed, especially for the assessments of globalflood risks,
as, for example, the storm surge module implemented in the open-source
risk assessment toolbox CLIMADA43. They estimate the inundation height
in each grid cell from wind speed, distance to coast, and topographical
elevation using a linear relationship44.
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Finally, with machine-learning-based methods that do not rely on
physical ocean models another computationally efficient alternative has
emerged, recently. They can generate synthetic storm tide hydrographs45,46,
peak storm tides at a small selection of points47–49, or even gridded flood
extents50–52 for risk analyses. However, the field of machine-learning-based
flood area and depth assessment is in an early stage, and all the existing
models are only calibrated for comparably small regions.

We here introduce a globally applicable, event-based, and dynamic
one-step approach, building on the intermediate-complexity geophysical
flow solver GeoClaw53,54. Solving the depth-averaged shallow-water equa-
tions (SWEs), GeoClaw allows us to seamlessly model TC-induced coastal
water level time series and inundated areas along coastlines (Fig. 1).
GeoClaw has an intermediate spatial resolution that is higher than global-
scale ocean models but lower than most coastal inundation models. In
contrast to static, not process-based (e.g., bathtub-type) approaches,
GeoClawaccounts for the event-specific variation ofwind andpressure over
time as well as for the run-up of waves and overland flow around obstacles.
GeoClaw’s complexity is moderate compared to many flood models as it
does not incorporate dynamic interactions with astronomical tides, short
surface gravity waves (wind sea and swell), river discharge, or spatially
varying surface friction characteristics over land. Astronomical tides cannot
be imposed as dynamic boundary conditions in GeoClaw. This is why, for
each simulation,wederive a constant offset fromastronomical tides andadd
it to the zero water level in a preprocessing step.

We test the ability of GeoClaw in reproducing satellite-based obser-
vations of coastal inundated areas and compare its performance to twoof the
globally applicable model setups discussed above (Fig. 1): in the first model
setup (GTSM+Aqueduct), we take a two-step approach. For that, we use
coastal water levels calculated by the Global Tide and SurgeModel (GTSM)
version 3.055—a depth-averaged global ocean dynamics model that dyna-
mically simulates tides and storm surges using the unstructured Delft3D
Flexible Mesh software18—to calculate inundated areas with the static
bathtub-type inundationmodel of theWorldResources Institute’sAqueduct

project42. In the secondmodel setup (CLIMADA), we employ the fully static
inundation model included in CLIMADA as a representant of light-weight
approaches often used for large-scale risk assessments. Further, to test
whether resolving the inundation dynamics improves the performance of
GeoClaw, we combine GeoClaw with Aqueduct (GeoClaw+Aqueduct).

For model evaluation, we apply the models to a global set of 71 storms
between 2000 and 2019 for which satellite-based observations of coastal
inundated areas are available and compare their performance in reprodu-
cing these floodplains. We only include low-lying grid cells with a height of
between 0 and 10 meters above geoid, and outside of permanent water
bodies to reduce the share of flooded areas that are due to pluvial and fluvial
floods (see “Methods” section for a detailed description of the observational
datasets). In addition, we use coastal high watermarks (HWMs), which are
available for 11 US storms, for model evaluation (Fig. 2 and Supplementary
Tables S1–S3).

We find that GeoClaw outperforms the other modeling approaches
with regard to three common performance metrics. The inundated areas
simulated by GeoClaw are generally larger but do not systematically over-
estimate the floodplains, while these are systematically underestimated by
the other modeling approaches. To exclude the possibility that GeoClaw’s
better performance ismerely a result of amore exact reproduction of coastal
water level time series, we compare the simulated hydrographs as obtained
by the different modeling frameworks with observational tide gauge data
(available for 34 storms (Fig. 10a, b and Supplementary Table S5)).We find
that these arebetter reproducedby the full-scaleoceanmodelGTSMthanby
GeoClaw. These findings lead us to the conclusion that resolving the surge
dynamics is the key driver of GeoClaw’s better performance in reproducing
coastal floodplains.

Results
Evaluation of modeled inundated areas
We first illustrate inundation for the different model setups through the
examples of Hurricane Harvey (August 2017, Fig. 3) and Hurricane Rita
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Fig. 1 | Comparison of the four consideredmodeling frameworks. Four modeling
frameworks translating tropical cyclone storm surge into coastal flood extents are
compared: (i) the shallow-water equation solver GeoClaw54 employs storm track
data to dynamically calculate coastal water level time series (hydrographs) and
coastal flood extents in a single modeling step (GeoClaw, bold solid lines), (ii) the
full-scale physical ocean model GTSM55 is used to calculate coastal hydrographs
frommeteorological reanalysis data (ERA5120), which are then employed to calculate

inundated areas with the static inundation model Aqueduct42 (GTSM+Aqueduct,
dotted lines), (iii) the fully staticfloodmodule implemented inCLIMADA43 employs
a statistical-surge relationship to translate storm track data directly intoflood extents
(CLIMADA, thin solid lines), (iv) to test the impact of dynamically resolving
inundation processes, the static Aqueduct model is driven by GeoClaw’s coastal
hydrographs to calculate coastal flood extents (GeoClaw+Aqueduct, dashed lines).
Arrows indicate the order in which the different models are executed.
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(September 2005, Fig. 4). Both stormsmade landfall on similar geographical
regions in Texas and Louisiana and caused a significant storm surge.
Extreme rainfall was themajor cause of damages forHurricaneHarvey56. By
contrast, the impact of Hurricane Rita was dominated by the devastating
storm surge57. For both events, satellite-based flood extents are available
from two different observational sources.

There are substantial differences between the inundated areas derived
from satellite observations and all models. Also, the satellite observations
differ between observational sources, though to a somewhat smaller extent.
For Hurricane Harvey, two satellite-based products are available (“Meth-
ods” section): the RAdar-Produced Inundation Diary (RAPID)58 and the
Dartmouth Flood Observatory (DFO)59, which estimate the flooded area to
be 10,316 and 12,295 km2, respectively. The flooded area calculated by
GTSM+Aqueduct (494 km2; Fig. 3f) is by one order of magnitude smaller
than the observed flooded areas. Further, the size of the flooded area
obtained with CLIMADA (1934 km2; Fig. 3d) and GeoClaw (4866 km2;
Fig. 3c) is less than a fifth and less than half of the sizes of the observed areas.
Also for Hurricane Rita, two satellite-based observations are available, one
from the Global Flood Database (GFD)60 (3673 km2; Fig. 4a) and the other
from the DFO (3239 km2; Fig. 4b). The flooded areas obtained by
GTSM+Aqueduct (1671 km2; Fig. 4f) is less than half the size of the
observed flooded areas. Further, the size of the flooded area calculated with
CLIMADA (2659 km2; Fig. 4d) matches the observations quite well,
whereas the flooded area calculated with GeoClaw (7405 km2; Fig. 4c) is
nearly twice as big.

The three considered coastal inundation model setups (GTSM+
Aqueduct, GeoClaw, and CLIMADA) match the observation more closely
in the case of Rita than in the case of Harvey. Likely, one reason is that the
flooding caused by Harvey was strongly driven by extreme rainfall not
accounted for in the considered modeling setups56. (By contrast, Rita pri-
marily caused devastating storm surges, whereas the amount of rainfall was
comparably low57). However, the substantial overestimation by GeoClaw of
the area flooded by stormRita shows that missing fluvial flood components
are not the only reason why mismatches between modeled and observed
floodplains arise (“Discussion” section).

For Hurricane Harvey, the satellite-based products RAPID (Fig. 3a)
and DFO (Fig. 3b) estimate flooded areas of 10,316 km2 and 12,295 km2,

respectively. The flooded area calculated by GTSM+Aqueduct is by one
order of magnitude smaller (494 km2; Fig. 3f) than the observed flooded
areas. Further, theflooded areas obtainedwithCLIMADAandGeoClaware
less than a fifth (1934 km2; Fig. 3d) and less than half (4866 km2; Fig. 3c) as
large as the observed areas, respectively.

Also for Hurricane Rita, two satellite-based observations are available,
one from GFD (3673 km2; Fig. 4a) and the other from DFO (3239 km2;
Fig. 4b). The flooded area obtained by GTSM+Aqueduct (1671 km2;
Fig. 4f) is less than half as large as the observed flooded areas. The size of the
flooded area calculated with CLIMADA (2659 km2; Fig. 4d) matches the
observed ones quite well, whereas the flooded area calculatedwithGeoClaw
(7405 km2; Fig. 4c) is double the size of the observed flooded areas.

Foreseeably, the coastal inundation models match the observation
more closely in the case ofRita than in the case ofHarvey. This is because the
flooding caused by Harvey was strongly driven by extreme rainfall not
accounted for in the models56. By contrast Rita caused devastating storm
surges, but the amount of rainfall was comparably low57.

For both storms (Figs. 3c–f and 4c–f), the inundated areas calculated
dynamically withGeoClaw reach further inland (Figs. 3c and 4c) than those
obtained with both static, not process-based approaches (CLIMADA,
Figs. 3d and 4d, and GTSM+Aqueduct, Figs. 3f and 4f). Especially,
GTSM+Aqueduct inundates merely thin coastal strips. This suggests that
the different characteristics of the flooded areas obtainedwithGeoClaw and
the staticmodeling approachesmay result from the dynamic representation
of inundation processes inGeoClaw. (For instance, the staticmodels neglect
that the direction of thewaterflow is also driven by thewind and can change
in the course of the storm, which may explain the higher penetration depth
of thefloodingobtainedwithGeoClaw.)To test this hypothesis,we calculate
the coastal water levels with GeoClaw and the inundation with the static
Aqueduct model (GeoClaw+Aqueduct). For both storms, this does not
only reduce the size of the flooded areas compared to the full GeoClaw
simulations (for Harvey and Rita the size of the flooded area is 619 km2

(Fig. 3e) and 2324 km2 (Fig. 4e) compared to 4866 km2 (Fig. 3c) and
7405 km2 (Fig. 4c), respectively, for the full GeoClaw setup). It also changes
their characteristics, as, in this setup, only thin coastal strips are inundated,
similarly to GTSM+Aqueduct. This is a strong indication that indeed the
dynamic description of the inundation processes is a main cause for the

Fig. 2 |Overviewof the observational validation data. aThe validation data include
97 flood extents (red boxes) for 71 distinct tropical cyclone events. For 34 of the
storms, tide gauge measurements are available. In total, 383 tide gauge time series at
213 distinct tide gauge stations (black dots) are used. b For 11 storms in the USA and

Puerto Rico, a total of 1007 field measurements of inundation heights (high water
marks; orange dots) are available. c The events cover the period 2000–2019, and all
intensities of the Saffir–Simpson Hurricane Scale (color scale).
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different characteristics of the flooded areas calculated with GeoClaw
compared to the static modeling approaches.

Wenext show that the inundatedareas calculatedwithGeoClawmatch
the satellite observations systematically better than those from static inun-
dationmodels. To this end,wefirst classify eachcell of thefloodmaps for the
full set of 71 TCs as either “wet” (positive) or “dry” (negative). We then use
three performance metrics (scores, see “Methods” section) calculated from
the areas classified as true positive, true negative, false positive, and false
negative61: as the harmonic mean of precision and recall, the F1 score (with
values between 0 and 1) is a metric for the accuracy of a prediction62. The
F2 score (with values between 0 and 1) is the ratio of the area classified aswet
by both (model and observation) divided by the area classified as wet by any
of the two63. Despite being the predominant indicators of model perfor-
mance, these scores are known tobe biased in favor of overpredictions64. For
this reason, we additionally consider the Matthews correlation coefficient
(MCC), also known as (Yule) Phi coefficient. MCC is the Pearson corre-
lation coefficient estimated for twobinary variables (with values between−1
and 1). It is generally regarded as a more informative and true score if the
class sizes (here the areas of “wet” and “dry” cells) vary65 (see “Methods”
section for a detailed discussion of the different performance indicators).

GeoClaw outperforms the static, not process-based approaches for all
three performance scores for all 71 TCs (Fig. 5 and Table 1). This finding
remains robust also if instead of the map-by-map score which results in a
range of score values (colored boxes with black horizontal lines indicating

medianvalues inFig. 5),weconsider allfloods at oncewhich results in a single
performance score for each model (total score; black stars in Fig. 5). Each
flood map contributes equally to the map-by-map score, whereas the influ-
ence of each floodmap on the total score increases with its geographical area.

Notably, the performance scores of all models considered in this study
are comparably low and need to be interpreted in context. They cannot
easily be compared to regional analyses or to studies about freshwater
flooding. For example, all four approaches considered in this study have
averageF2 scores of <25%,while F2 scores of <30%are rather uncommon in
the literature66,67 (typical values range between 30% and 50%68,69, and may
even exceed 80% in some cases70,71). There are twomain reasons: first, when
modeling freshwater flooding over land, it is usually easier to define the
affected area67, while in the case of TC-induced coastal flooding it is more
difficult to distinguish storm surge-induced flooding from pluvial and riv-
erine flooding. Second, in contrast to many freshwater studies68,72, we
exclude permanent water bodies. (A detailed discussion and robustness
checks can be found in the limitation section of the “Methods”).

Inundated areas calculated dynamically with GeoClaw are larger than
those obtainedwith static, not process-basedmodels for the full set of the 71
TCs, confirming our findings for Harvey and Rita. To see this, we consider
the ratio of truenegative areas (TNR).A lowTNR indicates that a prediction
tends to overpredict, but underprediction is not penalized (classifying all
cells as dry yields a perfect TNR of 100%). Further, we consider the bias
score, which weighs overpredictions (too many wet cells) against

Fig. 3 | Observed and simulated flood extents for Hurricane Harvey (2017). The
flood extents from two different satellite-based observations (a RAPID and b DFO)
as well as from four inundation models (c–f) are shown, covering an 800 km stretch
of coastline from Corpus Christi (Texas) in the west, via Galveston (Texas), to New
Orleans (Louisiana) in the east. Some areas are marked as missing (gray) in the
satellite-based products. Permanent water bodies (blue) as well as areas with an

elevation of more than 10 meters above geoid (black) were excluded from the ana-
lysis. Wet (flooded) areas are marked in brown and dry (non-flooded) areas are
marked in white. All products are reprojected to the same 1 km grid for comparison.
In the model outputs, a grid cell is marked as flooded if the simulated flood depth
exceeds 0.1 m.
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underpredictions (toomany dry cells). A positive (negative) bias indicates a
tendency to overpredict (underpredict). The TNR of GeoClaw (93%) is
much lower than the TNR of the static inundation models (99% for
GTSM+Aqueduct, and 97% for CLIMADA). The comparably high TNR
of the latter suggests that the static inundation models underestimate the
floodplains. This is also confirmed by the strongly negative biases of these
models with median values ranging from −1.95 (GTSM+Aqueduct) to
−1.47 (CLIMADA), whereas the bias for GeoClaw is much closer to zero
(−0.18). Coupling the hydrographs obtained with GeoClaw with the static
inundation model Aqueduct (GeoClaw+Aqueduct) yields a systematic

underprediction of inundated areas (99% TNR and −2.77 bias) which is
similar to the other static approaches. As all models use the same topo-
graphic dataset, this indicates that the underestimation of inundated areas
by the staticmodels is causedby a systematic failure to represent some of the
dynamic processes modeled by GeoClaw. We note that a tendency to
underpredict is expected also for GeoClaw because it does not account for
pluvial and fluvial floods while satellite-observed areas do not differentiate
between different types of floods. Fully exploring the reasons for under-
prediction would require a model capturing all types of floods, which is
beyond the scope of this analysis.

Fig. 4 |Observed and simulatedflood extents forHurricaneRita (2005).Theflood
extents from two different satellite-based observations (aGFD and bDFO) as well as
from four inundation models (c–f) are shown, covering an 800 km stretch of
coastline from Victoria (Texas) in the west, via Galveston (Texas), to New Orleans
(Louisiana) and Gulfport (Louisiana) in the east. Some areas are marked as missing
(gray) in the satellite-based products. Permanent water bodies (blue) as well as areas

with an elevation ofmore than 10 meters above geoid (black) were excluded from the
analysis. Wet (flooded) areas are marked in brown and dry (non-flooded) areas are
marked in white. All products are reprojected to the same 1 km grid for comparison.
In the model outputs, a grid cell is marked as flooded if the simulated flood depth
exceeds 0.1 m.

Fig. 5 | Comparison statistics for satellite-based flood extents. a–c Three metrics
(higher is better) are used to express the overall performance of inundationmodels in
reproducing the observed flood extents for 71 storm events. d The ratio of true
negative areas (TNR) expresses the share of areas correctly classified as dry (higher is
better)—an aspect that is not covered by the F1 and F2 performance scores (b and c).
e The bias score expresses the tendency of a model to over- (positive values) or
underpredict (negative values). Note the logarithmic scaling on the y-axis with linear

scaling between −1 and 1. The evaluation can either be done for each flood map
separately, resulting in a range of score values for each of the models (map-by-map
score; colored boxes), or across all grid cells contained in allfloodmaps, resulting in a
single performance score for each of the models (total score; black stars). The boxes
denote the interquartile ranges with a horizontal black line for the median value,
whiskers for the 95% intervals, and circles for the minimum and maximum values.
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We next investigate the performance per world region (Fig. 6). In our
analysis, we distinguish three world regions with TC activity: the Southern
Hemisphere (SH) as well as the North Atlantic and eastern North Pacific
(AP) and the western North Pacific and northern Indian Ocean (PI).
Without taking landfall and flood characteristics into account, approxi-
mately one-third of global TC activity is located in each of the three regions.
However, in our flood extent data, SH is under-represented (20%,
14 storms), and AP is over-represented (46%, 33 storms), each by ~40%.

GeoClawoutperforms the static inundationmodels in all three regions:
the scores of the three performancemetrics,MCC, F1, and F2 are higher for
GeoClaw. Further, the comparably higher TNR values of the static
approaches suggest that these underestimate the observed flood extents
more strongly than GeoClaw. This is also confirmed by the bias scores. For
GeoClaw, the biases are negative for AP and SH and positive for PI.
However, their magnitudes are much smaller than for the static modeling
approaches. These have comparably strong negative biases in all three

Table 1 | Performance indicators for theevaluationoffloodextents (total scoresandmediansofmap-by-mapscores, separated
by ⋆, with interquartile range in parentheses, Fig. 5)

Model MCC F1 F2 TNR (%) Bias

GeoClaw +0.22 ⋆ +0.10 0.34 ⋆ 0.15 0.20 ⋆ 0.08 89% ⋆ 93% −0.22 ⋆ −0.18

(+0.04 to +0.21) (0.07 to 0.28) (0.04 to 0.16) (87% to 98%) (−1.51 to +0.72)

GeoClaw+ Aqueduct +0.11 ⋆ +0.04 0.13 ⋆ 0.03 0.07 ⋆ 0.01 98% ⋆ 99% −1.65 ⋆ −2.77

(+0.00 to +0.08) (0.00 to 0.08) (0.00 to 0.04) (98% to 100%) (−5.27 to −0.80)

GTSM+ Aqueduct +0.10 ⋆ +0.06 0.12 ⋆ 0.04 0.06 ⋆ 0.02 98% ⋆ 99% −1.74 ⋆ −1.95

(+0.00 to +0.11) (0.01 to 0.12) (0.00 to 0.07) (97% to 100%) (−3.77 to −0.39)

CLIMADA +0.09 ⋆ +0.05 0.18 ⋆ 0.05 0.10 ⋆ 0.03 94% ⋆ 97% −0.86 ⋆ −1.47

(+0.00 to +0.11) (0.01 to 0.19) (0.00 to 0.10) (95% to 100%) (−3.24 to +0.12)

For 95% intervals and minima/maxima, see Supplementary Table S4.

Fig. 6 | Evaluation ofmodel performance byworld region.The performance scores
of modeled flood extents are shown for each of three world regions North Atlantic
and eastern North Pacific (AP, a–e), western North Pacific and northern Indian
Ocean (PI, f–j), and the Southern Hemisphere (SH, k–o). The colored boxes denote

the interquartile ranges with a horizontal black line for the median value, whiskers
for the 95% intervals, circles for theminimum andmaximum values, and a black star
for the total score. For a detailed description of the panels in each row, see Fig. 5.
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basins, indicating an underprediction of observed flood extents. A notable
exception is GTSM+Aqueduct in SH, whose bias across all grid cells and
maps is somewhat smaller in magnitude than the corresponding bias for
GeoClaw. Generally, model performance is higher in AP than in the other
two basins, except for GTSM+Aqueduct that performs in PI better
than in AP.

Comparison of modeled inundated areas with high water marks
Satellites can both under- and over-prediction flood extents67,73. To gain a
better understanding whether the satellite-based and modeled inundated
areas over- or underestimate the actual storm surge-affected areas, we
additionally compare them to field measurements of inundation heights
(HWMs) from the US Geological Survey (USGS) Short-Term Network
(STN)74 (see “Methods” section). This dataset covers 1007 coastal HWMs
for 11TCswhichmade landfall in theUSAout of the ensemble of 71 studied
storms, includingHurricaneHarveyandHurricaneRita (Figs. 7a, 8a, and9).
SinceHWMs comewith a classification as coastal or riverine, we restrict our
analysis to coastal locations to ensure that the recorded flood was pre-
dominantly caused by storm surge.

The tendency of satellite observations to underestimate flood extents is
confirmed when considering HWMs. In fact, only 88% of the 1007 HWM
locations are marked as wet in at least one of the satellite-based flood maps
(white box in Fig. 9a). GeoClaw outperforms static approaches concerning
the hit rate (HR) of flooded HWM locations. It estimates inundation for
92% of the HWM locations. CLIMADA (79%) and GTSM+Aqueduct
(78%) score lower in predicting the flooded HWM locations (Fig. 9a and
Supplementary Table S5). Like for the satellite-based flood extents, the
agreement of the inundated areas calculated by GeoClaw+Aqueduct with
the HWMs is lower (79%) than for the one-step GeoClaw approach (92%).
This provides another indication that dynamically resolving the inundation
processes is critical for a better representation of observed surge areas.

GeoClaw underestimates inundation heights, but with lower bias than
the static models. In contrast to the satellite observations, the HWMs allow

us to evaluate the inundation heights provided by the inundation models.
All models differ from the HWM inundation heights by more than ameter
(considering both under- and overestimation), but with quite different
biases. For 896 among the 1007HWMs, GeoClaw has non-zero inundation
heights. GeoClaw somewhat underestimates the inundation heights (mean
and median errors: 1.51m and 1.16m; interquartile range (IQR):
0.57–2.02m; average bias: −0.49m). The underestimation of inundation
heights by the static inundation models (GeoClaw+Aqueduct: N = 772;
mean andmedian errors: 1.80mand1.46m; IQR: 0.69–2.42m; average bias
−0.88m), GTSM+Aqueduct (N = 762; mean and median errors: 1.90 m
and 1.42 m; IQR: 0.78–2.65m; average bias −1.07m), and CLIMADA
(N = 772; mean and median errors: 1.61m and 1.15m; IQR: 0.49–2.15m;
average bias:−0.76m) is even larger (Fig. 9b and Supplementary Table S5).
Global Digital Elevation Model (DEM) biases are an important and often
dominant source of uncertainty. Comparing the height information of the
DEM used in this study with the ground elevation recorded at 666 of the
1007 HWMs shows that the elevations in the DEM tend to be too low
(average bias of−1.44m; IQR:−2.67 to−0.02m; green box in Fig. 9b and
Supplementary Table S5). For 50% of the HWM locations, the DEM
deviates from the recorded elevations bymore than 1.80m. For 140HWMs
(21%), the overestimation of topographical heights in the DEM is higher
than the actual inundation height. Thismeans that theDEMerror is so high
that even with the true hydrograph, any static, bathtub-type inundation
model would fail to predict flooding at these locations. This finding is only
valid for those coastal areas in the USA, for whichHWMs are available and
cannot easily be translated to the global scope.

Evaluation of coastal water level time series
So far our analyses have provided several indications that resolving the
inundation dynamics—as done by GeoClaw—could be critical to obtain
larger floodplains which better agree with observed surge-affected areas
than the floodplains obtained with static, not process-based models.
However, there is still the possibility that GeoClaw produces larger

Fig. 7 | High water mark and tide gauge measurements for Hurricane Harvey
(2017). a Inundation heights (color scale) above ground for 135 coastal high water
mark locations (diamonds) along the Texas coast, measured in the aftermath of
Hurricane Harvey in August 2017. bMaximum water levels (color scale) measured

at 34 tide gauge locations (circles) and simulated at 42 additional output locations
(squares). Measured and simulated water level time series (hydrographs) at Packery
Channel (c), High Island (d), and Freshwater Canal Locks (e) tide gauge stations.
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floodplains because it overestimates coastal water level time series (hydro-
graphs).Wefirst test this hypothesis by evaluating the availablehydrographs
forHarvey andRita, before assessing the hydrographs of all other storms for
which data is available.

For Hurricane Harvey, GeoClaw does not systematically overestimate
surge levels. We first compare observational and modeled hydrographs for
hourly measurements of 34 tide gauge stations from GESLA version 3
(GESLA3)75 (circles in Fig. 7b). The GeoClaw simulation, driven by a storm
track from the IBTrACS archive (event number 2017228N14314)76,
underestimates the observedmaximum surge height relative to the geoid by
0.33monaverage and themeanabsolute deviationofmaximumsea levels is
0.50m. Similarly,GTSMunderestimatesmaximumsurge heights by 0.28m
on average, but themean absolute deviations ofmaximum surge heights are
significantly better (0.36m). Which model performs better differs from
station to station and sometimes both models are rather close and other
times far off the observations (cf. tide gauge stations Packery Channel,
Fig. 3c, High Island, Fig. 3d, and Freshwater Canal Locks, Fig. 3e). For

Hurricane Rita, the number of available tide gauge records (only five sta-
tions) is too low for aggregate statistics (Fig. 8b). Also, the few available tide
gauge stations (Fig. 8c, d) are relatively far away from the areas that were
most affected according to the GTSM simulations (Fig. 8e).

Observationalwater level time series fromtide gauges are available only
for 34 of the 71 TCs. In total, we can compare the simulated hydrographs to
383 observed hydrographs at 213 distinct tide gauge stations. GeoClaw does
not reproduce coastal hydrographs with high accuracy (mean and median
absolute deviations of maximum sea levels are 0.50m and 0.42m; IQR:
0.23–0.66m; mean andmedian Pearson correlation coefficients of 0.50 and
0.66; IQR: 0.37–0.82m; mean and median RMSE of 0.24m and 0.20m;
IQR: 0.12–0.31m; Fig. 10a, b and Supplementary Table S5). GTSM per-
forms better in reproducing the observed hydrographs than GeoClaw
(mean andmedian absolute deviations ofmaximumsea levels of 0.32mand
0.26m; IQR: 0.13–0.42m; mean and median Pearson correlation coeffi-
cients of 0.65 and 0.82; IQR: 0.50–0.92; mean and median RMSE of 0.19m
and0.15m; IQR:0.10–0.24m).However, the improvementGTSMprovides

Fig. 9 | Comparison with high watermarks (HWMs). a The share of HWMs for 11
storms in the USA and Puerto Rico where the satellite observations (white) and the
inundation models (other colors) correctly classify a location as wet (hit rate).
bComparison of surface elevation and inundation heights recorded atHWMs to our

digital elevation model (green box) and to the inundation models (other colors).
Note the logarithmic scaling of the y-axis with linear scaling between −1 and 1.
Colored boxes denote interquartile ranges with a black horizontal line for themedian
value, whiskers for 95% intervals, and circles for theminimumandmaximumvalues.

Fig. 8 |Highwatermark and tide gaugemeasurements forHurricaneRita (2005).
a Inundation heights (color scale) above ground for 6 coastal high water mark
locations (diamonds) along the Texas coast, measured in the aftermath ofHurricane
Rita in September 2005. bMaximum water levels (color scale) measured at 5 tide

gauge locations (circles) and simulated at 32 additional output locations (squares).
Measured and simulated water level time series (hydrographs) at Freeport (c), and
Galveston Pier 21 (d) tide gauge stations, and at the GTSM output location with ID
15356 (e).
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compared toGeoClaw ismoderate given thatGeoClawdoesnot incorporate
tidal dynamics or meteorological forcings other than the parametric TC
wind and pressure fields. This might in part be due to the fact that GTSM is
run at a lower resolution than our GeoClaw setup (“Methods” section).
Moreover, GTSM is forced bywind fields from a reanalysis product that has
been demonstrated to underestimate TC wind speeds77,78. The parametric
wind fields used in our GeoClaw setup are often asserted to be a more
reliable input for storm surge simulations4,19,39,79. Ideally, we would compare
themodelswith identical resolution andwind forcing, but this is beyond the
scope of this work.

Notably, both models underestimate surge heights; the signed differ-
ences of observed and modeled maximal surge heights have a bias of about
0.2m (GeoClaw: −0.22m; IQR: −0.57m to +0.10m; GTSM: −0.21m;
IQR:−0.40mto+0.00m).We thus infer that the larger surge-affected areas
obtainedwithGeoClaw compared to the static approaches are a result of the
dynamical modeling of the inundation dynamics and not due to a sys-
tematic overestimation of coastal hydrographs. Further, the comparably
better agreement between the inundated areas calculatedwithGeoClaw and
both satellite-based observations andHWMs shows that its ability to resolve
the inundation dynamics overcompensates for its lower performance in
reproducing observed hydrographs compared to the two-step approach of
GTSM+Aqueduct.

Discussion
There is a clear need for better assessments of TC risks at different levels.
They are needed to provide critical information anddecision support for the
Loss andDamagedebate80 at the international climatenegotiations aswell as
by national actors responsible for the development and implementations of
the National Adaptation Plans81.

So far, global TC impact studies account for wind damages only. This
may lead to an underestimation of TC risks for two reasons: first, already in
the present climate, coastal inundation from storm surge are responsible for
a large fraction of TC damage13. Second, while the evidence for a relation
between climate change and the changes in TC wind speeds is rather weak
and subject to large uncertainties, the risk of TC-induced coastal inundation
is clearly expected to increase under climate change due to rising sea
levels82,83.

We here presented and evaluated an efficient intermediate-complexity
framework based on the SWE solver GeoClaw54 to dynamically model TC-
induced coastal inundation. Having moderate data requirements and
computational demands, it enables assessments on global scales. Con-
sidering a global set of 71 TCs, we showed that GeoClaw performs better
than other available global modeling approaches in reproducing satellite-
based floodplains: GeoClaw consistently outperforms a state-of-the-art
global approach combining the computationally expensive ocean model
GTSM with the static bathtub-type inundation model Aqueduct as well as
the light-weight static approach implemented in CLIMADA43.

To test whether GeoClaw’s better performance in reproducing
observed flood extents results from a better presentation of coastal water
level time series (hydrographs) or its resolution of the inundation dynamics,
we analyzed a subset of 34 TCs for which observational hydrographs are
available. We found that GTSM systematically outperforms GeoClaw in
reproducing the observed hydrographs. This leads us to the key insight that
the dynamic inundation modeling by GeoClaw overcompensates its lower
performance concerning coastal hydrographs. It also indicates that it is not
necessarily required to go for ever higher mesh resolutions, more complex
models, and high-resolution DEMs to improve floodplain modeling84. All
these approaches demand a drastic increase in time, expertise, and com-
puting power and may thus effectively postpone global assessments.

The presented approach is fully event-based and parallelized. This
means that inundated areas can be calculated quickly, even for large
numbers of TCs, depending onmachine size. The main climate-dependent
inputs are the TCwindfields. Large ensembles of synthetic storm tracks and
associated wind fields can be efficiently generated for different future cli-
mates using TC emulators9. This allows for ensemble-based assessments of
future inundation risks10,12. These can bemore easily tailored to the needs of
practitioners andpolicymakers than it is possible for approaches that rely on
pre-computed global ocean model outputs55. On the other hand, our eva-
luation study also shows that both GTSM+Aqueduct and CLIMADA’s
flood module allow calculating meaningful inundated areas. This opens up
the possibility to use the event-based open-source modeling framework
presented in this paper for multi-model risk assessments.

Next to the assessment of future risk, the approach can be used for the
attribution of the impacts of TC flooding to historical sea level rise85. For
instance, our modeling framework was already used to estimate the con-
tribution of climate change to the human displacements in the aftermath of
Cyclone Idai, which made landfall in Mozambique in March 2019,
accounting for sea level rise and changes in storm intensity due to global
warming5. However, the main advantage of our approach is that it enables
the global attribution of TC-inundated areas, since it allows calculating and
comparing inundated areas with sea level rise (factual) andwithout sea level
rise (counterfactual) for large global sets of storms.

Thedesign of the evaluation experiments and themodeling framework
are subject to several limitations (cf. “Methods” section). First, our approach
currently does not allow for the simulation of compound flood hazards.
Since extreme rain and coastal surge can lead to compound flooding, such
an integration is necessary to assess the overall impacts of TCs. For instance,
it was shown that compound effects played a crucial role in the case of
Harvey86,87 and are important to assess TC impacts in poorer regions that
mayquickly reach response limits88. Theneglect of compoundfloodhazards
may be also onemain reason for the limited skill of themodels to reproduce
satellite-based floodplain observation. This indicates that further develop-
ment of globally applicable compound flood modeling approaches is
needed.

Fig. 10 | Comparison of observed with modeled hydrographs. We compare
hydrographs observed at tide gauge stations with hydrographs simulated by
GeoClaw (blue boxes) or by the state-of-the-art oceanmodel GTSM (orange boxes).
We also compare the simulated hydrographs by GeoClaw with the GTSM simula-
tions (boxes with blue and orange hatching). We compare (a) the absolute and
signed deviations of maximum sea levels, and (b) the surge dynamics, using the

performance metrics Pearson (higher is better) and RMSE (lower is better). The
colored boxes denote interquartile ranges with a black horizontal line for themedian
value, whiskers for the 95% intervals, and circles for the minimum and maximum
values. In (a), note the logarithmic y-axis scaling with linear scaling between
−1 and 1.
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Second, GeoClaw is not able to integrate astronomical tides dynami-
cally. Further, GeoClaw also only allows modeling one TC at a time, and
cannot account for the influence of sequential TCs89 or interactions with
monsoon rainfall90. This is particularly important since sequential TCs are
projected to occur more often under climate change91, in line with an
increase inmultiple TC events92. Some of these issues affect the properties of
the implementation andnot of the conceptual designofGeoClaw, and could
be added relatively easily to GeoClaw in the future.

Third, also the satellite-based observations come with some important
shortcomings, limiting their suitability for storm surge model evaluations.
Most importantly, the inundatedareasmaynot only result fromstormsurge
but also from pluvial floods and river floods. This renders it a priori difficult
to decide whether the—on average—larger inundated areas obtained by
GeoClaw are indeed more realistic than those of the static approaches or
whether GeoClaw “accidentally” performs better because it overestimates
the extents of the storm surges and thus partially replaces the missing flood
drivers. To limit this risk, we restrict our analysis to low-lying (<10m) areas
and consider performance metrics that account for both over- and under-
predictions. Note, however, that this reduces, but does not remove the
influence of confounding drivers completely since the low-lying areas still
experience pluvial and riverine flooding as in the case of Hurricane
Harvey87 (Fig. 3).

Fourth, satellite-based flood maps tend to underestimate the flooded
areas because satellites can only detect water bodies that persist until the
satellite flies over the given area93–95. Moreover, even in cases where timely
coverage is available, there is evidence that satellite-based flood extents can
suffer from both under- and over-predictions67,73. Due to the potential
underestimation of the inundated areas by satellite-based products, the
inundationmodels could underestimate the low-lying inundated areas even
more strongly than already suggested by our performance analysis (Fig. 5
andTable 1). Finally, comparing theflood extents as obtained fromdifferent
satellite observations, we find that the disagreement between observational
products is quite substantial (Supplementary Fig. S2 and Supplementary
Note 1). This indicates that satellite-based observations do not reach the
quality of ground-based observations, which is why we complement them
by coastal HWMs wherever possible.

The presented coastal inundation modeling framework based on
GeoClaw represents an important building block and step forward toward
more reliable global risk assessments. By adding coastal inundation risks to
wind-related risks, it allows for more comprehensive comparisons of TC
risk profiles across regions, globally. In the “hotspots” regions identified by
theglobal risk analysis,more complexphysical compoundfloodmodels that
fully account for surge dynamics as well as coastal, riverine, and fluvial
flooding can be used for refined risk assessments96–98. In the future, these
may be complemented by machine-learning-based models, which have
recently shown promising results for local flood risk assessments50–52.

Methods
Overview
The four approaches to estimate coastal flood extents from TCs that are
compared in this study are a combination of the four models GeoClaw,
GTSM, Aqueduct, and CLIMADA (Fig. 1). We describe the models and
their respective input and output data in the following subsections.Here, we
provide an overview of the approaches and data.

Our proposedmodel setupwithGeoClaw produces flood extents from
TC storm track data. The CLIMADA modeling approach uses the same
input data and produces the same kind of output data, but does not resolve
any flow dynamics. The other two approaches GTSM+Aqueduct and
GeoClaw+Aqueduct are a combination of a dynamic ocean model
(GeoClaw or GTSM) with the static inundation model Aqueduct: coastal
hydrographs are computed as an intermediate data product that is used by
Aqueduct to translate peak storm tides at the coast intoflood extents using a
bathtub-type method.

Model runs of GeoClaw, Aqueduct, and CLIMADA have been con-
ducted for this study. ForGTSM,weusedpublicly availablemodel outputs55.

GeoClaw, Aqueduct, and CLIMADA use the same topo-bathymetric data
set, while GTSMusesGEBCO99.Moreover, while GeoClaw andCLIMADA
use wind and pressure forcing derived fromTC track data using parametric
models, the meteorological forcing for GTSM is taken from reanalysis data.

Both dynamic models (GeoClaw and GTSM) are based on the two-
dimensional depth-averagedSWEs.Bothusefinite volumemethods to solve
the equations, but while GeoClaw uses structured (rectangular) grids,
unstructured (curvilinear) grids are used in GTSM. In both models, the
spatial resolution increases in coastal areas, starting froma 25 km resolution
over the open ocean. GTSM uses a fixed, pre-computed grid, with a reso-
lution of up to 2.5 km, while GeoClaw uses adaptive mesh refinement
(AMR) to increase the grid resolution locally during run time to up to
0.25 km. GTSM uses the globe as a single model domain and runs for the
whole period 1979–2017. For GeoClaw, independent runs encompassing
48 h each and a storm-specific geographical domain are set up for each
individual storm.While GTSMmodels only ocean cells with shearless free-
slip boundary conditions at coastlines, GeoClaw seamlessly models coastal
inundation processes for land cells. In GTSM, astronomical tides are
included through tide-generating forces. GeoClaw is not able tomodel tidal
forcing dynamical. Instead, we apply a static correction of the zero water
level, based on pre-computed astronomical tides. In bothmodels, wind and
pressure are incorporated as forcing terms in themomentumequations, but
different wind and pressure data sets are used as input data.

While GeoClaw uses a physics-based description of bottom friction to
model the coastal inundation processes, the static models Aqueduct and
CLIMADA use a simplified concept of friction that assumes a linear
decrease in flood height with distance from the coast. The rate of decrease
(resistance factor) is constant for CLIMADA, and depends on the topo-
graphic terrain features for Aqueduct. The computational demands for the
dynamic models GeoClaw and GTSM are so high that a high-performance
computing cluster is necessary to run themodels at the 1 kmresolutionused
in this study. Even then, computing the dynamics for a single storm event
can take several hours. The static models CLIMADA and Aqueduct, on the
other hand, can be run on a laptop computer with run times of less than a
minute for CLIMADA, or several minutes for Aqueduct.

Compared to regionally refined two-step approaches with dynamic
ocean and inundation models, the data requirements and computational
demands of our GeoClaw-based approach are moderate. However, it still
requires substantially more time and expertise than CLIMADA. While
Aqueduct is also comparably simple, it takes hydrographs from dynamic
ocean models as an input. The most important features that make our
proposed GeoClaw-based approach manageable: the software is open-
source and available under a free license; the input data are freely available
for all global regions; the setup and configuration ofGeoClawcanbedone in
Python, even though the core of GeoClaw is written in Fortran; numerical
and model parameters do not require case-specific adjustments or cali-
brations; the mesh is automatically adapted to the study region and event,
and does not need to be pre-computed and adjusted manually; when
applying the approach to large ensembles of storms, only the most intense
ensemble members require long computational times, ensemble members
with low intensity require less computational time; a GPU-accelerated
version of the code is available, further decreasing run times if GPUs are
available.

Dynamic surge and inundation from GeoClaw
We model surge heights and inundated areas using the open-source geo-
physical flow solver GeoClaw that solves the depth-averaged SWEs53. We
configureGeoClaw’sAMR feature to start with a 0.25° (25 km) grid over the
open ocean and refine the mesh in coastal areas to up to 9 arc-seconds
(180–270meters, depending on latitude), with five intermediate refinement
levels. The resolution over the open ocean thus agrees with the one used in
the GTSM setup (see below). In coastal areas, the resolution is higher than
common global oceanmodel configurations: for recent global hindcast data
sets, GTSMwas configured with 2.5 km resolution55,100, and SCHISM28 with
2 km resolution at the coastlines. As our model setup aims at an output
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resolution of 1 km (30 arc-seconds), we selected the lower bound for the
input resolution to be slightly lower (9 arc-seconds) for numerical stability.
Note that GeoClaw locally adjusts the resolution automatically for each run,
and 9 arc-seconds is only a lower bound.

The topo-bathymetric data used with GeoClaw is a combination of
three globalDEMs.Weuse SRTM15+ (version 2.3) globally as the source of
bathymetry with a resolution of 0.5 km101, and the global CoastalDEM
(version 2.1)102 dataset for coastal areas. CoastalDEM has a focus on coastal
areas and comes at a resolution of 90m. For the land area that is not covered
by CoastalDEM, we use MERIT-DEM103. Since all three DEM products
(SRTM15+, CoastalDEM, MERIT-DEM) are already provided relative to
the same vertical datum (the Earth GravitationModel from 1996, EGM96),
we overlay themwithout vertical adjustment. We first resample SRTM15+
from 15 to 3 arc-seconds resolution to fit the resolution of MERIT-DEM
and CoastalDEM. Then, we fill missing values in MERIT-DEM with
SRTM15+ (this mostly affects the bathymetry) and overlay the result with
CoastalDEM outside of permanent water bodies (as provided by ESRI on
https://hub.arcgis.com/content/e750071279bf450cbd510454a80f2e63/).
Finally, we resample the combined result to a resolution of 30 arc-seconds
(~900m). This smoothes out transitions between the different data sets
while being sufficiently accurate in the context of our inundation models
that are configured to generate results at this resolution. While high-
resolution LiDAR DEMs are available for most of the US coastal areas and
several other regions (e.g., Australia), we decided to use global DEMs
everywhere for consistency. The applicabilitywith globally harmonized data
sets is a primary concern in the design of our approach, since we aim at
global assessments of climate risk. Also, the handling of LiDAR DEMs can
be challenging since theyusually cover comparably small regions andDEMs
for neighboring regions are often not harmonized. We used the combined
land-ocean data set SRTM15+ for bathymetry instead of the pure ocean
data set GEBCO99 because the seamless transition from ocean to land is
important in our one-step approach. CoastalDEM is used because it is the
best available global DEM for coastal modeling104. MERIT-DEM is used to
fill small gaps in CoastalDEM since CoastalDEM does not cover the whole
land area, and SRTM15+ has lower resolution than MERIT-DEM. A
comparisonwithother choicesof globalDEMswouldbe an interesting topic
for future research105.

In a preprocessing step, we divide each storm into temporal periods
(modeling periods) of at most 48 h. Due to the adjustment of zero water
levels according to local astronomical tidal conditions (see below), the
period may not be too long since tidal conditions change over time. On the
other hand, the length must be sufficient for the spin-up of the wind-
induced flow dynamics. Those parts where the distance of the storm to the
closest coast is larger than twice the radius ofmaximumwinds are excluded.
GeoClaw is then started for each of the modeling periods separately. For
each modeling period, the computational domain of the simulation is
chosen to be large enough to accommodate the storm track together with a
buffer of 2.5 times the radius of the outermost closed isobar.

Along the boundaries of the computational domain, GeoClaw uses
extrapolation (non-reflecting or outgoing) boundary conditions that let the
model waves from inside the model domain pass through the boundary
without reflection. There is currently no way to impose dynamic water level
boundary conditions according to astronomical tides. Instead, we set the
zero water level (for the water body at rest) to the maximum astronomical
tide attained in the center of the affected coastal area during each modeling
period. Coastal areas are taken to be affected if the distance to the storm eye
is not more than twice the radius of maximum winds. The astronomical
tides are taken from the FES2014106 simulations, referenced to a geoidal
vertical datum using the gridded satellite altimetry product by AVISO107.
Since the satellite altimetry is relative to the geoid model GOCO05s, we
further converted the heights to EGM96, the geoidmodel used in the global
DEMdatasets (see above).Weuse themaximumsince our comparisonwith
tide gauge measurements showed that the simulated surges tend to
underestimate tide gauge observations even with this zero water level con-
figuration. To demonstrate the sensitivity of ourmodel setup to this setting,

we show results for three different assumptions on the zero water level in
Supplementary Figs. S7–S9. The flowdynamics are forced bywind speedW
and air pressure PA. GeoClaw derives this information on-the-fly from
observed parameters along a storm track data set using the Holland 1980
parametric wind and pressure model108:

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmax

r

� �B
�W2

max � e1�ðrmax=rÞB þ ðr � f Þ2
4

s
� r � f

2
; ð1Þ

PA ¼ Pc þ ðPn � PcÞ � e�ðrmax=rÞB ; ð2Þ

B ¼ ρair �W2
max � e

Pn � Pc
; ð3Þ

where Pc,Wmax, and rmax are central pressure, maximum wind speed, and
the radius ofmaximumwinds, as included in the storm track, f is theCoriolis
parameter, B is Holland’s fitting parameter108, Pn = 1013 hPa is ambient
pressure, and e is Euler’s number. As storm track inputwe use observational
data from IBTrACS, themost comprehensive global dataset of historical TC
activity76. IBTrACS collects information reported by the WMO Regional
Specialised Meteorological Centers (RSMCs) and by agencies in Shanghai
and Hong Kong. For each of the 71 TC events in our study, we extract the
IBTrACS data about the following variables, following the methodology in
ISIMIP3a109: time, location of the storm center, central pressure, maximum
1-min sustained wind speed, environmental pressure, radius of maximum
wind speeds, and radius of the outermost closed isobar. Apart from the
parametric wind and pressure fields, nometeorological forcing is applied in
our setup.

The interaction of the water flow with the air above and the surface
below are implemented as friction terms in themomentum equations of the
SWEs: for wind friction, the Garratt wind drag law110, an approximation of
the Charnock equation111, is used:

Cw ¼ minð2 � 10�3; ð0:75þ 0:067 �WÞ � 10�3Þ: ð4Þ

The bottom friction is implemented as a Manning term:

Cf ¼
g � n2
h4=3

; ð5Þ

where g is the gravitational constant, and n is the “Manning coefficient”,
which is set to 0.050 on land, and 0.025 off shore.

As output, maximum inundation heights in coastal areas are stored on
a 30 arc-second grid (in meters above ground, and above geoid). For this
purpose, the internal height values, which are a primary variable in the
SWEs, are interpolated from the internal mesh of varying resolution to the
regular 30 arc-secondgrid. In addition to the inundationmaps,we configure
GeoClaw to store time series of flood heights at predefined output locations,
according to the GESLA3 tide gauges and CoDEC-ERA5 output locations
(see below). The surge dynamics are stored at the (varying) temporal
resolution of the GeoClaw simulation run, but are resampled by taking
hourly averages for the evaluation. This agrees with the resolution of
GESLA3 tide gauge measurements (see below).

For our analysis, we ran GeoClaw on nodes of a high-performance
cluster with 64 GB of RAM and 16 cores at 3.4 GHz each (i.e., 16 OpenMP
threads). The run times (wall times) for a single TC event ranged from 30 s
to 21 h with an average run time of 2 h and 34min. Half of the TC events
were completed in under 1 h, and only 23% of the TC events needed more
than 3 h. Note that the run times differ a lot between TC events because
GeoClawusesAMRso that the computational demanddepends strongly on
the intensity of an event. Many events in our analysis are Category 1 or
weaker (Fig. 2). For comparison, a two-step modeling framework based on
LISFLOOD-FP at 90m resolution has been reported to require 24 h when
running on 200 cores112. Note that there is a GPU implementation of
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GeoClaw113 that was not used in this study, but would further speed up the
process for operational applications (3.6–6.4 times faster than a 16-
core CPU).

Choice of parametric wind field model
The use of the parametricwindfieldmodel has a considerable impact on the
surgedynamics114,115. Currently,GeoClawuses theHolland1980 radialwind
field model in its standard implementation108. This model can produce
unrealistically large storm systems, which can be traced back to the deri-
vation of the wind field from the pressure field using a gradient balance
relationship116. In the updated 2010 version of the Holland wind field
model117, the representation of the radial wind profile is derived from an
exponential andpower-law composite function.Theupdated version canbe
better empirically constrained if observations of the wind field outside the
radius of maximum wind are available. This leads to a better description of
the wind field outside the hurricane eye wall in the calibrated Holland 2010
model118.

In a case study forHurricaneMichel, Yann et al. assessed the impact of
the choice of the wind field model on the surge dynamics by driving a
hydrodynamic model with the 1980 and the 2010 version of the Holland
model116 with the 2010 model fitted to observed outer wind radii. The
authors showed that the choice of the wind field model impacts the surge
dynamics but the performance of both model setups in reproducing max-
imum water levels were similar.

Since for most of the considered storms, no observations of wind radii
outside the storms’ eye walls are available, we here decided to keep the
Holland 1980 model. However, it would be of interest for future studies to
analyze how the choice of the wind field model impacts on GeoClaw’s
performance.

GTSM dynamic ocean model
We use pre-computed outputs of the GTSM from the extreme sea level
dataset CoDEC-ERA555 that is freely available from https://zenodo.org/
records/832275085. The data come as hourly-resolved sea level time series at
18,719 output locations, equidistantly located every 50 km along the
smoothed global coastlines. We refer to the literature for a detailed
description of the model setup55. Here, we provide a summary for the
convenience of the reader.

The GTSM55 uses the Delft3D Flexible Mesh software to solve the
depth-averaged SWEs on a global unstructuredmesh with spatially varying
grid resolutionwhich varies between 25 km in the deep ocean and 2.5 km in
coastal areas. Only ocean and no land grid cells are part of themodel grid so
that coastal inundation processes are notmodeled. At the coastal boundary,
the movement of particles tangential to the coastline is assumed to be
shearless (free-slip boundary condition). Astronomical tidal forcing is
applied in the form of tide-generating forces in the momentum equation of
the SWEs119. The model is forced with wind and pressure fields from the
European Reanalysis (ERA5)120.

CLIMADA static inundation model
We apply the static inundation model included in the open-source risk
analysis toolbox CLIMADA43 to the historical events considered in this
study. A detailed description of the model can be found in the official
documentation (https://climada-petals.readthedocs.io/en/latest/tutorial/
climada_hazard_TCSurgeBathtub.html). Separately in each grid cell, this
model estimates inundation heights using a linear relationship with three
physical predictors: wind speed, distance to coast, and topographical ele-
vation. While the model lacks statistical and physical justification and has
not been validated with observational data so far, it is still used for prob-
abilistic impact and risk assessments due to its computational simplicity as
well as low requirements on data availability44.

Compared to other static inundation models, the CLIMADA model
does not require maximum surge heights as an input but it implicitly esti-
mates surge heights from maximum wind speeds. The wind speeds are
derived fromIBTrACS76 storm trackdata sets using a parametricmodel that

is implemented as part of CLIMADA108,121. For storm track and topo-
graphical elevation, we use the same data used in our GeoClaw setup (see
above). The only other input data set is the gridded Distance to the Nearest
Coast dataset that is freely distributed by NASA. We configure CLIMADA
to compute outputs on the same rectangular grid with 1 km resolution that
is used in our GeoClaw setup.

Aqueduct static inundation model
Weapply the static, bathtub-type inundationmodel that is published as part
of the World Resources Institute’s Aqueduct project42, and available as
open-source software from https://github.com/Deltares/aqueduct-coastal-
flooding/tree/py38under the terms of the GNU General Public License
version 3. This model derives inundation heights in inland coastal areas
from maximum surge heights given at points along the coastline. Even
though themodel is static, it implements a concept of frictionwhich is called
“resistance factor”122, meaning that flood heights decrease with the distance
to coast, depending on surface properties. The resistance factor is
0.5m km−1 on open terrain, with higher values for higher topographical
elevation. For grid cells that are frequently inundated by permanent water
bodies, the resistance factor is reduced proportional to water occurrence
statistics, so that the resistance factor vanishes in grid cells that are per-
manently part of water bodies. For water occurrence statistics, we use the
Copernicus Global Surface Water raster data for 1984–2019 at 30m
(0.9 arc-seconds) resolution123. For each grid cell, the surface water occur-
rence, i.e. the frequencywith whichwater was present in the study period as
a percentage between 0 and 100, is provided.

Previous studies used the Aqueduct model to derive inundated areas
from coastal peak storm tide outputs of theGTSM39,42,122,124. Its performance
has not been validated with observational data so far. We apply the Aque-
duct model to peak storm tides at the CoDEC-ERA5 output locations
computed with GTSM and GeoClaw (see above).

Performance indicators
For the evaluation of the simulation results, we compare the areasmarked as
flooded by either one of the satellite-based or modeled flood extents using
several performancemetrics. Since the prediction offlood extents is a binary
classification problem (with classes “wet” for positive and “dry” for nega-
tive), the scores are expressed in terms of areas classified as true positive
(n11), true negative (n00), false positive (n01), and false negative (n10)

61.
The MCC125,126, also known as (Yule) Phi coefficient, is the Pearson

correlation coefficient estimated for two binary variables:

MCC ¼ n11 � n00 � n01 � n10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn11 þ n01Þ � ðn11 þ n10Þ � ðn00 þ n01Þ � ðn00 þ n10Þ

p : ð6Þ

The F1 score62 is the harmonic mean of precision (positive predictive
value, PPV) and recall (HR):

F1 ¼ 2 �HR � PPV
HR þ PPV

; ð7Þ

HR ¼ n11
n11 þ n10

; ð8Þ

PPV ¼ n11
n11 þ n01

: ð9Þ

Note thatwe set theF1 score to the value 0 ifn11 = 0.TheF2 score63, also
known as critical success index (CSI), threat score (TS), flood area index
(FAI), or Jaccard index, is the ratio of the area classified as wet by
both (model and observation) divided by the area classified as wet by any
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of the two:

F2 ¼ n11
n10 þ n11 þ n01

: ð10Þ

The TNR score (ratio of TNR), also known as specificity, is the ratio of
areas marked as dry by both divided by the areas marked as dry in the
observation:

TNR ¼ n00
n00 þ n01

: ð11Þ

In this study, the bias score127 is defined as the log-fraction betweenwet
areas, predictions compared to observations:

Bias ¼ log
n11 þ n01
n11 þ n10

� �
: ð12Þ

Note that the Bias score can take the value −∞ in cases where the
model does not predict any flooding. However, this does not affect the
aggregation of map-by-map scores since we do not take averages but only
quantiles which are robust for this kind of outlier.

MCC, F1, and F2 quantify the overall quality of the prediction with a
single number that takes into account true and false positive and negative
classifications.While theMCC score has aminimumvalue of−1, F1 andF2
range from0 to 1. For all three scores, a higher value is better, with a value of
1 denoting an exact fit. The TNR score takes a value of 100% in case of a
perfect fit, but contrary to the previous scores, a higher TNR does not imply
that thefit quality is better, in general. A lowTNR indicates that a prediction
tends to overpredict, but underprediction is not penalized: classifying all
cells as dry yields a perfect TNR of 100%.

Data on satellite-based flood extents
The main source of validation data for our study is satellite-based flood
extents. We consider data from three flood extent databases:
1. In the GFD, flood extents have been derived from MODIS satellite

measurements60. Each of the 913 flood extents is linked to an entry in
the flood list of the DFO59, covering the period 2000–2018. Using the
description, geolocation and date of the entries, wematched TC events
from IBTrACS to 61 of the available flood extents. We removed 6
events from the selection since we found no overlap in coastal areas
between the storm geometry according to IBTrACS and the flood
extents provided by GFD.

2. There is a continuously updated collection of rapid response flood
maps published directly by DFO59, based on MODIS satellite mea-
surements. The collection is not provided in machine-readable
form, but only for human access through a web interface, as RGB
color images, most of them not properly georeferenced. Among
those, we identified 61 maps that are related to 44 TC events in
IBTrACS, covering the period 2001–2019. We manually converted
these maps to a machine-readable georeferenced format for further
analysis. After that, 15maps were removed from the selection due to
a missing overlap with IBTrACS storm geometries. In previous
studies, DFO flood extents were used for a selection of inland flood
events in Nigeria (2012)128, Mozambique (2007)72, and for flood
events along the Brahmaputra River (2012)129. Other than that, the
DFO flood extents have not been used for similar flood extent
validation studies.

3. Finally, the near real-time system for inundationmaps named RAPID
is based on synthetic aperture radar (SAR) devices on-board earth-
orbiting platforms58. A selection of maps produced with RAPID is
publicly available in machine-readable form. Among those, we
identified 9 flood maps that were related to 6 TC events in IBTrACS,
covering the years 2016–2019, all located in the North Atlantic region.
One of themapswas removed from the selection as covering only non-

coastal areas. Due to the SAR-based measurements, the flood maps
only cover parts of the affected areas.

Altogether, we selected 97 flood maps that are related to 71 TC events
in IBTrACS, covering the years 2000–2019. For the comparison of the
simulated flood extents with observational data (Fig. 5), we aggregated the
satellite-based flood extents from their original resolution (between 1 and
27 arc-seconds, 20–850m) to the resolution of all simulation outputs
(30 arc-seconds, 900m). During aggregation, a grid cell is classified as
flooded if at least one of the underlying grid cells in the original resolution
was flooded. We only include grid cells with a height of between 0 and
10meters above geoid, and outside of permanent water bodies. A threshold
of 10m is common to define the low-elevation coastal zone in impact
assessments40. To define permanent water bodies, we use the Copernicus
Global Surface Water raster data for 1984–2019 at 30m (0.9 arc-seconds)
resolution123. For each grid cell, the surface water occurrence, i.e. the fre-
quency with which water was present in the study period as a percentage
between 0 and100, is provided. For our analysis,we aggregate the raster data
to the resolution of themodel outputs (30 arc-seconds) using averaging and
include only grid cells for which the occurrence frequency exceeds 5%.

The size of the floodmaps and the size of the wet and dry areas within
each map varies a lot from map to map. The size of the coastal area
(including both wet and dry) covered by the 97 satellite-based flood maps
differs by orders of magnitude frommap tomap, ranging from 170 tomore
than75,000 km2 (Fig. 6a). In total, 200,000 km2 are classified aswet. For each
map, this is between 0 andmore than 27,000 km2, with a mean andmedian
wet area of 2060 and 480 km2 (66% interval: 100–3400 km2). Seventy-five
extents have smaller than average wet areas. Together, 8 extents account for
more than 50% of the areas observed as wet. For 17 among the 97 flood
maps, the wet area is <0.05% (100 km2) of the total wet area. Note that
restricting our evaluation to extents with a medium-size observed area of
between 100 and 1000 km2 does not change the results of our analysis
significantly (Supplementary Fig. S1a–e). For our analysis, we process the
simulation outputs of the four approaches, a grid cell ismarked as flooded if
the flood depth exceeds 10 cm. This threshold is appropriate for the low-
resolution outputs that we consider here. In studies with high-resolution
LiDAR elevation data, a lower threshold is also common, e.g. 1 cm69. Note
that omitting the threshold does not change the results of our analysis
significantly (Supplementary Fig. S1f–j).

Data from tide gauge measurements
Weuse thehourly tide gaugedataprovidedbyGESLA375, a consistent global
data set of tide gaugemeasurements. There are duplicate tide gauge stations
in GESLA3, e.g. most stations operated by the National Oceanic and
Atmospheric Administration (NOAA) are also listed in the database by the
University of Hawaii Sea Level Center (UHSLC). Since GESLA3 collects
data from both providers, several stations are listed twice in GESLA3.
Therefore, we selected for each flood map and tide gauge location the tide
gauge provider in GESLA3 with the lowest number of missing values.
Furthermore, we restrict to the stations within the geographical area of each
flood extent that were operational during the time of landfall of the storms.
Since the flood extents are often larger than the actual extent of the TC, we
restricted the analysis to the tide gauge locations that liewithin the IBTrACS
storm geometries. We further excluded tide gauge stations with large
reporting gaps in the period of the TC event. More precisely, at most
1 hourly data point may be missing in each 24 h period.

Using the satellite altimetry (see above), we shifted thewater levels in the
tide gauge records so that they are relative to the geoid. For that,we extract the
annual means from the gridded satellite altimetry product at the location of
each tide gauge station.Note, however, that this correction is subject tomajor
uncertainty, since the satellite altimetry product has a resolution of only 0.25°
(~25 km). Furthermore, the satellite altimetry can only provide height
information for grid cells that are off shore. Many tide gauge stations lie very
close to the coast or even in narrow estuaries, so that their location is often in
grid cells that are not off shore according to the satellite altimetry. In those
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cases, we consider the average value of neighboring grid cells. We excluded
stations from the analysiswhere neither the containingnor any of the directly
neighboring grid cells has altimetry information.

After that, there remained 383 records from 213 distinct tide gauge
stations, covering 34 of the 71 storm events. Only the time span where a TC
signal is to be expected in the surge was used in the evaluation. For that, we
estimated an hourly wind speed time series at each tide location using the
wind fieldmodel included in CLIMADA (see above). The time span for the
analysis was then chosen to start 12 h before the first time the wind speed
exceeded tropical storm strength (17.5 m/s), and end 12 h after the last time
the wind speed was above that threshold.

Data from field measurements (high water marks)
For a set of 11 of the 71 events in our analysis, HWMs from theUSGS Flood
Event Viewer74 are available. This product is only available for the USA. It
consists of field measurements by volunteers and trained USGS hydro-
graphers, usually directly following a flood event130. The observers take note
ofmud, seed, debris, cut or wash lines on the inside and outside of buildings
(in residential areas) and on open terrain features such as trees, shrubs,
grasses, bluffs or river banks. Most HWMs are documented with a photo-
graphy, anumerical value indicating theheight aboveground in feet, and the
vertical uncertainty in one of six categories of uncertainty ranging from
Excellent (±0.05 ft) to Very Poor (more than ±0.40 ft).

In previous studies, the HWMs have been used for the validation of a
rapid storm surge forecasting framework131, and for the validation and
comparison of event-based flood inundation mapping services132. In gen-
eral, fieldmeasurements such as theHWMs used here are commonly taken
as a complement to conventional water-level records in assessing model
performance133.

HWMs are only available for the conterminousUnited States and only
for selected TCs. Since the horizontal and vertical datums vary among
HWMs, we excluded HWMs with missing datum information. We
reprojected the remaining HWMs to the EGM96 vertical datum, the geoid
model used in the global DEM datasets (see above). For 11 of the 71 storm
events for which flood extents are available, we identify 2171HWMs that lie
on land within the IBTrACS storm geometries and at a topographic height
of at most 10meters (according to our DEM data set). For our main HWM
analysis (Fig. 9), we only use the 1007 HWM locations that are classified as
coastal (for the same analysis with only riverine locations, see Supplemen-
tary Fig. S4).

Limitations of the performance indicators
Since we have GTSM hydrographs on a fixed set of output locations, we
could not compare the simulated GTSM hydrographs with observed
hydrographs at the exact locations of the GESLA3 tide gauge stations.
Following previous studies55,85, we compared each GESLA3 hydrograph to
the simulated GTSM hydrograph at the closest available output location.
However, we found several examples where the tide gauge stations and
output locations were separated by estuaries or small islands. In those cases,
the difference in the hydrographs might be dominated by the difference in
location. Therefore, we excluded those tide gauge stations from the analysis,
where the distance to the next GTSM output location is larger than 10 km.
The specific choice of 10 km was a trade-off between the number of tide
gauge stations we remove and the error due to the distance between GTSM
grid cell and tide gauge station. In the literature, The mean difference
betweenmodeled GTSM and observed water levels is reported to be 0.19m
for the 1 in 10 year peaks55. This agrees well with the analysis of TC
hydrographs in this study: we find that the mean difference between
modeled GTSM and observed GESLA3 peak water levels is 0.26m across
the 71TC events. To complement the aggregate statistics in Fig. 10a, we also
illustrate the comparison of maximum water levels using a scatter plot in
Supplementary Fig. S5.

In the comparison of HWMs, we evaluate the absolute inundation
heights (above geoid) instead of the inundation heights above ground
because the inundation heights above ground are missing for 45% of the

coastal HWM locations, across all 11 US storms for which HWMs are
available. Further,wedonot consider the locations thatwere classified asdry
by themodel in the aggregate statistics (Fig. 9a). This means that a different
set and number of HWM locations goes into the evaluation for each of the
models, ranging fromN = 217 (GTSM+Aqueduct) toN = 288 (GeoClaw)
(Fig. 9b). We found that the results do not change significantly when the
inundation heights above ground are compared (Supplementary
Fig. S3b–d), or when including locations modeled as dry (Supplementary
Fig. S3a–c). Finally, we also applied the comparison after restricting to
HWMs for which the deviation of the DEM to the recorded elevation does
not exceed half the recorded inundation height (Supplementary Fig. S3d;
this excludes 90% of the HWMs from the comparison).

We report five different performance scores for the evaluation of flood
extents, three of which are overall measures of performance (Fig. 5a–c). In
flood extent validation studies, F1 and F2 are the predominant indicators of
model performance, even though they are known to be biased in favor of
overpredictions64.MCC is generally regarded as amore informative and true
score if the class sizes vary65. Also, contrary to MCC, F1 and F2 are not
symmetric, i.e., they will change when exchanging the meanings of “wet”
and “dry”. We decided to complement the three overall scores by TNR and
bias because they represent aspectsof the classificationproblem that are least
reflected in F1 and F2, and bias is only implicitly included in MCC.

The performance scores of all models considered in this study appear
to be quite low and need to be interpreted in context. They cannot easily be
compared to regional analyses or to studies about freshwater or compound
flooding. For example, all four approaches considered in this study have
average F2 scores of <25%, while F2 scores of <30% are very uncommon in
the literature66,67 (typical values are between 30% and 50%68,69, even
exceeding 80% in some cases70,71). In assessments of approaches that model
freshwater flooding over land, it is much easier to restrict to a model area
that clearly excludes flooding from surge, e.g. for Hurricane Harvey67. In
contrast, our study is about approaches that model TC-related flooding
from storm surge, isolated from freshwater flooding and compound effects.
For validation purposes, it would be desirable to have observational flood
extents that are purely caused by storm surge. However, in the TC context,
storm surge is always accompanied by heavy rainfall so that none of the
observational flood extents can clearly be attributed to surge alone. When
comparing the surgemodel outputs with the compound flood extents, low-
performance scores are to be expected. There is another aspect that influ-
ences the scores seen in studies about freshwater flooding: it is comparably
easy for a flood model to correctly classify the permanent water bodies
(rivers, lakes) as wet. Still, studies about freshwater flooding usually do not
exclude the permanent water bodies from the scoring68,72. In our study, it is
comparably easy for a surge model to correctly classify the ocean as wet.
However, we do not include permanent water bodies in the calculation of
the performance scores, since otherwise, the size of the ocean area included
in the rectangular flood map would dominate the results. If a flood map
containing a larger portion of the ocean scored automatically better than a
floodmap that only contains a small ocean strip, summarizing scores over a
global set of flood maps would be difficult. So far, our study is the first to
evaluate a pure TC storm surge modeling approach using a global set of
observational flood extents. Therefore, we do not find comparable score
values in the literature.

The total scores of GeoClaw are much better than the map-by-map
scores. However, the qualitative differences between the models remain
mostly unchanged (Fig. 5). Similarly, the qualitative statements are robust to
the exclusion of very small and very large (e.g., <100 km2 or more than
1000 km2) flood extents from the analysis, when removing the minimum
flood threshold of 10 cm, or when considering the flood maps from each
data source separately (Supplementary Fig. S1).

Limitations in the considered drivers of flooding
The GTSM data we use are only driven by meteorological forcing from
ERA5,whileGeoClaw is forcedbyparametricTCwindfields. Forcing ocean
models with ERA5 data is known to underestimate TC-induced surge
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heights, and the forcing can be improved by overlaying parametric TCwind
fields4,19,39,79. On the other hand, the choice of parametric wind field is
important in TC storm surge modeling116, and post-processing methods
have been proposed to improve the outputs of parametric models134.

Coastal flood protection is not included in this analysis, and many
exposed regions are protected by dikes and storm surge barriers up to a
certain design standard.Many cities have a protection standard that equals a
100-year return period135, and will be protected against many storms con-
sidered in this study. This might be one reason why the tendency of
GeoClaw to underestimate hydrographs (Fig. 10a) does not translate to the
bias in the flood extent evaluation (Fig. 5e).

In addition to the inclusion offlowdynamics, the different assumptions
on frictionmight explain someof thedifferencesbetween thedynamicmodel
GeoClaw and the static model Aqueduct (Geoclaw+Aqueduct). Both
implement a concept of bottom friction over land. While the “resistance
factor” in Aqueduct is conceptually different from theManning formulation
in GeoClaw, both concepts come with a calibration parameter expressing
terrain roughness that can have an important impact on overland flow136.

Note that, while GeoClaw has been used for TC storm surge modeling
before54,137, themain application ofGeoClaw is tsunamimodelingwhere it is
popular in probabilistic applications with large ensembles of inundation
scenarios138. Since TC analyses are also often based on probabilistic
ensembles of events9,77,139, this would be an interesting future application of
our appraoch. As an alternative, the one-step approach could in principle
also be implemented with more advanced ocean models like ADCIRC,
GTSM or SCHISM that are able to account for more complex environ-
mental forcing than GeoClaw16.

Data availability
All data needed to reproduce the findings reported in this article are openly
accessible. A detailed description of the exact versions of the datasets used,
including instructionshow todownload andpreprocess these, is provided in
the “README.md” file of the archive “evaluation.zip” in the project’s
Zenodo repository https://doi.org/10.5281/zenodo.10419306. Further,
machine-readable source data for all figures, Supplementary Figs., and
Supplementary Tables are provided with this paper as Supplementary
Data file.

Code availability
All code thatwasused (i) for theGeoClaw setup, (ii) for the static inundation
models, (iii) for the preprocessing of validational data sources, and (iv) to
analyze the data and produce the figures was implemented in Python 3.9
(https://www.python.org/) with CLIMADA 3.3.3 (https://zenodo.org/
record/7691855), and is openly available from https://doi.org/10.5281/
zenodo.10419306.

Received: 8 January 2024; Accepted: 17 September 2024;

References
1. CRED/UCLouvainBrussels,B.https://www.emdat.be (EM-DAT,2022).
2. Zhang, W. et al. Compound hydrometeorological extremes: drivers,

mechanisms and methods. Front. Earth Sci. 9, 673495 (2021).
3. Eilander, D. et al. Modeling compound flood risk and risk reduction

using a globally applicable framework: a pilot in the Sofala province
ofMozambique.Nat. Hazards Earth Syst. Sci. 23, 2251–2272 (2023).

4. Vousdoukas, M. I. et al. Small Island Developing States under threat
by rising seas even in a 1.5 °C warming world.Nat. Sustain. https://
doi.org/10.1038/s41893-023-01230-5 (2023).

5. Mester, B. et al. Human displacements from Tropical Cyclone Idai
attributable to climate change. Nat. Hazards Earth Syst. Sci. 23,
3467–3485 (2023).

6. Smiley, K. T. et al. Social inequalities in climate change-attributed
impacts of Hurricane Harvey. Nat. Commun. 13, 3418 (2022).

7. Bakkensen, L. A., Park, D.-S. R. & Sarkar, R. S. R. Climate costs of
tropical cyclone losses also depend on rain. Environ. Res. Lett. 13,
074034 (2018).

8. Jing, R. et al. Global population profile of tropical cyclone exposure
from 2002 to 2019. Nature 626, 549–554 (2024).

9. Geiger, T., Gütschow, J., Bresch, D. N., Emanuel, K. & Frieler, K.
Double benefit of limiting global warming for tropical cyclone
exposure. Nat. Clim. Change 11, 861–866 (2021).

10. Krichene, H. et al. The social costs of tropical cyclones. Nat.
Commun. 14, 7294 (2023).

11. Eberenz, S., Lüthi, S. & Bresch, D. N. Regional tropical cyclone
impact functions for globally consistent risk assessments. Nat.
Hazards Earth Syst. Sci. 21, 393–415 (2021).

12. Mendelsohn, R., Emanuel, K., Chonabayashi, S. & Bakkensen, L.
The impact of climate change on global tropical cyclone damage.
Nat. Clim. Change 2, 205–209 (2012).

13. Rappaport, E. N. Fatalities in the United States from Atlantic tropical
cyclones: new data and interpretation. Bull. Am. Meteorol. Soc. 95,
341–346 (2014).

14. Islam,M.R.,Duc, L., Sawada,Y.&Satoh,M.Doesmeansea level trend
mask historical storm surge trend: evidence from tropical cyclones
affecting Japan since 1980. Environ. Res. Lett. 18, 085004 (2023).

15. Luettich, R. A., Westerink, J. J. & Scheffner, N. W. ADCIRC: An
Advanced Three-Dimensional Circulation Model for Shelves,
Coasts, and Estuaries. Report 1. Theory and Methodology of
ADCIRC-2DDI and ADCIRC-3DL. Technical Report DRP-92-6 (U.S.
Army Corps of Engineers, Vicksburg, MS, 1992).

16. Loveland, M. et al. Developing a modeling framework to simulate
compound flooding: when storm surge interacts with riverine flow.
Front. Clim. 2, 609610 (2021).

17. Tsai, Y.-L., Wu, T.-R., Yen, E., Lin, C.-Y. & Lin, S. C. Parallel-
computing two-way grid-nested storm surge model with a moving
boundary scheme and case study of the 2013 Super Typhoon
Haiyan.Water 14, 547 (2022).

18. Kernkamp, H. W. J., Van Dam, A., Stelling, G. S. & de Goede, E. D.
Efficient scheme for the shallow water equations on unstructured
grids with application to the Continental Shelf. Ocean Dyn. 61,
1175–1188 (2011).

19. Rezaie, A. M. & Haque, A. Development of storm surge inundation
model and database for enhanced climate services in Bangladesh.
Front. Water 4, 887631 (2022).

20. Chen, C., Liu, H. & Beardsley, R. C. An unstructured grid, finite-
volume, three-dimensional, primitive equations ocean model:
application to coastal ocean and estuaries. J. Atmos. Ocean.
Technol. 20, 159–186 (2003).

21. Weisberg, R. H. & Zheng, L. Hurricane storm surge simulations
comparing three-dimensionalwith two-dimensional formulationsbased
on an Ivan-like storm over the Tampa Bay, Florida region. J. Geophys.
Res. Oceans 113, https://doi.org/10.1029/2008JC005115 (2008).

22. Danish Hydraulic Institute (DHI).MIKE 21 & MIKE 3 Flow Model:
Hydrodynamic and Transport Module: Scientific Documentation
(Danish Hydraulic Institute (DHI), Hørsholm, Denmark, 2017).

23. Pan, Z. & Liu, H. Numerical study of typhoon-induced storm surge in
the Yangtze Estuary of China using a coupled 3D model. Procedia
Eng. 116, 849–854 (2015).

24. Shchepetkin, A. F. &McWilliams, J.C. The regional oceanicmodeling
system (ROMS): a split-explicit, free-surface, topography-following-
coordinate oceanic model. Ocean Model. 9, 347–404 (2005).

25. Qin, G. et al. Storm surge inundation modulated by typhoon
intensities and tracks: simulations using the regional ocean
modeling system (ROMS). J. Mar. Sci. Eng. 11, 1112 (2023).

26. Jelesnianski, C. P., Chen, J. & Shaffer,W. A.SLOSH: Sea, Lake, And
Overland Surges From Hurricanes. Technical Report NWS 48
(NOAA, 1992).

https://doi.org/10.1038/s43247-024-01707-x Article

Communications Earth & Environment |           (2024) 5:529 15

https://doi.org/10.5281/zenodo.10419306
https://www.python.org/
https://zenodo.org/record/7691855
https://zenodo.org/record/7691855
https://doi.org/10.5281/zenodo.10419306
https://doi.org/10.5281/zenodo.10419306
https://www.emdat.be
https://www.emdat.be
https://doi.org/10.1038/s41893-023-01230-5
https://doi.org/10.1038/s41893-023-01230-5
https://doi.org/10.1038/s41893-023-01230-5
https://doi.org/10.1029/2008JC005115
https://doi.org/10.1029/2008JC005115
www.nature.com/commsenv


27. Zhang, K., Xiao, C. & Shen, J. Comparison of the CEST and SLOSH
models for storm surge flooding. J. Coast. Res. 24, 489–499 (2008).

28. Mentaschi, L. et al. A global unstructured, coupled, high-resolution
hindcast of waves and storm surge. Front. Mar. Sci. 10, 1233679
(2023).

29. Gori, A., Lin, N., Schenkel, B. & Chavas, D. North Atlantic tropical
cyclone size and storm surge reconstructions from 1950-present. J.
Geophys. Res. Atmos. 128, e2022JD037312 (2023).

30. Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change
exacerbates hurricane flood hazards along US Atlantic and Gulf
Coasts in spatially varying patterns. Nat. Commun. 10, 1–9 (2019).

31. Lin, N., Emanuel, K. A., Smith, J. A. & Vanmarcke, E. Risk
assessment of hurricane storm surge for NewYorkCity. J. Geophys.
Res. Atmos. 115 https://doi.org/10.1029/2009JD013630 (2010).

32. Stephens, S. A. et al. Future changes in built environment risk to
coastal flooding, permanent inundation and coastal erosion
hazards. J. Mar. Sci. Eng. 9, 1011 (2021).

33. Ramirez, J. A., Lichter, M., Coulthard, T. J. & Skinner, C. Hyper-
resolution mapping of regional storm surge and tide flooding:
comparison of static and dynamic models. Nat. Hazards 82,
571–590 (2016).

34. Didier, D. et al. Multihazard simulation for coastal flood mapping:
Bathtub versus numerical modelling in an open estuary, Eastern
Canada. J. Flood Risk Manag. 12, e12505 (2019).

35. Neumann, T. & Ahrendt, K. Comparing the “Bathtub Method" with
MIKE 21 HD FLOWModel for Modelling Storm Surge Inundation.
Technical Report 22 (Universität Kiel, Kiel, 2013).

36. Vousdoukas, M. I. et al. Developments in large-scale coastal flood
hazardmapping.Nat.HazardsEarthSyst. Sci.16, 1841–1853 (2016).

37. Menéndez, P., Losada, I. J., Torres-Ortega, S., Narayan, S. & Beck,
M. W. The global flood protection benefits of mangroves. Sci. Rep.
10, 4404 (2020).

38. Salisbury,M.B.&Hagen,S.C. Theeffect of tidal inlets onopencoast
storm surge hydrographs. Coast. Eng. 54, 377–391 (2007).

39. Dullaart, J. C. M. et al. Accounting for tropical cyclones more than
doubles the global population exposed to low-probability coastal
flooding. Commun. Earth Environ. 2, 1–11 (2021).

40. Kunze, S. & Strobl, E. A. The global long-term effects of storm surge
flooding on human settlements in coastal areas. Environ. Res. Lett.
19, 024016 (2024).

41. Kirezci, E. et al. Projections of global-scale extreme sea levels and
resulting episodic coastal flooding over the 21st Century. Sci. Rep.
10, 11629 (2020).

42. Ward, P. J. et al. Aqueduct Floods Methodology. Technical Note
(World Resources Institute, Washington, D.C., 2020).

43. Aznar-Siguan, G. &Bresch, D. N. CLIMADA v1: a global weather and
climate risk assessment platform. Geosci. Model Dev. 12,
3085–3097 (2019).

44. Rana, A., Zhu, Q., Detken, A.,Whalley, K. & Castet, C. Strengthening
climate-resilient development and transformation in Viet Nam.Clim.
Change 170, 4 (2022).

45. Dullaart, J. C. M. et al. Enabling dynamic modelling of coastal
flooding by defining storm tide hydrographs. Nat. Hazards Earth
Syst. Sci. 23, 1847–1862 (2023).

46. MacPherson, L.R., Arns,A.,Dangendorf, S., Vafeidis,A. T. & Jensen,
J. A stochastic extreme sea level model for the German Baltic Sea
coast. J. Geophys. Res. Oceans 124, 2054–2071 (2019).

47. Ayyad, M., Hajj, M. R. & Marsooli, R. Machine learning-based
assessment of storm surge in the New York metropolitan area. Sci.
Rep. 12, 19215 (2022).

48. Lockwood, J. W., Lin, N., Oppenheimer, M. & Lai, C.-Y. Using neural
networks to predict hurricane storm surge and to assess the
sensitivity of surge to stormcharacteristics.J.Geophys.Res.Atmos.
127, e2022JD037617 (2022).

49. Lee, J.-W., Irish, J. L., Bensi, M. T. &Marcy, D. C. Rapid prediction of
peak storm surge from tropical cyclone track time series using
machine learning. Coast. Eng. 170, 104024 (2021).

50. Liu, Y., Zhao, Q., Hu, C. & Luo, N. Prediction of storm surge water
level based on machine learning methods. Atmosphere 14, 1568
(2023).

51. Pachev,B., Arora,P., del-Castillo-Negrete,C., Valseth,E.&Dawson,
C. A framework for flexible peak storm surge prediction.Coast. Eng.
186, 104406 (2023).

52. Pringle, W. J., Burnett, Z., Sargsyan, K., Moghimi, S. & Myers, E.
Efficient probabilistic prediction and uncertainty quantification of
tropical cyclone–driven storm tides and inundation.Artif. Intell. Earth
Syst. 2, e220040 (2023).

53. Berger, M. J., George, D. L., LeVeque, R. J. & Mandli, K. T. The
GeoClaw software for depth-averaged flows with adaptive
refinement. Adv. Water Resour. 34, 1195–1206 (2011).

54. Mandli, K. T. & Dawson, C. N. Adaptive mesh refinement for storm
surge. Ocean Model. 75, 36–50 (2014).

55. Muis, S. et al. A high-resolution global dataset of extreme sea levels,
tides, and stormsurges, including future projections.Front.Mar. Sci.
7, 263 (2020).

56. Murphy, J. D. Service Assessment: August–September 2017
Hurricane Harvey. Technical Report (National Weather Service,
Silver Spring, Maryland, 2018).

57. Knabb, R. D., Brown, D. P. & Rhome, J. R. Tropical Cyclone Report:
Hurricane Rita. Technical Report (National Hurricane Center, 2006).

58. Shen, X., Anagnostou, E. N., Allen, G. H., Robert Brakenridge, G. &
Kettner, A. J. Near-real-time non-obstructed flood inundation
mapping using synthetic aperture radar.RemoteSens. Environ.221,
302–315 (2019).

59. Brakenridge, G.Global Active Archive of Large Flood Events https://
floodobservatory.colorado.edu/ (2023).

60. Tellman, B. et al. Satellite imaging reveals increased proportion of
population exposed to floods. Nature 596, 80–86 (2021).

61. Bennett, N. D. et al. Characterising performance of environmental
models. Environ. Model. Softw. 40, 1–20 (2013).

62. Cea, L., Álvarez, M. & Puertas, J. Estimation of flood-exposed
population in data-scarce regionscombining satellite imagery andhigh
resolution hydrological-hydraulic modelling: a case study in the
Licungo basin (Mozambique). J. Hydrol. Reg. Stud. 44, 101247 (2022).

63. Aronica, G., Bates, P. D. & Horritt, M. S. Assessing the uncertainty in
distributed model predictions using observed binary pattern
information within GLUE. Hydrol. Process. 16, 2001–2016 (2002).

64. Stephens, E., Schumann, G. & Bates, P. Problems with binary
pattern measures for flood model evaluation. Hydrol. Process. 28,
4928–4937 (2014).

65. Chicco,D. & Jurman,G. Theadvantagesof theMatthewscorrelation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics 21, 6 (2020).

66. Hoch, J. M., Eilander, D., Ikeuchi, H., Baart, F. & Winsemius, H. C.
Evaluating the impact of model complexity on flood wave
propagation and inundation extent with a hydrologic–hydrodynamic
model coupling framework. Nat. Hazards Earth Syst. Sci. 19,
1723–1735 (2019).

67. Chen, M. et al. A comprehensive flood inundation mapping for
Hurricane Harvey using an integrated hydrological and hydraulic
model. J. Hydrometeorol. 22, 1713–1726 (2021).

68. Willis, T. D. M. et al. Hydrodynamic modeling of inundation patterns
of a large African floodplain indicates sensitivity to waterway
restoration.Water Resour. Res. 58, e2021WR030107 (2022).

69. Dasgupta, A., Grimaldi, S., Ramsankaran, R. A. A. J., Pauwels, V. R.
N. & Walker, J. P. A simple framework for calibrating hydraulic flood
inundation models using Crowd-sourced water levels. J. Hydrol.
614, 128467 (2022).

https://doi.org/10.1038/s43247-024-01707-x Article

Communications Earth & Environment |           (2024) 5:529 16

https://doi.org/10.1029/2009JD013630
https://doi.org/10.1029/2009JD013630
https://floodobservatory.colorado.edu/
https://floodobservatory.colorado.edu/
https://floodobservatory.colorado.edu/
www.nature.com/commsenv


70. Wing,O.E. J. et al. Validationof a30m resolution floodhazardmodel
of the conterminous United States.Water Resour. Res. 53,
7968–7986 (2017).

71. Costabile, P., Costanzo, C., Ferraro, D., Macchione, F. & Petaccia,
G. Performances of the new HEC-RAS version 5 for 2-D
hydrodynamic-based rainfall-runoff simulations at basin scale:
comparison with a state-of-the-art model.Water 12, 2326 (2020).

72. Mester, B., Willner, S. N., Frieler, K. & Schewe, J. Evaluation of river
flood extent simulated with multiple global hydrological models and
climate forcings. Environ. Res. Lett. 16, 094010 (2021).

73. Bates, P. Fundamental limits to flood inundation modelling. Nat.
Water 1, 566–567 (2023).

74. USGS.Short-TermNetwork (STN) FloodEventDatahttps://stn.wim.
usgs.gov/ (2023).

75. Haigh, I. D. et al. GESLA version 3: a major update to the global
higher-frequency sea-level dataset. Geosci. Data J. https://doi.org/
10.1002/gdj3.1742 (2022).

76. Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. &
Neumann, C. J. The International Best Track Archive for Climate
Stewardship (IBTrACS).Bull. Am.Meteorol. Soc.91, 363–376 (2010).

77. Bloemendaal, N. et al. Global modeling of tropical cyclone storm
surges using high-resolution forecasts. Clim. Dyn. 52, 5031–5044
(2019).

78. Muis, S. et al. Spatiotemporal patterns of extreme sea levels along
the western North-Atlantic coasts. Sci. Rep. 9, 3391 (2019).

79. Yu, Y.-C. et al. Assessing the potential highest storm tide hazard in
Taiwan based on 40-year historical typhoon surge hindcasting.
Atmosphere 10, 346 (2019).

80. Mechler, R., Bouwer, L. M., Schinko, T., Surminski, S. & Linnerooth-
Bayer, J. (eds) Loss and Damage from Climate Change: Concepts,
Methods and Policy Options. Climate RiskManagement, Policy and
Governance (Springer International Publishing, Cham, 2019).

81. Garschagen, M., Doshi, D., Moure, M., James, H. & Shekhar, H. The
consideration of future risk trends in national adaptation planning:
conceptual gaps and empirical lessons. Clim. Risk Manag. 34,
100357 (2021).

82. Knutson, T. et al. Tropical cyclonesandclimate changeassessment:
Part II: projected response to anthropogenic warming. Bull. Am.
Meteorol. Soc. 101, E303–E322 (2020).

83. IPCC. Climate Change 2021: The Physical Science Basis:
Contribution of Working Group I to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change (Cambridge
University Press, Cambridge, United Kingdom and New York, NY,
USA, 2021).

84. Huang, W. et al. Tidal simulation revisited. Ocean Dyn. 72, 187–205
(2022).

85. Treu, S. et al. Reconstruction of hourly coastal water levels and
counterfactuals without sea level rise for impact attribution. Earth
Syst. Sci. Data 16, 1121–1136 (2024).

86. Lee, W., Sun, A. Y., Scanlon, B. R. & Dawson, C. Hindcasting
compound pluvial, fluvial and coastal flooding during Hurricane
Harvey (2017) using Delft3D-FM. Nat. Hazards https://doi.org/10.
1007/s11069-023-06247-9 (2023).

87. Valle-Levinson,A.,Olabarrieta,M. &Heilman, L.Compound flooding
in Houston-Galveston Bay during Hurricane Harvey. Sci. Total
Environ. 747, 141272 (2020).

88. Leal Filho,W. &Nalau, J. (eds.) Limits toClimateChangeAdaptation.
Climate Change Management (Springer International Publishing,
Cham, 2018).

89. Kerns, B. W. & Chen, S. S. Compound effects of rain, storm surge,
and river discharge on coastal flooding during Hurricane Irene and
Tropical Storm Lee (2011) in the Mid-Atlantic region: coupled
atmosphere-wave-ocean model simulation and observations. Nat.
Hazards 116, 693–726 (2023).

90. Zeng, Z., Xu, J., Ye, G. & Shen,W. The influence of different intensity
of monsoon on typhoon precipitation: a comparative study of
typhoons Soudelor and Maria. Front. Earth Sci. 11, 1251711 (2023).

91. Xi, D., Lin, N. & Gori, A. Increasing sequential tropical cyclone
hazards along the US East and Gulf coasts. Nat. Clim. Change 13,
258–265 (2023).

92. Fu, Z.-H., Zhan, R., Zhao, J., Yamada, Y. & Song, K. Future
projections of multiple tropical cyclone events in the Northern
Hemisphere in theCMIP6-HighResMIPmodels.Geophys. Res. Lett.
50, e2023GL103064 (2023).

93. Tarpanelli, A.,Mondini, A. C. &Camici, S. Effectiveness of Sentinel-1
and Sentinel-2 for flood detection assessment in Europe. Nat.
Hazards Earth Syst. Sci. 22, 2473–2489 (2022).

94. Grimaldi, S., Li, Y., Pauwels, V. R. N. &Walker, J. P. Remote sensing-
derived water extent and level to constrain hydraulic flood
forecasting models: opportunities and challenges. Surv. Geophys.
37, 977–1034 (2016).

95. Brivio, P. A., Colombo, R., Maggi, M. & Tomasoni, R. Integration of
remote sensingdata andGIS for accuratemapping of floodedareas.
Int. J. Remote Sens. 23, 429–441 (2002).

96. Wijetunge, J. J. & Neluwala, N. G. P. B. Compound flood hazard
assessment and analysis due to tropical cyclone-induced storm
surges,wavesandprecipitation: a case study for coastal lowlandsof
Kelani river basin in Sri Lanka. Nat. Hazards 116, 3979–4007 (2023).

97. Liang, H. & Zhou, X. Impact of tides and surges on fluvial floods in
coastal regions. Remote Sens. 14, 5779 (2022).

98. Bates, P. D. et al. Combined modeling of US fluvial, pluvial, and
coastal flood hazard under current and future climates.Water
Resour. Res. 57, e2020WR028673 (2021).

99. GEBCO.General Bathymetric Chart of the Oceans (GEBCO) https://
www.gebco.net/ (2014).

100. Muis, S. et al.Global projections of stormsurges using high-resolution
CMIP6 climate models. Earth’s Future 11, e2023EF003479 (2023).

101. Tozer, B. et al. Global bathymetry and topography at 15 arc sec:
SRTM15+. Earth Space Sci. 6, 1847–1864 (2019).

102. Kulp, S. A. & Strauss, B. H. CoastalDEM v2.1: A High-accuracy and
High-resolutionGlobal Coastal ElevationModel Trained on ICESat-2
Satellite Lidar. Technical Report (Climate Central Inc., Princeton,
USA, 2021).

103. Yamazaki, D. et al. MERIT Hydro: a high-resolution global
hydrography map based on latest topography dataset.Water
Resour. Res. 55, 5053–5073 (2019).

104. Acosta-Morel, M., McNulty, V. P., Lummen, N., Schill, S. R. & Beck,
M.W.Shoreline solutions: guiding efficient data selection for coastal
risk modeling and the design of adaptation interventions.Water 13,
875 (2021).

105. Meadows, M., Jones, S. & Reinke, K. Vertical accuracy assessment
of freely available global DEMs (FABDEM, Copernicus DEM,
NASADEM,AW3D30andSRTM) in flood-proneenvironments. Int. J.
Digit. Earth 17, 2308734 (2024).

106. Lyard, F. H., Allain, D. J., Cancet,M., Carrère, L. & Picot, N. FES2014
global ocean tide atlas: design and performance. Ocean Sci. 17,
615–649 (2021).

107. Copernicus Marine Service. Global Ocean Gridded L4 Sea Surface
HeightsAndDerivedVariablesReprocessed (1993-Ongoing)https://
doi.org/10.48670/MOI-00148 (2021).

108. Holland, G. J. An analytic model of the wind and pressure profiles in
hurricanes. Mon. Weather Rev. 108, 1212–1218 (1980).

109. Frieler, K. et al. Scenario setup and forcing data for impact model
evaluation and impact attribution within the third round of the Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP3a). Geosci.
Model. Dev. 17, 1–51 (2024).

110. Garratt, J. R. Review of drag coefficients over oceans and
continents.Mon. Weather Rev. 105, 915–929 (1977).

https://doi.org/10.1038/s43247-024-01707-x Article

Communications Earth & Environment |           (2024) 5:529 17

https://stn.wim.usgs.gov/
https://stn.wim.usgs.gov/
https://stn.wim.usgs.gov/
https://doi.org/10.1002/gdj3.1742
https://doi.org/10.1002/gdj3.1742
https://doi.org/10.1002/gdj3.1742
https://doi.org/10.1007/s11069-023-06247-9
https://doi.org/10.1007/s11069-023-06247-9
https://doi.org/10.1007/s11069-023-06247-9
https://www.gebco.net/
https://www.gebco.net/
https://www.gebco.net/
https://doi.org/10.48670/MOI-00148
https://doi.org/10.48670/MOI-00148
https://doi.org/10.48670/MOI-00148
www.nature.com/commsenv


111. Charnock, H.Wind stress on awater surface.Q. J. R.Meteorol. Soc.
81, 639–640 (1955).

112. Sampson, C. C. et al. A high-resolution global flood hazard model.
Water Resour. Res. 51, 7358–7381 (2015).

113. Qin, X., LeVeque, R. J. & Motley, M. R. Accelerating an adaptive
mesh refinement code for depth-averagedflowsusingGPUs.J.Adv.
Model. Earth Syst. 11, 2606–2628 (2019).

114. Du, H., Yu, P., Zhu, L., Fei, K. & Gao, L. Assessing the performances
of parametric wind models in predicting storm surges in the Pearl
River Estuary. J. Wind Eng. Ind. Aerodyn. 232, 105265 (2023).

115. Wang, S., Lin, N. & Gori, A. Investigation of tropical cyclone wind
models with application to storm tide simulations. J. Geophys. Res.
Atmos. 127, e2021JD036359 (2022).

116. Yan, D. & Zhang, T. Research progress on tropical cyclone
parametric wind field models and their application. Reg. Stud. Mar.
Sci. 51, 102207 (2022).

117. Holland,G. J., Belanger, J. I. & Fritz, A. A revisedmodel for radial profiles
of hurricane winds https://doi.org/10.1175/2010MWR3317.1 (2010).

118. Vijayan, L. et al. Evaluation of parametric wind models for more
accurate modeling of storm surge: a case study of Hurricane
Michael. Nat. Hazards 106, 2003–2024 (2021).

119. Irazoqui Apecechea,M., Verlaan,M., Zijl, F., Le Coz, C. & Kernkamp,
H. Effects of self-attraction and loading at a regional scale: a test
case for the Northwest European Shelf. Ocean Dyn. 67, 729–749
(2017).

120. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol.
Soc. 146, 1999–2049 (2020).

121. Holland, G. J. A revised hurricane pressure-wind model.Mon.
Weather Rev. 136, 3432–3445 (2008).

122. Tiggeloven, T. et al. Global-scale benefit–cost analysis of coastal
flood adaptation to different flood risk drivers using structural
measures. Nat. Hazards Earth Syst. Sci. 20, 1025–1044 (2020).

123. Pekel, J.-F.,Cottam,A.,Gorelick,N. &Belward,A.S.High-resolution
mapping of global surface water and its long-term changes. Nature
540, 418–422 (2016).

124. Haer, T. et al. Coastal and river flood risk analyses for guiding
economically optimal flood adaptation policies: a country-scale
study for Mexico.Philos. Trans. R. Soc. AMath. Phys. Eng. Sci. 376,
20170329 (2018).

125. Samela, C., Coluzzi, R., Imbrenda, V., Manfreda, S. & Lanfredi, M.
Satellite flood detection integrating hydrogeomorphic and spectral
indices. GIScience Remote Sens. 59, 1997–2018 (2022).

126. Matthews, B. W. Comparison of the predicted and observed
secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta
(BBA) Protein Struct. 405, 442–451 (1975).

127. Stanski, H. R., Wilson, L. J. & Burrows, W. R. Survey of Common
Verification Methods in Meteorology. Research Report MSRB 89-5
(Atmospheric Environment Service, Forecast Research Division,
Canada, 1989).

128. Bernhofen, M. V. et al. A first collective validation of global fluvial
flood models for major floods in Nigeria and Mozambique. Environ.
Res. Lett. 13, 104007 (2018).

129. Bhattacharya, B., Mazzoleni, M. & Ugay, R. Flood inundation
mapping of the sparsely gauged large-scale Brahmaputra basin
using remote sensing products. Remote Sens. 11, 501 (2019).

130. Koenig, T. A. et al. Identifying and preserving high-water mark data.
in U.S. Geological Survey Techniques and Methods, 47 (U.S.
Geological Survey, Reston, Virginia, 2016).

131. Yang, K., Paramygin, V. A. & Sheng, Y. P. A rapid forecasting and
mapping system of storm surge and coastal flooding.Weather
Forecast. 35, 1663–1681 (2020).

132. Gutenson, J. L. et al. Comparison of estimated flood exposure
and consequences generated by different event-based inland
flood inundation maps. Nat. Hazards Earth Syst. Sci. 23, 261–277
(2023).

133. Ferguson, S. et al. Assessing numerical model skill at simulating
coastal flooding using field observations of deposited debris and
photographic evidence. Water 14, 589 (2022).

134. Iwamoto, T., Takagawa, T., Shibayama, T., Esteban, M. &Mäll, M. A
proposal of a semi-empirical method for modifying the atmospheric
pressure and wind fields of tropical cyclones. Coast. Eng. J. 65,
418–432 (2023).

135. Hallegatte, S., Green, C., Nicholls, R. J. &Corfee-Morlot, J. Future flood
losses in major coastal cities. Nat. Clim. Change 3, 802–806 (2013).

136. Vafeidis, A. T. et al. Water-level attenuation in global-scale
assessments of exposure to coastal flooding: a sensitivity analysis.
Nat. Hazards Earth Syst. Sci. 19, 973–984 (2019).

137. Toyoda, M., Fukui, N., Miyashita, T., Shimura, T. & Mori, N.
Uncertainty of storm surge forecast using integrated atmospheric
and storm surge model: a case study on Typhoon Haishen 2020.
Coast. Eng. J. 64, 135–150 (2022).

138. Salazar-Monroy, E. F.,Melgar, D., Jaimes,M.A. &Ramirez-Guzman,
L. Regional probabilistic tsunami hazard analysis for the Mexican
subduction zone fromstochastic slipmodels.J.Geophys.Res. Solid
Earth 126, e2020JB020781 (2021).

139. Meiler, S. et al. Intercomparison of regional loss estimates from global
synthetic tropical cyclone models. Nat. Commun. 13, 6156 (2022).

Acknowledgements
This research has received funding from the German Federal Ministry of
Education and Research (BMBF) under the research projects SLICE
(01LA1829A), andQUIDIC (01LP1907A) and from the CHIPS project, part of
AXIS, an ERA-NET initiated by JPI Climate, funded by FORMAS (Sweden),
DLR/BMBF (Germany, grant no. 01LS1904A), AEI (Spain) and ANR (France)
with co-funding by the European Union (grant no. 776608). Further, it has
received funding from the European Union’s Horizon 2023 research and
innovation programme under the grant agreements nos. 101135481
(COMPASS) and 101137673 (TIPESM).

Author contributions
T.V., C.O., and K.F. designed the analysis. T.V. implemented the inundation
models and calculated the flood depth maps with the support of S.T. T.V.
furtherconducted thestatisticalanalysis, andgeneratedallplotsandtables.All
authors contributed to the analysis. T.V., C.O., andM.M.wrote themanuscript
with contributions from all authors. All authors discussed the results.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s43247-024-01707-x.

Correspondence and requests for materials should be addressed to
Christian Otto.

Peer review information Communications Earth & Environment thanks
Kees Nederhoff and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. Primary Handling Editors: Olusegun Dada
and Joe Aslin. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s43247-024-01707-x Article

Communications Earth & Environment |           (2024) 5:529 18

https://doi.org/10.1175/2010MWR3317.1
https://doi.org/10.1175/2010MWR3317.1
https://doi.org/10.1038/s43247-024-01707-x
http://www.nature.com/reprints
www.nature.com/commsenv


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s43247-024-01707-x Article

Communications Earth & Environment |           (2024) 5:529 19

http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsenv

	Modeling surge dynamics improves coastal flood estimates in a global set of tropical cyclones
	Results
	Evaluation of modeled inundated areas
	Comparison of modeled inundated areas with high water marks
	Evaluation of coastal water level time series

	Discussion
	Methods
	Overview
	Dynamic surge and inundation from GeoClaw
	Choice of parametric wind field model
	GTSM dynamic ocean model
	CLIMADA static inundation model
	Aqueduct static inundation model
	Performance indicators
	Data on satellite-based flood extents
	Data from tide gauge measurements
	Data from field measurements (high water marks)
	Limitations of the performance indicators
	Limitations in the considered drivers of flooding

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




