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Abstract

The Arctic has warmed almost four times faster than the rest of the globe during

the past four decades. This has led to multiple impacts in the Arctic such as the

melting of glaciers and the Greenland ice sheet, sea ice retreat, permafrost thaw,

altered species distribution and abundance, changes in hydrology and snow con-

ditions, and altered wildfire regimes. These documented and projected impacts

in the region can also propagate across borders, creating risks and opportunities

requiring adaptation responses well beyond the Arctic. By undertaking a system-

atic literature review that uses a conceptual framework for cross-border climate

change impacts, we demonstrate how local impacts of the type described above,

which are often analyzed separately in the literature, may initiate knock-on

effects that can be transmitted and transformed across borders. We illustrate

examples of six categories of cross-border risks resulting from this impact trans-

mission and potentially requiring adaptation. These concern biophysical impacts,

trade, infrastructure, finance, geopolitical relationships and human security and

social justice. We examine potential adaptation options for responding to such

cross-border risks that are of relevance for Europe. The systemic approach taken

in this paper promotes improved understanding of trade-offs between potential

benefits and risks, assists priority-setting for targeting adaptation interventions,

and can account for the important role of non-climatic drivers in amplifying or

dampening the cross-border risks of climate change impacts in the Arctic.
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1 | INTRODUCTION

The Arctic is warming much faster than the global average. Observations show that this Arctic amplification of surface
air temperature has been about four times the global mean over the last four decades (Rantanen et al., 2022). This
aligns with the high end of projections from global climate models, which show a range of amplification between two
and four times, an uncertainty range that has not narrowed across four generations of model development
(Douville, 2023; Lee et al., 2021).

Arctic warming has multiple impacts on the cryosphere, ecosystems, and societies (Ibarguchi et al., 2018). Several
studies have examined how impacts of a changing Arctic climate can interact and may be transmitted into additional
impacts, sometimes far away and of greater complexity than the original impacts (Edwards & Evans, 2017; Esau
et al., 2023; Falardeau & Bennett, 2020; Instanes et al., 2016; Wrona et al., 2016). The propagation of impacts thus has
the potential to extend beyond the Arctic region and create risks and opportunities for regions lying outside the Arctic
(Alvarez et al., 2020; Kelmelis, 2011).

The paucity of literature on exposure to cross-border impacts was first highlighted in the context of national and
European Union climate change risk assessments (Benzie et al., 2019), an observation reinforced in the IPCC Sixth
Assessment Report (AR6), which identifies knowledge gaps with respect to inter-regional risks (O'Neill et al., 2022).
To address this analytical shortfall, a framework for examining cross-border climate change impacts was developed
by Carter et al. (2021), which represents impacts that propagate over space and time as an “impact transmission sys-
tem.” The starting point is a climate trigger, which can be an abrupt event, such as an extreme weather event, or a
slow-onset event unfolding gradually over time, such as a long-term warming trend. The trigger causes an initial
impact that propagates via different transmission mechanisms, eventually reaching a recipient region. Seven catego-
ries of impact transmission mechanisms were identified: trade, finance, people, psychological, geopolitical, biophysi-
cal, and infrastructure.

In this paper, we review some of the specific cross-border transmission mechanisms by which Arctic impacts are
linked to non-Arctic regions. The IPCC AR6 describes climate drivers, impacts and risks requiring adaptation in polar
regions, noting that “the implications of climate change impacts in the Arctic and Antarctic extend beyond their bound-
aries” (Constable et al., 2022, p. 2325). These are impacts as typically treated by Working Group II of the IPCC, and
which we define here as “the effects on natural and human systems of extreme weather and climate events and of cli-
mate change” (Agard et al., 2014). Specifically, these are “effects on lives, livelihoods, health and well-being, ecosystems
and species, economic, social and cultural assets, services (including ecosystem services) and infrastructure.”
(IPCC, 2022). They are impacts, or potential impacts (risks), for which there may be adaptive responses that could be
deployed by regions in receipt of such risks, beyond mitigation of the main drivers of anthropogenic climate change.
Other interventions to influence climate feedback mechanisms, such as solar radiation modification (IPCC, 2023,
p. 72), are not considered here.

A challenge for our study is to determine when an impact can be considered to propagate beyond the Arctic, not
least because there are several definitions of the Arctic based on climatic, vegetational or jurisdictional criteria
(e.g., compared in map form by Nilsson & Christensen, 2019, p. 2). Recognizing that these nuances in definition of the
southern boundary of the circumpolar north pervade the literature on the Arctic reviewed here, we adopt a pragmatic
rather than strict definition, noting that in most of the sources we cite, the region rarely departs greatly from that
defined by the Arctic Monitoring and Assessment Programme (AMAP, 1998, p. 9).

The cross-border impacts that we focus on here are distinct from those that may arise through feedbacks in the
global (or regional) climate system. These effects are largely captured, implicitly, in the climate trigger (see above).
For example, it has been suggested that enhanced warming at high latitudes (Arctic amplification), in combination
with reduced sea ice, may influence large scale and cross-border atmospheric circulation patterns and hence mid-
latitude weather extremes (e.g., Cohen et al., 2020; Crawford et al., 2022), though the observational and model-based
evidence for this is divergent (Doblas-Reyes et al., 2021). In the context of cross-border climate change impacts as
defined here, climate extremes at lower latitudes attributed to slow-onset warming would be classified as tele-
connected climate triggers (Carter et al., 2021). Unless they too occur in the Arctic, any initial impacts that they
induce (i.e., outside the Arctic), while locally important, are largely beyond the scope of this paper. Of course, the
two phenomena are not fully independent, as it is possible that cross-border impacts originally triggered in the Arctic
and propagated outside may also be affected by teleconnected climate extremes attributable to the same climate
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trigger. For example, slow onset warming is opening up Arctic sea routes for trade with potential cross-border
impacts on trade in mid-latitudes, which in addition may be affected by changing extreme weather related to Arctic
climate systems.

Responses to warming in the Arctic need to be based on a systemic view of the complex interactions between the
resulting climate change impacts (Callaghan et al., 2020; Mavisakalyan et al., 2023; Overland, 2022). Moreover, there is
a high likelihood that propagation and subsequent amplification of impacts cause “surprising outcomes” (Falardeau &
Bennett, 2020, p. 2). Aside from their effects on the natural environment, cross-border impacts can affect numerous dif-
ferent actors, including indigenous peoples, a multitude of countries, national and international organizations, and
commercial interests (Ibarguchi et al., 2018; Shake et al., 2018; Shijin et al., 2023; Smieszek et al., 2021), posing novel
challenges for coherent and integrated policy responses (Kivimaa et al., 2024).

This paper seeks to contribute to the understanding of cross-border impacts in two ways. First, it offers an extensive
survey of cross-border climate change impacts originating in the Arctic that propagate beyond the Arctic, based on a
review of peer-reviewed and gray literature. Second, it examines implications of cross-border risks for Europe and how
the European Union (EU), as a recipient region, might consider them in adapting to climate change.

2 | DATA AND METHOD

We used the conceptual framework of Carter et al. (2021) to frame our review. In this framework, the focus is on the
interactions and transmission of impacts requiring adaptation responses within and across Arctic boundaries, as
explained in the introduction.

We conducted a scoping review (Stratton, 2019) of peer-reviewed and gray literature (i.e., non-peer-reviewed sources
judged to be reliable, such as industry journals, government reports, working papers or conference proceedings), using
Google Scholar and complemented by an analysis of the IPCC AR6. Through an initial scan, we identified the main
cross-border climate change impacts originating in the Arctic. Following Carter et al. (2021) we searched for climate
triggers, multiple initial impacts caused by those triggers and the subsequent propagation of impacts across systems and
borders. This initial scan helped to guide a systematic literature review based on the methodology of Shaffril et al.
(2021), using the Web of Science Core Collections database as recommended by Gusenbauer and Haddaway (2020).
The time frame for the search was 2001–2023. Boolean operators were combined with truncation of terms (Shaffril
et al., 2021). Some priority keywords were identified from the scoping phase: climate change, impacts, Arctic, cross-bor-
der, adaptation, Europe, with all relevant synonyms included in the search (upper part of Table A1). The search covered
the full text of the articles and provided 255 references.

A second search was conducted that retained the terms related to climate change, impact and Arctic from the gen-
eral search and added topical terms identified as relevant during the scoping review phase (middle part of Table A1).
This focused only on the abstracts, with a goal to identify studies that contribute to an understanding of the chain of
impacts. A total of 504 additional non-duplicate references were found.

Finally, a third search was conducted with the aim to find specific articles on how to adapt to cross-border impacts
of climate change. To do so, this search combined the keywords cross-border and impact, retained keywords on adapta-
tion and climate change and added a new set of terms around the notion of method (lower part of Table A1). Only
abstracts were searched, yielding 264 references.

All results were then screened by examining, in sequence, the title, abstract, and in cases requiring further clari-
fication, full article (Figure 1). To verify that our inclusion and exclusion criteria were being applied consistently,
members of the author team undertook independent screening of overlapping samples, with any discrepancies
resolved by consensus. Articles were excluded if they were too narrowly focused (e.g., on a particular species or loca-
tion, without consideration of cascading or cross-border impacts), addressed mitigation, or were completely out of
scope (for example, on the Alps or Tibet, which occasionally were identified as “Arctic” studies). An important
aspect of the screening, responsible for the majority of discrepancies between the author team once inclusion and
exclusion criteria were defined, was the fact that many articles only infer a potential of impacts to cross borders
without explicitly stating this. For example, impacts on transport and energy infrastructures were not necessarily
explicitly mentioned as cross-border impacts in some of the papers (Da Cunha et al., 2022; Porfiriev et al., 2019;
Romero Manrique et al., 2018), whereas their consequences would clearly cross boundaries. Similarly, many studies
referring to impacts on ecosystems and trophic levels mention cascading impacts, but do not necessarily explain if
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the cascade might extend beyond the Arctic region. In such cases, it was necessary to read articles thoroughly to
analyze whether cross-border impacts might be involved. Note also that articles that were not in English or not read-
ily accessible were excluded from the study. After screening, our main data for the systematic literature review
consisted of 161 references (Figure 1).

3 | CROSS-BORDER TRANSMISSION FROM THE ARCTIC

This section describes impacts of climate change of Arctic origin that may propagate to affect regions outside the Arctic.
We first identify the main climate triggers for the Arctic, and show how these, on their own or in combination, may
lead to a range of initial impacts. For each of six classes of initial impacts, we then highlight pathways by which they
can propagate beyond the location of their original occurrence.

3.1 | Climate triggers and initial impacts in the Arctic

Three main Arctic climate triggers were considered:

• Regional warming, as a slow onset event that unfolds gradually over time. It is the primary and underlying climate
trigger in the Arctic (Pedersen et al., 2022) that is attributable to anthropogenic causes, magnified by numerous and
not fully understood feedback mechanisms (Rantanen et al., 2022). It is closely associated with the two other climate
triggers.

• Increased rain, as a slow onset event characterized not only by a projected increase in precipitation but also by a shift
towards more precipitation falling as rain (Cherry et al., 2017; Hansen et al., 2015; Kelman & Næss, 2019; Waits
et al., 2018).

• Changes in extreme weather events, characterized by an altered magnitude and frequency of events towards the tails
of frequency distributions, such as for variables related to seasonal and daily temperature, precipitation (including
snow and freezing rain) and storminess (Esau et al., 2023; Pascual et al., 2021; Walsh et al., 2020).

FIGURE 1 Method for the literature review.
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Regional warming affects the cryosphere by causing melting of glaciers and ice sheets, sea ice retreat and permafrost
thaw (IPCC, 2019). Recent warming has caused the Greenland Ice Sheet to lose around 5000 Gt of ice (equivalent to
about 13.5 mm of global sea level rise) during the period 1992–2020 and the loss is expected to continue throughout the
21st century (Fox-Kemper et al., 2021). Similarly, glaciers throughout the Arctic are losing mass and projected to
continue doing so (Fox-Kemper et al., 2021). The main driver of sea ice retreat since the late 1970s is very likely anthro-
pogenic forcing (Eyring et al., 2021), and projections indicate that there will be at least one occurrence of a practically
ice-free Arctic Ocean in September by 2050 (Fox-Kemper et al., 2021). Permafrost covers about 14.8 million square kilo-
meters in the northern hemisphere, mainly in the circumpolar Arctic (Ran et al., 2022). An average decrease of 25%
± 5% �C�1 in the global volume of perennially frozen ground up to 3 m below the surface is projected for global
warming of up to 3�C (Fox-Kemper et al., 2021).

Regional warming also alters species distribution and abundance. In marine systems, increasing temperatures and
acidification (caused by increased absorption of carbon dioxide) are affecting species abundance, growth, and phenol-
ogy (Barange et al., 2018; Crépin et al., 2017; Fassbender et al., 2017). Northward migration of marine species changes
the species composition in Arctic waters and the risk of invasive species may increase (Burgass et al., 2019; Mueter
et al., 2021; Yool et al., 2015). On land, a general increase in productivity and greenness is observed with open tundra
changing to shrubland and the tree line moving to higher altitudes and latitudes (Box et al., 2019; Maliniemi
et al., 2018; Pedersen et al., 2022). Evidence of the causal link between Arctic warming and Arctic greening has become
increasingly compelling over the years (Berner et al., 2020; Callaghan et al., 2022), though other vegetation impacts are
also observed. These include “browning” of vegetation, characterized by physical damage or mortality due to extreme
events, and/or to reductions in productivity brought about by warming outpacing the ability of species to shift their
ranges geographically or altitudinally. Satellite observations from 1985 to 2016 indicate that “37.3% of the Arctic has
greened, 4.7% has browned, with 58% showing no change.” (Callaghan et al., 2022, p. 1035).

Increasing precipitation and a shift from snow to rain changes the state of surface water and snow conditions. First,
rain-on-snow events create ice crusts on snow cover (Pedersen et al., 2022). Second, increased rain on the surface of ice
bodies accelerates glacial melting induced by warming (Vincent, 2020). Third, increased liquid precipitation increases
runoff, which varies by season due to concurrent shifts in the timing of snow melt, and river and lake ice cover as the
climate warms (Bokhorst et al., 2016).

Extreme weather events, such as heatwaves, intense precipitation, drought or storms, can have many effects on the
cryosphere and ecosystems in the Arctic, with an altered risk of wildfires being a particularly important consequence.
The frequency and intensity of wildfires are related to wind conditions, lightning, droughts, soil dryness as well as vege-
tation changes that affect fuel load (McCarty et al., 2021). They are treated as an initial impact occurring within the Arc-
tic, though distinctions can be blurred. The risk of a climate-triggered fire is conditional on the state of the forest and
fuel load, themselves affected by impacts of previous fires, so feedbacks apply that may also have cross-border dimen-
sions. In recent years, the frequency and extent of wildfires in the Arctic region have been unprecedented for at least
the past 10,000 years (Constable et al., 2022).

3.2 | Impact propagation across borders

In this section we examine propagation pathways and potential cross-border risks caused by the initial impacts of cli-
mate change identified in section 3.1. We focus on the propagation of impacts from the Arctic to the rest of the world
through the transmission systems we have identified, recognizing that there can also be feedbacks that may amplify or
dampen the climate trigger and its impacts at any step of the transmission (Esau et al., 2023; Smith et al., 2019).

3.2.1 | Melting of glaciers and ice sheets

Glacial melting causes cross-border impacts through sea level rise, which leads to risks of coastal flooding and related
impacts such as saline intrusion (Fox-Kemper et al., 2021; IPCC, 2019). In this case, the transmission system is simple:
relative sea level rise (in regions where absolute sea level rise is not compensated by isostatic uplift) creates similar risks
in the Arctic and elsewhere. Coasts can become increasingly vulnerable to waves, storms, erosion and flooding. Glob-
ally, population and infrastructure on low-lying coasts and small islands are most at risk (Bertelsen & Gallucci, 2016;
Byravan & Rajan, 2022; Olsen et al., 2011). In the Arctic, the melting of land glaciers and sea ice retreat can aggravate
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the impacts (Frezzotti & Orombelli, 2014; Kelmelis, 2011; Smith et al., 2019). This is particularly the case along the
Beaufort Sea coast of the US and Canada, as well as along coasts of the Russian East Siberian Sea and Laptev Sea
(Walsh et al., 2020). The melting of glaciers can also lead to aesthetic degradation of Arctic landscapes, which may
impact cross-border tourism (Milner et al., 2017). In addition, receding glaciers can alter river flow, potentially decreas-
ing water availability, affecting indigenous and local livelihoods as well as hydropower, which is increasingly supplied
across borders (Milner et al., 2017).

3.2.2 | Sea ice retreat

Arctic sea ice retreat creates opportunities with cross-border implications in two interacting ways. First, shipping routes
are becoming increasingly navigable (Huntington et al., 2023; Ng et al., 2018; Wan et al., 2018). The two shipping
routes that have historically been plied are the Northern Sea Route (NSR) along the north coast of Russia and the
Northwest Passage (NWP) through the Canadian Arctic Archipelago. A third, the Transpolar Sea Route (TSR), is a
shorter route between Asia and Europe via the North Pole. With accelerating climate change, it may become potentially
navigable in summer by mid-century and is arguably politically less sensitive than the NSR and NWP as it passes
through international waters (Bennett et al., 2020). However, practical obstacles, such as dependence on icebreakers,
fees and customs clearance, and limited weather forecasting services, search and rescue capabilities, and relief ports,
still limit the use of the northern sea routes (Bekkers et al., 2018). Therefore, cross-Arctic transit shipping is projected to
become more profitable only after the 2030s (Boylan, 2021; Karahalil et al., 2021; Liu & Kronbak, 2010; Yumashev
et al., 2017). Impacts on global trade flows between Asia and Europe and between America and Eurasia are hence likely
to be manifested over long time horizons (Stephen, 2018; Sur & Kim, 2020; Tiller et al., 2022). For instance, it has been
estimated that under conditions that would allow year-round commercial navigation (not regarded as plausible for
another century even under high emissions scenarios), the NSR could carry up to 5% of global shipping (Yumashev
et al., 2017).

Second, sea ice retreat improves access to natural resources and locations in the Arctic seas and the central Arctic
Ocean. This can benefit cross-border commercial fisheries (see Section 3.2.4), tourism (Burgass et al., 2019; Edwards &
Evans, 2017) and exploitation of non-renewable resources. The opportunities are of global interest as the Arctic is esti-
mated to hold 13% of the world's oil reserves, 30% of undiscovered gas resources, as well as substantial deposits of
metals such as palladium, nickel and iron ore, all of which are made more accessible by retreating ice (Gautier
et al., 2009). In 2016, Russian oil and gas exploration in the Yamal Nenets region was expected to export 16.5 million
tons of liquefied natural gas per year (Bertelsen & Gallucci, 2016). Significant growth was planned thereafter, along
with renewal and expansion of the nuclear icebreaker fleet, developments that have subsequently been delayed by sanc-
tions and uncertain market access related to the Russian invasion of Ukraine (Moe, 2023). Norway is currently planning
to grant licenses for deep sea mining of critical minerals (Smieszek et al., 2021). Opening Arctic seas also enhance tran-
sit opportunities for land-based resources made accessible by retreating ice and permafrost thaw (Ng et al., 2018).

The transmission of impacts occurs via economic activities that are part of international trade, involving many non-
Arctic states and complex supply chains. Global financial systems are also closely involved, through investments by
non-Arctic states and insurance and reinsurance for infrastructure and activities (Bertelsen & Gallucci, 2016;
Boylan, 2021; Edwards & Evans, 2017; Johannsdottir et al., 2021; Meier et al., 2014). Tensions may arise between coun-
tries as competition over and protection of resources gain importance (Kaltenborn et al., 2020; Zagorskii, 2016). For
example, it has been argued that new fisheries management regimes are needed to avoid the “tragedy of the commons”
(Zou & Huntington, 2018, p. 132). Moreover, a militarization of the region to protect resources could escalate into geo-
political security risks (Li et al., 2022; Parsons, 2011; Vylegzhanin et al., 2021).

The new accessibility to both transport and economic activities in the Arctic has potentially important consequences
for the livelihoods of indigenous peoples. In some cases, they have participated as equal stakeholders in deciding on
how to benefit from emerging opportunities (Kelman & Næss, 2019). However, the responses of non-Arctic actors to
such opportunities frequently disregard the interests of indigenous groups, with exploitation for cross-border benefits
often reducing their access, for example, to ancestral land (Shake et al., 2018). Furthermore, negative effects on marine
ecosystems, through accidental oil spills, disturbance of marine mammals, and transport of invasive species, disrupt tra-
ditional livelihoods (Bennett et al., 2020; Edwards & Evans, 2017; Huntington et al., 2023; Mueter et al., 2021; Tiller
et al., 2022). Finally, in the case of tourism, indigenous and local communities must often cope with its negative reper-
cussions, which may also disrupt cultural traditions while benefits are reaped by tour operators (Stephen, 2018). Such
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examples demonstrate how cross-border opportunities can easily create cross-border conflicts in the Arctic, through
extractive and exploitative practices, environmental injustice, inequality, and environmental degradation (Hanaček
et al., 2022).

3.2.3 | Permafrost thaw

Permafrost thaw causes changes in water quality and affects geomorphological processes in the Arctic. It increases
nutrients and organic matter in freshwater systems (Pedersen et al., 2022), it changes landscapes and hydrology
with potential drying in some areas and appearance of ponds and lakes in others (Box et al., 2019; Meinander
et al., 2022; Nitzbon et al., 2020), and it can release pathogens and toxins (Borgå et al., 2022; Evengård et al., 2021;
Larsen et al., 2021; Waits et al., 2018). These impacts create multiple risks for indigenous peoples within the Arctic
who are directly exposed, but pathogens and toxins can also be transported beyond the Arctic by means of air,
water, animals and humans (Waits et al., 2018). Arctic permafrost stores twice as much carbon as the atmosphere,
and thawing releases carbon dioxide (CO2) and methane, both greenhouse gases, that become well mixed in the
atmosphere, affecting the global climate (Canadell et al., 2021). Moreover, elevated CO2 concentration attributable
to feedback processes in the Arctic, as in the case of sea level (Section 3.2.1), has a global reach. It affects the pro-
ductivity, nutritional quality and water use efficiency of terrestrial plants and contributes to marine and freshwater
acidification, with impacts that vary depending on the recipient system (e.g., Beach et al., 2019; Bezner Kerr
et al., 2022).

Loss of ground stability, erosion and resulting coastal flooding are other important local impacts of permafrost thaw
with far reaching consequences for roads, railroads, and also cultural sites (Da Cunha et al., 2022; Esau et al., 2023;
Falardeau & Bennett, 2020; Hjort et al., 2018; Hjort et al., 2022; Instanes et al., 2016; Vincent, 2020). Soil instability can
also affect industrial sites for extraction of oil, gas and minerals increasing the risk of accidents (Langer et al., 2022) and
disrupting exports (Porfiriev et al., 2019; Vincent, 2020). By mid-century, 30%–50% of critical circumpolar infrastructure
is projected to be at high risk due to permafrost thaw (Hjort et al., 2022) and annual damage is estimated at between
$182 billion and $276 billion depending on climate scenario, with Russia being the most affected (Streletskiy
et al., 2023). This would have cross-border repercussions for financial systems with increasing investment risks of many
Arctic activities (Bouffard et al., 2021; Gädeke et al., 2021; Larsen et al., 2021; Revich et al., 2022).

3.2.4 | Altered species distribution and abundance

Warming and changes in species distribution and abundance increase the risk of transmission of diseases and infections
(Laaksonen et al., 2010; Lemieux et al., 2022; Townhill et al., 2022; Vollset et al., 2021; Waits et al., 2018). In terrestrial
systems there are strong seasonal cross-border connections between the Arctic and other regions associated with the
movement of key vectors of disease, in particular migratory birds (Wauchope et al., 2017). Changing breeding condi-
tions or disease outbreaks such as the avian flu in Northern Norway in 2023 (De La Hamaide, 2023; Lane et al., 2023)
have far reaching consequences for regions outside the Arctic.

In addition, widespread shifts and redistribution of vegetation, with feedbacks between the biosphere and the atmo-
sphere as well as interactions with permafrost thaw and wildfires, can be transmitted up the food chains and trophic
levels, impacting ecosystem services such as food production, access to natural resources, climate regulation and tradi-
tional culture in the Arctic (Pearson et al., 2013; Post et al., 2009). Such impacts could propagate beyond the Arctic
region to lower latitudes, for example through changes in population size or migration patterns of migratory birds reli-
ant on specific Arctic habitats (Pearson et al., 2013). Moreover, future adaptation at lower latitudes could be informed
by such rapid changes in vegetation and related trophic relationships that “may be a bellwether of changes to come at
lower latitudes” (Post et al., 2009, p. 1355).

Species impacts also affect marine food webs (Burgass et al., 2019; Esau et al., 2023; Papastavridis, 2018). Trade in
fisheries is a key mechanism for transmitting the impacts across borders. Some projections suggest new opportunities
with parts of the Arctic waters potentially becoming more productive because of the northward migration of commer-
cial species (Mueter et al., 2021; Papastavridis, 2018). Some invasive species such as snow crab also have an important
commercial value (Esau et al., 2023). At the same time, native Arctic species are at risk of declining (Burgass
et al., 2019; Jonsson & Setzer, 2015; Vollset et al., 2021). This shows how risks and opportunities are intertwined in
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Arctic regions with cross-border impacts on global food systems (Constable et al., 2022; Falardeau & Bennett, 2020;
Ford et al., 2015; Hossain et al., 2017; Troell et al., 2017).

Cross-border ecological impacts are linked to questions of social justice. For example, local small-scale fisheries that
are bound to a region may lose out in competition with large enterprises that can switch locations and target species
(Oostdijk et al., 2022). Changes in fish stocks and fish migration can also trigger cross-border tensions between stake-
holders. Lack of clarity in transboundary regulations concerning bycatches, the size and distribution of fishing quotas
and the definition of the exclusive economic zones can all cause disputes (Crépin et al., 2017; Mendenhall et al., 2020;
Spijkers et al., 2021).

3.2.5 | Changes in surface water and snow conditions

Changing surface water and snow conditions affect local and indigenous livelihoods. Local transportation corridors are
lost due to changes in ice dynamics (Ford et al., 2014) and communities dependent on reindeer and caribou herding
are strongly impacted by rain-on-snow events with ice crust formation that inhibit foraging (Bokhorst et al., 2016;
Fohringer et al., 2021; Forbes et al., 2022).

Changes in surface water and snow conditions affecting mining operations can have cross-border impacts by dis-
rupting global trade and supply chains (Ford et al., 2014). Increased runoff may potentially benefit the hydropower
industry (Instanes et al., 2016; Olsen et al., 2011), but changing timing of peak run-off may create need for storage.

3.2.6 | Wildfires

Some of the largest areas burnt by wildfires are located at high latitudes in Siberia, Canada and Alaska, often in remote
permafrost zones of the taiga, (Kharuk et al., 2021), where future fire occurrence is projected to increase due to climate
change (de Groot et al., 2013). Changes in wildfire regimes may cause atmospheric and landscape changes with cross-
border impacts, aside from the negative global impacts of reduced carbon sinks (Chuffart & Raspotnik, 2019). Black car-
bon deposition from wildfires enhances snow melt and permafrost thaw (Nitzbon et al., 2020). Smoke affects air quality
with local aerosol concentrations sometimes exceeding 1000 times the background level. This creates health risks for
local populations (Kharuk et al., 2021; Romero Manrique et al., 2018), and can become an international, cross-border
issue during extreme events, when smoke plumes may spread over thousands of kilometers (Clarke et al., 2023; Kharuk
et al., 2021; Lowe & Garfin, 2023).

3.2.7 | Synthesis of impact propagation

The pathways of cross-border climate change impact propagation determined by this review as originating in the Arctic
are summarized in Figure 2, based on a typology proposed by Carter et al. (2021). The resulting cross-border risks to
human security and social justice (“people” in the original typology), trade, infrastructure, finance, geopolitical condi-
tions and biophysical conditions could emerge from the propagation of impacts across borders. Their significance in the
recipient region outside the Arctic will vary depending on the intensity of the trigger, the initial impact, and the way
the impact is modified, intensified, or possibly attenuated in the transmission system.

4 | IMPLICATIONS FOR EUROPE

Europe is a major contributor to anthropogenic climate change and pollution in the Arctic and is one of the biggest
users of Arctic resources (Koivurova et al., 2021; Smieszek et al., 2021). The EU has three member states with territories
extending into the Arctic: Finland, Sweden and Denmark. Moreover, through the European Economic Area it has close
ties with Norway and Iceland. Many non-Arctic observer states to the Arctic Council are European, including
Switzerland and the United Kingdom and the EU member states France, Germany, Italy, the Netherlands, Poland and
Spain. Our consideration of European adaptive responses is directed primarily at EU rather than national-scale
responses.
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4.1 | Europe as a recipient region of Arctic cross-border climate change impacts

Some of the impacts of regional warming in the Arctic are global in nature. The melting of the Greenland ice sheet and
other glaciers in the Arctic accelerate sea level rise, causing displacement of people and loss of assets in Europe
and globally (Boest-Petersen et al., 2021; Vousdoukas et al., 2020). Wildfires in the Arctic may bring pollution and
health impacts to Europe (Clarke et al., 2023). There are also several feedback mechanisms through which changes in
the Arctic may accelerate global warming, such as increased emissions of CO2 and methane caused by permafrost thaw
(Alvarez et al., 2020). Elevated levels of atmospheric CO2 themselves affect global terrestrial and aquatic ecosystems
(Bezner Kerr et al., 2022; Oostdijk et al., 2022).

Europe will be both a recipient of risks and a potential beneficiary of climate induced changes in the Arctic
(Alvarez et al., 2020; Bennett et al., 2020; Benzie et al., 2019; Koçak & Yercan, 2021; Li et al., 2022; Smits et al., 2014;
Sur & Kim, 2020; Tiller et al., 2022; Yumashev et al., 2017). The EU Arctic policy communication reflects this dual posi-
tion, with objectives to support resilience in the Arctic but also to develop imports of renewable energy instead of oil
and gas, extract critical minerals and raw materials for the green transition, and practice sustainable fishing (European
Commission, 2021; Koivurova et al., 2022). For example, one-third of the Arctic fish landings is sold on the European
market (Papastavridis, 2018).

Resource exploitation by the EU and all the other actors in the Arctic can, however, create risks for indigenous
peoples and their livelihoods. This is increasingly recognized as a question not only of trade and economic interests
but also one of basic human rights (Hanaček et al., 2022). Cross-border management conflicts can arise due to differ-
ent views of the value of particular resources. For instance, there has been friction between EU and Norwegian
authorities concerning exploitation of snow crabs, an invasive species considered valuable by Norway but observed to
be spreading beyond the Norwegian exclusive economic zone (EEZ) due to changing water temperatures (Kaiser
et al., 2018).

FIGURE 2 Transmission of cross-border climate change impacts originating in the Arctic. Climate triggers can initiate impacts in the

Arctic that may be transmitted into regions outside the Arctic via systems of varying complexity, posing risks that may merit an adaptation

response. Note that connections shown are based on the literature reviewed here and may not capture all potential linkages.
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4.2 | A European perspective on adaptation to Arctic cross-border climate change
impacts

In dealing with the complexity of the cross-border impacts originating in the Arctic, responses can, in principle, focus
on any stage of the impact transmission system from supporting adaptation at the source of the initial impacts all the
way to managing the cross-border risks (Carter et al., 2021). For a recipient region like Europe, it might appear ratio-
nal to focus solely on the transboundary risks it experiences (Burgass et al., 2019). That way, it would be relatively
straightforward to design internally coherent actions. However, what appears to be coherent policy within Europe
(for example, by the EU) may not appear that way from an Arctic perspective, since it usually involves adaptation
actions targeted at impacts in Arctic regions that fall under a range of jurisdictions (Kivimaa et al., 2024). At the same
time, adaptation actions within the Arctic are often undertaken autonomously by local and indigenous people, for
example, through modification of timing, travel routes and equipment for hunting and harvesting activities, and may
not consider long-term adaptation, potentially leading to reduced adaptive capacity or maladaptation (Ford
et al., 2014). This suggests a need for enhanced interaction between different levels of governance along the impact
transmission system.

The right-hand column of Table 1 summarizes some indicative adaptation measures reported in the literature, and
we can analyze these in the context of the governance challenges for EU policy described above. We do so according to
categories of cross-border risks portrayed on the right hand side of Figure 2, which also appear in combinations under
the same heading in Table 1.

Responses for addressing cross-border biophysical risks and risks to trade, infrastructure and finance focus in large
part on technical and economic interventions to alleviate or anticipate physical damage and monetary costs. Entries in
Table 1 include international research into and awareness raising of future changes and their likely impacts and devel-
opment of improved transboundary monitoring and early warning systems (e.g., for extreme weather, sea ice and gla-
cier retreat, marine pollution, disease transmission, fish abundance, wildfires and permafrost decay). They also
highlight research and planning for enhanced resilience in new and existing industrial, transport, supply chain and
tourism infrastructure, as well as describing the involvement of the insurance industry and international finance in
building both local capacity and transboundary resilience. The EU is already allocating considerable funding to Arctic
research in relation to many of these risks.

Human security and social justice are categorized together in our review, as a cross-border risk for “people” in the
framework by Carter et al. (2021). Nearly all of the propagated impacts relate in one way or another to this category
(Figure 2), which refers to two main types of risks. Human security alludes to risks for livelihoods, such as displace-
ments, food scarcity, or water scarcity, as well as risks to personal safety, health and well-being. Social justice is related
to how actors such as the EU address issues of inequality and fairness in responding to the risks, which are themselves
fundamental determinants of human security.

For example, flood prevention and evacuation plans, relocation, legislation to protect water resources, supplemen-
tary feed, transport & herding of reindeer, or increasing monitoring capacity to protect homes and livelihoods from fire,
are potential adaptation measures addressing human security risks (Table 1). Adaptive responses to cross-border
impacts and opportunities, such as those exploiting newly accessible natural resources, frequently lead to a redistribu-
tion of vulnerability and risks, potentially with adverse, and socially unjust, impacts on human security in the Arctic
(Atteridge & Remling, 2018). Many papers in the review refer to the need to account for traditional knowledge in the
practice of research and policy making, and to enhance awareness of potential inequities related to economic impacts.
For example, reindeer herding in Arctic EU countries is subject to both EU and national policies on agriculture and
nature conservation, with financial steering mechanisms that have resulted in a shift towards a more sedentary
approach and a loss of traditional practices (Landauer et al., 2021). As another example, if the EU response to changes
in the availability of Arctic fish resources does not consider long-term ecological sustainability and impacts on indige-
nous populations, Arctic fisheries that depend on the European market may suffer (European Parliament, 2015). In
both cases, the EU could mitigate these risks in a more socially just and coherent manner than hitherto (Kivimaa
et al., 2024).

Geopolitical risks are an inherent feature of cross-border climate change impacts, with competition for resources
creating potential conflicts that require stronger international and regional co-operation in governance, regulation, spa-
tial planning, transboundary management and emergency preparedness (Table 1). Moreover, the role of non-climatic
drivers and of “wildcard”, surprise events in influencing policy is also highlighted in our review. For example, the war
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TABLE 1 Indicative list of adaptation measures found in the literature, in relation to the transmission of impact across borders.

Initial impact &
climate trigger Propagated impacts

Cross-
border risk Adaptation measures

Melting glaciers due to
Regional warming
(Section 3.2.1)

Sea level rise [1]
Coastal erosion &
flooding [2,3]

Human security &
social justice &
Critical
infrastructure [4–
6]
Biophysical [6,7]

• New imagery/technologies for accurate glacier mass loss
mapping [8]*

• Robust observing systems; improved climate & cryosphere
models [6]*

• Adaptation plans addressing cryosphere changes incl.
variability, surprises & unanticipated events [6]

• Flood prevention & evacuation plans [9]
• Adequate resources for prevention of critical infrastructure

damage and/or relocation [4, 10]

Landscape, hydrology &
tourism [8]

Human security &
social justice &
Trade [8]

• Continuous biogeochemical, contaminant & biodiversity
monitoring; development of early warning systems [8, 11]

• Adaptation plans for critical ecosystem services &
international legislation to protect water resources [8]

Sea ice retreat due to
Regional warming
(Section 3.2.2)

Increased shipping [12,
13]
Militarization [14–18]
Increased access to
commercial fisheries
[19, 20]
Tourism [19, 21, 22]
Mining [5, 9, 19, 20]

Trade [23–26]
Geopolitical
conditions [14–18]

• Improve transboundary Arctic observation systems for
monitoring sea ice & Arctic amplification [27, 28]*

• Bolster coordination of integrated research to advance
prediction [29]

• Reduce lag between identifying impacts & implementing
responses [15, 20]

• Global cooperation among relevant actors [16, 30]
• Seek robust & sustainable sovereignty to reduce security

risks [17]
• Policy coherence in jurisdictional & sectoral

governance [19]
• Pursue economic activity & development that maximizes

benefits & minimizes adverse effects, e.g., by investing in
local capacities [30, 31] or combining, during Arctic
cruises, tourism with data collection & monitoring for
research [28]

Development of
economic activities & its
impacts on marine
ecosystems [1, 12, 32]

Human security &
social justice [19,
25, 33]
Biophysical [12,
19, 25, 32, 33]

• Include traditional knowledge in science; co-create
knowledge for policy [10, 25, 34–41]

• Enhance awareness of inequities in economic impacts
across local & global stakeholders & need to integrate
social justice in policies [12, 42, 43]

Development of
infrastructure [5, 19, 44]

Critical
infrastructure &
Finance [5, 19, 22,
44]

• Account for non-market aspects in environmental
policies [45]

• Involve the insurance industry in awareness raising &
embedding of risk & insurance-related terms & conditions
in decision-making [22]

Permafrost thaw due to
Regional warming
(Section 3.2.3)

Water quality &
geomorphological
processes [45–47]
Release of pathogens
[39, 49–51]
Local infrastructure [27,
52, 53]
CO2 effects on food
webs & marine
ecosystems [43, 88–89]

Human security &
social justice [34,
39, 40, 51]
Biophysical [45–
47, 54, 55]

• Enhance data sharing & analysis for improved permafrost
models [40, 56]

• Prioritize investment in concrete adaptation actions for
indigenous people & infrastructure & stress innovative
visual & oral methods over conventional methods to avoid
research fatigue [51, 57, 58]

• More research on potential disease transmission in the
Arctic; adaptation of health monitoring & health care
infrastructure [23, 39, 49]

• Relocation [56]

Damage to critical
infrastructure [56]

Trade (exports)
[58, 60]

• Operational monitoring & early warning for timely
infrastructure adaptation of new industrial facilities & sites
currently in operation [59]

(Continues)
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TABLE 1 (Continued)

Initial impact &
climate trigger Propagated impacts

Cross-
border risk Adaptation measures

Critical
infrastructure &
Finance [51, 56,
61, 62]
Human security &
social justice [56]

• Bring more people to the Arctic region which will bring
more interest in investments & security [10, 63]

Altered species
distribution &
abundance due to
Regional warming
(Section 3.2.4)

Changes in important
food webs [21, 27, 32,
54, 55, 64–69]
Transmission of
pathogens [49, 67, 70–
75]

Human security&
social justice [10,
11, 19, 32, 43, 53,
63, 73–76]
Geopolitical [64,
77, 78]
Biophysical [54,
55]

• Assess resilience using carefully selected indicators [47, 64]
• Enhance understanding of fish species abundance to

inform regulation of sustainable fisheries stocks [66]
• Port State control measures, flag State measures, fishing

vessels' registration and inspection at sea by third
States [65]

• Establish shared management regimes between national
actors to implement common measures & ensure
stakeholder cooperation [32, 77, 79]

• Pan-Arctic effective marine spatial planning [19, 64]

Changes in surface
water & snow
conditions due to
Increased rainfall
(Section 3.3.5)

Reindeer & Caribou
herding [36, 80–82]
Landscape & hydrology
[31, 83]

Human security &
social justice [6,
36, 52, 80, 81]
Biophysical [6, 52]

• Invest in local hydropower plants designed using state-of-
the-art streamflow projections [52]

• Support supplementary feed, transport & herding of
reindeer, conserve existing grazing habitats to assure
landscape connectivity & remediate & restore sites of
former resource extraction [80]

• Include herder knowledge of impacted systems in
evaluating new exploitative land uses [80]

Increased risk of
wildfires due to
Changes in extreme
weather events
(Section 3.2.6)

Atmospheric and
landscape changes [84]

Human security &
social justice [34,
85–87]
Biophysical [48,
84]

• Manage fuel at risk of ignition & implement controlled
burning [41]

• Increase transdisciplinary research & pan-Arctic
collaboration to understand & predict fire & guide
adaptation [41]

• Improve understanding of ecological landscape changes &
long-term economic & social development to assess fire
risk [41]

• Focus fire suppression in areas with high social, natural or
economic values while allowing beneficial wildfire to burn
in dense forest areas like Siberia [86]

• Increase monitoring capacity of Indigenous peoples to
protect homes & livelihoods from fire & adapt to the
changing fire regime [41]

Note: The asterisk (*) shows when an adaptation measure is directed to the initial impact; other measures are directed more generally to the propagation of
impacts and the cross-border risks. 1 Fox-Kemper et al. (2021); 2 Smith et al. (2019); 3 Frezzotti & Orombelli (2014); 4 Marino & Lazrus (2015); 5 Bertelsen &
Gallucci (2016); 6 Olsen et al. (2011); 7 Cooley et al. (2022); 8 Milner et al. (2017); 9 Da Cunha et al. (2022); 10 Ford et al. (2015); 11 Wrona et al. (2016); 12

Huntington et al. (2023); 13 Wang et al. (2018); 14 Zagorskii (2016); 15 Kaltenborn et al. (2020); 16 Vylegzhanin et al. (2021); 17 Parsons (2011); 18 Li
et al. (2022); 19 Edwards & Evans (2017); 20 Smieszek et al. (2021); 21 Burgass et al. (2019); 22 Johannsdottir et al. (2021); 23 Stephen (2018); 24 Sur &
Kim (2020); 25 Tiller et al. (2022); 26 Yumashev et al. (2017); 27 Esau et al. (2023); 28 De La Barre et al. (2016); 29 Jung et al. (2016); 30 Petrov et al. (2021); 31
Ford et al. (2014); 32 Mueter et al. (2021); 33 Bennett et al. (2020); 34 Romero Manrique et al. (2018); 35 Smith & Sharp (2012); 36 Bokhorst et al. (2016); 37
Buschman & Sudlovenick (2022); 38 Dawson et al. (2020); 39 Evengård et al. (2021); 40 Natali et al. (2022); 41 McCarty et al. (2021); 42 Kaiser et al. (2018); 43

Oostdijk et al. (2022); 44 Boylan (2021); 45 Mavisakalyan et al. (2023); 46 Pedersen et al. (2022); 47 Box et al. (2019); 48 Nitzbon et al. (2020); 49 Waits
et al. (2018); 50 Borgå et al. (2022); 51 Larsen et al. (2021); 52 Instanes et al. (2016); 53 Falardeau & Bennett (2020); 54 Post et al. (2009); 55 Pearson
et al. (2013); 56 Bouffard et al. (2021); 57 Lonsdale et al. (2017); 58 Porfiriev et al. (2019); 59 Langer et al. (2022); 60 Vincent (2020); 61 Revich et al. (2022); 62
Gädeke et al. (2021); 63 Hossain et al. (2017); 64 Crépin et al. (2017); 65 Papastavridis (2018); 66 Jonsson & Setzer (2015); 67 Vollset et al. (2021); 68 Callaghan

et al. (2022); 69 Berner et al. (2020); 70 Laaksonen et al. (2010); 71 Lemieux et al. (2022); 72 Townhill et al. (2022); 73 Wauchope et al. (2017); 74 De La
Hamaide (2023); 75 Lane et al. (2023); 76 Constable et al. (2022); 77 Mendenhall et al. (2020); 78 Spijkers et al. (2021); 79 Zou & Huntington (2018); 80
Fohringer et al. (2021); 81 Serreze & Francis (2006); 82 Sokolov et al. (2016); 83 Jeppesen et al. (2017); 84 Chuffart & Raspotnik (2019); 85 Clarke et al. (2023);
86 Kharuk et al. (2021); 87 Lowe & Garfin (2023); 88 Beach et al. (2019); 89 Bezner Kerr et al. (2022).
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in Ukraine, has shifted the priority away from adaptation to climate change in the Arctic and towards measures aimed
at boosting economic activity, greatly influenced by Europe's need for new sources of energy. Furthermore, it has
greatly hindered scientific collaboration and cross-border knowledge sharing with Russia (L�opez-Blanco et al., 2024;
Moe et al., 2023). Other non-climatic drivers that can affect the severity of potential climate change impacts and the
possibilities to implement adaptation are global economic and social trends, technological trends, trading arrangements
and geopolitics (Ford et al., 2014; Karahalil et al., 2021; Moe et al., 2023).

5 | DISCUSSION

Understanding the interactions and feedbacks between local and global impacts of climate change is necessary for
developing efficient adaptation (Baldos et al., 2023). The rapidly expanding literature on climate change impacts in the
Arctic highlights potential cross-border consequences. By systematically examining the transmission systems through
which impacts of climate change propagate across borders (Carter et al., 2021), it is possible to bring together a large
body of literature to identify key risks for a recipient region such as Europe and for those actors involved in designing
and implementing adaptation policy, such as the European Union. Future studies of climate change impacts and inter-
actions may reveal additional relevant cross-border impacts, but our review has underlined the need to pay attention to
the mechanisms of impact transmission and to the consequences of responding to such impacts. Although our literature
review was extensive, it still covers only English language literature, and there are subjective decisions involved in the
literature platform applied and search methods chosen (cf. Table A1).

Alternative terminology and classifications could have been used in this review, but we argue that the key conclu-
sions would not have been greatly affected. For instance, the “global-to-local-to-global paradigm” for improving models
of Baldos et al. (2023) and the eight different categories of “societal cascading impacts” identified by Moser and Hart
(2015) also highlight the importance of transmissions between systems. In examining adaptation responses, the differ-
entiation of Instanes et al. (2016) between “structural” adaptation measures focused on planning, design, construction,
and maintenance of structural elements for infrastructure and industry, and “non-structural” adaptation measures,
which relate to changes to policies, regulations, and management, might have provided a useful typology of response
transmission. However, it would probably not have changed the conclusion that there are potential conflicts between
effective adaptation to cross-border impacts from the point of view of a recipient region and the region of origin (for fur-
ther discussion on cross-border policy coherence, see Kivimaa et al., 2024).

The literature that has considered the link between Arctic impacts and risks to Europe is still limited. Despite the
apparent complexity of potential interactions that are evident in the many linkages shown (purposefully) in Figure 2,
our review suggested that there is still limited information on the specific dynamics of the impacts and even less on the
available responses. The many climate system feedbacks that are being triggered by changing climate in the Arctic were
outside the scope of this review, as they are processes that can only realistically be managed through mitigation of the
anthropogenic causes. However, many of these feedbacks are inextricably linked both to the cross-border impacts we
have addressed as well as to the potential adaptation responses they may require. This suggests that there is scope for
additional research at this interface, both to untangle the mechanistic interactions, such as through earth system
modeling, as well as to consider possible responses, for example by analyses of EU and Arctic States' policies, including
interviews of key actors. Such studies would be important for the EU which strives to become a world leader in climate
change mitigation and adaptation (Dobson & Trevisanut, 2018).

Responses to many of the cross-border impacts of climate change require compromises and trade-offs because adap-
tation cannot be developed in isolation from other societal objectives. For example, although local resilience could be
enhanced by minimizing impacts from resource extraction and transport in the Arctic, EU climate policies that aim at
curtailing carbon emissions implicitly build on expanding the extraction of raw materials in the Arctic and elsewhere
for the green transition, indirectly also supporting the expansion of shipping routes in the Arctic.

To address such trade-offs effectively, noting that they are embedded within a growing list of adaptation measures
(cf. Table 1), it is important to identify compromises that will strengthen overall resilience. For this purpose, the likeli-
hood of the risks, the magnitude and level of threat of the impacts, and the time horizon of both the impacts and the
responses should be considered (Larsen et al., 2021; Rannow, 2013). The time horizon is particularly relevant since
some impacts are already felt while others, like shipping with its global reach and profit, will only be relevant after the
2030s (Boylan, 2021).
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6 | CONCLUSION

Climate change is progressing fast in the Arctic, emphasizing the need to understand not only how impacts affect the
Arctic, but also other regions. By systematically reviewing literature using an impact transmission framework, we
examined how warming, extreme weather events and increased rainfall trigger initial impacts that may propagate and
eventually become risks or opportunities in regions outside the Arctic. The framework connects impacts that are often
analyzed separately, highlighting how they may interact leading to cross-border risks for trade, critical infrastructure,
finance, biophysical effects, geopolitical relationships, or human security and social justice. It demonstrates that melting
of glaciers and the Greenland ice sheet, sea ice retreat, permafrost thaw, altered species distribution and abundance,
changes in surface water and snow conditions, and increased risk of wildfires are systemic changes that are transmitted
and transformed into other impacts that eventually cross the boundaries that represent the Arctic.

A systemic perspective can guide planning of adaptation within the Arctic and in regions affected by the propaga-
tion of impacts to achieve coherent responses to the risks. It changes the view of what is at stake. For example, there
are numerous imminent risks to indigenous livelihoods, but if they are seen only as local issues, potential adaptation
measures may not be implemented for want of resources. Seen in a wider context of cultural heritage and risks to
human security and social justice, they become global issues of adaptation for which different regions should share
responsibility. Other impacts, such as sea level rise and changes in the yield of important fisheries, are already recog-
nized as large-scale and far-reaching risks, but analyses of the transmission of impacts across borders can offer new
angles on processes at work that can guide the prioritization of adaptation action. For example, it can help target much
needed further investigation that directs a critical lens towards perceived investment opportunities in the Arctic, and to
understand both the physical and economic risks involved.

A systemic approach also highlights the need to recognize non-climatic trends and unexpected wildcard events. The
war in Ukraine has demonstrated that a non-climatic geopolitical crisis outside the Arctic can have repercussions on
the implementation of adaptation to climate change within the region. In developing sustainable activities, including
economic opportunities, the links between the Arctic and other regions need to be recognized. The impact transmission
framework can be used to bring together knowledge to ensure that both emerging activities and adaptation to climate
change support pathways that are consistent with the sustainable development goals.
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APPENDIX A

TABLE A1 Terms used in the systematic literature review.

General Search (by
keywords)

Terms used in systematic review (Full text; terms within the same keyword were separated by
“OR” but terms between keywords were separated by “AND”; truncation was used for some terms)

Climate change Climate change, climate risk, climate variability, climate extreme, climate uncertainty, global warming,
temperature rise, atmospheric change, environmental change

Impact Impact, risk, effect, hazard, vulnerability, exposure

Arctic Arctic, North Pole, polar region

Cross-border Cross-border, transborder, cross-boundary, inter-region, cascading, transboundary, transnational, non-
localized, cross-regional, international, spillover, external, indirect, teleconnected, telecoupled, across
border

Adaptation Adaptation, adaptive ability, adaptative strategy, adaptive capacity, adaptive capability, adaptive strength,
adaptive potential, adaption ability, adaption capacity, adaption capability, resilience, response

Europe EU, European Union, Europe, EEA, EEC, European economic area, European economic community

Topical Search (by main
impacts identified in
scoping review)

Terms used in systematic review, identified as relevant in the scoping review (Abstracts; all the
terms were separated by “OR”; truncation was used for some terms)

Glacier and Ice Sheet Melting of glacier, melt, glacier, melting of ice sheet, Greenland's ice sheet, Greenland ice sheet, sea level
rise, human migration

Sea Ice Sea ice, cryosphere, shipping, rescue, tourism, energy, mining, critical material, mineral, renewable,
fossil, hydrocarbon, security, tension, threat

Permafrost Permafrost, disease, infrastructure, transport, route, distribution system, investment, insurance, finance

Ecosystem Ecosystem shifts, food web changes, species migration, ecosystem, biodiversity, fishing

Water and Snow Hydrology, water, rain-on-snow, precipitation, indigenous people, indigenous communities, local
communities, local population

Wildfire Wildfire, extreme weather, storm

Adaptation Search (by
keywords)

Terms used in systematic review (Abstracts: terms within the same keyword were separated by
“OR” but terms between keywords were separated by “AND”; truncation was used for some terms)

Climate change Climate change, global warming, environmental change

Cross-border impact Compound risk, compound impact, compound effect, compound hazard, compound vulnerability,
compound exposure, cascading risk, cascading impact, cascading effect, cascading hazard, cascading
vulnerability, cascading exposure, cross-border risk, cross-border impact, cross-border effect, cross-border
hazard, cross-border vulnerability, cross-border exposure, multiple risk, multiple impact, multiple effect,
multiple hazard, multiple vulnerability, multiple exposure, transborder risk, transborder impact,
transborder effect, transborder hazard, transborder vulnerability, transborder exposure, cross-boundary
risk, cross-boundary impact, cross-boundary effect, cross-boundary hazard, cross-boundary vulnerability,
cross-boundary exposure, transboundary risk, transboundary impact, transboundary effect,
transboundary hazard, transboundary vulnerability, transboundary exposure, spillover risk, spillover
impact, spillover effect, spillover hazard, spillover vulnerability, spillover exposure, teleconnected risk,
teleconnected impact, teleconnected effect, teleconnected hazard, teleconnected vulnerability,
teleconnected exposure, telecoupled risk, telecoupled impact, telecoupled effect, telecoupled hazard,
telecoupled vulnerability, telecoupled exposure, risk severity, risk urgency, risk interactions, impact
interaction, interaction between risks, interaction between impacts

Adaptation Adaptation, adaptation ability, adaptation strategy, adaptation capacity, adaptation capability, adaptation
strength, adaptation potential, resilience, response, prevention

Method Method, framework, recommendation, priority, analysis, assessment, advice, measure, action, means,
procedure, proceeding, initiative, protocol, step, program, system, rule, risk severity, risk urgency, non-
climatic driver, policy awareness, policy readiness

MOSONI ET AL. 23 of 23

 17577799, 2024, 5, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cc.905 by H

elm
holtz-Z

entrum
 Potsdam

 G
FZ

, W
iley O

nline L
ibrary on [10/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense


	Cross-border dimensions of Arctic climate change impacts and implications for Europe
	1  INTRODUCTION
	2  DATA AND METHOD
	3  CROSS-BORDER TRANSMISSION FROM THE ARCTIC
	3.1  Climate triggers and initial impacts in the Arctic
	3.2  Impact propagation across borders
	3.2.1  Melting of glaciers and ice sheets
	3.2.2  Sea ice retreat
	3.2.3  Permafrost thaw
	3.2.4  Altered species distribution and abundance
	3.2.5  Changes in surface water and snow conditions
	3.2.6  Wildfires
	3.2.7  Synthesis of impact propagation


	4  IMPLICATIONS FOR EUROPE
	4.1  Europe as a recipient region of Arctic cross-border climate change impacts
	4.2  A European perspective on adaptation to Arctic cross-border climate change impacts

	5  DISCUSSION
	6  CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	RELATED WIREs ARTICLES
	FURTHER READING
	REFERENCES
	APPENDIX A


