
Energy and AI 17 (2024) 100386

A
2

•
•
•
•
•

Contents lists available at ScienceDirect

Energy and AI

journal homepage: www.elsevier.com/locate/egyai

Review

A systematic review of spatial disaggregation methods for climate action
planning
Shruthi Patil a,b,∗, Noah Pflugradt a, Jann M. Weinand a, Detlef Stolten a,c, Jürgen Kropp d,b

a Institute of Energy and Climate Research, Techno-economic Systems Analysis (IEK-3), Forschungszentrum
Jülich, Wilhelm-Johnen-Straße, Jülich, 52425, NRW, Germany
b University of Potsdam, Institute for Environmental Science and Geography, Karl-Liebknecht-Str. 24-25, Potsdam-Golm, 14476, Brandenburg, Germany
c Chair for Fuel Cells, RWTH Aachen University, c/o IEK-3, Forschungszentrum Jülich, Jülich, 52425, NRW, Germany
d Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60, 12 03, Potsdam, D-14412, Brandenburg, Germany

H I G H L I G H T S

Methods relevant for spatial disaggregation of climate action plans are reviewed.
Key methods: proxy data, machine learning, and geostatistical model-based approaches.
Appropriate method depends on domain knowledge, avaibility of local-level data, etc.
Combining different spatial disaggregation methods can enhance accuracy.
Spatial disaggregation cannot guarantee perfect accuracy in the results.
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A B S T R A C T

National-level climate action plans are often formulated broadly. Spatially disaggregating these plans to
individual municipalities can offer substantial benefits, such as enabling regional climate action strategies
and for assessing the feasibility of national objectives. Numerous spatial disaggregation approaches can be
found in the literature. This study reviews and categorizes these. The review is followed by a discussion of the
relevant methods for the disaggregation of climate action plans. It is seen that methods employing proxy data,
machine learning models, and geostatistical ones are the most relevant methods for the spatial disaggregation
of national energy and climate plans. The analysis offers guidance for selecting appropriate methods based on
factors such as data availability at the municipal level and the presence of spatial autocorrelation in the data.

As the urgency of addressing climate change escalates, understanding the spatial aspects of national
energy and climate strategies becomes increasingly important. This review will serve as a valuable guide for
researchers and practitioners applying spatial disaggregation in this crucial field.
1. Introduction

1.1. Background

As the effects of climate change are being felt across the globe, the
need for mitigation and adaptation action is more urgent than ever. The
European Union has recognized the gravity of the situation and called
on its member states to develop national energy and climate plans [1].

From a regional perspective, since 2008 the Covenant of Mayors for
Climate and Energy has been gathering those local governments that
have voluntarily pledged to undertake energy and climate action [2].
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In a similar manner as for the countries themselves, these cities are re-
quired to submit sustainable energy and climate action plans. Although
such a bottom-up approach is being taken by many cities, about 33%
of the cities in the European Union still lack a plan [3]. Of those that
do have a plan, many have developed them autonomously. Therefore,
these plans do not necessarily align with national contingencies.

A spatial breakdown of national climate action plans offers a com-
pelling strategy. This allocates sector-specific energy demand and emis-
sions targets and associated mitigation measures to individual munic-
ipalities, thereby facilitating regional plans. Such a spatial breakdown
of national plans offers the following benefits:
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List of Abbreviations

LULC Land Use and Land Cover
GDP Gross Domestic Product
ATM Automated Teller Machine
GWR Geographically Weighted Regression
CAR Conditional Autoregressive

1. Comparative analysis: Spatially-allocated national plans allow
for direct comparisons with local initiatives, revealing discrep-
ancies that may affect the feasibility of national climate action
plans. For instance, consider a scenario in which the spatially-
allocated national plan sets out a 2030 reduction target for
residential building energy demand at 2,900 MWh, whereas a
local plan sets it at 1,500 MWh. Further examination of both
plans might indicate that the renovation targets in the national
plan are not achievable due to a limited number of eligible build-
ings at the municipal level. Such discrepancies are discussed
by Muñoz et al. [4] in a case study focused on the city of
Valencia, Spain.

2. Resource allocation: For municipalities lacking the capacity
to develop their own plans, a spatially-allocated national plan
provides a valuable starting point. Programs like the European
City Facility [5] require municipalities to develop local climate
action plans to qualify for funding. Thus, the spatial allocation
not only guides less resourceful municipalities but also aids in
securing financial support for implementing climate action.

3. Strategic grouping: Spatially-detailed plans facilitate the group-
ing of municipalities with similar sectoral energy demands and
emissions profiles, enhancing the potential for collaboration.
This collective approach fosters networking and the joint imple-
mentation of measures to meet established targets.

.2. Motivation for the review

Spatial disaggregation methods have been applied in numerous
tudies to enhance the spatial resolution of data. These methods vary
idely, ranging from simple allocations based on area proportions to
dvanced methods using machine learning and geostatistical models.
he literature not only showcases a variety of spatial disaggregation
ethods but also reflects diversity within application domains, as well

s in the original and target spatial resolutions used, the supporting
ata employed, and many other nuances. This diversity makes it chal-
enging to gain an overview of the methods and filter the most relevant
nes for the spatial disaggregation of climate action plans. In light of
his, the objectives of this review are as follows:

1. To systematically review and classify spatial disaggregation
methods, with a focus on emerging trends and recent advance-
ments.

2. To evaluate and recommend spatial disaggregation methods
specifically suited for national climate action plans.

3. To analyze and provide practical insights into the suitability of
different disaggregation methods for various scenarios.

.3. Scope of the review

Climate action plans typically encompass energy demand and green-
ouse gas emission reduction targets across various sectors such as
nergy, buildings, transportation, industry, and agriculture. As a re-
ponse to these targets, they include measures such as renewable
nergy capacity expansion, building renovation, the penetration of new
lectric vehicles, etc. The focus of the current review is on the spatial
isaggregation of data relevant to these areas.
2

Spatial disaggregation is utilized in various fields, yet certain do-
ains are considered beyond the scope of this review because their
ata is not directly involved in climate action planning. These excluded
omains are:

1. Soil moisture [6].
2. Atmospheric data like daily surface temperature [7], precipita-

tion [8], rainfall [9], wind speed and solar irradiance [10].
3. Increasing image sharpness [11].
4. Hazard risk downscaling such as fire [12] and heat stress [13].
5. Land Use and Land Cover (LULC) mapping [14].
6. Disease mapping [15].

This exclusion is justified because these techniques have been exten-
sively reviewed in their respective fields. For example, Ekström et al.
[16] reviewed methods focusing on the downscaling of global climate
model simulations to a finer spatial resolution. Meanwhile, various
soil mapping approaches are reviewed and evaluated in Vaysse and
Lagacherie [17], and methods for disaggregating hydrological extremes
can be found in Werner and Cannon [18].

Additionally, small area estimation methods [19] are omitted from
this review, as they require the presence of data in target regions, even
if it is sparse.

1.4. Methodology of the review

Fig. 1 displays the methodology of the review process employed
in this study. As a first step, a heuristic search was performed to
become familiar with the topic and to identify the keywords that are
used in the literature. Next, a systematic review was conducted using
Scopus,1 based on the search query - TITLE-ABS-KEY (((spatial AND
disaggregation) OR (spatial AND downscaling)) AND (proxy OR ancillary
OR covariate OR co-variate OR auxiliary OR surrogate OR synthetic OR
simulated)). The search query was formulated to include common key-
words found in the literature. This query looked for these keywords
in the title, abstract, and keywords of the corresponding publications.
1,302 papers were obtained using this search query, which were saved
in a list on Scopus.

In the first phase, the abstracts of these publications were read.
Based on the exclusion criteria previously discussed, the publications
were then either discarded or moved to the next phase. In the second
phase, the publications were read and various details (Fig. 1) were
collected in a spreadsheet.

1.5. Structure of the review

The rest of the paper is structured as follows —Section 2 clarifies the
terminologies related to spatial disaggregation, Section 3 reviews the
spatial disaggregation methods that moved to phase 2 in the systematic
literature review (Fig. 1), Section 4 discusses the reviewed methods in
light of the defined objectives and, finally, Section 5 concludes paper.

2. Terminologies

Spatial disaggregation is a method used to improve the detail of data
by increasing its spatial resolution. This technique is particularly useful
when data is only available for larger areas and must be estimated for
smaller, more specific regions. For instance, if we have emissions data
available for larger regions like federal states, spatial disaggregation
helps to estimate this for smaller regions such as municipalities within
those states. In this context, the larger regions (federal states) are
known as ‘‘source zones’’ and the smaller regions (municipalities) are
called ‘‘target zones’’. Importantly, each source zone is distinct and
does not overlap with others, and each target zone belongs exclusively

1 https://www.scopus.com/home.uri

https://www.scopus.com/home.uri
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Fig. 1. Flow chart depicting the methodology of the review process.
to one source zone. Source and target zones can be defined as either
administrative divisions or geographical grid cells.

The terms ‘‘spatial disaggregation’’ and ‘‘spatial downscaling’’ are
commonly used interchangeably in the literature to describe methods
for enhancing the spatial resolution of data. However, there is an
important distinction between them. As defined by Monteiro et al. [20],
‘‘spatial disaggregation’’ refers to mass-preserving methods, which
specifically ensure that the sum of disaggregated values in target zones
is equal to the observed value in the parent source zone. This technique
is crucial for variables like total emissions or population figures. In
contrast, ‘‘spatial downscaling’’ is applied to variables that are not
summed, such as temperature, precipitation, and soil moisture, etc.
Despite the clarity of these definitions, the two terms are often treated
synonymously in the literature.

Several other terms related to spatial disaggregation are also used
interchangeably in the literature. This section provides definitions for
these, lists the terminologies used in the literature, and selects a termi-
nology to be used in this paper.

Table 1 summarizes this information.

3. Literature review

The spatial disaggregation methods introduced in the publications
collected in the spreadsheet during phase 2 of the literature review
are reviewed in this section. These methods can be categorized into
six types (also shown in Fig. 2), based on the core approach or model
employed. These are:

1. Areal weighting
2. Dasymetric mapping
3. Proxy data-based
4. Machine learning-based
5. Geostatistical model-based
6. Hybrid techniques

The following subsections address each of these categories.

3.1. Areal weighting

The areal weighting method assumes that the target value within
each source zone is evenly distributed in that zone. Based on this
assumption, the target data is distributed proportionally to the over-
3

lapping area of the target zone and source zone [30]. If 𝑎𝑠𝑧𝐼 is the area
Table 1
Terminologies related to spatial disaggregation that are used in the literature.

Definition Terminologies Terminology
used in this
paper

Region/grid set at the
higher spatial level

Source zones [21] Source zones

Region/grid set at the
lower spatial level

Target zones [21] Target zones

Distribution of data from a
set of regions/grids at a
higher spatial level to a set
of regions/grids at a lower
spatial level

Spatial disaggregation
[22], spatial
downscaling [4],
spatialization [23],
regionalization [24]

Spatial disag-
gregation

Data to be disaggregated,
for example, emissions,
population, energy
demand, etc.

Target data [22] Target data

The data present in the
target zones that highly
correlate with the target
data and, therefore, can be
employed in the spatial
disaggregation of target
data

Proxy data [25] ,
covariate data [22],
co-variate data [26],
auxiliary data [27],
ancillary data [22],
surrogate data [24]

Proxy data

The sum of disaggregated
target data values in all
the target zones, belonging
to a source zone, is equal
to the observed target data
value in that source zone

Mass-preserving
property [22],
volume-preserving
property [28],
pycnophylactic property
[29]

Mass-
preserving
property

of the source zone 𝐼 and 𝑎𝑡𝑧𝑖 is the area of a target zone 𝑖, then the
target value in the target zone, 𝑡𝑣𝑡𝑧𝑖 is given by:

𝑡𝑣𝑡𝑧𝑖 = 𝑡𝑣𝑠𝑧𝐼 ∗
𝑎𝑡𝑧𝑖
𝑎𝑠𝑧𝐼

(1)

As the assumption of even distribution of the target value within
each source zone is seldom true, areal weighting has not used as
a stand-alone method in recent works. However, in some studies it
is combined with other methods as can be seen in the following
subsections.

3.2. Dasymetric mapping

Dasymetric maps consist of a set of regions in which the variation

of the target value is minimal and features a steep change at their
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Fig. 2. Categorization of spatial disaggregation methods that were collected during the phase 2 of the systematic literature review.
boundaries [29]. Dasymetric mapping involves the creation of such
a map in a top-down approach. The method is most often used to
disaggregate population data.

Although it is a type of spatial disaggregation method, dasymetric
mapping differs from the other methods in that the target zones are
not defined beforehand. Instead, area-class maps such as LULCs are
employed [31]. These maps divide a given area into several parts with
a LULC type assigned to each. The target zones (also called dasymetric
zones herein) are obtained by overlapping the area-class map and the
source zones. The result is a set of target zones within each source zone,
with each target zone having a single LULC type.

The population (target data) is then distributed to the target zones
based on a predefined relationship between the LULC categories and
population data. Accurately quantifying this relationship is the key
challenge of dasymetric mapping. The following three techniques are
described in Mennis [29]:

1. Binary method: Each LULC category is deemed either habitable
or not. For example, the water and bare land LULC types are
uninhabitable, and the rest are habitable. The population is set
to 0 in uninhabitable areas, and is evenly distributed to the
habitable LULC ones using areal weighting.

2. Three-class method: Each LULC category is assigned a per-
centage such that the percentages sum up to 100%. The total
population is then distributed to these areas based on the per-
centage. It is noteworthy that although the method is named
three-class, it can have more than three classes.

3. Limiting variable method: A maximum population density is
assigned to each LULC category. The process begins with dis-
aggregation using areal weighting. In a second step, if a target
zone exceeds the assigned maximum density, the value is redis-
tributed to its neighbors, provided they do not exceed their own
assigned density. The second step is repeated until no target zone
exceeds its density threshold.

Varying versions of dasymetric mapping are employed in various
apers. Mennis and Hultgren [32] disaggregated census data —total
opulation, Hispanic population, number of children and number of
ouseholds based on an LULC map. Five LULC classes were consid-
red —high-density residential, low-density residential, non-residential
eveloped, vegetated, and water. The limiting variable method was
mployed. The maximum target variable density was then calculated
ased on sampling methods such as containment sampling. Here, for
ach LULC category, the source zones that completely overlapped with
he category were sampled. For the set of samples, the maximum target
alue density for an LULC category was calculated using:
∑𝑛

𝑖=1 𝑡𝑣𝑖
∑𝑛

𝑖=1 𝑎𝑖
(2)

where, 𝑡𝑣𝑖 and 𝑎𝑖 are the target value and area of the sampled source
zone 𝑖, respectively, and 𝑛 is the number of sampled source zones.
Different sampling techniques were discussed in the paper. The disag-
gregated data was then compared to census block-level data

Karunarathne and Lee [21] disaggregated the population in a hilly
area using dasymetric mapping. Here, slope, altitude, and LULC maps
4

were employed. The three-class method was employed and disaggrega-
tion was performed individually as follows:

1. Based on slope: The slope map consisted of six categories of in-
creasing slope. An assumption was made that 80%, 15%, and 5%
of the population, respectively, was in the first three categories.
The other categories were deemed to be uninhabitable owing to
their significant steepness.

2. Based on altitude: The altitude map consisted of eight categories
of increasing altitude. An assumption was made that 75%, 17%,
5%, and 3% of the population can be found in the first four
categories, respectively. The other categories were deemed to be
uninhabitable owing to their significant elevations.

3. Based on LULC: Weights of 80%, 15%, 4%, and 1% were assigned
to the LULC categories of ’home gardens’, ‘tea’, ‘rubber’ and
’other plantation’, respectively. The remaining categories were
deemed to be uninhabitable.

Subsequently, the maps were overlapped. Corrections were made
based on differences in assigned weights. For example, if an uninhab-
itable LULC category polygon, such as ‘water’, lay within the 80%
weighted slope polygon, 80% was considered for the entire area of this
slope polygon, except the water-covered one. Finally, the population
was distributed to the target zones based on the corrected weights.

Apart from the LULC maps, the allocation of population to in-
dividual buildings is also seen in the literature. Maroko et al. [33]
disaggregated population based on residential building cover. Residen-
tial area, building footprint, and height data was collected from various
sources. This data was overlapped to calculate the total residential area
per building. The population was then allocated to each building based
on the share of the residential area. The disaggregated data was then
compared to the results obtained using other variations of dasymetric
mapping.

A similar approach can be found in Bajat et al. [34]. Population data
was allocated to each building based on building height and soil sealing
value. The results were compared to the census data available in some
residential blocks. Wünsch et al. [35] employed dasymetric mapping
to disaggregate residential building assets, i.e., total building costs
including fixed assets such as heating and sanitation facilities. Binary
dasymetric mapping was used where land use types —‘‘residential
areas’’ and ‘‘areas of mixed types’’ were deemed habitable. The assets
were then distributed to these LULC polygons using areal weighting.
The results were then benchmarked against available loss estimate data
at the municipal level.

3.3. Proxy data-based

In proxy data-based methods, a proxy variable or a set of proxy
variables is chosen based on the following two requirements:

1. It should be available in all target zones.
2. It should highly correlate with the target data. In other words,

it should mimic the spatial distribution of it.
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Table 2
Summary of papers that employed simple proxy data for disaggregation.

Paper Target data Proxy data Source and
target resolution

Moran et al.
[36]

Source emissions Several proxies depending
on the emission source.
For example, vehicle
emissions based on number
of fueling stations

Country to
municipal level

Valencia
et al. [37]

Sectoral emissions Agriculture —agricultural
land cover, Buildings
—residential land cover
weighted by population,
Energy and industries -
point source locations,
Waste —municipal waste
disposal sites, Transport
—population, vehicle
traffic flow and road
density

55 km2 to 500
m2 grids

Saide et al.
[38]

Traffic emissions Population density, LULCs,
road networks, traffic
count data, road capacity,
etc.

City to 2 km2

grids

Ramacher
et al. [39]

Source emissions Several proxies depending
on the emission source.
For example, residential
heating based on
population density.

6 km2 to 1 km2

grids

Lam et al.
[40]

Industrial emissions Blue roof areas obtained
from satellite images

A provincial area
to 3 km2 grids

Kuik et al.
[41]

Traffic emissions
and emissions from
industry, residential
combustion and
product use

Traffic —traffic density,
other —population

∽ 7km2 to
∽ 1km2 grids

Wang et al.
[42]

Black carbon
emissions

Several proxies based on
the source. For example,
rural residential burning of
coal, firewood, and crop
residues —rural population

Country level to
0.1◦grids
The target data is then distributed to the target zones based on the
hare of proxy data in each target zone.

The proxy data is chosen based on domain knowledge and the
vailability of data in the study area, at the target zone level. For
xample, Muñoz et al. [4] compared national energy and climate plans
ith local ones. For this, the authors chose the city of Valencia in
pain as a case study. The study identified the measures that were
ommon in both national and local plans, such as energy efficiency
mprovements and the renovation of appliances in residential buildings.
imple proxies were used to disaggregate the national values to the
ity level. For example, if the national plans included that 𝑛 number of
uildings needed renovation, the number of old residential buildings in
ach city was used as a proxy to disaggregate this value. The result was
hen compared with local plans to identify potential misalignments. A
imilar approach of disaggregation based on simple proxies was found
n other publications. These are summarized in Table 2.

The advantages of proxy data-based methods are:

1. They are simple and straightforward.
2. They are easily explainable based on the domain knowledge.
3. They can be employed even if the number of source zones are

as few as one.

However, the main challenge associated with the proxy data-based
ethods is that the relevant proxy data to disaggregate a particular

arget dataset is not always readily available. The following three issues
5

an arise:
1. A single proxy data is not sufficient to mimic the spatial distri-
bution of the target data. Different datasets must be combined
in order to synthesize appropriate proxy data.

2. The proxy data might be missing in some target regions. These
values must be filled before they can be employed in the disag-
gregation.

3. The proxy data might not be available at the target zone level
and might be available at an intermediate spatial resolution
instead. In this case, the proxy data must first be disaggregated
to the target zones.

Several publications have addressed these issues. Kuenen et al. [25]
disaggregated sectoral greenhouse gas emissions from the country level
to the grid one at a resolution of 0.05◦* 0.1◦. The proxy data was
manually defined for each sector based on domain knowledge. Where
feasible, the proxy data was synthesized by combining data from differ-
ent sources and filling the gaps in the resulting data. For example, the
road network locations found in Open Street Map [43] and the traffic
volumes per vehicle type and roads categories found in Open Transport
Map [44] were combined, resulting in a traffic intensity map. This map
provided the traffic volume per vehicle type and road category in each
target zone. Where traffic volume data was found to be missing, it was
estimated by determining the relationship between the traffic volume
per vehicle type, road category, and population density in the target
zones where this data was available. This relationship was then used to
impute the missing traffic volumes. The traffic intensity map was then
used to disaggregate the emissions from the road transport sector. The
authors note the impossibility of further delineation of the proxy data.

For example, the dependency of road transport emissions on factors
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Table 3
Summary of papers that employed synthesized proxy data for disaggregation.

Paper Target data Proxy data Source and
target resolution

Hernández
et al. [46]

Traffic
emissions

Road network
overlapped with
vehicle counts.

Metropolitan
area to 1 km2

grids

Chakraborty
et al. [47]

Biomass
potential

Gross primary
production,
calculated at the
grid level using
satellite data.

Districts to 1
km2 grids

Mu et al.
[48]

Traffic
emissions

Road network with
assigned weights for
road segments (e.g.,
0.05 for residential,
1 for freeway, etc.).
The weighted length
of road segments is
used as a proxy.

11 km2 to 100
m2 grids

Gately et al.
[49]

Traffic
emissions

Vehicle fuel
consumption,
calculated based on
vehicle miles
traveled and
emission factors
across different
vehicle classes and
road categories.

Road level to 1
km2 grids

such as vehicle speed, traffic flow and traffic jams was not considered,
due to the unavailability of this information.

Another example of proxy data synthesis can be found in Zasina and
Zawadzki [45] who aimed to disaggregate emissions due to domestic
combustion. They argued that the population density alone could not
account for this target data. A population that is supplied with heat
via district heating infrastructure produces less emissions than one that
relies on domestic combustion. Therefore, the population density in
grids, in whose neighborhoods, a district heating infrastructure point
is found, was reduced by 50%. This adjusted population data was then
used as a proxy. A synthesis of the proxy data can be found in several
other publications. These are summarized in Table 3.

Maes et al. [50] addressed the issue of the unavailability of proxies
at target spatial resolutions. They aimed to disaggregate industrial
emissions from country-level to 250 m2 grids. They identified employ-
ment numbers as being relevant proxy data. However, employment
data was not directly available for 250 m2 grids. Therefore, the employ-
ment numbers were first disaggregated based on the LULC category,
‘‘industrial and commercial units’’ using dasymetric mapping. Subse-
quently, the disaggregated employment data was used as a proxy for
industrial emissions disaggregation.

A similar two-step disaggregation can be seen in Alam et al. [51],
who disaggregated traffic emissions from the national level to 0.5 km2

grids. Vehicle fleets weighted by their corresponding mileages were
used as proxies to first disaggregate national-level emissions to the
county level. The county-level emissions were then disaggregated to
the grid level using traffic volume as a proxy.

In some cases of emissions disaggregation, the proxy data was
merely used to derive the emission factor values. For example, Righi
et al. [52] aimed to disaggregate non-industrial NOx emissions from
the provincial level to 100 m2 grids. Based on domain knowledge, they
identified population, building volume, and domestic gas consumption
as the relevant proxies. They calculated the emission factor of NOx
relative to each proxy variable at the provincial level. The emission
factor was defined as the ratio between the total NOx emissions and
the proxy value at the provincial scale. Then, the total emissions of
each grid cell were calculated by multiplying the emissions factors by
6

the proxy variable value in each cell. i
Guevara et al. [53] developed an innovative approach to tackling
the issues discussed earlier. For each emission source, they identified
three proxies. For instance, for industrial combustion emissions, the
proxies were industrial land use, urban land use, and urban population.
The disaggregation began with the first proxy. If none of the grid
cells intersecting the corresponding municipality contained information
on this proxy, they moved to the next one. If all three proxies were
inadequate, areal weighting was applied. This method aimed to address
potential data gaps for specific proxies by allowing the selection of
alternative ones.

In the literature, spatial disaggregation is applied not only to current
data but also to future projections. The disaggregation of projections
is especially relevant for national climate plans, which include future
targets such as reducing emissions by a specific amount by 2030. Some
studies emphasize the disaggregation of projections. For instance, Ran
et al. [54] disaggregated population-related emission projections from
the national level to 12 km2 grids. In this work, population and land-
use change projections, such as housing units, were used as proxies
where available. Some land uses, such as road networks, were kept
constant across future years due to the lack of available projections. The
disaggregation was performed for each future year separately, based on
the proxy values for that specific year.

3.4. Machine learning-based

Proxy data-based disaggregation methods often depend on domain
expertise and the manual weighting of proxies, as exemplified by Mu
et al. [48], in which different road categories were manually weighted.
Machine learning models, on the other hand, offer a more nuanced
approach by accurately combining various proxies with appropriate
weights through learning the intricate relationships between target and
proxy data.

Some studies have utilized machine learning techniques like random
forests [55] or gradient boosting [56] to establish the relationship be-
tween target and proxy data. The method typically involves aggregating
proxy data at the source zone level, training a machine learning model,
and then using this model to predict the target data at the target zone
level.

While this approach eliminates the manual effort needed to select
and combine relevant proxies, it has a notable drawback in that it does
not inherently preserve mass. In most cases, the predicted data at the
target zone level are simply used as weights, and the target data is
disaggregated based on these.

A machine learning-based approach, specifically using random for-
est, was seen in Wan et al. [57], who disaggregated population data
from the tract level to the block group one. First, a set of proxies
were synthesized based on land-impervious class cover. Examples of
synthetic proxies include the total area of a particular impervious class,
edge density, i.e., the ratio between the total length of a particular
impervious class grid’s edges and the total area, etc. A random forest
model is then trained using synthesized proxies as predictors and
population as a target. The model predictions at the block group level
are used as weights to perform population disaggregation.

Patel et al. [58] followed a similar approach to disaggregate popula-
tion data from the administrative level to 1 km2 grids. They employed
eotweet densities, land cover, night-time lights, temperature, eleva-
ion, etc. as proxies. In Stevens et al. [59], population data was disag-
regated from the national level to ∽100 m2 grids, using several proxies
ncluding LULC types, slope, distance to roads, and temperature.

A significant challenge with machine learning methods is their de-
endency on large sample sizes for training. When the number of source
ones is limited, these methods may not perform optimally. Arumugam
t al. [60] tackled this issue in their efforts to disaggregate rice yields
rom district level down to 500m2 grids. They proposed training a
eparate gradient boosting model for each district but recognized the

ssue with small sample sizes at the district level. To overcome this, they
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first disaggregated the district-level rice yield to 5 km2 grids, assigning
the same district yield to each grid to effectively enlarge the sample
size per district. This strategy allowed for the training of individual
models in each district. It is important to note that as rice yield is
typically measured in tons per hectare and is not an absolute measure,
mass-preservation was not a concern in this methodology.

Kolluru et al. [61] disaggregated livestock population from the dis-
trict level to 1 km2 grid one. The number of districts (200) was deemed
a small sample size for random forest model training. Therefore, an
initial disaggregation from the district to sub-district level was carried
out using areal weighting. A random forest model was then trained with
2000 sub-district-level data as the input. The model was then used to
predict data at the 1 km2 grid level.

Murakami et al. [62] disaggregated Gross Domestic Product (GDP)
projections from the national level to 1/12 ◦grids. Urbanization po-
ential, population projections, agricultural area, distance to major
oads and oceans, etc. were all used as proxies. A gradient boosting
odel was trained for each future year based on the data in that year

nd some temporally-stationary proxies considered such as agricultural
and, distance to the ocean, etc. The model was trained to minimize
he mean squared error of the observed GDP and the aggregate of the
redicted values.

Aside from random forest and gradient boosting algorithms, the lit-
rature has featured increasingly sophisticated machine learning tech-
iques. For example, Monteiro et al. [22] disaggregated automated
eller machines (ATM) withdrawals from the administrative level to 200
2 grids. They obtained an adequate sample size based on an initial
isaggregation using population as proxy data. They proposed the co-
raining of two different machine learning models, namely random
orest and a convolutional neural network [63]. The intention was to
se the estimates from one model to fine-tune the estimates of the
ther, and vice versa.

Yang et al. [64] disaggregated PM2.5 concentration from 10 km2 to
00 m2 grids, using latitude, longitude, aerosol optical depth, elevation,
nd land cover, etc. The latitude and longitude variables were included
o capture the spatial autocorrelation present in the target data. A
ascade random forest [65] model was employed here. This model
ssentially consists of several random forest models. Predictions from
arlier models were used as additional features for the subsequent ones,
hereby iteratively improving the accuracy.

Zhao et al. [66] aimed to disaggregate population from the provin-
ial level to 100 m2 grids. Various points-of-interest such as catering,
esidential communities, financial services, educational centers, etc.,
ere considered as relevant proxies. The frequent pattern growth al-
orithm [67], a type of association rule mining algorithm, was then
sed to obtain the spatial association between population hotspots and
he different points-of-interest. The ones with strong associations were
sed as proxies. A random forest model was then employed using these
s predictors.

Zhao et al. [68] disaggregated emissions from building energy
onsumption from the provincial level to 1 km2 grids using GDP, pop-
lation, temperature, heating degree days, and cooling degree days as
roxies. They began by grouping the provinces into three groups based
n climate. The disaggregation was then performed for each group sep-
rately. In this case as well, the problem with fewer observations arose.
hey employed a partial least squares regression [69] to disaggregate
missions from the provincial level to an intermediate prefecture one.
his regression is well-suited when the number of predictors is more
han the number of observations, and when multi-collinearity exists
mong predictors. The results at this intermediate level serve as input
or a cubist regression model [70], which was used to predict the final
ata at the 1 km2 grid level.

Georganos et al. [71] proposed a modification of the random forest
odel to make it spatial in nature, calling it a geographical random

orest. The authors trained one random forest model per source zone,
7

hich included only the neighboring source zones as the input data
and another global random forest model. For prediction, the source
zone that was closest to a target zone was identified. The predictions
from the model trained for this source zone and the global model were
averaged to obtain the final prediction. The authors demonstrated the
method by disaggregating population data from administrative units to
0.5 m2 grids.

Verstraete [27] argued that although proxy data is useful for spatial
disaggregation, it is not the only explanation for the spatial distribution
of the target data. Further challenges, such as the mismatch in the time
of collection of proxy and target data, introduce some uncertainties. To
address these, a fuzzy inference system was proposed. This system uses
a set of linguistic rules, in IF-THEN format, to map the relationship
between input and output data [72]. This approach allows for the
incorporation of the relationship between the proxy and target data but
does not follow it too strictly. The proposed method was demonstrated
by disaggregating artificial data from gridded source zones to gridded
target zones. The results were then compared with those obtained using
areal weighting, using the ideal solution as the benchmark.

3.5. Geostatistical model-based

Geostatistical models capture the spatial relationship between data
points that has largely been ignored in the methods discussed thus far.
These methods are well-suited for the disaggregation of data that ex-
hibits spatial autocorrelation. Three geostatistical models can be found
in the literature —Geographically Weighted Regression (GWR) [73],
the Conditional Autoregressive (CAR) model [74], and variants of
kriging [75].

GWR is a modified version of a simple linear regression model. It
incorporates the spatial dependency of variables, i.e., the value in a
region not only depends on its proxy data but also the neighborhood
regions’ proxy data. During fitting of a simple regression model, the
sum of the squared differences between the predicted and observed
data is minimized. However, in GWR, a weighting factor is imposed
on each squared differences. This weight could be the geographical
proximity of these regions such that the predictors closer to the region
carry more penalties than others, which results in a set of local linear
equations, with each specific to a source region. This equation is then
used to predict values at the target regions.

Zhang et al. [76] employed GWR to disaggregate the CO2 emissions
f district heating systems from the city level to 3 km2 grids. Night-time
ights and temperature-humidity-wind index were used as proxy data. It
s noteworthy that the predictions are merely used as weights and the
ata from the source region is subsequently distributed to the target
egions based on the weights, thereby achieving mass-preservation.

CAR works on a similar principle as GWR. It is mathematically
epresented as:

𝑖 = 𝛽 +
∑

𝑗∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑖)
𝑤𝑖𝑗 (𝑌𝑗 − 𝜇) + 𝜖 (3)

where, 𝑌𝑖 is the target value in region 𝑖 and 𝑤𝑖𝑗 the weight term
representing the influence of a neighborhood region 𝑗 on region 𝑖. These
weights typically represent the geographical proximity of regions 𝑖 and
𝑗. 𝜇 is the global mean of the data and provides a baseline around
which the local variations are modeled. 𝛽 and 𝜖 are the slope and error,
respectively.

Within the context of spatial disaggregation, CAR is used in an
iterative fashion. The process begins with determining initial estimates
of target data at the target zone level using CAR. As the neighboring
target values 𝑌𝑗 are unknown at this stage, simple disaggregation is
performed either based on areal weighting or the proxy data-based
method. The resulting estimates form the initial estimates.

Iteratively, the target values are recalculated based on the weights
and neighboring target values. The new estimates are then compared
to those from the previous iteration. If the changes between iterations

fall below a certain threshold (indicating that further iterations do
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not significantly alter the estimates), the process is deemed to have
converged.

Charkovska et al. [77] used CAR to disaggregate the livestock pop-
ulation from the municipal level to 100 m2 grids. They used population
density and LULC, specifically ‘‘arable land’’, ‘‘pastures and agricultural
areas’’ as proxy data to incorporate local effects (𝐿𝐸) on livestock
population. Additionally, spatial effects (𝑆𝐸) were incorporated using
CAR. The final model can be represented as:

𝑌𝑖 = (𝐿𝐸𝑖) + (𝑆𝐸𝑖) (4)

𝐿𝐸 is determined by a simple linear regression model based on the
proxy data and 𝑆𝐸 is determined based on CAR.

Kriging and its variants, namely, area-to-point kriging and cokrig-
ing, are geostatistical methods used for data interpolation. Kriging is a
method that predicts values at unknown points based on the spatial
correlation of known data points. Area-to-point kriging extends this
concept to disaggregate data from source regions to target regions
(typically small grids). Cokriging involves using proxy data (referred
to as covariates in the context of kriging) to enhance the accuracy of
disaggregated data. The basics of kriging are presented in Appendix.
For an explanation of area-to-point kriging and cokriging, please refer
to Kyriakidis [75] and the studies discussed below.

Kriging methods are not mass-preserving in nature. They are typ-
ically employed to disaggregate non-additive data such as GDP (ex-
pressed in purchasing power standards), average crop yield (expressed
in tons per hectare), and population density. For instance, Triantakon-
stantis and Stathakis [78] employed cokriging to disaggregate GDP
from administrative to municipal regions using night-time lights as a
proxy.

Meanwhile, Brus et al. [79] employed area-to-point kriging in their
attempt to disaggregate average crop yield from the provincial level to
1 hectare grids. Here, vegetation, precipitation, temperature, and soil
data were used as proxies. A linear regression of proxy data was fit.
Area-to-point kriging was used to disaggregate the residuals of the lin-
ear regression. Pittiglio et al. [80] disaggregated wild boar population
density from the administrative level to 5 km2 grids, following a similar
approach, utilizing used temperature, precipitation, vegetation cover,
and topography variables such a slope and elevation as proxies.

3.6. Hybrid techniques

Some studies have proposed an amalgamation of the different tech-
niques discussed thus far. For example, Roni and Jia [81] disaggregated
population from the ward level to 5 m2 grids using building data,
specifically building area and its associated building type such as
residential, commercial, etc. as a proxy. Here, dasymetric mapping
using GWR was employed to assign population values in each ward to
individual buildings.

Jin et al. [82] disaggregated GDP from the provincial level to 1 km2

grids using night-time lights, the vegetation index, population, etc. An
amalgamation of the random forest model and area-to-area kriging is
seen here. A random forest model was trained at the provincial level
using proxy data as predictors. The residuals of the predictions were
then distributed to target grids using area-to-area kriging.

Highfield et al. [83] disaggregated deer population density from
county to LULC polygons using an amalgamation of dasymetric map-
ping and kriging. First, kriging was performed using the centroid of
each county as the associated location for the value therein. The results
were then used to obtain the deer density in each of the LULC poly-
gons. Next, the density value was multiplied with a manual weighting
assigned to each LULC category (1.2- shrubland, 1.0 - forests, 0.8 -
grasslands, rest- 0). The final values were used as weights to allocate
8

the deer population to each LULC polygon.
4. Discussion

From the reviewed studies, it is clear that the spatial disaggregation
is applied to different target data —spatial disaggregation method
category combinations. Fig. 3 shows these plotted against the year of
publication. Drawing on the figure, the following observations can be
made:

1. The proxy data-based methods are the most popular, followed
by machine learning-based ones.

2. Emissions data is the most disaggregated target data, followed
by population data

3. For the disaggregation of emissions data, the popular choice is
proxy data-based methods. The reason for this is perhaps that the
domain knowledge regarding emissions and the readily available
proxy data makes it an obvious choice.

4. In recent years, machine learning-based methods have replaced
dasymetric mapping as a popular choice for population data
disaggregation, perhaps owing to the cumbersome manual steps
involved in dasymetric mapping. However, some hybrid tech-
niques involving dasymetric mapping have been seen in recent
publications.

The national climate action plans consist of data related to various
topics such as emissions and energy demand per sector, building assets,
district heating, and renewable energy capacity, etc. Therefore, a single
disaggregation technique might not be well-suited across all the target
variables. The choice of a method depends on the following:

1. The target data.
2. The number of source zones.
3. The availability of proxy data in the target zones.
4. Domain knowledge.
5. Existence of spatial autocorrelation in the target data.

For a particular target dataset, if the user has the required domain
knowledge to choose appropriate proxies and combine them with ap-
propriate weights, the proxy data-based methods are well-suited. This
further depends on the availability of the proxy data in the target zones.
If the proxy data is missing in some target zones, data imputation
techniques must be employed. If the proxy data is not readily available
in the target zones, the user must: (a) synthesize the proxy data by
fusing different datasets; or (b) first, disaggregate the proxy data that
might be present at an intermediate spatial level.

If the user can identify a set of relevant proxies but, finds it challeng-
ing to combine them, machine learning-based methods are well-suited.
The machine learning-based methods require a high number of source
zones and associated target data to be effectively applied. Therefore, if
the user is working with a single national climate action plan, the target
data must first be disaggregated to an intermediate spatial level by em-
ploying proxy data-based methods. This can be an effective approach
because as one ascends the administrative ladder, data availability
grows, allowing for a plethora of proxy data options. However, the
number of source zones even at the intermediate spatial resolution
might not be sufficient to employ machine learning models. In such
a case, techniques such as partial least squares regression must be
employed, as it is known to handle fewer data points.

The choice of a particular machine learning approach depends
on the target data, the required degree of accuracy, and available
computational resources. A simple random forest or gradient boosting
algorithm might be sufficient in most cases. Although complex models
such as the co-training model or the cascade random forest one might
render more accurate results, they are computationally-expensive.

The existence of spatial autocorrelation in target data must be
considered during spatial disaggregation. Data such as emissions and
district heating exhibit spatial autocorrelation at levels of fine spatial

resolution such as municipalities. However, this might not be the case
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Fig. 3. A representation of the target data-spatial disaggregation method category combinations seen in the publication reviewed in this study. These combinations are plotted
against the year of publication.
at coarse spatial resolutions such as federal states. One must therefore
test for spatial autocorrelation in the data before choosing a disaggre-
gation method. Measures such a Moran’s index [84] can be employed
for this purpose. If the target data is spatially-autocorrelated, geostatis-
tical model-based methods must be employed. Alternatively, machine
learning approaches like geographical random forest or incorporating
the latitude and longitude coordinates of source zone centroids as
additional predictors in a machine learning model can also be effective.

The national climate action plans not only include current data
but also future targets. Therefore, when disaggregating future targets,
the user must incorporate the regional changes that are expected in
future years. For example, if the national climate plans include X 𝐺𝑊
photovoltaics capacity expansion by 2030, the photovoltaics potentials
in each municipality must be considered as a proxy to disaggregate this
information.

It is noteworthy that spatial disaggregation is not error-free. Nieves
et al. [85] note some key issues that contribute to the inaccuracy of the
results:

1. The data quality of the proxy data is often poor, thus affecting
the quality of disaggregation.

2. The year of data collection of the proxy variable and the variable
to be disaggregated might not be the same.

3. The relationship between a proxy variable and the target data
might not hold true in all countries.

4. The relationship between a proxy variable and the target data
might not hold true at all spatial resolutions.

The validation of spatially-disaggregated data is a challenge irre-
spective of the method applied. In previous works, the disaggregation
results were validated against:

1. The target data available at either some or all target zones.
2. The target data available at an intermediate spatial resolution

for either the entire area of interest or a few regions.

In terms of energy and climate plans, one could compare the disag-
gregated plans to the regional ones of certain cities, as seen in Muñoz
et al. [4]. Additionally, reaching out to local authorities might be
beneficial for refining any figures as needed.

5. Conclusions

In this study, we conducted a comprehensive review of the literature
on techniques for disaggregating spatial data. Our goal was to provide
9

a detailed overview of existing disaggregation methods. Furthermore,
we aimed to recommend appropriate strategies for the spatial disaggre-
gation of national climate action plan. It is essential to adapt national
energy and climate strategies to local levels like municipalities to
ensure effective implementation. The benefits of this approach include:

1. Engaging every region in mitigating climate change, rather than
only those with the resources to create their own climate strate-
gies.

2. Ensuring that local initiatives align with national climate targets.

We observed that no single spatial disaggregation method is uni-
versally applicable to national energy and climate strategies due to the
diversity of target datasets and the various challenges associated with
proxy data. This study narrows down the relevant methods to proxy
data-based, machine learning-based and geostatistical-based methods.
Our study identifies three relevant methodologies: proxy data-based,
machine learning-based, and geostatistical-based approaches. Addition-
ally, we provide guidelines for selecting the most suitable method based
on factors like the presence of spatial autocorrelation in the data and
the availability of relevant proxy data.

Future research will focus on applying these methods to disag-
gregate strategies and assessing the accuracy of the results. Despite
the chosen method, validating these results remains challenging. Ef-
fective climate action planning requires close collaboration with local
authorities to refine the outcomes.

CRediT authorship contribution statement

Shruthi Patil: Writing – original draft, Visualization, Methodology,
Investigation, Conceptualization. Noah Pflugradt: Writing – review &
editing, Supervision, Resources, Conceptualization. Jann M. Weinand:
Writing – review & editing, Supervision, Resources. Detlef Stolten:
Supervision, Resources, Project administration. Jürgen Kropp: Writing
– review & editing, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.



Energy and AI 17 (2024) 100386S. Patil et al.

c
b
r
a
W
f
f
a
d
e

D

n
c

A

n
t
t
G
r

𝛾

a

v

𝐶

r

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used ChatGPT in
order to improve the language and readability of the work. After using
this tool, the authors reviewed and edited the content as needed and
take full responsibility for the content of the publication.

Acknowledgments

This work was developed as part of the project LOCALISED —Lo-
alised decarbonization pathways for citizens, local administrations and
usinesses to inform for mitigation and adaptation action. This project
eceived funding from the European Union’s Horizon 2020 research
nd innovation programme under grant agreement No. 101036458.
e extend our sincere gratitude to the entire LOCALISED project team

or their invaluable contributions. We also wish to acknowledge the
inancial support that has made this project possible. Special thanks
re due to our colleagues at the Forschungszentrum Jülich for their
iligent proofreading and insightful feedback, which have significantly
nhanced the quality of our work.

isclaimer

This work reflects the authors’ views. The European Commission is
ot responsible for any use that may be made of the information it
ontains.

ppendix. Fundamentals of kriging

A semivariogram that explains the spatial relationship between the
eighborhood target values is at the heart of kriging. One could plot
he difference between pairs of target values against the distance be-
ween them and fit a theoretical model such as spherical, exponential,
aussian one, etc. to obtain a semivariogram. Mathematically, this is

epresented as:

(ℎ) = 1
2𝑁(ℎ)

𝑁(ℎ)
∑

𝑖=1
[𝑍(𝑥𝑖) −𝑍(𝑥𝑖 + ℎ)]2 (A.1)

where, 𝛾(ℎ) is the semivariance for a neighborhood distance ℎ
𝑁(ℎ) is the number of data pairs separated by distance ℎ
𝑍(𝑥𝑖) is the target value in source region 𝑥𝑖
𝑍(𝑥𝑖 + ℎ) is the target value in another source region separated by

distance ℎ from region 𝑥𝑖
This fitted semivariogram helps derive the covariance of any two

alues separated by a distance ℎ, and is given by:

𝑜𝑣(ℎ) = 𝐶(0) − 𝛾(ℎ) (A.2)

where, 𝐶(0) is the covariance at zero distance and is often equal to the
variance of the known target values.

The kriging estimator equations can be summarized as follows:
𝑛
∑

𝑗=1
𝜆𝑗𝐶𝑜𝑣(𝑍𝑖, 𝑍𝑗 ) = 𝐶𝑜𝑣(𝑍𝑖, 𝑍0),∀𝑖 = 1, 2,… , 𝑛 (A.3)

where, 𝑍𝑖 is the known target value in source region 𝑖
𝑍0 is the unknown target value in a target region
𝜆𝑗 are the weights assigned to the known target values
𝐶𝑜𝑣(𝑍𝑖, 𝑍𝑗 ) is the covariance between known target values in source

regions 𝑖 and 𝑗
𝐶𝑜𝑣(𝑍𝑖, 𝑍0) is the covariance between known target value in source

egion 𝑖 and unknown target value in a target region
𝑛 is the number of source regions
These equations are solved under the unbiasedness constraint, i.e.,

𝑛
∑

𝜆𝑗 = 1 (A.4)
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𝑗=1
Solving the above equations provides us with weights 𝜆𝑗 for each
source region. These weights are used to obtain values at unknown
target regions:

𝑍0 =
𝑛
∑

𝑗=1
𝜆𝑗𝑍𝑗 (A.5)
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