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The Intertropical Convergence Zone (ITCZ) is a narrow tropical belt of deep convective clouds, intense 
precipitation, and monsoon circulations encircling the Earth. Complex interactions between the 
ITCZ and local geophysical dynamics result in high climate variability, making weather forecasting 
and prediction of extreme rainfall or drought events challenging. We unravel the complex spatio-
temporal dynamics of the ITCZ and the resulting teleconnection patterns via a novel tropical climate 
classification achieved using complex network analysis and community detection. We reduce the high-
dimensional complex ITCZ dynamics into a simple yet insightful community structure that classifies 
the tropics into seven regions representing distinct ITCZ dynamics. The two largest communities, 
encompassing landmasses over the Northern and Southern hemispheres, are associated with 
coherent seasonal ITCZ dynamics and have significant long-range connections. Temporal analysis of 
the community structure highlights that the tropical Pacific and Atlantic Oceans communities exhibit 
substantial variation on multidecadal scales. Further, these communities exhibit incoherent dynamics 
due to atmosphere-ocean interactions driven by equatorial and coastal oceanic upwelling.

The Intertropical Convergence Zone (ITCZ) is a low-pressure region girdling the Earth, where heat and moisture-
laden winds from the Northern and Southern hemispheres converge. The convergence enhances the convection 
of heat and moisture-laden winds to higher altitudes, where cooling and condensation lead to the formation 
of deep clouds and intense precipitation1,2. In fact, the ITCZ is often referred to as the ascending branch of 
the Hadley circulation1,3,4. The ITCZ follows the solar heating cycle and migrates in the meridional direction 
towards the warming hemisphere. Several monsoon systems, such as the Asian summer3,5, American6,7, African 
and Australian monsoons are associated with the arrival of the ITCZ in those regions. Precipitation during the 
monsoon seasons over these regions is the main source of fresh water for irrigation, drinking, household, and 
industrial applications.

The characteristics of the ITCZ are sensitive to regional interactions, circulations, the underlying surface, and 
local topographical conditions1. As a result, critical parameters such as cloudiness and precipitation associated 
with the ITCZ exhibit strong variability. Given the enormous societal impact of these monsoon systems, it is 
crucial to understand the spatio-temporal dynamics of the ITCZ, which is also key to substantially improving 
the forecasting of extreme events such as excessive rainfall and drought.

In this work, we explore the spatio-temporal dynamics of the ITCZ and propose a novel classification of the 
climate system in the tropics from the perspective of complex networks theory, which is a powerful framework 
for studying complex systems8,9. In the context of the climate system, the nodes of the complex network represent 
different geographical locations on Earth. Links represent the statistical association and similarity between 
climatological variables at these locations. Long-range associations and interactions, typically greater than 2500 
km, are popularly referred to as teleconnections in climate science10,11. Such networks where connections are 
based on statistical similarity are classified as functional networks10,12–14. Here, we estimate the connections using 
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Pearson correlation. Even though the climate is not a physical network, network analysis is an efficient statistical 
tool that unravels patterns of characteristic spatio-temporal dynamics, interactions, and teleconnections in the 
climate system13,15,16.

Over the recent years, functional networks have emerged as a potent tool for understanding the climate 
dynamics occurring on multiple spatio-temporal scales, ranging from meso to planetary and from subdaily 
to multiannual scales.4,7,11,12,14,15,17. Although the links in a functional network are based on statistical 
similarity, its topology has been shown to encode the climate dynamics that govern the studied phenomena. 
For instance, complex networks based on cross-correlations of ground-level temperature records exhibit a 
clear correspondence with the atmospheric Rossby wave18, an important mechanism for distributing energy 
across the planet. Complex networks based on nonlinear statistical measures are used for unravelling patterns 
of atmospheric teleconnections responsible for extreme climate events such as excessive rainfall7,11, and heat 
waves19. Cascading effects of atmospheric dynamics responsible for widespread heavy precipitation events 
have been revealed using climate networks and synchronization theory20. Network science is also utilized to 
explore the impact of various modes of climate variability, such as El Niño-Southern Oscillation (ENSO) and 
tropical interseasonal oscillation (ISO). Several studies have used network science to understand the global 
impact of ENSO21,22 and to enhance its forecasting and prediction23. Recently, the application of network science 
led to deepening our understanding of the role of ISO in modulating the interconnection between the Indian 
summer monsoon and the East Asian summer monsoon24. Functional networks are also constructed among 
domains, which are large regions consisting of a group of nodes (geographical locations) with coherent climate 
dynamics25,26. Such functional networks are also utilized for dimensionality reduction of large climate datasets26.

The ability to incorporate information regarding teleconnections is unique for complex networks, making 
it more beneficial than the traditional climate classification methods that mainly rely on knowledge or 
observation-based thresholding and statistical clustering27. Climate classification is an important approach that 
aids in monitoring and analyzing spatio-temporal patterns in the climate system27–29. Climate classifications 
such as the Köppen-Geiger classification28,29, which is based on the monthly air temperature, precipitation, and 
vegetation, and its variations are frequently used for validating global circulation models (GCMs)30,31, studying 
climate variability across multiple temporal scales32,33, climate change research27, and understanding vegetation 
distribution across the globe29, among many others27.

In this study, we apply community detection on a functional complex network constructed using outgoing 
longwave radiation (OLR) data to perform a network-based tropical climate classification. OLR is a good proxy 
for the cloudiness in the ITCZ and faithfully captures its spatio-temporal dynamics3,5,34,35. We apply a modularity 
optimizing community detection method, the Louvain algorithm36, on the OLR network to classify the tropics 
according to the variability in the spatio-temporal dynamics of the ITCZ. Community detection partitions the 
nodes into communities such that nodes within a community are densely connected, while connections with 
nodes outside are sparse. In the context of the climate system, such communities are interpreted as groups 
of geographical locations that are associated with similar physical climate processes, phenomena, and major 
climate modes37–39. Thus, communities have been used for the complexity and dimensionality reduction of large 
climate datasets by treating them as coherent sub-systems14,37,39. Further, the community detection approach is 
readily used for the intercomparison of GCMs and their validation against observations38,40.

We find that the communities in the OLR network correspond to regions with distinct features of ITCZ 
dynamics that are differentiated by seasonal and interannual variations, topography,and oceanic circulations 
such as equatorial/coastal upwelling, and ocean currents. We also study the temporal evolution of community 
structure and network topology on decadal scales. We discover significant variations in the communities 
encompassing the equatorial Pacific and Atlantic Oceans.

Results
We use gridded OLR data from the 5th version of spatio-temporal ECMWF Reanalysis (ERA5)41 and analyze 
data for thirty years from 1992 to 2021, with a temporal resolution of 3 hours and a spatial resolution of 1◦ × 1◦

. See “Materials” for further details. Our study focuses on the spatio-temporal variations of OLR over a seasonal 
scale. Therefore, we neglect temporal scales smaller than 15 days from the time series of OLR at all locations 
and use low-pass filtered OLR (denoted as ÕLR). Moreover, since the migration of the ITCZ in the meridional 
direction is confined to the tropics1, we restrict the spatial domain from 23.5◦S to 23.5◦N .

Spatio-temporal dynamics of OLR in the tropics
The mean structure of the ITCZ is represented by the band of low values of time-averaged OLR (denoted as 
OLR) girdling the Earth along the equator, as shown in Fig. 1. Time-latitude diagrams of low-pass filtered OLR 
climatology (denoted as ÕLRclim) at different longitudes (Fig.  1b–i), demonstrate the meridional migration 
towards the warming hemisphere of deep clouds associated with the ITCZ. Over the western Pacific (120◦E
), central Pacific (180◦), eastern Pacific (120◦W ) and Atlantic (15◦W ) oceans, the strong easterly trade winds 
displace warm water slightly northward away from the equator, causing upwelling of cold water from lower 
depths. As a result, the ITCZ is biased towards the Northern Hemisphere for almost the entire year over these 
locations1,2,34,42. There, the ITCZ is narrow and its amplitude of meridional migration is significantly lower 
compared to that across 60◦W , 30◦E, and 80◦E. The southeastern Pacific (120◦W ) and the south Atlantic (15◦W
) oceans are not affected by the ITCZ during its annual cycle (Fig. 1c,e).

The central Pacific Ocean is a critical region as the ITCZ transitions from a narrow band in the east to 
a broader one in the west1. Moreover, this is the region where the South Pacific Convergence Zone (SPCZ) 
branches out in the southeast direction (Fig. 1a). The SPCZ is formed because of the convergence of southeast 
trade winds over the region of high sea surface temperature (SST) associated with the Indo-Pacific Warm 
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Pool1,43. Deep clouds in the Southern Hemisphere over the Pacific Ocean during the austral summer season are 
associated with the SPCZ.

The underlying surface (land or water) is an important parameter that induces variability in the characteristics 
of the ITCZ34. Over tropical water bodies, the ITCZ is anchored to the region of warm SST1,3,34. Due to the high 
thermal inertia of water, the ITCZ over extended water bodies follows the annual solar heating cycle with a time 
lag of one or two months. Meanwhile, the thermal inertia of land is negligible compared to water, and as a result, 
the ITCZ over extended land masses migrates without any time lag.

The effect of the underlying surface on the ITCZ is apparent in the time-latitude diagram of ÕLRclim over 
60◦W  longitude, as shown in Fig. 1d, which encompasses the continental landmass of South America in the 
Southern Hemisphere and the Atlantic Ocean in the Northern Hemisphere. We observe that the convection and 
cloudiness associated with ITCZ are predominantly over South America during the austral spring and summer 
seasons, while they are relatively weaker over the Atlantic Ocean. The 30◦E longitude encompasses the extended 
landmass of Africa. As seen from Fig. 1f, the time-latitude variation of ÕLRclim due to the migration of ITCZ 
along the 30◦E meridian is nearly sinusoidal. Over this region, the ITCZ follows the solar heating cycle with 
negligible time lag1.

From Fig. 1g, we observe that the ITCZ exhibits an interesting behavior along the 45◦E meridian. While 
the coastal upwelling suppresses the ITCZ during the northern spring and summer seasons2, the landmass of 
the island of Madagascar supports the ITCZ during the southern summer season. Due to coastal upwelling, the 
ITCZ over landmasses is disconnected from its counterpart over extended water bodies1,2 (Fig. 1a).

The 80◦E longitude also covers both land and ocean, encompassing the Indian peninsula north of 8◦N  and 
the Indian Ocean south of it. As seen from Fig. 1h, from January to March, the ITCZ along the 80◦E longitude is 
over the Indian Ocean. Beyond March, it starts propagating north towards the Indian subcontinent, reaching it 
in June, which leads to the onset of the Asian Summer Monsoon (ASM)3. ASM, in turn, enhances the convection 
over the region, splitting the ITCZ into two zones, one over the Indian peninsula and the other over the Indian 
Ocean1. The northern ITCZ is notably more robust and consistent than the southern one, and exhibits sinusoidal 
behaviour. Interested readers can refer to1 and2 for a detailed review on the characteristics of the ITCZ over 
different regions.

Figure 1. Spatio-temporal dynamics of outgoing longwave radiation (OLR) from ERA5 reanalysis data 
during the period 1992-2021. (a) Spatial distribution of time-average outgoing longwave radiation (OLR). 
Also shown are the time-latitude diagrams of the low-pass filtered OLR climatology (ÕLRclim) at longitudes 
marked using vertical lines in (a): (b)180◦, (c)120◦W , (d)60◦W , (e)15◦W , (f)30◦E, (g)45◦E, (h)80◦E, and 
(i)120◦E. Regions of low ÕLRclim (< 240 W/m2)5, represent the deep clouds associated with the Intertropical 
Convergence Zone (ITCZ). The spatiotemporal dynamics of the ÕLRclim reveal the annual migration patterns 
of the deep clouds associated with the ITCZ. The characteristics of the ITCZ are sensitive to local conditions 
such as geography, circulation and convection patterns. As a result, the spatio-temporal dynamics of ÕLRclim 
varies significantly with longitude.
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From Fig. 1, we conclude that the dynamics of the ÕLRclim driven by the ITCZ’s migration, convection, and 
cloudiness is strongly heterogeneous and exhibits high spatial variability. Therefore, it is crucial to classify the 
tropics based on the characteristics of the ITCZ.

Climate classification using community detection
We perform the climate classification of the tropics from the perspective of complex networks. This 
approach enables the incorporation of teleconnections and interactions in climate classification. Unravelling 
teleconnections patterns in the climate system is essential for understanding the underlying physical mechanisms 
and forecasting anomalous climate events such as heatwaves, droughts, and extreme rainfall11,16,44. Here, we are 
interested in regional and long-range teleconnections arising due to variability in the spatio-temporal dynamics 
of the ÕLR, driven primarily by the ITCZ. We construct a functional network with nodes representing different 
geographical locations. Links are then based on the magnitude and significance of the correlation between the 
ÕLR dynamics of each pair of nodes. The method for constructing the ÕLR network is discussed in detail in 
the “Methods” section.

We classify the tropical climate by partitioning the ÕLR network into non-overlapping groups of nodes, 
where nodes within a group are densely connected while connections between nodes belonging to separate 
groups are sparse8. Such partitioned groups based on the density of connections are referred to as communities 
and are obtained by community detection algorithms8,45. Here, we use the Louvain algorithm36, a modularity-
optimization algorithm, to identify communities in the ÕLR network. Further details are provided in the 
“Methods” section. In addition to climate classification, complex network analysis also enables the quantification 
of coherence in the climate dynamics of different communities via estimating measures such as degree and link 
density.

Community structure of the ÕLR network
As shown in Fig. 2a, communities identified in the ÕLR network enable us to classify the tropics into seven 
regions. We have assigned a nomenclature (Table 1) to communities according to the region they encompass. 
Based on their geographical locations, communities can be broadly divided into three categories. Communities 
NH, NCPO, and NAO are in the Northern Hemisphere, EPAO and EIPO are associated primarily with the 
equatorial region, and communities SH and SAO are mainly in the Southern Hemisphere. Next, we elucidate the 
physical interpretation of communities in the ÕLR network.

Figure 2. Communities in the ÕLR network and time histories of ÕLRclimfor representative locations within 
a community. (a) The community detection algorithm divides the ÕLR network into seven communities. 
These communities reveal the spatio-temporal dynamics of the ÕLR, driven by the ITCZ’s migration and 
evolution in an annual cycle. Moreover, these communities divide the tropics into regions of distinct ÕLR 
characteristics. These characteristics are described in (b–g) via annual variation of ÕLRclim at several 
representative locations within the communities.
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Figure 2b shows the annual variation of ÕLRclim (i.e. the climatological average of ÕLR ) at four locations 
marked using the black-filled circles in the NH community (Fig.  2a). As mentioned earlier, the ITCZ is 
associated with deep convective clouds, identified by monthly averaged OLR < 240 W/m25. We observe that, 
despite the significant geographical distance between these four locations (Fig. 2b), the ÕLRclim appears to be 
synchronized. Deep clouds associated with the ITCZ are observed from May to October over landmasses. In 
contrast, we uncover that the ITCZ arrives in July at the point over the western Pacific Ocean (15◦N 150◦E). 
The lag of approximately two months is due to water’s higher thermal inertia than land1. We conclude that this 
community could be interpreted as the Northern Hemisphere region affected by the ITCZ during the northern 
spring and summer seasons.

Meanwhile, in the SH community, the time histories of ÕLRclim are out-of-phase with respect to those in 
the NH community (Fig. 2c). The deep clouds of the ITCZ are observed from October to April over landmasses 
and from December to March over water bodies. Therefore, we interpret the SH community as regions in the 
tropics that are affected by the ITCZ during the southern spring and summer seasons. Note that deep convective 
clouds over the southwest Pacific Ocean are due to the SPCZ, which branches out from the maritime continent 
in the southeast direction.

The point, 20◦N 30◦E, is in the Sahara desert, which acts like a barrier to the ITCZ, restricting its excursion 
beyond approximately 15◦N 46. Therefore, variations in ÕLRclim over this region are not due to the ITCZ. Rather, 
they are due to seasonal variations in surface temperature. The annual variation of ÕLRclim over the Sahara 
desert is in phase and well correlated with those in the Southern Hemisphere. As a result, these distinct regions 
are well connected and clustered together in one community. However, the physical mechanisms over the Sahara 
desert and other regions in the SH community are different. Therefore, we remove connections associated 
with the Sahara desert region while analyzing the intra-community connections. The effect of removing the 
connections of the Sahara desert region is discussed in the Supplementary Information.

Over the central Pacific Ocean, the ITCZ is displaced slightly north due to equatorial upwelling (Fig. 1). 
Figure 2d shows that this section of the ITCZ is observed along the 10◦N  latitude in the NCPO community during 
the northern summer season. The ITCZ over this region is relatively narrow and the amplitude of meridional 
migration is low as it stays between 5◦N  and 12◦N  throughout the annual cycle (Fig. 1a,b)1. The restricted ITCZ 
is due to the weakening of convection caused by a sharp negative heating gradient in the meridional direction 
towards the north. As a result, deep clouds associated with the ITCZ are not identified along the 15◦N  latitude 
and further north in the NCPO community. The NAO community exhibits a similar behaviour (Fig. 2e). We 
observe the ITCZ along the 10◦N  latitude for a relatively shorter time in the months of October and November, 
while further north, the convection resulting in deep clouds associated with the ITCZ is suppressed.

The EPAO community encompasses the equatorial central Pacific, eastern Pacific, and Atlantic oceans, 
which are associated with equatorial upwelling that suppresses the convection and formation of deep clouds 
of the ITCZ2,34,42. In general, the ÕLRclim does not go below the threshold for deep clouds (240 W/m2) over 
several locations in this community (Fig. 2f), confirming the suppression of the ITCZ. This community also 
encompasses the southeastern Pacific Ocean, which has unusually lower SST due to the Humboldt Current 
System47. The cooling effect in this system is due to coastal upwelling along the west coast of South America. The 
low SST suppresses the organized convection. As a result, this region is devoid of the ITCZ.

As seen from Fig. 2g, the annual variation of ÕLRclim across the EIPO community is non-uniform. Such 
behaviour indicates that the spatio-temporal dynamics of the ITCZ changes drastically within this community. 
Over western Africa (0◦ 30◦E), the ÕLRclim dips twice, indicating that the ITCZ crosses this point twice during 
its annual migration cycle. First time while moving north from March to May and a second time while moving 
south from September to December. A similar behaviour, with a small phase shift, is observed at 1.5◦N 103◦E
. Meanwhile, over 0◦ 60◦E and 10◦S 90◦E, deep clouds associated with the ITCZ are observed only once, 
approximately from June to September and February to April, respectively. Due to the lower heat capacity of 
land compared to that over extended water bodies, the convection is more robust over land. Consequently, the 
clouds of the ITCZ are deeper and ÕLRclim is lower over land than extended water bodies.

Network measures of communities
Next, we explore the structure of connections within the four largest communities in the ÕLR network (NH, 
SH, EPAO, EPIO). The intra-community degree (kc) of a node is the number of connections it has with nodes 

Community Name ρ

1 Northern hemisphere (NH) 0.423

2 Southern hemisphere (SH) 0.266

3 Northern central pacific ocean (NCPO) 0.235

4 Northern atlantic ocean (NAO) 0.305

5 Equatorial pacific and atlantic oceans (EPAO) 0.137

6 Southern atlantic ocean (SAO) 0.404

7 Equatorial Indian and pacific oceans (EIPO) 0.099

Table 1. Communities in the ÕLR network: nomenclature of the communities, their abbreviations, and link 
density (ρ).
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within the community. It is defined as kci =
∑Nc

j=1A
c
ij, where Nc is the number of nodes in the community 

and Ac is the intra-community adjacency matrix of size Nc ×Nc. Based on kc, we calculate the link density 
ρ =

∑Nc
i=1 k

c
i /2

Nc(Nc−1)/2 , which is the ratio of the number of actual intra-community links to the total number of potential 

intra-community links. Link densities for the seven communities are listed in Table 1.
Figures  3a,b show the spatial distribution of kc for the NH and SH communities, respectively. We have 

normalized kc using the maximum value for the community. As expected, kc is higher over landmasses than over 
water. For the NH community, most nodes have medium to high degrees. This is also reflected in the probability 
distribution of kc (Fig. 3e). The peak in the distribution is towards its right tail. As a result, this community has a 
high link density (ρ = 0.423); in fact, it is the highest among all communities. In contrast, the PDF of kc for the 
SH community reveals that, unlike the NH community, it has more low-degree nodes, which results in a lower 

Figure 3. Network measures of communities in the ÕLR network. Spatial distribution of intra-community 
degree (kc) for (a) the Northern Hemisphere community (NH), (b) the Southern Hemisphere community 
(SH), (c) Equatorial Pacific and Atlantic Oceans community (EPAO), and the (d) Equatorial Indian and Pacific 
Oceans community (EIPO). Shown in (e) are the PDFs of kc for these communities. kc is normalized using 
the maximum value for the community. kc represents the number of direct connections of a node within 
the community. In the present network, a high value of kc means that temporal dynamics of ÕLR at the 
corresponding location correlates well with many community locations. Also shown in (f) are the PDFs of 
the link distance (LDc) for communities. The link distance (LDc) is the geographical distance between two 
connected nodes in the community. Please note that we remove connections associated with the Sahara desert 
region while analyzing the intra-community connections.
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link density (ρ = 0.266). As seen from Fig. 3b, many low degree nodes are over the western and central southern 
Pacific Ocean due to non-coherent spatio-temporal ÕLR dynamics.

The link densities of intra-community connections of the EPAO and EIPO communities are ρ = 0.137 and 
ρ = 0.099, respectively. We observe from Figs. 3c for EPAO and 3d for EIPO that these communities have sparse 
connections. Moreover, peaks in the PDFs of kc for both communities are at low values (Fig. 3e). Unlike NH 
and SH communities, the decay from the peak of kc is monotonic. The sparsity in connections within these 
communities is due to non-uniform temporal ÕLR dynamics over the water bodies they encompass.

We also explore the spatial scales in a community by investigating the link distance (LDc), which is the 
geographical distance between its connected nodes. For a pair of connected nodes i and j, we estimate the link 
distance LDc

ij as the great-circle distance between their geographical locations using the Haversine formula. Fig. 3f 
shows the PDFs of link distances within the four largest communities. The PDF of LDc for the NH community 
consists of three peaks. The highest peak is at LDc ≈ 6.4× 102 km, representing regional connections within 
this community. The next peak is at LDc ≈ 1× 104 km, and these links are between neighboring continents, as 
well as between the western Pacific Ocean and South Asia, and the western Pacific Ocean and Central America. 
The second highest peak is at LDc ≈ 1.6× 104 km. These are intercontinental connections, for instance, 
between South Asia and Central America, and between Central Africa and the western Pacific Ocean. The PDF 
of LDc for the SH community is qualitatively similar to that for the NH community. The only difference is 
that the peak at LDc ≈ 1× 104 km is slightly higher than at LDc ≈ 1.6× 104 km. The peak at LDc ≈ 1× 104 
km represents links between neighbouring continents, as well as between the central Pacific Ocean and the 
Maritime continent, and the central Pacific Ocean and South America. Meanwhile, the peak at LDc ≈ 1.6× 104 
km corresponds to long-range links such as between South America and the Maritime continent, South America 
and the Pacific Ocean, and southern Africa and the Pacific Ocean. The presence of long-range connections in 
these two communities are indicative of the large geographical scale of the ITCZ. Moreover, the co-existence of 
peaks at both short- and long-range links demonstrates the role of the ITCZ in modulating the regional climate 
and driving teleconnections within these two communities.

For the EPAO community, we observe two peaks in the PDF of LDc. The highest peak, corresponding to 
LDc ≈ 6× 102 km, represents regional connections, while the second peak, at LDc ≈ 1× 104 km, refers to 
connections between the eastern Pacific and Atlantic Oceans. Meanwhile, the majority of connections in the 
EIPO community are regional connections. The EIPO community encompasses the region that is affected by 
the convective activities associated with the Boreal Summer Intraseasonal Oscillation (BSISO) and Madden-
Julian oscillation (MJO)48. These convective oscillations originate in the central Indian Ocean and contribute 
significantly towards the variability in the ÕLR dynamics48. As a result, the connectivity in the EIPO community 
is sparse and short-range.

Interdecadal evolution of the community structure of the ÕLR network
Next, we explore the temporal evolution of the community structure of the ÕLR network on decadal scales. 
We construct three ÕLR networks by dividing the whole data set for thirty years (1992− 2021) into three non-
overlapping sets of 10 years, 1992− 2001, 2002− 2011, and 2012− 2021. For brevity, we will refer to the network 
constructed for 1992− 2001 as the decade-1 network, 2002− 2011 as the decade-2 network, and 2012− 2021 as 
the decade-3 network.

The community structures of decade-1, decade-2, and decade-3 ÕLR networks shown in Fig. 4 highlight the 
regions that exhibit significant variation in the multidecadal temporal scale. The structures of NH (1), NCPO 
(3), NAO (4), and SAO (6) communities appear stable and consistent over the three decades. Most significant 
variations are observed in the SH (2), EPAO (5), and EIPO (7) communities, especially when comparing 
decade-1 to decade-2. In decade-1, the equatorial Atlantic Ocean is not a part of the EPAO community, but of 
the SH community. However, later in decade-2 and decade-3, the equatorial Atlantic Ocean became a part of 
the EPAO community. Further, in the decade-2 network, the EPAO community extends up to 120◦E, while in 
decade-1 and decade-3 networks, this community is restricted to 150◦E.

To further understand the reasons behind the changes in the community structure, we investigate the 
evolution of the underlying connection topology from one decade to the next. We use the Salton cosine-
similarity index49 to measure the number of common connections of a node across ÕLR networks for two 

successive decades. For a node i, the Salton similarity index is estimated as Si =
|Γi,d∩Γi,d+1|√
ki,d×ki,d+1

49,50, where Γi,d and 

ki,d are the set of nodes and total number of nodes that are directly connected to node i in decade d, respectively. 
The latter quantity is often referred to as the degree centrality8, and for a node i, it is defined as ki =

∑N
j=1Aij

, where N is the total number of nodes and A is the adjacency matrix of the network. Si = 1 implies that the 
connectivity pattern of node i is exactly the same, while Si = 0 means that it has no common connections across 
two networks. Thus, a low (high) value of Si indicates that the topology of connections of node i across networks 
of successive decades is significantly different (similar). Here, a significant change in the topology of connections 
implies a significant variation in the ÕLR dynamics. Furthermore, we propose and perform a novel statistical 
significance test for the Salton similarity index to determine if the difference between network topologies is due 
to physical mechanisms rather than random variations. A detailed explanation of the significance test can be 
found in the “Methods” section. We have also studied the effect of increasing the spatial resolution from 1◦ × 1◦ 
to 0.5◦ × 0.5◦. As discussed in the Supplementary Information, the spatial distribution of S does not change by 
increasing the spatial resolution. Thus we perform the analysis at 1◦ × 1◦.

The equatorial central and eastern Pacific and equatorial Atlantic Oceans exhibit low values of S across 
networks corresponding to decade-1 to decade-2 (Fig.  5a), as well as across decade-2 to decade-3 networks 
(Fig.  5b). Larger regions exhibiting low values of S are visible for the evolution from decade-1 to decade-2 
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Figure 6. ERA5 reanalysis data sample. Time series of OLR and low-pass filtered OLR (ÕLR) at 21◦N79◦E. 
The high-frequency oscillations are suppressed in ÕLR while it retains the seasonal variation due to migration 
of the ITCZ.

 

Figure 5. Evolution of network topology from decade-1 to decade-2 and decade-2 to decade-3. Spatial 
distribution of significant Salton similarity index (S) estimated for (a) decade-1 and decade-2 networks, and 
(b) decade-2 and decade-3 networks. A low (high) value of S implies that the node has a small (large) number 
of common connections in both networks.

 

Figure 4. Community structure of decadal networks. Communities in the three decadal ÕLR networks: (a) 
decade-1 (1992− 2001), (b) decade-2 (2002− 2011) and (c) decade-3 (2012− 2021). The NH community 
(#1) has remained nearly unaltered over the three decades. However, the SH (#2), EPAO (#5), and EPIO 
(#7) communities exhibit significant variation, especially from the decade-1 to decade-2 time periods. This 
variation implies that the spatio-temporal dynamics of ÕLR over these regions have changed considerably 
over the past three decades.
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compared to decade-2 to decade-3, indicating lesser variability in the ÕLR dynamics when evolving from 
decade-2 to decade-3. Low values of S in the equatorial central and eastern Pacific and equatorial western 
Atlantic Oceans also explain the high variability in the structure of the EPAO community that encompasses 
these regions. High variability in these regions could be due to natural interdecadal phenomena or to climate 
change in the past few decades attributable to anthropogenic factors.

One example of a natural intradecadal phenomenon is ENSO, which occurs primarily in the equatorial 
central and eastern Pacific Ocean. The frequency of warm (El Niño) and cold (La Niña) phases of ENSO drives 
interdecadal natural variability in this region. On the other hand, high interdecadal variability in the south-
western Pacific Ocean (Figs. 4,5) could be attributed to climate change. This region is part of the Pacific Warm 
Pool, the world’s largest tropical oceanic mass with a SST higher than 28.5◦C . Earlier studies have shown that the 
Pacific Warm Pool has become warmer and growing in size over the past few decades due to warming caused by 
anthropogenic factors51,52. Therefore, natural variability and climate change might have contributed to altering 
the characteristics of the ITCZ, which is reflected in our analysis.

The equatorial Atlantic Ocean also exhibits high variability in the ÕLR dynamics as indicated by low S 
(Fig. 5) and changes in the community structure (Fig. 4). This region is part of the Atlantic Warm Pool (AWP)53, 
also known as the Western Hemisphere Warm Pool54, which is the second-largest tropical warm pool on Earth. 
The AWP is a critical region since it lies in the development area of Atlantic tropical cyclones. Variability in the 
AWP affects their frequency and strength. A well-known source of natural variability in the AWP is the Atlantic 
Multidecadal Oscillation (AMO)53, which alters its size and SST in a time scale of several decades. Another 
phenomenon that could be contributing to the changes in the network measures over the equatorial Atlantic 
Ocean is the inter-decadal variability in the patterns of Atlantic Niño55. The Atlantic Niño is associated with warm 
SST anomalies in the central and eastern Equatorial Atlantic Ocean. Since 2000, the central component of the 
Atlantic Niño is strengthening compared to the eastern component56. This phenomenon could be contributing 
to the separation of the equatorial Atlantic Ocean from the SH community in the decade-1 network and merging 
with the EPAO community in the decade-2 network (Fig. 4a,b).

In summary, this analysis can identify regions that exhibit high variability on decadal scales. However, it 
is critical for ongoing research to identify whether the interdecadal variability observed here is due to natural 
phenomena or anthropogenic factors. Another open yet critical question is whether anthropogenic factors 
compound the natural interdecadal and intradecadal phenomena.

Discussion
In the present study, we propose a climate classification of the tropics based on the spatio-temporal dynamics 
of the ITCZ. We use the framework of complex networks to analyze the outgoing longwave radiation (OLR), 
which is a good proxy for convection and deep clouds in the ITCZ3,5. A complex network is constructed by 
establishing links between pairs of geographical locations when the temporal dynamics of low-pass filtered 
OLR (ÕLR) are significantly correlated based on the Pearson correlation coefficient. This way, we achieve a 
novel classification of the tropics by identifying seven communities in the ÕLR network using the Louvain 
algorithm36. Communities are non-overlapping groups, where nodes within a group are densely connected, and 
nodes between different groups are sparsely connected. Here, we show that communities represent regions with 
distinct ITCZ characteristics, thereby classifying the tropics based on their dominant dynamics. The classification 
proposed here gives additional insights to enhance the physical understanding of the spatio-temporal dynamics 
of the ITCZ over different tropical regions and its role in modulating the regional climate and the teleconnection 
patterns. Mainly, we find that:

 (i)  The two largest communities, the Northern (NH) and Southern Hemisphere (SH) represent regions affect-
ed by the ITCZ during the northern and southern summer seasons. These communities are associated with 
coherent ÕLR dynamics driven by the ITCZ migration. Due to the global-scale structure of the ITCZ, 
these communities have a large amount of long-range intercontinental teleconnections. Due to coherent 
ÕLR dynamics over these communities, a reduced-order model governing the dynamics in these regions 
could be developed and incorporated to speed up simulation and prediction models.

Figure 7. Robustness analysis of the community structure. (a) Variation of the number of communities (nc) 
and modularity (H ) with the resolution parameter (γ). The highlighted region represents the longest plateau 
in the nc vs γ plot. Community detection is carried out using γ = 0.9 since H  is highest at this γ within the 
plateau and overall. γ = 0.9 is marked in the plot. (b) The community detection algorithm is run 100 times 
independently. Most runs identify seven communities in the ÕLR network with similar structure and H . (c) 
Sensitivity of nc to the correlation threshold (τ ) for establishing links in the ÕLR network.
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 (ii)  The Equatorial Pacific and Atlantic Oceans (EPAO) and Equatorial Indian and Pacific Oceans (EIPO) 
communities encompass extended water bodies associated with incoherent ÕLR dynamics. As a result, 
these communities have sparse connections, most of which are short-ranged or regional. We observe that 
the EPAO community is devoid of deep convective clouds of the ITCZ. Strong easterly trade winds displace 
warm water from the equator towards the north, leading to equatorial upwelling that suppresses the con-
vection. Further, over the southeast Pacific Ocean this community is devoid of the ITCZ because of coastal 
upwelling along the east coast of South America. There, coastal upwelling is associated with a larger Hum-
boldt Current System. For the EIPO community, the high variability in ÕLR dynamics can be attributed 
to the convective activities in the Indian and Pacific Oceans due to the BSISO and MJO48.

 (iii)  During different ENSO phases, the region associated with the EPAO community experiences fluctuations 
in wind and SST, which results in extreme weather events such as excess rainfall or droughts across tropics 
and sub-tropics. Further, the extent and depth of the Pacific Warm Pool fluctuates with ENSO, consequent-
ly modulating the size and strength of the South Pacific Convergence Zone. Therefore, ENSO significantly 
impacts the topology of climate networks21. Studying the variation of the community structure of the ÕLR 
network during ENSO events can help develop precursors for extreme weather events over several regions 
in the tropics and subtropics.

The improved understanding of the ITCZ dynamics gained with our climate classification for the tropics can 
enhance weather forecasting models, develop regional reduced-order models, validate and improve future global 
circulation models and monitor climate change.

We also study the temporal evolution of the ÕLR network and the corresponding community structure 
on decadal scales. We uncover that the EPAO community exhibits significant variations on interdecadal scales 
from 1992 to 2021. This community has the highest variability in the central and eastern Pacific oceans, the 
Pacific Warm Pool, and the Atlantic Warm Pool. Attributing this multidecadal variability to a single source 
or phenomenon is difficult. The variability could be due to natural interdecadal oscillations such as the 
Atlantic Multidecadal Oscillation (AMO), intradecadal oscillations such as ENSO, climate change caused by 
anthropogenic factors, or the compounding effect of climate change on natural phenomena. These questions 
remain open for future research.

Networks constructed using climatological variables have some small-world-like architecture12, i.e., they 
borrow characteristics of both regular lattice and random networks. A small-world network provides stability 
and contains sufficient long-range links, like in a random network, which enables the transfer of perturbations 
across the network quickly and efficiently. We explore the role of the ITCZ in enabling such architecture. We find 
that, due to the presence of distinct communities, the OLR network has high clustering. Further, the large spatial 
structure of the ITCZ enables long-range connections in the climate network. These characteristics result in the 
OLR network exhibiting some small-world architecture. This suggests that the spatio-temporal dynamics of the 
ITCZ provides stability to the climate system against perturbations or fluctuations by spreading them uniformly 
and efficiently across the globe via long-range teleconnections. Perturbations could be extreme events such as 
strong ENSO phases, droughts, excessive rainfall, heat waves, etc.

This study uses linear interactions estimated via Pearson correlation coefficient to represent climate 
connections and teleconnections. However, extreme weather events such as excessive rainfall are usually 
caused by teleconnections associated with nonlinear interactions11,57. In the future, we will extend the climate 
classification method proposed here for nonlinear interactions estimated by statistical similarity measures 
such as conditional mutual information or event synchronization. A climate classification based on non-linear 
interactions will help identify regions susceptible to extreme weather events. Further, multidecadal analysis will 
highlight regions where extreme weather events are increasing due to climate change caused by anthropological 
factors. The primary goal of the present study is to demonstrate the ability of complex networks and community 
detection to perform meaningful climate classification. The Louvain algorithm has a potential drawback in that 
it could generate communities that may be internally disconnected. The Leiden algorithm can be utilized in 
such scenarios, which guarantees internally connected communities58. Given that the Earth’s climate has high 
complexity, one should be careful in deriving physical mechanisms from network analysis and community 
detection. Future research should incorporate interactions occurring over a wide range of spatiotemporal 
scales and between different subsystems (atmosphere-land and atmosphere-ocean) to further improve our 
understanding. Another potential application of the approach presented here could be to study spatiotemporal 
patterns and teleconnections associated with extreme weather events using anomalies.

Materials
We employ gridded OLR data from the 5th version of the spatio-temporal ECMWF Reanalysis (ERA5)41. Data 
for thirty years (1992-2021) with a temporal resolution of 3 hours is considered. Since the migration of the ITCZ 
occurs within the tropics, we restrict the spatial domain from 23.5◦N  to 23.5◦S. The grid points are equally 
spaced with a spatial resolution of 1◦ × 1◦, resulting in a total number of N = 17, 280 grid points.

Figure 6 shows the time series of OLR at 21◦N 79◦E from 2012− 2021. The time series primarily consists 
of two states, low and high OLR. The low OLR state corresponds to the presence of deep clouds associated 
with ITCZ, while the high OLR state corresponds to their absence. Moreover, the ITCZ state is associated with 
relatively large amplitude high-frequency oscillations, primarily due to temperature variations from day to night. 
In the present study, we are concerned with the seasonal variation of the ITCZ. Therefore, we neglect the shorter-
scale temporal variations and use low-pass filtered OLR (denoted as ÕLR), i.e., high-frequency oscillations are 
suppressed in the ÕLR, whereas it retains the annual variations associated with the meridional migration of the 
ITCZ. In fact, the variations are more apparent in ÕLR compared to OLR. The ÕLR is estimated by performing 
short-time moving window averaging:
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ÕLR(t, lat, lon) =

1

tw

t+tw/2∑
t−tw/2

OLR(t, lat, lon)dt. (1)

We consider tw = 15 days. The criteria of ÕLR < 240 W/m2 is used to identify deep convective clouds in the 
ITCZ5.

Methods
ÕLR network construction
We consider the discrete grid points on the spatial domain as the network nodes (N = 17, 280). Then, a link 
between two nodes i and j is established based on the magnitude and significance of the Pearson correlation 
coefficient (Rij) between their ÕLR time series. Pearson correlation, which is a linear measure, has been 
successfully applied in previous studies for constructing climate networks4,12,15,17,59. We construct the correlation 
matrix (R) of size N ×N , whose elements (Rij) are estimated as:

 

Rij =
E
[(
ÕLRi − E[ÕLRi]

)(
ÕLRj − E[ÕLRj]

)]
√

E
[(
ÕLRi − E[ÕLRi]

)2]√
E
[(
ÕLRj − E[ÕLRj]

)2], (2)

where E[·] denotes the expected value of a time series. We do not consider time-delayed correlations in our 
analysis since our objective is to understand and classify the tropical climate based on the dynamics occurring 
on seasonal time-scales. Next, we threshold the correlation matrix (R) and convert it into a binary matrix (A), 
known as the adjacency matrix in network science8,9. Elements of A are estimated as:

 
Aij =

{
1, if Rij ≥ τ

0, if Rij < τ
, (3)

where τ  is the threshold for establishing links in the network. We choose τ = 0.5 since several earlier studies 
reported this value of the Pearson correlation coefficient as an appropriate criterion for constructing climate 
networks12,14,16,17,21,37. This threshold provides a good balance between statistical significance and richness in 
underlying physics. With this thresholding, we get an unweighted and undirected network with a link density 
of 7%.

The degree of node i, denoted as ki, is the total number of links it has in the network and is calculated as 
ki =

∑N
j=1Aij. Since our spatial domain is bounded, links in the network could be restricted by the boundary 

of the domain, altering the degree distribution of the ÕLR network60. We test the significance of the boundary 
effects induced by the spatial embedding following Rheinwalt et al., 201260. We find that the degree distribution 
of the network adjusted for the effect of spatial embedding and the degree distribution of the original network 
are in very good qualitative agreement, confirming that the boundary effects on the topology of the ÕLR 
network are negligible. We further discuss the effect of spatial embedding in the Supplementary Information. 
Functional networks, where links are established on the basis of statistical similarity, are prone to biases owing to 
multiple comparisons. As discussed in the Supplementary Information, methods to correct for biases are highly 
restrictive11 and would prevent a comprehensive climate classification of the tropics. Therefore, we do not adopt 
multiple testing in this study.

Statistical significance test
We test the statistical significance of the Pearson correlation coefficient between two connected nodes 
(Rij ≥ 0.5) by performing randomization experiments12,15,20,21,37. We construct 1000 surrogates for one node 
by randomly shuffling the original ÕLR time series. Next, we calculate the correlation between the surrogates 
and the original time series of the other node. We observe that Rij = 0.5 does not arise “by chance” for any 
pair of nodes, indicating that all network links are based on statistically significant correlations. In the random 
shuffling method, we preserve the probability distribution of the time series. We also perform a significance 
test using the Fourier surrogate method where the power spectrum of the time series is maintained. The 
surrogate time series is obtained by first performing the Fourier transform of the original time series, followed 
by randomization of phases and performing the inverse Fourier transform. As a result, the Fourier surrogate 
method is computationally expensive compared to the random shuffling method. Therefore, we perform the test 
only on a small number of representative connections across a wide range of correlations and link distances. We 
find that the original R is larger than the 95th percentile of the null model constructed with Fourier surrogates, 
indicating that the correlations still arise due to physical mechanisms and not random coincidence.

Community detection in the ÕLR network
We use the Louvain algorithm36 for performing community detection in the ÕLR network. This algorithm is 
based on modularity optimization. Modularity quantifies the quality of the partitioned network, and it represents 
the difference between the link density of identified communities and randomly connected networks of the same 
size8,9. Modularity is defined as:
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H =

1

2m

nc∑
c=1

{
ec − γ

K2
c

2m

}
, (4)

where γ is the resolution parameter, nc is the number of communities in the network, m is the total number of 
links in the network (m =

∑N
i=1 ki/2), ec is the number of intra-community connections in the community c 

(ec =
∑Nc

i=1 k
c
i ), and Kc is the sum of degrees of all the nodes in the community c (Kc =

∑Nc

i=1 ki). The resolution 
parameter (γ) governs the size of the communities. Higher γ leads to a higher number of communities, while 
low γ leads to fewer communities. The Louvain algorithm is efficient, in terms of computational costs, for 
detecting communities in large networks. In the present work, we use the Louvain algorithm’s implementation 
in the Python library NetworkX61.

We determine the appropriate value for γ by testing its sensitivity on the community structure62,63. The objective 
is to identify a range of values for which the community structure does not exhibit significant variation. Then, 
the appropriate γ for community detection is selected from this range. Figure 7a shows the variation in the 
number of communities (nc) and in the modularity of the community structure (H ) with γ. We observe a 
step-wise increase of nc with γ. The first step, for which 0.5 ≤ γ ≤ 0.9 and nc = 7, is the longest in terms of the 
range of γ. Hence, we select γ from this range. Then, we observe that the modularity is maximum (H = 0.55
) for γ = 0.9. Further, to establish the convergence of γ, we perform 100 independent runs of the community 
detection algorithm on the ÕLR network. Figure 7b shows the variations of nc and H  with 100 realizations. 
The majority of runs identify seven communities with similar structures and modularities. Therefore, we choose 
γ = 0.9 for the present study.

The community structure is also sensitive to the correlation threshold for establishing links14,39. A small value 
of the threshold τ  allows links that are not statistically significant, leading to a well-connected network that is less 
fragmented and has low nc. The increase in τ  leads to the removal of insignificant links, causing fragmentation 
and rapid increase in nc

14. We observe this behavior in the ÕLR network (Fig. 7c). Therefore, the value of τ  
should be a good compromise between the statistical significance of the network and the number of identified 
communities. We select τ = 0.5 because this value implies the statistical significance of the Pearson correlation 
while giving a meaningful community structure based on actual climatological physics.

Statistical significance test for Salton similarity index
We assess the significance level of the Salton similarity index (S) by developing a null model using a novel method. 
Salton’s similarity index (S) measures the difference between the connectivity and topology of two networks of 

the same size. Salton similarity index is estimated as Si =
|Γi,d∩Γi,d+1|√
ki,d×ki,d+1

49,50, where Γi,d and ki,d are the set of nodes 
and total number of nodes that are directly connected to node i in decade d, respectively. A low value of S 
implies that the connectivity of a node in two networks is significantly different, while a high value of S suggests 
it is similar. We explain the significance test by comparing the decadal ÕLR networks for periods 2002− 2011 
(decade-2) and 2012− 2021 (decade-3). The goal of the test is to assess if the low value of S, which indicates a 
large divergence in the network topology, is because of physical mechanisms instead of random variations in the 
network topology. Therefore, the null hypothesis is that the variation in the network topology from decade-2 to 
decade-3 is because of random variations. We construct 1000 surrogate networks by rewiring the connections 
of the reference network (decade-2). The rewiring is done by randomly shuffling the connections of certain 
nodes and modifying the topology of the reference network while keeping the link density constant. Nodes 
that are rewired are selected randomly. However, their number equals the number of nodes whose connection 
topology exhibits significant variation (S < 0.6) from one decade to the next. We obtain the null distribution 
by estimating S between the original and surrogate networks. We consider S estimated between decade-2 and 
decade-3 networks to be significant if it is less than the 5th percentile of the null distribution. Values in the left 
tail of the distribution are considered because a low S implies a significant variation in the network topology 
across decades.

Data availability
The outgoing longwave radiation reanalysis data that supports the findings of this study is publicly available 
online: ERA5 Reanalysis data41 (https://doi.org/10.24381/cds.adbb2d47).

Code availability

The codes used in this study are available at https://doi.org/10.5281/
zenodo.8176657
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