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A B S T R A C T   

Severe floods and landslides in Eastern Northeast Brazil in May 2022 led to severe impacts with human losses and material damage. These disasters were a direct 
consequence of extremely heavy rainfall days. A rapid attribution study was performed to assess the role of anthropogenic climate change in 7 and 15-day mean rainfall 
over this region. A dense network of 389 weather stations was analysed resulting in 79 selected stations containing consistent and spatially well-distributed data over the 
study region with records starting in the 1970s. Daily rainfall from a multi-model ensemble of climate simulations were also examined to investigate the role of climate 
change in modifying the likelihood of such extreme events over the studied region. However, such an analysis was hindered by the fact that most investigated models 
have deficiencies in representing convection associated with warm rains, which are key for the manifestation of such extreme events associated with Easterly Wave 
Disturbances. From the observational analysis, both 7 and 15-day mean events in 2022 were found to be exceptionally rare, with an approximately 1-in-500 and 1-in- 
1000 chance of happening in any year in today’s climate, respectively. Even though both events were located far outside the previously observed records, because of the 
short observational record and associated uncertainties it was not possible to quantify how much climate change made these events more likely to happen. The performed 
analysis also revealed that global warming increased the intensity of such extreme rainfall: rainfall events as rare as those investigated here occurring in a 1.2 ◦C cooler 
climate would have been approximately a fifth less intense. Combining observations with the physical understanding of the climate system, this study showed that 
human-induced climate change is, at least in part, responsible for the increase in likelihood and intensity of heavy rainfall events as observed in May 2022. Besides, the 
extreme nature, as a result of such events, made it so extraordinary that population exposure and vulnerability was identified as the main driver for the observed impacts, 
although long-term impacts and recovery will likely be mediated by socio-economic, demographic and governance factors.  
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1. Introduction 

The combination of high spatial and temporal rainfall variability and 
the highest proportion of people living in poverty in Brazil makes the 
Northeast of Brazil (NEB) particularly vulnerable to climate variability 
and change impacts on extremes events (Magalhães, 1996; Marengo 
et al., 2019). Furthermore, there is strong evidence that climate change 
will increase drought risk and severity in this region (IPCC, 2O211). 
Although the NEB has historically been known for extreme droughts, 
heavy rainfall events also have a history of severely impacting the area 
(Ribot et al., 1996; Marengo et al., 2017). In the week beginning on May 
23rd, 2022, very heavy rainfall started falling over eastern of NEB, in the 
states of Pernambuco, Alagoas, Paraíba, Sergipe and Rio Grande do 
Norte (Fig. 1). The rainfall began to intensify on the 25th of May, leading 
to flash floods and landslides in NEB and a dam break in the state of 
Paraíba (FloodList, 26 May 2, 0222). In less than 24 h on May 27–28, 
parts of Pernambuco received about 70% of the total rainfall expected 
for the entire month of May. Fig. 2 shows this event, averaged over the 
week when most of the associated impacts were reported (Fig. 2(a)) and 
over the fortnight when the precipitation was high (Fig. 2(b)). Fig. 2(c) 
depicts the Easterly Disturbance Wave peak in terms of circulation, 
humidity and vertical velocity at low level of the troposphere which was 
the main actor in the event (Vale Silva et al., 2023) (see Table 6). 

This heavy rainfall event triggered extensive landslides and wide
spread floods in the affected areas, resulting in 133 fatalities and over 
25,000 people displaced, predominantly impacting residents of low- 
income neighbourhoods near hillsides (Gizmodo, 1 June 2, 0223). 
Following the disaster, at least 80 municipalities across Pernambuco and 
Alagoas declared a state of emergency (Civil Defense Pernambuco, 2022; 
Civil Defense Alagoas, 2022). The Metropolitan Region of Recife (RMR) 
in the state of Pernambuco was severely impacted by this hazard event - 
one of the worst extreme rainfall events in its history. 

Easterly disturb waves, that are typical meteorological events for this 
season, have the potential to cause heavy and widespread rainfall as well 
as thunderstorms, and were the primary driver of this hazard event in 
May 2022 (Vale Silva et al., 2023). Due to the location’s topography, 
characterized by low altitudes, the urban drainage system is highly 
susceptible to the effects of the tides (Silva et al., 2017). In this context, 
the impacts derived from intense rainfall in this region, notably flood
ing, are recognized for their accentuation during periods of rising tides 
(Marengo et al., 2023). However, with the rise in sea level in the Recife 
area (Harari et al., 2004), an increase in the propensity to flooding in the 
city is projected, especially in situations involving intense rainfall and 
high tides, in a scenario of rising sea levels (Costa et al., 2010). However, 
the impacts of the May 2022 event were largely ascribed to the pre
cipitation itself. 

In this study, we analyse precipitation over a small region enclosing 
the area with the highest impacts. Recognising the localised nature of 
the rainfall, for this analysis, we restrict ourselves to using only high- 
resolution climate models (≤60 km). However, the resolution of these 
models is still such that very few grid boxes represent the coastal region, 
with the largest impacts. In order to be able to use these models and 
compare with observations, we choose to extend the region slightly 
further inland. The chosen spatial definition is a rectangular domain 
defined by 10◦S-5◦S; 36◦W-34.5◦W, in which we use land points only in 
the black box in Fig. 2. Consideration is also given to the homogeneity of 
the region (Fig. 3(a)). The study box is dominated by one type of climate 
zone - the tropical Savanna (Fig. 3(b)) and lies to the east of a drier 

region in climatological precipitation (Fig. 3(c)). Because the maximum 
impacts were witnessed in one week, we use as a temporal definition the 
annual maximum 7-day average precipitation, RX7d. Because the event 
is furthermore characterised by higher-than-average precipitation over 
periods longer than a week, with several peaks, we also use the alter
native temporal definition of the annual maximum of 15-day average 
precipitation, RX15d. 

The period from March to August is the rainy season of the eastern 
Northeast coast of Brazil. Generally, in March and April the Intertropical 
Convergence Zone (ITCZ) has its largest incursion to the Southern 
Hemisphere and in its seasonal march produces rainfall events 
throughout the over the Northeast Brazil region through deep convec
tion and the so-called cold rain (Waliser and Jiang, 2015; Grimm 2011). 
On the other hand, the rainfall over the eastern coast of Northeast Brazil 
is largely produced by easterly wave disturbances (Gomes et al., 2015). 
Even though these waves occur all year round, they have a peak activity 
during the months from May to August, reaching the coast with heavy 
rain and with rainfall events lasting for a few days. They have a 
local-regional spatial scale of local-regional action and very often are 
associated with warm convective rainfall (Liu and Zipser, 2009). These 
characteristics are hard to be represented in climate models due to the 
lack of high spatial resolution and adequate convection schemes. 
Expressive daily rainfall amounts over 150 mm are commonly recorded 
in this region and are usually associated with easterly wave disturbances 
(Gomes et al., 2015). For example, from 21-May until 01-Jun 2017, 
some cities in Pernambuco experienced consecutives days with very 
high daily rainfall records, with the 7-day event in Sirinhaém, Rio For
moso and Ribeirão stations recorded 591, 569.3 and 468.5 mm, 
respectively. Other recent extreme rainfall events that were also asso
ciated with severe impacts in Pernambuco include those recorded in the 
years 2000, 2004, 2005, 2010, 2011, 2017, 2019 and 2021. 

So far, not many attribution studies for floods or extreme precipita
tion events have been carried out for regions in Northeast Brazil (Mar
tins et al., 2017). One recent study by Rudorff et al. (2021) has assessed 
river floods from the Parnaíba river, situated in a different climate zone 
to the west of our study region, that occurred in the year 2018, 2019 and 
2022. The authors found that anthropogenic factors have increased the 

Fig. 1. Eastern of Northeast Brazil region.  

1 https://www.ipcc.ch/report/ar6/wg1/downloads/factsheets/IPCC_AR6_ 
WGI_Regional_Fact_Sheet_Central_and_South_America.pdf.  

2 https://floodlist. 
com/america/brazil-floods-pernambuco-alagoas-paraiba-may-2022#.  

3 https://gizmodo.com/brazil-landslides-recife-pernambuco-floods-1 
848997858. 
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likelihood of these events by approximately 30%, although the link to 
observed (decreasing) trends is not clear. This study contributes to 
enrich the literature on this scope by performing an attribution analysis 
for the May 2022 extreme precipitation events over Eastern Northeast 
Brazil aiming to identify the possible anthropogenic-driven climate 
factors behind the observed impacts. 

2. Data and methods 

2.1. Observational data 

2.1.1. Station data 
We analysed long-term observed daily precipitation records from 

1960-present, from 389 weather stations spread over our study region, 

Fig. 2. (a) Observed average 7-day rainfall for 25–31 May 2022 and (b) 15 -day rainfall for 25 May-8 June 2022, over North Eastern Brazil from MERGE-GPM 
dataset. The colorbar is in the unit mm/day. (c) Streamlines, relative humidity (shaded) and omega (contours) at 700 hPa on May 28, 2022 00 UTC, the red 
solid curve depicts omega less than − 1 Pa/s. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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as shown in Fig. 4(a). The network is sparse in the beginning of the time 
series, and becoming denser from the 80’s. These stations are owned and 
monitored by the meteorology/hydrology state service institutions in 
the states of Rio Grande do Norte, Paraíba, Pernambuco and Alagoas 
(Rio Grande do Norte Agricultural Research Institute - EMPARN,4 Water 
Management Executive Agency – AESA,5 Climate and Water Pernam
buco Agency6 - APAC and State Environmental and Water Resources 
Secretariat7 - SEMARH) and federal institutions (National Institute of 
Meteorology - INMET8 and National Water and Sanitation Agency - 
ANA9). 

The time series of these 389 stations have been averaged to represent 
the average precipitation over the area (Fig. 4(a)). However, to avoid 
spurious trends due to inhomogeneity in the number of stations avail
able in time, we also averaged over the 75 stations that have data from at 
least from 1970 until May 2022, and over the 11 stations with data from 
1960 until now (a subset of the 75 stations). The distribution of the 75 
station locations is approximately uniformly spaced (Fig. 4(b)), whereas 
the 11 stations with the longest data are concentrated over a small re
gion (Fig. 4(c)). 

We compare the annual 7-day maxima and annual 15-day maxima of 
the three different station averages with ERA5 data (Hersbach et al., 
2020) and GPM-Merge (Rozante et al., 2010) averaged over the study 

area (see Fig. 5). The GPM-Merge dataset is only used for this compar
ison, as it is too short for an extreme value analysis. The ERA5 data 
differs from the other time series and is therefore considered to be less 
reliable for this specific region. The 75 stations average resembles the 
average over 389 stations well over most of the years and results be
tween the 389 stations average and the 75 stations average are consis
tent in terms of data valid and values (not shown). The 11 stations 
average diverges from the other time series. This may have to do with 
the unequal distribution of these stations across the region, being 
located in a small subregion of the full rectangular study area. Therefore 
the 11 stations average is not considered for further analysis. We thus 
continue the analysis of observations with the 75 stations average 
(Fig. 5). 

As a measure of anthropogenic climate change, we use the (low-pass 
filtered with a 4-year moving average) global mean surface temperature 
(GMST), where GMST is taken from the National Aeronautics and Space 
Administration/Goddard Institute for Space Science (NASA/GISS) sur
face temperature analysis (GISTEMP, Hansen et al., 2010; Lenssen et al., 
2019). 

2.2. Model and experiment descriptions 

We use three different multi-model ensembles from climate model
ling experiments using very different framings (Philip et al., 2020): Sea 
surface temperature (SST) driven global circulation high resolution 
models, coupled global circulation models and regional climate models. 

The first set of models used in the analysis include the AM2.5C360 
(Yang et al., 2021; Chan et al., 2021) and the FLOR (Vecchi et al., 2014) 
climate models developed at Geophysical Fluid Dynamics Laboratory 
(GFDL). The AM2.5C360 is an atmospheric GCM based on that in the 

Fig. 3. (a) Topography of the region, with ocean displayed as white area and state borders indicated by black lines. (b) Köppen Climate Zones in Northeast Brazil 
(Alvares et al., 2013). (c) Annual mean precipitation (mm) over Northeast Brazil from MERGE-GPM dataset (Rozante et al., 2010). The study region is indicated by 
the black box. 

4 www.emparn.rn.gov.br.  
5 http://www.aesa.pb.gov.br.  
6 https://www.apac.pe.gov.br.  
7 http://www.semarh.al.gov.br.  
8 https://portal.inmet.gov.br.  
9 https://www.gov.br/ana/en. 
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FLOR model (Delworth et al., 2012; Vecchi et al., 2014) with a hori
zontal resolution of 25 km. Ten ensemble simulations of the Atmo
spheric Model Intercomparison Project (AMIP) experiment (1871–2020) 
are analysed. These simulations are initialised from ten different 
pre-industrial conditions but forced by the same SSTs from HadISST1 

(Rayner et al., 2003) after groupwise adjustments (Chan et al., 2021), as 
well as the same historical radiative forcings. The FLOR model, on the 
other hand, is an atmosphere-ocean coupled GCM with a resolution of 
50 km for land and atmosphere and 1◦ for ocean and ice. Five ensemble 
simulations from FLOR are analysed, which cover the period from 1860 
to 2100 and include both the historical and RCP4.5 experiments driven 
by transient radiative forcings from CMIP5 (Taylor et al., 2012). 

The second ensemble is the HighResMIP SST-forced model ensemble 
(Haarsma et al., 2016), the simulations for which span from 1950 to 
2050. The SST and sea ice forcings for the period 1950–2014 are ob
tained from the 0.25◦ x 0.25◦ Hadley Centre Global Sea Ice and Sea 
Surface Temperature dataset that are area-weighted re-gridded to match 
the climate model resolution (see Table 1). For the ‘future’ time period 
(2015–2050), SST/sea-ice data are derived from RCP8.5 (CMIP5) data 
and combined with greenhouse gas forcings from SSP5-8.5 (CMIP6) 
simulations (see Section 3.3 of Haarsma et al., 2016 for further details). 

The third ensemble is the Coordinated Regional Climate Down
scaling Experiment CORDEX-CORE (10 models with at 0.44◦ resolution 
(SAM-44) and 4 models at 0.22◦ resolution (SAM-22)) multi-model 
ensemble (Gutowski et al., 2016; Giorgi et al., 2021), comprising 14 
simulations resulting from pairings of Global Climate Models (GCMs) 
and Regional Climate Models (RCMs) (see Table 2 below). These simu
lations are composed of historical simulations up to 2005 and extended 
to the year 2100 using the RCP8.5 scenario (see Tables 3, 4, 5 and 6). 

For model validation the years 1960–2022 have been used 
(1970–2022 for the SAM-22 models), which is the period for which the 
observed data is available. For the model analysis all data up to 2022 has 
been used. Because of model deficiencies we do not include the years 
after 2022 for a projection into the future (see section 4). 

2.3. Statistical methods 

In this study we analyse precipitation time series from eastern coast 

Fig. 4. Locations of weather stations within the study region. (a) All 389 stations (b) 75 stations with data from at least 1970. (c) 11 stations with data since 1960 
(subset of 75 stations in panel (b)). 

Fig. 5. (a) Time series of annual 7-day maximum precipitation in [mm/day] 
and (b) 15-day maximum precipitation in [mm/day] for different selections of 
stations (all, 75 or 11) and two different observations/reanalyses (ERA5, 
GPM-Merge). 

F.C. Vasconcelos Junior et al.                                                                                                                                                                                                                



Weather and Climate Extremes 45 (2024) 100699

6

of Northeast Brazil (on the box depicted in Fig. 2(a)) for 7-day and 15- 
day annual maxima where long records of observed data are available. 
Methods for observational and model analysis and for model evaluation 
and synthesis are used according to the World Weather Attribution 
Protocol, described in Philip et al. (2020), with supporting details found 
in van Oldenborgh et al. (2021) and Ciavarella et al. (2021). 

The analysis steps include: (i) trend calculation from observations; 
(ii) model validation; (iii) multimethod multi-model attribution of the 
event with return period of ‘n’ years (estimated from observations in 
step (i)) and (iv) synthesis of the attribution statement. From observed 
data, we first calculate the return periods, Probability Ratio (PR) and 
change in intensity of the event under study for comparing between the 
current climate proxied by the observed GMST value of 2022 and a past 
climate that would have been before humans started warming the 
planet, when GMST (1850–1900, based on the Global Warming Index 
https://www.globalwarmingindex.org) was cooler by 1.2 ◦C, as follows. 
To statistically model the event under study, we use a Generalised 
Extreme Value (GEV) that scales with GMST: 

F(p)= exp
[

−
(

1 + ξ
p − μ

σ

)1
ξ
]

μ= μ0 exp
(

αTʹ

μ0

)

,

σ = σ0 exp
(

αTʹ

μ0

)

,

with p precipitation, T′ the GMST anomaly, μ the location parameter, σ 
the scale parameter and ξ the shape parameter and α the trend that is 
fitted together with μ0 and σ0. In the fit, both the dispersion parameter 
(the ratio of the scale and location parameter) and the shape parameter 
are constant. The PR is calculated as the probability of occurrence (re
turn period) of an event of the same (or larger) magnitude as observed in 
the current climate, divided by the probability of occurrence of the same 
event in the climate of the past. In the GEV analysis, the confidence 

intervals are estimated using a non-parametric bootstrap. The uncer
tainty ranges obtained from the bootstrap procedure provide informa
tion on whether the trend is outside the range of deviations expected by 
natural variability. We repeat the above steps for the annual maxima 
series estimated from the climate model simulations, to get PR and in
tensity changes of the respective events of return period ‘n’ years 
(estimated from observations) between the current 2022 climate and a 
climate that would have been 1.2 ◦C cooler. Next, results from obser
vations and models that pass the validation tests are synthesised into a 
single attribution statement, following the methodology described in 
Philip et al. (2020), Ciavarella et al. (2021) and Li & Otto (2022). 

3. Observational analysis: return time and trend 

3.1. Analysis of point station data 

Fig. 6(a–b) shows the time series of the station-averaged annual 7- 
day and 15-day maximum precipitation including the 10-year running 
mean. The increasing trend in the amount of rainfall associated with 
these accumulations is consistent with previous studies that report in
crease in rainfall in the Northeast Brazilian coast in recent years as 
compared to the past (Caravalho et al., 2020). The magnitudes of the 
May 2022 event- 33.96 mm/day for the 7-day event and 23.95 mm/day 
for the 15-day event, are the highest in the respective records, as can be 
seen in these figures (last data points in the time series). 

Fig. 7(a) shows the response of annual maximum 7-day average 
precipitation to the global mean surface temperature, while Fig. 7(b) 
shows the return period curve of the 7-day event in the current climate 
and in the past climate when the global mean temperature was 1.2 ◦C 
cooler. The return period of such an event in the current climate is 500 
years (95% Confidence Interval (CI) 66 years to ∞). The positive trend in 
panel (a) indicates a tendency towards more and heavier precipitation 
events in recent years. The probability ratio is 43000 (95% CI 1.7 to ∞) 
and equivalently, the intensity change is 27% (95% CI 0.95%–59%). 
Fig. 7(c–d) shows the trends and the GEV-fits based on the 15-day event 
definition. The return period in this case is found to tend to ∞ (lower 
bound of 240,000 years), which implies that a 15-day event of this 
magnitude is very extreme even for the current climate which is 1.2 ◦C 
warmer than pre-industrial. Consequently, the probability ratio also 
cannot be defined. The intensity change ranges from 16 to 38.5% (at 
95%CI) with a best estimate of 13%. 

For ascertaining that there are no inconsistencies in the results 
arising from (i) the choice of the subset of 75 representative stations 
(Fig. 4(b)) instead of all 389 stations (Fig. 4(a)) for reasons explained in 
Section 2.1, and (ii) the choice of time series to include the 1960–1969 
period when the stations were sparse and concentrated to a smaller re
gion as shown in Fig. 4(c)), we repeat the above analysis for the 7-day 
and 15-day events, for two additional cases:  

1. Considering all 389 stations for 1960–2022 (plots shown in Fig. S5).  
2. Considering 75 stations for 1970–2022 (plots shown in Fig. S6). 

We find that there is no indication of differences in the estimates for 
return period of the 2022 event, probability ratio and change in intensity 
between any of these cases. 

3.2. Influence of modes of natural variability 

During the period of heavy precipitation and the preceding months 
there has been an ongoing La Niña event (Jones, 2022). This modulates 
the rainfall variability over Northeast Brazil, and it may have exacer
bated the average rainfall in the eastern Northeast Brazil (ENEB). Fig. 8 
shows the correlations between the combined GPCC v2020 + moni
toring product V6 + first guess (Schneider et al., 2020; Ziese et al., 2011) 
and the NCDCv5 ERSST Sea Surface Temperature (SST) values (Huang 
et al., 2017). SST values in the Southern Atlantic Ocean were only 

Table 1 
List of HighResMIP models used in the study.  

Model Resolution Institute 

CNRM-CM6-1-HR ~50 km Centre National de Recherches 
Météorologiques 

EC-Earth3P-HR ~40 km EC-Earth-Consortium 
HadGEM3-GC31- 

HM 
~25 km UK Met Office, Hadley Centre 

HadGEM3-GC31- 
MM 

~60 km UK Met Office, Hadley Centre  

Table 2 
List of regional climate models used with their driving global climate models 
(see Gutowski et al., 2016 for a description of the Cordex experiment and Taylor 
et al. (2012) for a description of the GCMs).  

Regional Climate Model Resolution Global Climate Model Period 

REMO2015 0.22◦ MPI-ESM-LR 11970–2100 
REMO2015 0.22◦ NorESM1-M 11970–2100 
RegCM4-7 0.22◦ MPI-ESM-MR 11970–2099 
RegCM4-7 0.22◦ NorESM1-M 11970–2099 
REMO2009 0.44◦ MPI-ESM-LR 11950–2100 
SMHI-RCA4 0.44◦ CSIRO-Mk3-6-0 11951–2100 
SMHI-RCA4 0.44◦ EC-EARTH 11951–2100 
SMHI-RCA4 0.44◦ IPSL-CM5A-MR 11951–2099 
SMHI-RCA4-7 0.44◦ MIROC5 11951–2099 
SMHI-RCA4 0.44◦ HadGEM2-ES 11951–2100 
SMHI-RCA4 0.44◦ MPI-ESM-LR 11951–2100 
SMHI-RCA4 0.44◦ NorESM1-M 11951–2100 
SMHI-RCA4 0.44◦ GFDL-ESM2M 11951–2100 
UCAN_WRF341I 0.44◦ CanESM2 11950–2100  
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Table 3 
Evaluation results for the climate models considered for the attribution analysis of annual maximum 7-day rainfall in the year 
2022, over the study region. The table contains qualitative assessments of seasonal cycle and spatial pattern of precipitation from 
the models (good, reasonable, bad) along with estimates for dispersion parameter, shape parameter and event magnitude. The 
corresponding estimates for observations are shown in blue. Based on overall suitability, the models are classified as good, 
reasonable and bad, shown by green, yellow and red highlights, respectively. 
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slightly higher in May, so this may have had an influence as well. In the 
ENEB, the precipitation is strongly modulated by Easterly Waves Dis
turbances (EWD) (Amorim et al., 2014; Gomes et al., 2015; Gomes et al., 
2019; Neves et al., 2016; Kouadio et al., 2012; Ramos, 1975; Torres and 
Ferreira, 2011; da Silva et al., 2020) with maximum rainfall between 
May and July, and annual average precipitation above 1500 mm. SST 
anomalies over Tropical South Atlantic (TSA) and El Niño Southern 
Oscillation (ENSO) that interact with global circulation modulate the 
rainfall variability in the ENEB (Andreoli and Kayano, 2007; Silva et al., 
2018; Silva & Guedes, 2012; Torres and Ferreira, 2011; Rodrigues et al., 
2020). The very intense daily rainfall events of May 2022 were largely 
caused by the propagation of EWD (Vale Silva et al., 2023), which in 
combination with an anomalously warm tropical Atlantic and a humid 
and unstable atmosphere near the east coast of Northeast Brazil fav
oured the development and propagating of very convective precipitation 
clouds, with expressive values of vertical velocity and relative humidity 
at 700 hPa near the NEB’s coast in a sequence of days, as illustrated in 
Fig. 2(c). 

4. Model evaluation 

In the subsections below we show the results of the model validation 
for the 7-day and the 15-day events. To validate the quality of the 
models, we firstly qualitatively compare the seasonal cycles in models 
and observations. The seasonal cycle is labeled ’reasonable’ if it has one 
peak extending in time to at least May. We note that convective warm 
rains are not represented well in most of the models, with the precipi
tation seasonal cycles declining around May, thus missing the warm rain 
season from May–Aug. The only exception is CNRM-CM6-1-HR from the 
HighResMIP experiment, where the seasonal cycle is consistent with the 
observed cycle (Fig. S1 for observations; Fig. S3 (a-c) for climate 
models). Secondly, we compare the spatial pattern of annual rainfall. For 
the spatial patterns we compare, again visually, the average precipita
tion over March to August in the observations with those in the models. 
Thirdly, we compare the parameters of the fitted GEV in observations 
and models. If the parameter best estimate of the model is inside the 
range of the parameter range of observations, it is labeled ’good’, it is 
labeled ’reasonable’ if there is only some overlap, and it is labeled ’bad’ 
if there is no overlap between the parameter ranges. 

5. Multi-method multi-model attribution 

This section shows Probability Ratios and change in intensity ΔI for 
models that passed the validation tests and also includes the values 
calculated from the fits with observations. All models labeled ’reason
able’ or ‘good’ have been included, although we note that these models 
all miss some essential physics. 

6. Hazard synthesis 

For both the 7-day annual maximum and the 15-day annual 
maximum precipitation we calculate the probability ratio as well as the 
change in magnitude of the event in the observations and the models. If 
the models do not pass the validation tests, we do not use the results. We 
synthesise the ones that pass with the observations to give an over
arching attribution statement. Figs. 9 and 10 show the changes in 
probability and intensity for the observations (blue) and models (red). 
The width of the colored bars show a measure of the natural variability 
in the observations and models as obtained with the bootstrap procedure 
in the GEV fitting. Before combining them into a synthesised assessment, 
a term to account for intermodel spread is added (in quadrature) to the 
natural variability of the models. This is shown as white boxes around 
the light red bars in Figs. 9 and 10. The dark red bar is the model average 
that takes both model natural variability and intermodel spread into 
account. Next, observations and models are combined into a single result 
in two ways. Firstly, we neglect common model uncertainties beyond 

the model spread that is depicted by the model average, and compute 
the weighted average of the model average and observations: this is 
indicated by the magenta bar. As, due to common model uncertainties, 
model uncertainty can be larger than the model spread, secondly, we 
also show the more conservative estimate of an unweighted average of 
observations and the model average, indicated by the white box around 
the magenta bar in the synthesis figures. 

The tendency towards heavier precipitation in the 7-day and 15-day 
time scales in the observed data, albeit large uncertainties due to natural 
variability (blue bars in Figs. 9 and 10), aligns with the effects of global 
warming. This behaviour is consistent with the scientific understanding 
described by the Clausius-Clapeyron relationship, that a warmer atmo
sphere can hold more moisture. This tendency is not replicated in the 
models, possibly due to the models not capturing the convective pro
cesses that are important for this region (discussed in Section 2.2 and 
Section 4). Therefore, even those model runs that passed our validation 
tests and included in the attribution analysis are considered to be of 
limited value only (shown by red bars in Figs. 9 and 10). Moreover, the 
model estimates of changes in intensity and probability do not show a 
consistent change. It is important to note that this is an artefact of the 
models and not an indication of the real-world changes. We first need to 
improve the representation of this type of warm rainfall in models before 
we can present model results with more confidence. Because of the 
model deficiencies we cannot use the synthesised values that combine 
observations and models. 

According to the IPCC AR6 (Seneviratne et al., 2021), the change in 
average precipitation over Northeast Brazil is more likely to decrease, in 
addition to an increase in the occurrence of consecutive dry days, 
however the projection of extreme rainfall events goes in the opposite 
direction, with uniform increasing of the largest daily precipitation in a 
year. By combining observations with these alternate lines of evidence 
and the physical understanding of the climate system, we conclude that 
human-induced climate change is, at least in part, responsible for the 
increase in likelihood and intensity of heavy rainfall events as observed 
in May 2022, although we cannot quantify the role of climate change. 

7. Vulnerability and exposure 

In addition to assessing the changing risk of the rainfall that 
contributed to the flood hazard, in this section we look at the vulnera
bility and exposure factors that increased the likelihood of impacts in the 
affected region. 

Despite Brazil’s significant socio-economic progress (e.g., 29 million 
people lifted out of poverty between 2003 and 14), inequality, dispar
ities, marginalisation and displacement remain major drivers of 
vulnerability to disasters (Kakinuma et al., 2020; Lemos et al., 2016; 
Dolman et al., 2018), further amplified by climate change impacts 
(Debortoli et al., 2017; Rasch, 2016). Vulnerabilities and their impli
cations are unequally distributed across rural/urban divides and eth
nicities (Gubert et al., 2017; Oliveira et al., 2020). 

Northeast Brazil is the country’s poorest and least developed region 
(Hummell et al., 2016). It has the lowest average municipality equiv
alized median monthly household income at R$ 429 (Rasch, 2017). 
Cities and urban planning can highlight underlying inequities especially 
for marginalised or disadvantaged ethnic groups and residents of 
slave-descendant communities (Gubert et al., 2017). 

7.1. History of floods 

The Pernambuco and Alagoas states, and in particular their coastal 
areas, have a long history of flooding. The risk of recurring floods is well- 
known among affected communities (Ardaya et al., 2017). For example, 
floods in 2010 mainly impacted these two states and resulted in entire 
villages being destroyed, 120,000 people displaced and destruction of 
roads, bridges, ICT infrastructure and more (Relief Web, 2010). In Per
nambuco, the losses and damages were estimated at R$ 3,4 billion 
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Table 4 
Evaluation results for the climate models considered for the attribution analysis of annual maximum 15-day rainfall in the year 
2022, over the study region. The table contains qualitative assessments of seasonal cycle and spatial pattern of precipitation 
from the models (good, reasonable, bad) along with estimates for dispersion parameter, shape parameter and event magnitude. 
The corresponding estimates for observations are shown in blue. Based on overall suitability, the models are classified as 
reasonable and bad, shown by yellow and red highlights, respectively. 
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(World Bank, 2012a), while in Alagoas resulted in R$ 1,89 billion 
(World Bank 2012b). 

In 2017 another flood in the same states resulted in local states of 
emergency being declared and over 55,000 people displaced. Between 
1995 and 2019, Pernambuco had accumulated losses in disasters that 
reached R$ 29,1 billion - the fourth position between the 27 federative 
units in Brazil - while Alagoas had R$ 8,9 billion - the 15th position 
(World Bank 2020). The number of housing units destroyed in disasters 
were 20,300 in Pernambuco (3rd position in the country) and 16,400 in 
Alagoas (6th position) (World Bank 2020). Over the past years, several 
participatory actions including crowd-sourcing geo-information have 
been piloted to improve flood risk management (Mansur et al., 2018; 
Horita et al., 2015; Degrossi et al., 2014). 

7.2. Land-use planning and urbanisation 

Situated on the coast of the Atlantic Ocean at the confluence of the 
Capibaribe and Beberibe rivers and over 70 channels, the Metropolitan 
Region of Recife (MRR) was amongst the hardest hit by the 2022 flood. 
Recife, the state capital of Pernambuco, is one of the cities with the 
highest flood risk in Brazil with high population density (7,602 people/ 
km2) and poverty rates (40 percent) paired with significant Black, 
Brown and Indigenous communities (approximately 59 percent com
bined) (Hummell et al., 2016; City Population 2021; Global Future 
Cities, n.d.; IBGE, 2010). 

The region has seen rapid urbanisation and increased population 
density caused by population increases and migration. The broader 
northeast Brazil region is subject to recurring droughts that have 
resulted in mass migrations to already overcrowded urban centers 
(Marengo et al., 2021). For instance, between 1950 and 2000, the urban 
population of Recife tripled (IBGE, 2020) - based on the 2010 National 
Census, there were 1,5 million people living in the city which has 
landscape characteristics (low average altitude, flat areas, a water table 
close to the surface) which make it particularly exposed to hydromete
orological hazards (Souza Leao et al., 2021). According to the census, 
13.4% of the city’s populations lives in high and very high risk-prone 
areas: Of 644, 620 people living in Jaboatão dos Guararapes, 29.2% 
are settled in landslide or flood-prone areas mapped by the Brazilian 
Geological Survey (IBGE 2018). 

In line with other regions in Brazil, the urban front expands with 
little oversight and planning, and often results in concentration of 
informal settlements on flood-prone areas or on/near steep slopes at risk 
of landslides (Gomes et al., 2012). Many of the rural migrants live in 
informal settlements which presently make up nearly one-fourth of the 
Metropolitan Region of Recife’s 3,7 million residents (Koster, 2020). 
Falling beyond official municipal boundaries, homes in these informal 
settlements are often situated on steep hillslopes and along floodplains 
(Marengo et al., 2021). The houses built are often shacks made of wood, 
metal sheets, mud bricks, without a foundation established on firm 
ground (bedrock). This, coupled with the removal of vegetation, 
destabilises the soil making it prone to landslides when soaked, a phe
nomenon documented in several hills in the Recife municipality (Lins 
et al., 2020). 

The creation of impervious surface and changes to local hydrology 
and geology has also had an impact on increasing flood and landslide 
risk, hampering the effectiveness of drainage and sanitation systems, 
and increasing flood risk (Souza Leao et al., 2021; Cerqueira et al., 
2020). Urban sanitation and drainage infrastructure is inadequate, 
usually due to a lack of planning and assessments deemed incompatible 
to current needs of most cities around the country (Rodrigues et al., 
2022). 

7.3. Risk management - preparedness, early warning early action, and 
response 

Planning and preparedness play a key role in reducing the 

vulnerability and exposure of people and assets during disasters. 
In Brazil, different flood risk management laws and policies exist at 

national, state, and municipal scale. For instance, 1,538 (27.6%) of 
5,570 municipalities have urban plans which take into account flood 
risks (IBGE 2020) - in the Northeast region, 18.7% of municipalities 
have these plans. Brazil’s National Center for Monitoring and Early 
Warning of Natural Disasters (CEMADEN) was created in July 2011, 
after the devastating Petropolis floods and landslides (Marchezini et al., 
2017). Sitting at the Ministry of Science, Technology and Innovation, 
CEMADEN currently monitors 1038 cities in Brazil - with landslide and 
flood maps which were developed by the Brazilian Geological Survey 
(CPRM, 2022) - and is responsible for issuing alerts to the National 
Secretariat of Civil Defense (SEDEC). 

The State of Pernambuco’s Water and Climate Agency (APAC) also 
has a flood early warning system by which alerts are issued to the public. 
The warnings range from yellow to orange to red, a combination of 
probability of occurrence and intensity of rain events (APAC, 2022). 
APAC also participates in the training of Municipal Civil Defences, 
explaining how the weather forecasts work and the three types of alerts 
(yellow, orange and red), based on the daily weather forecasting and 
tendencies updates. All representatives of the municipal Civil Defences 
have direct communication with the APAC Situation Room, and from 
these updates and trainings, each municipality is responsible for 
updating its disaster risk reduction (DRR) and contingency plan annu
ally - 24.3% of cities have DRR plans in Pernambuco (IBGE, 2020). In 
addition to media outlets, policies enacted in response to previous flood 
events enabled the alerts to be issued through SMS, although the text of a 
current bill under consideration by the Recife Assembly suggests these 
SMS warnings are "unavailable", justifying the introduction of this 
additional bill to strengthen Recife’s response programs. Finally, each 
municipality is responsible for developing procedures for preventive 
measures in case of disasters. Every year, the members of the Municipal 
Civil Defences are trained to update such measures for the rainy season 
in the State of Pernambuco. 

For this event, the severe rainfall that contributed to the floods and 
landslides was relatively well-forecasted albeit with a wide range, with 
sources such as GLOFAS forecasting flooding between a 2–5-year 
average to over a 20 year average (Start Network, May 27, 2022; ECHO, 
May 31, 2022). Conditions were monitored by agencies such as APAC 
(internal communication) and warning alerts were issued - notably, the 
municipal government of Recife issued a red alert for heavy rainfall on 
May 27. Technical meetings were held between APAC and Pernambuco 
Civil Defense to support prevention actions based on weather and 
climate conditions. Federal, State and Municipal disaster response 
included search and rescue, first aid provision, and the restoration of 
essential services, all of which would have reduced the impacts of the 
events once they had occurred (MDR. Ministério do Desenvolvimento 
Regional, 2022). Pernambuco State Government has announced plans to 
also provide financial support for disaster recovery to the affected 
population. 

Recent research also points to potential policy implementation gaps 
that may need improvement to increase the effectiveness of climate and 
disaster risk reduction policies and structures. Political action has his
torically followed on the heels of large disasters and this reactive 
approach to the challenges has not (yet) led to a complete integration of 
all levels and links in the warning systems chain. This is a politically 
charged issue made more complex in times of political instability and 
economic recession. If left unresolved, this situation may contribute to 
increasing vulnerability and risks of disasters. 

8. Conclusions 

A rapid attribution study was performed to assess the role of climate 
change in altering the likelihood and intensity of the extreme rainfall 
over a land area of coastal Eastern Northeast Brazil (10◦S-5◦S; 36◦W- 
45.5◦W) that encompasses the region impacted by the observed extreme 
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events of May 2022. Trend and extreme value analysis were performed 
using 7 and 15-day mean maximum values using consistent and regu
larly distributed observed data of 75 stations since the 1970s. The same 
assessment was performed using state-of-the-art climate models in a 
1.2 ◦C colder climate than the current conditions. 

The rainfall that resulted in flash floods in coastal northeastern Brazil 
was very rare (a 1–500 to 1–1000 year event for the 7 and 15-day mean, 
respectively), and one can reasonably assume that such a rare event will 
be an impactful one. Even though both events were located far outside 
range of the previously observed records, because of the short obser
vational record and associated uncertainties it was not possible to 
quantify how much climate change made these events more likely to 
happen. The performed analysis also revealed that global warming 
increased the intensity of such extreme rainfall: rainfall events as rare as 
those investigated here occurring in a 1.2 ◦C cooler climate would have 
been approximately a fifth less intense. 

While many climate models simulate the main precipitation features 
over the region, we find that for such spatially local events, all models 
exhibit systematic errors in precipitation magnitudes. This is partly due 
to their coarse spatial resolution and misrepresentation of key physical 
processes (e.g., convection and associated warm rains), which hinders 
our ability to quantify the role of climate change in the observed in
crease in likelihood and intensity of such extreme events. However, 
evidence from previous studies (e.g., Seneviratne et al., 2021) and the 
physical understanding of the climate system indicates that extreme 
rainfall in the region will increase under warming; therefore we 
conclude that human-induced climate change is, at least in part, 
responsible for the increase in likelihood and intensity of heavy rainfall 
events as observed in May 2022. 

The extreme nature of the floods made it so that exposure was the 
main determinant of impact, although long-term impacts and recovery 
will likely be mediated by socio-economic, demographic and gover
nance factors. An increase in urbanisation, especially unplanned and 
informal in low-lying flood-prone areas and steep hillsides have 
increased the community exposure to these hazards. The need for 
improving the linkage between early warning and prevention actions is 
highlighted. It is unclear to what extent the warning helped reduce the 

impacts, even though some actions were taken by Civil Defense. How
ever, it was not possible to prevent fatalities because of the magnitude of 
the extreme rainfall events. This indicates the need to review and 
strengthen the protocols between weather warnings and the process that 
would lead to improved anticipatory action based on those warnings. 
This region also generally has an infrastructure deficit (e.g., housing, 
roads, water and sanitation etc.). As new infrastructure is built, there is 
an opportunity to increase resilience by accounting for increasing risks 
in the design and location, instead of reverting to outdated design 
standards. 
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Table 5 
Precipitation threshold for the 500-yr return period 7-day annual maximum precipitation, Probability Ratio and change in intensity for the models that passed the 
validation tests, for the study region.  

Model/Observations Threshold for return period 500 yr Probability ratio PR [− ] Change in intensity ΔI [%] 

75 stations 33.95 mm/day 4.3e+4 (1.7 … ∞) 27 (0.95 … 59) 
FLOR historical-rcp45 (5) 45 mm/day 1.5 (1.1 … 2.0) 3.5 (0.71 … 6.4) 
CNRM-CM6-1-HR HighResMIP (1) 28 mm/day 0.27 (0.0020 … 43) − 11 (− 23 … 5.0) 
EC-Earth3P-HR HighResMIP (1) 20 mm/day 0.49 (0.0092 … 9.8) − 8.5 (− 33 … 25) 
HadGEM3-GC31-HM HighResMIP (1) 38 mm/day 54 (0.089 … ∞) 18 (− 15 … 55) 
HadGEM3-GC31-MM HighResMIP (1) 45 mm/day 0.91 (0.057 … 25) − 1.4 (− 28 … 30) 
AM2.5C360 AMIP (10) 48 mm/day 0.74 (0.18 … 2.2) − 2.6 (− 12 … 6.4) 
NorESM1-M/REMO2015 CORDEX SAM-22 (1) 29 mm/day 0.15 (0.000077 … ∞) − 19 (− 37 … 14) 
MIROC5/SMHI-RCA4 CORDEX SAM-44 (1) 59 mm/day 4.1 (0.19 … 5.1e+5) 19 (− 10 … 63) 
HadGEM2-ES/SMHI-RCA4 CORDEX SAM-44 (1) 38 mm/day ∞ (2.5e+2 … ∞) 16 (− 0.23 … 35)  

Table 6 
Precipitation threshold for the 1000-yr return period 15-day annual maximum precipitation, Probability Ratio and change in intensity for the models that passed the 
validation tests, for the study region.  

Model/Observations Threshold for return period 1000 yr Probability ratio PR Change in intensity ΔI [%] 

75 stations 23.94 mm/day ∞ (0.12 … ∞) 15 (− 7.5 … 47) 
FLOR historical-rcp45 (5) 32 mm/day 1.7 (1.2 … 3.0) 3.6 (1.5 … 6.1) 
EC-Earth3P-HR HighResMIP (1) 14 mm/day 0.57 (0.015 … 1.7e+3) − 5.0 (− 28 … 26) 
HadGEM3-GC31-HM HighResMIP (1) 29 mm/day 5.4 (0.019 … ∞) 7.0 (− 15 … 37) 
HadGEM3-GC31-MM HighResMIP (1) 33 mm/day 0.49 (0.0045 … 5.6) − 9.3 (− 33 … 17) 
AM2.5C360 AMIP (10) 37 mm/day 0.58 (0.095 … 2.3) − 4.2 (− 15 … 7.3) 
NorESM1-M/REMO2015 CORDEX SAM-22 (1) 19 mm/day 0.020 (0.0000080 … ∞) − 23 (− 41 … − 0.83) 
MIROC5/SMHI-RCA4 CORDEX SAM-44 (1) 33 mm/day 42 (0.67 … ∞) 18 (− 8.6 … 50) 
HadGEM2-ES/SMHI-RCA4 CORDEX SAM-44 (1) 28 mm/day ∞ (14 … ∞) 10 (− 4.4 … 25) 
NorESM1-M/SMHI-RCA4 CORDEX SAM-44 (1) 34 mm/day 0.32 (0.00024 … ∞) − 9.0 (− 35 … 32)  
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Fig. 6. Time series of annual (a) 7-day maximum precipitation in [mm/day] and (b) 15-day maximum precipitation in [mm/day] averaged over the selected 75 
precipitation stations. The green line shows the 10-year running mean. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 7. (a) GEV fit with constant dispersion parameter, and location parameter scaling proportional to GMST, for the average over 75 stations. No information from 
2022 is included in the fit. Left: Annual maximum 7-day (a) and 15-day (c) average rainfall (in mm/day) as a function of the smoothed GMST. The thick red line 
denotes the time-varying location parameter and the thin lines are 1 and 2 standard deviations above. The vertical red lines show the 95% confidence interval for the 
location parameter, for the current, 2022 climate and the fictional, 1.2 ◦C cooler climate. The 2022 observation is highlighted with the magenta box. Right: Return 
time plots for the climate of 2022 (red) and a climate with GMST 1.2 ◦C cooler (blue), for the annual maximum 7-day average (b) and the 15-day average (d) rainfall 
(in mm/day). The past observations are shown twice: once shifted up to the current climate and once shifted down to the climate of the late nineteenth century. The 
markers show the data and the lines show the fits and uncertainty from the bootstrap. The horizontal magenta line shows the magnitude of the 2022 event analysed 
here. The thin red lines in panels a and c show 1 standard deviation (s.d.) and 2 s.d. above the thick red lines. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 8. Correlation between rainfall (from GPCC dataset) over the eastern Northeast region in Brazil and global ERSST Sea Surface Temperatures for months 
Mar–May, calculated over years 1891–2022. 

Fig. 9. Synthesis of intensity change (left) and probability ratios (right), when comparing the 7-day annual maximum event with a 1.2degC cooler climate.  
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the work reported in this paper. 
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