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A rapid decarbonisation of the United States economy is expected to disproportionately impact regions
historically embedded in domestic fossil fuel production. For decades, social scientists have documented the
economic and human toll of deindustrialisation, foreshadowing the transitional risks that these regions may
face amidst decarbonisation. However, econometric studies evaluating the magnitude, duration, and spatial
distribution of unemployment impacts in declining mining regions remain scarce, despite their pertinence to
policymaking. Therefore, using econometric estimation methods that control for unobserved heterogeneity via
two-way fixed effects, spatial effects, heterogeneous time trends, and grouped fixed effects for a panel of 3,072
US counties covering 2002-2019, we demonstrate that coal mine closures induce a contemporaneous rise in
county unemployment rate with spatial ripple effects. Furthermore, evidence of local-level resilience to such
shocks over a two-year time horizon is weak. To further account for county-level heterogeneity, we construct a
typology of coal counties based on qualities theorised to be resilient to industrial decline. Our findings suggest
the significant potential of investing in alternative sectors in localities with promising levels of economic
diversity, retraining job seekers, providing relocation support in rural areas, and subsidising childcare in places
with low female labour force participation.

1. Introduction the benefits of decarbonisation - is front of mind for environmental

and climate justice advocates concerned about impacts on workers,

In 2021, President Joe Biden committed his administration to de-
carbonising the US economy by decreasing greenhouse gas emissions
to 50%-52% below 2005 levels by 2030 with a view towards net-zero
emissions by 2050 (White House Briefing Room, 2021). In August 2022,
the Inflation Reduction Act (IRA) was passed constituting a significant
step in the direction of these ambitious goals, aiming jointly to reduce

consumers, and frontline communities (McCauley and Heffron, 2018;
Pollin and Callaci, 2019; Piggot et al., 2019; Newell and Mulvaney,
2013; Cha and Pastor, 2022).

The International Energy Agency predicts 50,000 layoffs in the US
coal sector by 2030 while up to a quarter million US oil and gas jobs are

inflation, lower prescription medicine prices, and invest heavily in
domestic energy production with a focus on clean energy. Climate
and energy security investments stipulated in the IRA total 369 billion
US$ (Library of Congress, 2022). Although the full potential of the
IRA remains to be realised, and is indeed subject to great uncertainty,
recent estimates suggest that the policy puts the US on track to reduce
greenhouse gas emissions by 32%-42% compared to 2005 levels in
2030, 6-11 percentage points lower than without the IRA (Bistline
et al., 2023b,a). Thus, as the political momentum behind decarboni-
sation increases, the question of how to usher in a ‘Just Transition’ —
ensuring minimal adverse impacts from and the equitable sharing of

also threatened (International Energy Agency, 2021). Because fossil fuel
deposits are highly concentrated geographically, a decline in output
will be felt most sharply in a few select regions with deep roots in
the industry (Hendrickson et al., 2018; Snyder, 2018; Rickard, 2020).
Although the IRA lists several generic initiatives to support American
workers, only two policy objectives can be described as targeting fossil
fuel workers specifically: a 10% increase in the clean energy tax credit
for infrastructure projects operating in or near “energy communities”
and a 5 billion US$ fund providing low-cost loans and refinancing for
energy infrastructure, with the notable caveat that qualifying projects
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should “retool, repower, repurpose, or replace energy infrastructure
that has ceased operations” (Library of Congress, 2022). These pro-
visions follow evident commitment from the Biden administration to
confront questions of both environmental and broader equality con-
cerns with the creation of the Justice 40 initiative and a racial equality
executive order, for example (National Archives and Records Admin-
istration, 2021). However, these measures are just a small sample of
a larger set of proposed Just Transition policy responses for workers
that range from completely compensatory (i.e. direct income support,
relocation assistance, interim health care coverage, pension payouts) to
active labour market policies (i.e., education, training, and reskilling)
and investments in alternative sectors, whether green or otherwise,
to provide new job opportunities (Pollin and Callaci, 2019; Piggot
et al.,, 2019; Pollin et al., 2021, 2014). Determining the appropriate
scale of Just Transition policies requires knowledge of the magnitude,
duration, and spatial distribution of adverse impacts. Similarly, deter-
mining which proposed policies are most effective in reducing these
adverse impacts requires localised knowledge of the salient demo-
graphic characteristics of communities facing the highest employment
risks.

Thus, we present empirical evidence of the multi-dimensional im-
pact of the already experienced, prolonged, and consistent contraction
in US coal production over the past two decades on local communities
and a typology of US coal counties capturing relative unemployment
risks. We make two significant contributions to existing literature. We
first contribute empirical econometric evidence exploring the spatio-
temporal nature of employment dynamics resulting from coal decline
in order to illuminate the relative usefulness of proposed Just Transition
policy interventions, including those outlined in the IRA. While numer-
ous qualitative studies have proffered various ethical principles to guide
a ‘Just Transition’ amid structural decarbonisation (Healy and Barry,
2017; Jenkins et al., 2018), econometric evidence exploring these
real-world barriers to transitional justice is scarce. In-depth regional
investigation of the effects of fossil energy industry reliance on em-
ployment has generally been done qualitatively, through vulnerability
assessments or sociological and ethnographic analyses (Snyder, 2018;
Snell, 2018; Abraham, 2017; Sovacool et al., 2021; Bell and York,
2010; Raimi, 2021; Carley et al., 2018a,b). The available economet-
ric research has mostly concentrated on oil and gas, specifically oil
prices and the macroeconomy (Hamilton, 1983; Munasib and Rickman,
2015; Paredes et al., 2015; Miljkovic and Ripplinger, 2016; Weinstein,
2014; Marchand, 2012) with a smaller minority of studies focused on
coal (Douglas and Walker, 2017; Black et al., 2005a,b; Blonz et al.,
2023; Black et al., 2002; Betz et al., 2015). Furthermore, such results
are rarely framed from the Just Transition perspective until a recent
study by Scheer et al. (2022). Therefore, we analyse the magnitude, per-
sistence, and geographic distribution of employment shocks following
coal mine closures using a tailor-fit econometric modelling approach.
More specifically, we employ dynamic panel and spatial econometric
methods to account for latent common factors and spatial spill-over
effects to achieve greater precision in the estimation of employment
shocks caused by structural changes to the US coal sector.

Second, by employing machine learning techniques of agglomer-
ative hierarchical clustering we establish a typology of the relative
vulnerability of coal mining communities to inform future research and
policymaking in a period of accelerating energy transitions. To our
knowledge, three other studies have defined comparable typologies us-
ing theoretical frameworks.! Snyder employs three indicators to proxy
education, poverty, and rurality, Raimi proposes twelve, and a more
recent typology by Hincapie-Ossa et al. look at all energy communities
rather than coal communities specifically (Snyder, 2018; Raimi, 2021;
Hincapie-Ossa et al., 2023). Our work supplements this work in three

1 See Raimi (2021) for a broader review of similar vulnerability
assessments.
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ways: by presenting an intermediate number of vulnerability axes,
striking a balance between multidimensionality and succinctness; by
operationalising the typology through hierarchical clustering analysis
in the context of coal communities only; and by reincorporating our
typology into our econometric analysis via grouped fixed effects. This
combined evidence aims to help policymakers determine the optimal
mix and geographic targeting of transition assistance from a suite of
proposed responses, including alternative (preferably green) sectoral
investment, active labour market policies, compensatory transition sup-
port for laid-off workers in the most vulnerable counties, and other
social policies.

Combined, these two methods of analysis allow us to make more
robust estimates of the scale of assistance needed to alleviate adverse
impacts of a decarbonisation transformation on communities in a man-
ner that is in tune with diverse local needs. Furthermore, the results
provide timely insight into the potentialities of the Inflation Reduction
Act currently undergoing implementation across the country.

In what follows, we first outline our empirical strategy for estimat-
ing several panel data models using a suite of purpose-fit specifications
and describe our motivation and method for creating a typology of US
coal counties. Second, we briefly outline the data used to conduct the
empirical analysis. Finally, we describe the results of our econometric
and cluster-typological analyses followed by a discussion of the context-
dependent policy implications and recommendations based on this
combined evidence.

2. Methods

Below, we outline the methods employed using the data described in
Section 3 to carry out the (1) econometric modelling and (2) implement
the typology via agglomerative hierarchical clustering.

2.1. Econometric estimation

This study’s panel data analysis is based on five baseline model
specifications. Table 1 below provides algebraic formulas and technical
details of each. All models were estimated using the county-level panel
dataset described in Section 3 spanning from 2002 to 2019. Several
models (specified in Table 1) were estimated on a subset of coal
counties, defined as counties that had active coal mines between 2002
and 2019. The model specifications are motivated as follows:

» Model 1 evaluates if a change in the number of active coal mines
affects county unemployment rate.

Models 2-5 aim to identify through what channel the unemploy-
ment rate varies due to a change in active coal mines (i.e., a
change in the number of employed workers or in the size of the
labour force). This is studied by regressing the county unemploy-
ment rate determinants (number of employed persons, number
of unemployed persons, labour force size, and population size)
on the same indicators for changes in the number of active coal
mines.

Models 1-5 (without superscripts) were estimated using the canon-
ical two-way fixed effects (TWFE) estimator, with standard errors clus-
tered by county and year to address within-cluster correlation and
heteroskedasticity.? Prior to model estimation, all variables were first-
difference transformed to address non-stationarity (Castle and Hendry,
2019). This yielded stationary I(0) covariates, with the additional
benefit that the effects of first-difference variables are easy to interpret.

The TWFE estimator, like other estimators used in ordinary least
squares regression modelling, requires the restrictive condition of cross-
sectional independence. In practice, any unobserved cross-section de-
pendencies, such as structural breaks, global stochastic trends, or spa-
tial (spill-over) effects, in the underlying data generating process are

2 All TWFE models were estimated using the fixest package in R.
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Table 1
Model specifications.
# Model specification Results
1* AUER /3( Xu )+ +7,+ Figs. 1 and 2
h it = G Ty T E; .
Alog(RealGDPPC),, Appendix B.1:
Tables S8-S9
2% Alog(Employed Persons);, = X Fig. 3

B| Alog(RealGDP);, [+ a; +v, +€;

Appendix B.1:

3* Alog(Unemployed Persons);, =
Alog(Population);, Tables S8-S9
4* Alog(LaborForce);, =
5% Alog(Population),, = B X +a,+y +e
i Alog(RealGDP), roen T
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1-58ARAR Y, =BX;+pWY, +a;+y,+U;,

Uy, =6WU, +¢,
1-5HTT(@ Y, =X, + T SO+ +y, +e, Fig. 2

Appendix B.3:
Tables S19, S20

Variable definitions:

i: denotes each county for i=1, 2,...3,072 counties

t: denotes each year for t=2002, 2003,...2019

a;: unit-fixed effects

7,: time-fixed effects

X,,: Vector of independent variables (4 Active Mines;;, 4 Active

Mines;,;, 4 Active Mines;,,). For Models 1-5[SEM: SLM, SARAR] gapq
1-5HTTAHTTR) this represents all independent variables denoted in
Models 1-5, respectively.

log (Real GDPPC),,: natural logarithm of county-level real GDP per capita.
log (Real GDP);,: natural logarithm of county-level real GDP.
log(Population);,: natural logarithm of county-level population.

Y,: Relevant dependent variable denoted by model number.

B: Vector of regression coefficients to be estimated.

p: Spatial autoregression parameter.

&: Spatial autocorrelation parameter.

0: Regression coefficient on spatially lagged treatment variables.

W;: N X N spatial weight matrix for neighbours of unit i where N = 3,072.

A;+ Individual loadings parameter per unit i and factor [ in heterogeneous trend models.

f(V): Unobserved time-varying common factors used in heterogeneous trend models.
AUER,: Change in unemployment rate in county i in year t.

Indicates model was also applied to a subset of coal counties only.

assumed to be captured sufficiently using linear additive two-way
(unit and time) fixed effects. In many real-world circumstances, this
assumption is too restrictive (Imai and Kim, 2019). Although it can
accommodate time-invariant confounders, the TWFE estimator comes
at the expense of potential dynamic misspecification (Plumper and
Troeger, 2019). Insufficient accounting for cross-sectional dependence
can lead to inaccurate and inconsistent regression coefficient esti-
mates (Pesaran, 2014; Anselin and Bera, 1998). Indeed, this concern
appears justified in the present study as several diagnostic tests could
not reject the presence of significant cross-sectional dependence in
Models 1-5 (Anselin, 1996, 1988; Millo, 2017). Therefore, in order
to account for cross-sectional dependence detected in the data, we
employed various spatial econometric and heterogeneous time trend
models outlined below.

2.1.1. Spatial econometric models

First, four spatial econometric models were estimated: a spatial
autoregressive model (SLM), a spatial error model (SEM), a spatial
autoregressive model with autoregressive error structure (SARAR), and
a spatial Durbin error model (SLX) incorporating spatially lagged treat-
ment variables and a spatial error term (Lee and Yu, 2010; Anselin
and Bera, 1998).° In addition to the SLX, given the extent of spatial

3 All spatial models were estimated using the splm package in R.

dependence in our data (Anselin and Bera, 1998; Anselin, 1996), the
SARAR model was selected as the most suitable spatial feature specifi-
cation based on AIC and BIC information criteria.* Beyond serving as
a robustness check on our initial TWFE estimates, the SLM and SARAR
models provide additional valuable information: namely, they tell us
whether the impact of mine closures exhibit regional spill-over effects.

2.1.2. Heterogeneous trends models

Second, we employ latent factor modelling which assumes the
panel data model exhibits a factor-analytic error structure. In this
approach, one or more latent (unobserved) common factors can be
estimated via iterative principal component analysis (the “interactive
fixed effects” estimator proposed in (Bai, 2009)), or instead, approxi-
mated via cross-sectional averages of the dependent and independent
variables (the “common correlated effects” estimator proposed in (Pe-
saran, 2006)). Another method is to estimate the unobserved factors
semi-parametrically via functions that capture unit-specific time trends
(the “heterogeneous time trends” estimator proposed in (Kneip et al.,
2012)). We apply the heterogeneous time trends estimator because
it permits unobserved components to be non-stationary and exhibit
smooth time trends. It is therefore well-suited for capturing unobserved

4 Information about testing for residual spatial dependence on spatial
models can be found in Appendix C.1.
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trends related to long run energy prices, automation, and technical
efficiency advances.” The AIC or BIC criteria for one- and two-factor
models showed no significant benefit of including more than one factor
when computing these heterogeneous time trends.®

2.2. Typology and grouped fixed effects

To define and operationalise our typology we perform agglom-
erative hierarchical clustering analysis on a cross-sectional dataset
containing information on salient demographic characteristics of the
252 counties identified as coal counties as well as the total set of
3,072 contiguous US counties (Ketchen and Shook, 1996; Murtagh
and Contreras, 2012; Rodriguez et al., 2019). Prior to running the
clustering analysis, the indicators used were scaled to have a mean
of zero and standard deviation of one. Applying three of the most
common methods (elbow, silhouette, and gap statistic) for determining
the optimal number of clusters to identify yielded inconclusive results
for the coal counties, proposing between two and four clusters (Tib-
shirani et al., 2001; Rousseeuw, 1987). In the case of the complete
contiguous US dataset, the three tests to identify the optimal number
of clusters revealed consistent results, suggesting three as the optimal
number of clusters. Thus, to aid in an eventual comparison of coal
counties to US counties overall, each dataset was clustered into three
“types”. Variables considered in the clustering analysis include an
urban/rural index, population size, educational attainment, economic
security, female labour force participation, economic diversity, and
political attitudes.

This hierarchical clustering serves a dual purpose. First, we present
a constructed typology that sheds light on the diversity and geo-
graphical distribution of various challenges faced by coal communities
across the US. Second, the resulting ‘cluster membership’ information
obtained from the tripartite typology of coal counties was used to
re-estimate Model 1 using grouped fixed effects, allowing for par-
tially heterogeneous slope coefficients for each independent variable
of interest.”

The results of all aforementioned regressions (Appendices B and
D), tests (Appendix C), model selection methods (Appendix B.2), and
clustering (Appendices C.3 and D) can be found in the Supplementary
Materials.

3. Data

Below, we outline the data collected and used to approach the
(1) outlined econometric models and (2) construct the typology via
agglomerative hierarchical clustering.

3.1. Econometric estimation

A panel dataset was created using economic variables from the US
Department of Commerce’s Bureau of Economic Analysis (BEA), the US
Bureau of Labor Statistics (BLS), and the US Census Bureau for 3,072
contiguous US counties from 2002 to 2019. Annual data on active coal
mines in each county came from the Energy Information Administration
(EIA) and the Mine Safety and Health Administration (MSHA). The

5 In contrast, the method of (Bai, 2009) assumes the latent factors are sta-
tionary (stochastically bounded), and although the method of (Pesaran, 2006)
can be validly extended to settings with non-stationary factors (Kapetanios
et al., 2011), its small sample properties are not ideal for the present study’s
dataset and for the dynamic model specifications we wish to estimate.

® These heterogeneous trend models were implemented using the phtt
package in R.

7 The modified Model 1 with grouped fixed effects was estimated using the
fixest package in R.

Energy Policy 195 (2024) 114338

change in the number of active coal mines® in a county in a given year is
the main independent variable of interest. The BLS reports the county
unemployment rate change from the prior year, our main dependent
variable (Table 1: Model 1). As dependent variables, we additionally
investigate the change in the natural logarithm of employed persons,
unemployed persons, total labour force, and population size (Table 1:
Models 2 to 5). Appropriate combinations of real GDP per capita,
real GDP, and population (all in natural logarithms) were included as
control variables in each model.

Additionally, the US Census Bureau maintains a county adjacency
matrix for all US counties indicating which counties share a border.
This adjacency file was adapted to incorporate information on contigu-
ous US counties when estimating Models 1-5[SEM SLM, SARAR, SLX]

3.2. Typology

A dataset of selected social, economic, and political characteristics
of the contiguous counties observed in the panel dataset was sourced
from the US Census Bureau, US Department of Agriculture, the MIT
Election Data and Science Lab, and Chmura, a private producer of
economic data that imputes a county-level economic diversity index.
Selected variables include educational attainment, population size, me-
dian incomes, female labour force participation, economic diversity,
rural-urban classification, and political party affiliation.

Appendix A.2 of the Supplementary Materials provides additional
details on the indicators chosen including theoretical motivation and
the data sources used.

4. Results

4.1. Historical impact of coal decline: Magnitude, temporal persistence, and
spatial spill-over

Using the econometric estimation methods that control for unob-
served heterogeneity and cross-sectional dependence, as outlined in
Table 1, we demonstrate that coal mine closures induce a significant
and consistent contemporaneous rise in the unemployment rate across
US counties. In each case, we incorporate two time lags of the inde-
pendent variable to evaluate the temporal persistence of impacts of
production shocks.

We expect that the closure of a coal mine would induce an increase
in the county-level unemployment rate. Such an effect is unlikely to oc-
cur solely because of employment losses in the coal industry specifically
but likely in combination with spill-over effects from such employment
losses onto the jobs and livelihoods of those whose work is conducted in
support of coal county functioning (i.e., education, services, retail). This
hypothesis is consistent with macroeconomic theory positing that there
are direct, indirect, and induced jobs associated with a given economic
activity (Bacon and Kojima, 2011).

Model 1 finds that a single coal mine closure (one-unit decrease
in the number of active mines) is associated with a 0.056 (0.041;
restricted coal county sample in parentheses) percentage point increase
in county unemployment rate. For the model using all US counties
(coal counties only), we reject the null hypothesis of no effect at the
0.1% (1%) level. When evaluating dynamics, the unemployment rate
neither seems to continue to increase nor recover a year after coal
mine closures are reported with a further change in unemployment
rate imperceptibly different from zero. However, two years later, the
unemployment rate appears to recover slightly, decreasing by 0.039
(0.034) percentage points at a 1% (1%) level of statistical significance

8 From the MSHA database, mines were considered active if they had not
been classified as “closed” or “abandoned”. This included mines that were
labelled as “active” or, in a few cases, “inactive” but not yet closed or
abandoned.
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Fig. 1. Fig. 1 illustrates the sequence of responses in county unemployment rate to a one-unit change in active mines at time r = 0 and associated 95% confidence intervals.
Fig. 1(a) represents the regression coefficients from Model 1 and Fig. 1(b) demonstrates the regression coefficients of the same model with three leads and three lags to demonstrate
the lack of anticipatory or further lagged impacts beyond two years. For simplified interpretation, the sign of the impact has been flipped to illustrate the change in unemployment
rate resulting from a decrease in active mines. The y-axis indicates the time since the change in active mines was reported. Exact coefficients for Fig. 1(a) are reported in S9 and
for Figure Fig. 1(b) are reported in $29. Additional variations of lags and leads are displayed for illustrative purposes in Tables S29 of Appendix E of the Supplementary Materials.

on the dataset of all US counties (coal counties). A linear combina-
tion of the coefficient estimates suggests a non-persistent nature of
the unemployment rate change. Coefficient estimates are reported in
Fig. 1 of the main text and Tables S8 and S9 of Appendix B.1 of the
Supplementary Materials.

In the Supplementary Materials, we provide evidence that these
results are robust to (1) distinguishing between the closure of surface
versus underground mines; (2) controlling for the share of county-level
employment in coal mining; and (3) controlling for heterogeneity in
mine size proxied by local production volumes and reported capacity.
Notably, these robustness checks all confirm the overall pattern of
the unemployment rate response as reported above. Furthermore, (1)
demonstrates that the contemporaneous effect of a change in active un-
derground mines is nearly twice the magnitude of the effect associated

with a surface mine closure and (2) finds that the magnitude of the
contemporaneous response increases and the evidence of a “recovery”
two years following a mine closure becomes weaker as a county’s share
of employment in mining increases.

Fig. 2 displays the coefficient estimates reported by Models 1,
1[SEM, SLM, SARAR, SLX] " and Models 1MHTT, HTT@)] along with their re-
spective 95% confidence intervals. In short, the spatial and heteroge-
neous trends models confirm the results found in Model 1. Furthermore,
Model 15IX] indicates the presence of strong spatial diffusion of im-
pacts not identifiable in Model 1. Model 1[5X] finds a nearly identical
magnitude contemporaneous increase in unemployment rate from a
one-unit decrease in active mines in a neighbouring county and Models
1[SIM, SARAR] find a strong spatial dependence in unemployment rate
fluctuations. Coefficient estimates of Models 1[SEM SIM, SARAR, SLX] apq
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Fig. 2. Coefficient estimates and corresponding 95% confidence intervals represent the response of unemployment rate to a one-unit change in active mines in times ¢, 7 — 1, and
t—2 as estimated by each model estimation. The coefficients displayed for Model 15'"M and Model 15*R*R are the direct impacts of a change in active mines in a particular county.
Confidence intervals for “indirect” impacts (i.e., impact on local unemployment rate from a change in actives mines in a neighbouring county) calculated from the SLX model
are represented by dashed lines. For simplified interpretation, the sign of the impact has been flipped to illustrate the change in unemployment rate resulting from a decrease in

active mines.

Models 1MHTTM), HTTR) are represented in Fig. 2 and can be found in
Appendices B.2 and B.3, respectively, of the Supplementary Materials.’

Additionally, asymmetric estimation of Model 1 reveals that the
magnitude and statistical significance of a response in the unemploy-
ment rate to a change in active mines is mainly attributable to a
negative change. First, when incorporating a factor for whether the
change was negative, the magnitude of change in time ¢ = 0 increases
to 0.075 percentage points (compared to 0.056 percentage points in
Model 1) at the 1% significance level. Second, when incorporating a
factor for whether the change in mines was positive, the magnitude
of change decreases to just 0.019 percentage points and is no longer
statistically significant. Altogether, this asymmetric treatment model
indicates minimal, if any, employment benefits from counteracting a

9 Coefficient interpretation for the SLM and SARAR models requires cal-
culating the direct intra-county and indirect inter-county impacts of the
independent variables on the outcome variables (Piras, 2013). These impacts
were calculated using the spatialreg package in R.

coal phase-out. The regression results of each of these estimations is
provided in Tables S10 and S11 of Appendix B.1 the Supplementary
Materials.

Given the irreducible element of unpredictability in county un-
employment rates, especially with respect to the closure of an often
proportionally small sector like coal, it is highly significant that our
results show consistent estimates of regression coefficients across all
models and reinforces our confidence in using these estimates to guide
further reflections on policy responses. Overall, these figures indicate
that, across the time period studied, national employment numbers
decreased by as many as 4,000-5,300 workers in one year. Over
the entire time period studied, our model suggests a net (gross) drop
in national employment levels by between 11,000-42,500 (39,100—
52,200) persons. These estimates are in line with (albeit somewhat
lower, indicating likely secondary effects) than documented declines
in coal sector employment levels reported by the Bureau of Labor
Statistics for the same time period, further corroborating the accuracy
of our estimates (U.S. Bureau of Labor Statistics, 2024). More details
about how these estimates were calculated as well as more detailed
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Sign and*Signiﬂcance Level
L
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# years following mine closure

Fig. 3. This figure indicates the direction of changes (red = increase; blue = decrease) in the unemployment rate, natural log of employed persons, natural log of unemployed
persons, natural log of labour force, and natural log of population at the county level from a change in active mines at time t, t-1, and t-2. The sign of the response variable has
been flipped to allow for interpretation of the sign as the response to a decrease in the number of active mines. The sign and magnitude of the response is reported from the
model run on all US counties. Significance codes are reported as follows: *** 0.1%, **1%; *5%. A grey box indicates an insignificant variable response. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

ranges of detected treatment effects can be found in Appendix E.9 of
the Supplementary Materials.

4.2. “Recovery”: Decomposing the unemployment rate response

However, given that the unemployment rate is a metric defined
by other moving indicators, drawing the conclusion that adverse em-
ployment impacts of coal mine closures dissipate after two years from
this evidence alone would be incomplete. More specifically, our initial
results reveal responses in the unemployment rate to coal mine clo-
sures, but not which determinants of the unemployment rate might be
causing these responses. To answer this question, we consider the main
variables used to calculate the rate in Models 2-5: unemployed persons,
employed persons, and total labour force (the sum of employed and
unemployed persons). Their relationship is defined by the following
equation:

Unemployed Persons _ Unemployed Persons

Unemployment Rate = =
Unemployed + Employed Persons

Labor Force
(€)]

Again, we employ the standard TWFE OLS, SARAR, and HTT(1)
methods regressing each employment indicator on our independent
variable for a change in active mines (including two time lags) and
relevant control variables. Table 1 provides algebraic formulas and
technical details of each model (Models 2-5, 2-55ARAR 5 sHTT(1)) The
sign and statistical significance of the change in each variable 0, 1, and
2 years as reported by the TWFE OLS model following a mine closure
are reported in Fig. 3.

First, in the year when the change in active mines is reported,
we observe the number of employed (unemployed) persons decreasing
(increasing), however, we do not identify any change in the size of the
labour force or population overall.

In the following year, the unemployment rate neither continues to
increase nor recover. However, we observe further decreases in the
number of employed persons and overall labour force size, suggesting
a continued labour market response.

Finally, two years following a change in active mines, we observe
a small decrease (or partial recovery) in county unemployment rate
in Model 1. However, interestingly, Fig. 3 shows that this recovery is
not occurring by an increase in employed persons, rather we observe
the labour force and the number of unemployed persons decreasing,
alongside a small decrease in overall population size. While our analysis
does not allow for a detailed examination of whether this dynamic
is influenced by strategies such as meeting other job opportunities,
dropping out of the labour force, or retirements, future studies could
investigate the interactions between those dynamics explicitly. More
generally, although any causal or definitive interpretation of these
results as well as their further underlying determinants (i.e., whether
workers are migrating, retiring, etc.) is beyond the scope of this study,
this analysis provides a useful set of hypotheses for the unemployment
rate response documented in this work. Furthermore, this result echoes
findings that local demand shocks induce a stock equilibrium shift
through migration such that the relative unemployment rate returns
to its equilibrium state (Treyz et al., 1993; Molho, 1995). Most sig-
nificantly, these results indicate that the observed “recovery” in the
unemployment rate outlined in the previous section should not be
interpreted too literally. Rather, this latter analysis of the components
of the unemployment rate provides preliminary evidence that expecting
local community resilience or ’bouncing back’ in response to future
potential decarbonisation-related employment shocks is unrealistic.

The direction of the coefficients are confirmed by an application of
the spatial lag-error model (Models 2-554RAR) models and a one-factor
heterogeneous trends model (Models 2-5HTT()) reported in Appendices
B.2 and B.3 in the Supplementary Materials.

4.3. A new coal county typology: heterogeneity of risks, vulnerability, and
needs

Next, using an agglomerative hierarchical clustering algorithm we
define a novel typology or classification of the 252 US coal counties,
defined as those counties that had active mines during the time period
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Fig. 4. The corner points of the radar plot represent the mean values of each typology characteristic per county type. The outer (inner) limit of the radar plot represents the
maximum (minimum) value of each characteristic present in the dataset of coal counties. The variable for political affiliation (2016 and 2020 national election returns) is included
in this radar plot for illustrative purposes. It is not included in the clustering method as nearly all counties with active coal mines between 2002 and 2019 voted for the Republican
Party in the 2016 and 2020 elections. Average values for each indicator per group and the US overall used to generate this plot are reported in detail in Appendix D of the

Supplementary Materials..
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Fig. 5. Counties with active coal mines in the period 2002-2019 are colour coded according to their “type” as defined by the agglomerative hierarchical clustering performed.
Type 1 counties are considered “least vulnerable” due to their relatively stronger performance across the indicators (i.e., urban with higher levels of income, educational attainment,
economic diversity, female labour force participation, and population), selected in the construction of the typology whereas Type 3 counties are “most vulnerable”. The shaded
blue areas represent, from left to right, the Western, Interior, and Appalachian coal basins generated using data available from the US Geological Survey.

of the panel dataset analysed in the previous sections. The typology
outlines relative county performance across a set of indicators (popula-
tion size, rurality, economic diversity, female labour force participation
rate, educational attainment, median earnings) theorised to affect a
county’s potential to transition successfully following an employment
shock.

As presented in Fig. 4, the three identified county “types” fall
into a spectrum ranging from large and urban with high levels of
educational attainment, income, female labour force participation, and
economic diversity (Type 1) to small and rural with lower levels of the
subsequent indicators (Type 3). This pattern is perhaps unsurprising
to most readers as the economic and social indicators outlined tend
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Fig. 6. As in Fig. 1, Fig. 6 presents the change in unemployment rate and associated 95% confidence interval resulting from a change in active mines. The sign of the coefficient
estimate has been flipped to demonstrate the impact of a negative change in active mines. Each plotted line and confidence interval represents the response to a change in active
mines by county type, as defined in Appendix D.2 in Supplementary Materials. Although Model 1 only includes the independent variables listed in X;, in Table 1, the additional
lags and leads displayed in Fig. 6 do not greatly impact the estimates at times t = t, t+1, and t+2 and are therefore included in the figure for additional information.

to decrease between urban and rural counties. However, one of the
more significant results is that Type 3, and to a lesser extent Type
2, coal counties fall well below the national average for all observed
indicators that are likely to aid in an eventual transition. Furthermore,
Fig. 5 demonstrates that Type 3 counties (yellow) are concentrated in
the Appalachian coal region, indicating a high risk of regional decline
which is already being observed in the area. The fact that Type 3
counties are clustered in one region and share most of their borders
with each other or Type 2 counties (apart from one Type 1 county) also
indicates a geographical limitation to accessible recovery or transition
options.

4.4. Employing the typology econometrically

To put this typology to work, Model 1 was re-estimated using
grouped fixed effects allowing for heterogeneous treatment effects for
each county type identified. This enables us to determine whether
the scale and duration of unemployment rate responses to changes
in active coal mines differ across county types. Fig. 6 demonstrates
the coefficient estimates over time from a year prior to three years
following a change in active mines. Most notably, Fig. 6 illustrates
that the greatest unemployment rate increases are observed in Type
3 counties, at a magnitude of 0.060 percentage points (1% significance
level) in response to a contemporaneous one-unit decrease in active
mines. The coefficient estimates associated with Type 1 and 2 counties
are all much smaller in magnitude and not statistically significant.

5. Conclusion and policy implications

In this study, we investigate employment shocks in US coal-mining
counties undergoing decarbonisation-related transitions using various
panel econometric methods designed to address unobserved hetero-
geneity and cross-sectional dependence. We find that a one-unit decline
in active mines increases county-level unemployment by between 0.056
to 0.064 percentage points, with little change a year later and a small
‘recovery’ two years later. We further determine that this ‘recovery’
is likely not attributable to a recovery in employment. Rather, we
provide further evidence that local-level resilience to shocks to coal
sector employment is weak. This latter result is particularly relevant to
discussions about net-zero transition-related adjustment costs in local

energy-producing communities. Spatial and heterogeneous trend mod-
els show how the TWFE OLS approach underestimates unemployment
effects. Incorporating spatial diffusion shows the risk of regional spill-
over. Incorporating an asymmetric treatment estimation shows that
opening new mines has no obvious influence on unemployment, but
mine closures do. This result challenges the claim that maintaining
or boosting the coal sector will contribute to employment and reveals
that mine closures have a stronger impact on unemployment than was
initially detected in Model 1.

Lastly, the typology outlined in this paper provides information
crucial for making context-specific policy prescriptions. First, low edu-
cational attainment and female labour force participation in Type 2 and
3 counties underscore the need for reskilling, retraining, and subsidised
community college or vocational training. Subsidised day-care and
after-school programs will likely be necessary so parents may attend
these trainings after work. Second, investments in alternative sectors
will first need to consider the relative levels of economic diversity in
Type 2 and 3 counties. For those counties with low economic diversity,
investments ought to be considered alongside active labour market
policies. Furthermore, public subsidies may be needed to stimulate
investment in low-diversity areas. The IRA’s proposed reinvestment in
energy infrastructure looks wise in this respect. Future research can
investigate which policy instruments would most effectively mitigate
against avoidable socio-economic and psychological hardship in places
“left behind” due to bad investment conditions and low economic
diversity.

The geographical concentration of the counties we identify to be
most vulnerable in the face of a net-zero transition as represented in
Fig. 5 as well as the high and statistically significant coefficients on
all measures of spatial correlation incorporated in our various spatial
econometric models strongly suggest that spatial ripple effects of coal
decline pose a significant challenge to a Just Transition. Additionally,
the rural-urban split between Type 2 and 3 counties and Type 1
counties would likely require substantial inter-regional mobility or
transportation upgrades to help laid-off workers find new jobs. In
severe cases, relocation support should be explored for unemployed
workers in rural areas with minimal economic diversity and wherever
inter-regional transit is prohibitively expensive or impossible.

A main risk of a poorly managed transition is the potential to erode
support for future environmental action. Recent research on popular
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acceptance of environmental measures in the US indicates that envi-
ronmental policy bundled with social safeguards might boost public
support, offering further grounds for the social and political practicality
of a Just Transition agenda (Piggot et al., 2019; Bergquist et al., 2020).
Incorporating Just Transition provisions into decarbonisation policies
may boost support for environmental programmes generally.

Finally, to the disservice of US communities still struggling with
the effects of coal’s decline, the ‘situation’ of US coal employees is
increasingly being used as an example of failed Just Transition aspira-
tions, with academic researchers and public commentators asking how
the transition from oil and gas might avoid similar issues. This study
reiterates that coal communities deserve sustained attention while
also outlining a framework of inquiry that could inform future re-
search focusing on unemployment shocks following oil and gas sector
decarbonisation.
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