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The South Atlantic Dipole 
via multichannel singular spectrum 
analysis
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Sabrina Speich 1 & Michael Ghil 1,6,7

This study analyzes coupled atmosphere–ocean variability in the South Atlantic Ocean. To do so, 
we characterize the spatio-temporal variability of annual mean sea-surface temperature (SST) and 
sea-level pressure (SLP) using Multichannel Singular Spectrum Analysis (M-SSA). We applied M-SSA 
to ERA5 reanalysis data (1959–2022) of South Atlantic SST and SLP, both individually and jointly, and 
identified a nonlinear trend, as well as two climate oscillations. The leading oscillation, with a period 
of 13 years, consists of a basin-wide southwest–northeast dipole and is observed both in the individual 
variables and in the coupled analysis. This mode is reminiscent of the already known South Atlantic 
Dipole, and it is probably related to the Pacific Decadal Oscillation and to El Niño–Southern Oscillation 
in the Pacific Ocean. The second oscillation has a 5-year period and also displays a dipolar structure. 
The main difference between the spatial structure of the decadal, 13-year, and the interannual, 
5-year mode is that, in the first one, the SST cold tongue region in the southeast Atlantic’s Cape Basin 
is included in the pole closer to the equator. Together, these two oscillatory modes, along with the 
trend, capture almost 40% of the total interannual variability of the SST and SLP fields, and of their 
co-variability. These results provide further insights into the spatio-temporal evolution of SST and 
SLP variability in the South Atlantic, in particular as it relates to the South Atlantic Dipole and its 
predictability.

In the subtropical South Atlantic (10–50◦ S, 63◦ W–20◦ E; Fig. 1), the dominant mode of coupled interannual 
variability connecting sea level pressure (SLP) and sea surface temperature (SST) is the South Atlantic Dipole 
 (SAD1–5). This southwest–northeast-oriented dipole has been shown to be related to the variability of precipita-
tion events in southeastern South America and Western  Africa6–10, and it affects  cyclogenesis11. For example, the 
phase of the dipole with negative SST anomalies over the tropics and positive SST anomalies over the extratropics 
is associated with increased precipitation during the rainy season over eastern  Brazil12. Moreover, the SAD can 
influence the position and intensity of the South Atlantic Convergence Zone (SACZ)7,13–18, which can in turn 
affect the SST  field19,20. The SAD is thus a key component in understanding climate predictability in the basin 
and surrounding areas.

The mechanism for the establishment of the dipole is attributed to intrinsic atmospheric variability: the 
semi-permanent anticyclone intensifies and relaxes, as well as shifting its position; in the regions where the wind 
stress increases over the ocean surface, so does evaporation, loss of latent heat, and the depth of the mixed layer; 
the latter mixes colder water from the deeper layers with the warmer surface waters, generating negative SST 
anomalies, and vice-versa3,21. This local atmosphere-driven explanation is consistent with the results of Venegas 
et al.1, who found that the atmosphere leads the ocean by several months in a lag-correlation analysis, and of Bach 
et al.22. The latter authors found, by using a Granger causality analysis, that the atmosphere is primarily driv-
ing SST variability in this region, rather than vice-versa, for periodicities longer than one month. However, the 
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establishment of the dipole during austral summer has also been linked to the remote effect of El Niño–Southern 
Oscillation (ENSO) events producing a Pacific–South  American21,23 wave train that affects both the intensity and 
the position of the South Atlantic subtropical high, which in turn triggers SAD  events14,24,25.

There have been different characterizations of the dipolar SST variability in the South Atlantic. Studies that 
have focused on austral summer have usually observed the SAD, which is stronger and restricted to higher lati-
tudes during this season, while those interested in austral winter have usually observed and defined the South 
Atlantic Ocean Dipole (SAOD), which covers a broader area and peaks in the latter  season10,26–28. Nevertheless, 
both the SAD and SAOD are considered to be the same mode of variability that originates from differences in 
the seasonal position of the Saint Helena subtropical  anticyclone28. Open questions remain, though, about this 
dipole, in particular concerning its spatio-temporal variability, its remote drivers and the role of air–sea coupling. 
We will address these issues herein by using Multichannel Singular Spectrum Analysis (M-SSA).

M-SSA can identify and extract spatiotemporal oscillatory modes from multidimensional time  series29,30, 
and it is robust even when applied to short, noisy time  series30,31. M-SSA can be used to separate time series into 
trend, oscillations, noise, and chaotic  components32, and the low-frequency modes it yields correspond better to 
the predictable modes of the climate system than the usual spatial Empirical Orthogonal Functions (EOFs)33,34. 
M-SSA has been widely applied to climate data, for instance, to characterize interannual variability of the North 
Atlantic Ocean’s sea temperature and wind  stress35, the Madden–Julian  Oscillation36, the monsoon intraseasonal 
 oscillation37, and macroeconomic response to climatic  variability38, among many other such applications. Moron 
et al. (1998, Sect. 4.4)39 analyzed South Atlantic SST variability and trends using bivariate singular spectrum 
analysis (SSA) over the time interval 1901–1994. These authors found significant interdecadal oscillations, with 
a spectral peak around 13–14 years, which appeared to be correlated to a corresponding North Atlantic inter-
decadal mode. They also found a 4–5 year oscillatory mode. However, their study did not include a detailed 
spatial analysis of the SST field nor did they analyze atmospheric fields. Therefore, the objective of the present 
paper is to characterize the coupled, spatio-temporal evolution of the SAD in the atmosphere and ocean, and 
explore its remote drivers.

Results
We perform the M-SSA analysis of the ERA5  datasets40 first for the SST and SLP fields separately, and then a 
joint SST and SLP analysis (hereinafter referred to as coupled). For each of these analyses, we obtain the principal 
components (PCs) that correspond to each mode. Oscillatory modes come in pairs, as described in the “Meth-
ods and data” section. In all three cases, we obtain a trend mode (PC 1) followed by two oscillatory modes with 
fundamental frequencies of 12.8 years (PCs 2–3) and 5.3 years (PCs 5–6 for SLP and 4–5 for SST and coupled). 
When the variables are analyzed separately, the trend PC captures 18.3% for SLP and 15.6% for SST, respectively, 
while the 12.8-year mode also captures more variance in SLP than in SST: 21.3% and 12.1%, respectively; see 
Fig. 2. The 5.3-year oscillatory mode captures 10.1% of the variance in the SST and 6.2% in the SLP field (Fig. 2). 
Finally, the M-SSA applied to the coupled SST and SLP fields also shows a trend, along with 12.8-year and 5.3-
year oscillations that capture 16.4%, 15.8%, and 8.1% of the variance, respectively. The only pair of modes that is 
statistically significant at the 5% level according to Monte Carlo M-SSA for the coupled analysis is the 5.3-year 
oscillation; see “Methods and data”. The 12.8-year oscillation barely misses being statistically significant at this 
level and it captures a large portion of the variance (shown in red in Fig. 2). For the individual analyses, the 5.3-
year mode is significant for SST and a 3-year mode is significant for SLP, both at the 5% level; see again Fig. 2.

The spatial structure of RC 1 that is associated to the trend is similar to the spatial structure of the linear 
trend shown in Fig. 1c. The semi-permanent anticyclone intensifies and shifts southward, while anomalies shift 
from negative to positive all over the basin, and even more so south of the maximum of SLP; see Fig. 3b. The 
SST field experiences a positive trend throughout the basin, with more intense warming south of 35◦ S (Fig. 3c). 
No changes in the spatial structure of the SST or SLP fields are evident. Although the warming trend can be 

Figure 1.  Climatological properties of surface fields in the South Atlantic domain of this study. (a) Mean SST 
( ◦ C) and absolute dynamic topography (ADT; m) in shades and contours, respectively. (b) Interannual standard 
deviation of SST ( ◦C). (c) Linear trend of SST ( ◦C/decade). (d) Mean zonal wind (ms−1 ) and sea level pressure 
(SLP) in shades and contours, respectively. (e) Interannual standard deviation of SLP (hPa). (f) Linear trend of 
SLP (hPa/decade).
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Figure 2.  Monte Carlo analysis and leading principal components (PCs) associated with the M-SSA of: (a) SLP, 
(b) SST and (c) coupled SST and SLP. The upper row shows the variance of each PC, plotted with diamonds, as a 
function of its frequency. The black lines show the confidence intervals. The significant mode with a periodicity 
of 5.3-year is plotted in red. The rows below show the trend (PC1), and the 12.8 and 5.3-year modes that capture 
the majority of the variance (shown as % in the caption of each panel). The length of the PCs is equal to the 
length N of the time series minus the window length M. Hence the PCs cannot display the correct phase of the 
corresponding mode: it is the phase of the reconstructed components (RCs), shown later, that is correct.

Figure 3.  Reconstructed trend. (a) Spatially averaged SLP anomalies (SLPAs) for the domain of study, captured 
by RC 1. The line with colored plus signs shows the four phases of the mode, which are plotted in (b) for the 
SLPAs and in (c) for the SST anomalies (SSTAs), while the solid green line shows the reconstructed mean 
SSTA. Both (b) and (c) also show in contours the mean SLP field plus the anomalies associated with the trend. 
Note that for plotting the contours of SLP, the anomalies were multiplied by 3 before adding the mean flow, to 
appreciate the differences between the phases more easily.
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linearly estimated, our M-SSA analysis shows that the rate of warming has been accelerating since 1980; see the 
solid green line in Fig. 3a.

The 12.8-year oscillatory coupled mode displays a dipolar structure for the SSTA field with a SW–NE ori-
entation, namely the SAD; see Fig. 4c. The SLPA field shows a monopole structure, which represents a cycle of 
intensification and relaxation of the semi-permanent anticyclone (Fig.4b). When the anticyclone intensifies, the 
Southwest Atlantic gets warmer, while the north and northeast South Atlantic get colder. When the anticyclone 
gets weaker, the opposite behavior in the SST field is observed (Fig. 4c). The amplitude of the observed anomalies 
is of about 0.5 hPa in SLP and 0.25 ◦ C in SST, while the dipole index for this mode peaks a year after the SLP 
peak; see the two lines in Fig.  4a and “Methods and data” for the definition of the index. At the 5% significance 
level, the SST index is significantly correlated with the ENSO 3.4 index (correlation coefficient r = 0.36 and 
p < 0.05 ) and correlated with the PDO index at a near-significant level ( r = 0.24, p = 0.06 ). We only show the 
spatio-temporal evolution of the coupled oscillatory modes as they are the main focus of this paper, while the 
two modes extracted from the single-field analyses are very similar.

The 5.3-year mode has both similarities with and differences from the 12.8-year mode. Both the amplitudes 
of the SSTAs and the SLPAs are weaker than in the 12.8-year mode. The large amplitude observed at the begin-
ning of the time series could be related either to the lower accuracy of the backward extension for 1959–1978 of 
ERA5 or to the lower accuracy of SSA and M-SSA reconstruction near the endpoints (Fig. 5a)41,42.

The 5.3-year mode, too, has a dipolar structure in SST, like the 12.8-year mode, but in this case the Southeast 
Atlantic and the Cape Basin are included in its southern pole, while in the 12.8-year mode the southern pole of 
the mode was restricted to the Southwest Atlantic. For the SLP field, the 5.3-year mode is quite similar to the 
12.8-year mode, with the main difference that in the southwest of the domain (south of 32◦ S and west of 40◦W), 
the sign of the anomalies is opposite. Therefore, the oscillation involves an intensification and relaxation of the 
anticyclone but also an east–west displacement (Fig. 5b). There are noticeable differences in the relative phases 
of the SST and SLP fields in the 12.8 and 5.3-year modes (Fig. 5c). While in the 12.8-year mode the maximum 
SSTAs occur after the maximum SLPAs, in the 5.3-year mode the SSTAs peak before the SLPAs. Moreover, the 
SSTAs in the 12.8-year mode have a strong equatorial component, while in the 5.3-year mode the SSTA maxima 
are located south of 15◦ S. This difference between the two modes is more apparent in the global composites of 
Figs. 6 and 7.

Global composites of the SSTA field based on the phases of the 12.8-year mode for the South Atlantic show a 
structure of the anomalies that is related to the Pacific Decadal Oscillation (PDO). The positive phase of the PDO 
is associated with a negative SAD in its phase 1, while the opposite is the case for the latter’s phase 3. Phases 2 
and 4 show the largest statistically significant areas in the Pacific Ocean: when the tropical Pacific is anomalously 
warm so is the Southwest Atlantic, and vice versa; see Fig. 6. In addition, during phases 1 and 4 it is possible 
to observe the occurrence of the subtropical Indian ocean dipole with the same polarity as the Atlantic dipole. 
This co-variability between the subtropical Indian and Atlantic oceans was previously found during the austral 
summer as a consequence of atmospheric  forcing43,44, and we now show that it holds also on longer time scales. 
The global composites of SSTAs for the 5.3-year mode in the South Atlantic exhibit a dipole structure that is 
weak when there is an intense ENSO occurring in the Pacific Ocean, and vice-versa for a weak ENSO pattern, 
cf. Fig. 7. In this case, it is only phase 4 of the composite associated to an El Niño pattern in the Pacific Ocean 

Figure 4.  Reconstructed 12.8-year oscillatory coupled mode. (a) Spatially averaged SLPAs in the domain. The 
line with colored plus signs shows the four phases of the mode, which are plotted in (b) for the SLPAs and in (c) 
for the SSTAs, while the solid green line shows the dipole index. A solid green line also separates the two cluster 
regions in SSTAs that are used to compute the dipole index. Both (b) and (c) also show in contours the mean 
SLP field plus the anomalies associated to the mode. Note that for plotting the contours of SLP, the anomalies 
were multiplied by 3 before adding the mean flow, to better appreciate the differences between the phases.
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and, consequently, to the tropical Indian Ocean that is statistically significant. During phase 4, the SAD pattern 
is not as well defined as it is in phases 1 and 3; see Fig. 7.

Discussion
We have applied M-SSA, a data-adaptive spectral  method29–31, to the ERA5  reanalysis40 to describe interannual-
to-decadal oscillations in the South Atlantic basin.

First, we identified a positive trend in both the SST and SLP fields, with the SST trend showing an increasing 
slope over the last decades (Fig. 3a).

Next, we identified a decadal oscillation with a dominant periodicity of 13 years in SSTAs and SLPAs sepa-
rately, as well as in the coupled analysis. In this mode, the SLP peaks the year before SST, suggesting the mode is 
atmospherically driven, consistently with the mechanism proposed by previous authors for the SAD (e.g., Santos 
et al.45). The structure of the global SSTA composites also suggests that the intensification and relaxation of the 
South Atlantic anticyclone could have a climatic teleconnection with the PDO, as previously inferred by Dong 

Figure 5.  Reconstructed 5.3-year oscillatory coupled mode. (a) Spatially averaged SLPAs in the domain. The 
line with colored plus signs shows the four phases of the mode, which are plotted in (b) for the SLPAs and in (c) 
for the SSTAs, while the solid green line shows the dipole index. Green lines in each of the four plots of panel (c) 
separate the two cluster regions used to compute the dipole index. Both (b) and (c) also show in contours the 
mean SLP field plus the anomalies associated with the mode. As in Fig. 4, the SLPAs were multiplied by 3 before 
adding the mean flow, to better appreciate the differences between the phases.

Figure 6.  Global composites of SSTAs of the 12.8-year coupled oscillatory mode in the South Atlantic.Black 
dots show areas that are statistically significant at the 5% level.
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and  Dai46, as well as with the 13–15-year oscillation found by Moron et al.39 in the North Atlantic. In addition, 
the concurrent occurrence of subtropical dipoles in the Atlantic and Indian oceans suggests that the PDO is 
generating hemispheric-wide atmospheric circulation anomalies. Finally, the fact that the 13-year mode has 
large SSTAs in the Equatorial Atlantic is consistent with the Equatorial Atlantic influencing the Pacific Ocean, 
as several studies have  suggested47.

The second, interannual mode of variability isolated by M-SSA in South Atlantic SSTs is characterized by 
a 5-year periodicity and a spatial pattern similar to the South Atlantic Dipole (SAD). The spatial structure of 
phases 2 and 4 in Fig. 7 approximately follows the 0.6 m contour of mean ADT (Fig. 1), and it peaks the year 
before the SLPs. This phase relationship suggests that this mode may be related to the ocean basin’s subtropical 
gyre circulation and, therefore, to internal oceanic variability. This mode could also be correlated with ENSO, 
as suggested by the global SSTA composites, a correlation that agrees with the finding of Rodrigues et al.24 that 
such a connection is probably mediated by the Pacific–South American wave train. Thus, more work is necessary 
to disentangle the coupled processes present in this mode.

In the future, an analysis that uses M-SSA in conjunction with analog forecasting, as in Vannitsem and  Ghil48, 
could be used to determine whether the modes found herein are truly coupled or not. A better understanding 
of the physical mechanisms responsible for the observed oscillations will contribute to improved prediction 
capabilities. For example, the role of ocean dynamics and the potential connection of the 13-yr mode to the 
Pan-Atlantic decadal climate  oscillation5. Moreover, the predictability of the oscillations identified by M-SSA 
can itself be leveraged to improve multi-year  prediction34,37.

Using the M-SSA–derived trend, decadal and interannual oscillation, we were able to reproduce about 40% 
of the interannual variability of the SST, SLP, and coupled fields in the South Atlantic. The intensity of the SSTA 
pattern associated with the SAD seems to be in phase with the PDO and out of phase with ENSO. These results 
help characterize the spatio-temporal evolution of the South Atlantic’s modes of variability, including the SAD, 
and its correlation with large-scale climatic oscillations.

Methods and data
Multichannel singular spectrum analysis (M-SSA)
We briefly introduce M-SSA here; further details can be found in Ghil et al.30,  Alessio31, and  Golyandina49. We 
follow the notation of Groth et al.50. M-SSA is a form of principal component analysis (PCA), also known as 
empirical orthogonal function (EOF) analysis, applied to moving windows of a time series. M-SSA identifies 
orthogonal spatiotemporal modes, which can then be sorted by the amount of variance that they capture in the 
time series.

Suppose we have a D-dimensional time series of length N, x = {xd(n) | d = 1, . . . , D; n = 1, . . . , N} . 
An embedding length M51 is chosen based on the time scales of the modes of  interest52. Next, the time-lag 
embedded time series is created by forming xd(n) = [xd(n), · · · , xd(n+M − 1)] for each d, and for each 
n = 1, . . . , N −M + 1 . Then, the covariance matrix C = X

T
X/(N −M + 1) , with X = (x1, · · · , xD) being 

the concatenated xd(n).
The covariance C has eigenvectors {ek} with corresponding eigenvalues {�k} . The eigenvectors are called space-

time EOFs (ST-EOFs)30. The eigenvalues equal the ratio �k/
∑

j �j , the fraction of the total variance captured 
by the kth mode. Oscillatory modes appear as pairs of nearly equal eigenvalues, as with Fourier  modes30,31,53.

Figure 7.  Global composites of SSTAs of the 5.3-year coupled oscillatory mode in the South Atlantic. Black 
dots show areas that are statistically significant at the 5% level.
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The portion of the time series corresponding to mode k can then be reconstructed by the following 
 procedure29,32. The matrix X is first projected onto the eigenvector ek:

The reconstructed component (RC) rdk(n) for mode k, time n, and dimension d, is then defined as

The summation limits are Ln = 1 , Un = M , and the normalizing constant is Mn = M , except near the start and 
the end of the time series; the expressions for the times near the two endpoints are given by Vautard et al.52. The 
sum of all the RCs equals the original time  series30,32. In the case of an oscillation, we sum the RCs correspond-
ing to the eigenvalue pair.

Monte Carlo M-SSA
An important issue in M-SSA is to distinguish oscillatory modes from noise. The Monte Carlo M-SSA method 
was developed for this  purpose30,50,54. It proposes as a null hypothesis that the observed dataset was generated 
by some noise process. One then proceeds to generate multiple realizations of this process and apply M-SSA to 
them, with several possible choices in how the eigendecomposition is performed across the different realizations. 
From this surrogate data, confidence intervals for the eigenvalues can be estimated. If the eigenvalues of the 
observed data fall outside the confidence intervals of the surrogate data, the null hypothesis can be  rejected50,54.

Here we use the Monte Carlo M-SSA variant proposed by Groth and  Ghil50 with a 5% of confidence level. 
This variant applies Procrustes rotation to match the eigendecomposition of the surrogates to the observed data.

Data and implementation
We use annual mean data from the ERA5  reanalysis40 with a horizontal resolution of 0.25◦ for the SST, SLP, 
and 10-meter zonal wind fields. The period used is 1959–2022, resulting in a 64-year–long time series for the 
South Atlantic (10–50◦ S, 63◦ W–20◦ E). We re-gridded the data to a 1 ◦ horizontal resolution in order to filter 
out mesoscale variability and reduce computational time. For SLP and winds, we omit data values over land.

As a complementary dataset, we also use the Absolute Dynamic Topography (ADT)55, to identify the oce-
anic subtropical gyre. Due to its relatively short availability of 1992–2021, ADT was not included in the M-SSA 
analysis. The ERA5 SST fields are based on the HadISST2 and OSTIA  products40. ERA5 is an uncoupled rea-
nalysis, i.e., the ECMWF model is run with prescribed SSTs; still, the atmospheric fields are expected to contain 
information about coupled interactions due to their introduction into the data assimilation process through the 
impact of the  observations56,57.

Before the M-SSA analysis, we projected the dataset onto spatial EOFs by means of a conventional PC 
 analysis58. This compression of the dataset reduces the computational costs of M-SSA. Groth et al. (2017, Appen-
dix B)35 show that M-SSA on PCs is mathematically equivalent to that on the full gridded dataset when all the 
PCs are retained. For the M-SSA, all the fields were standardized by removing the mean and dividing by the 
standard deviation. Once the M-SSA analysis was performed and before the plotting, the units were recovered 
via multiplying by the standard deviation.

Technical details
We use a window length of M = 14 years for the M-SSA, which represents between one-fourth and one-fifth of 
the time series, according to the recommended compromise between a longer M for extracting more information 
and a shorter one to retain statistical  significance52. Given the annual averaging, the Nyquist frequency is 0.5 
years−1 . Thus, we do not expect to be able to resolve oscillations with periods not much longer than 2 years, such 
as the quasi-biennial mode, present in  ENSO30 and previously found in the South  Atlantic39, too. We performed 
M-SSA for the SST and SLP fields separately and then together in order to understand the similarities and differ-
ences between the behavior of the two fields and to isolate the role of air–sea interaction in the dynamics. Phase 
composite analyses were performed using the method of Moron et al. (1998)39, and statistical significance was 
tested with a mean difference test at the 5%  level59.

Sensitivity tests were performed to determine the robustness of the results. In all cases, the 13- and the 5-year 
oscillatory modes were the dominant ones. These two modes capture most the variance after the trend and 
display a similar spatial structure. The sensitivity tests were the following: (i) we compared the results obtained 
using annual means versus those found using a Chebyshev filter for frequencies f > 0.5 cycles per year with a 
Chebyshev type-I low-pass  filter35; (ii) we varied the size of the window from 14 to 18 years; (iii) we tested several 
spatial grid resolutions; and (iv) we changed the region being studied by expanding and contracting by 5 ◦ the 
southern and northern limits of the domain. Maintaining the original eddy-permitting grid resolution of 0.25◦ 
led to results that were not statistically significant in the Monte Carlo M-SSA analysis, but given our interest in 
basin-scale dynamics, we finally settled for the 1 ◦ resolution.

We use Monte Carlo M-SSA50,54 to test the statistical significance of the obtained modes. To do so, we simulate 
1000 repetitions and apply the Procrustes algorithm to construct the confidence intervals for the  eigenvalues35,50.

The dipole indices for the 13- and 5-year modes were computed by clustering the SSTAs of the mode into 
two groups, using Ward’s method of hierarchical cluster  analysis60. Finally, composites of the global SSTAs were 
constructed for the four phases of the modes.

(1)ak = Xek .

(2)rdk(n) =
1

Mn

Un∑

m=Ln

ak(n−m+ 1)edk(m).
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Data availability
The datasets analysed during the current study are publicly available. ERA5 is available in the Climate Data 
Store repository at https:// cds. clima te. coper nicus. eu/, and ADT in the Marine Copernicus repository at https:// 
marine. coper nicus. eu/.
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