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Topology of the ÕLR network

Degree

In a complex network, the degree of the node i (ki) is defined as the number of nodes with
which it has a direct connection and is a fundamental centrality measure. In an unweighted
and undirected network, considered here, the degree is defined as ki =

∑N
j=1Aij, where N is the

total number of nodes in the network and A is the adjacency matrix that encodes the topology
of the network [Boccaletti et al., 2006]. In this study, we have established connections based on

Pearson’s correlation coefficient. Therefore, high ki means that the temporal ÕLR dynamics
of a node i is well correlated with that for a large number of nodes and vice versa.

As seen from figure 1, regions that are affected by the ITCZ during its annual migration
cycle have a high degree. These regions are associated with several monsoon systems, such
as the Asian summer, north Australian, African, and American monsoons that depend on the
precipitation of the ITCZ. Figure 1 exhibits an important finding: k is relatively lower in a
narrow zone along the equator, while it is high in certain regions north and south of this zone.
Low k in this zone reveals that the ITCZ exhibits high variability over the equatorial region. k
is higher over land and coastal regions than extended oceans and seas. This pattern indicates

that the spatio-temporal dynamics of ÕLR due to migration of the ITCZ over land is more
coherent than over water bodies.

Average clustering and path length

The average clustering coefficient (C) is an important metric that helps identify if the network
topology is regular, random, or small-world Watts and Strogatz [1998], Humphries and Gurney
[2008]. The clustering coefficient of a node represents the number of its neighbours that are
also interconnected Watts and Strogatz [1998], and it quantifies segregation in the network van
Diessen et al. [2014]. The average clustering coefficient (C) is the mean clustering coefficient of
all the nodes, and it is defined as C = 1

N

∑N
i=1

2Ei

ki(ki−1)
, where Ei is the number of connections

between neighbours of node i. Functional networks based on climatological variables share
some properties of small-world networks Tsonis and Roebber [2004]. Small-world networks are
associated with a high degree of clustering along with the presence of long-range links, making
them efficient in distributing information uniformly across the network.
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Figure 1: Degree centrality (k) of the ÕLR network: degree centrality of a node represents
the total number of links of the node. In the present network, a high value of k suggests that

the ÕLR time history of the node is well correlated with that of a large number of other
nodes. Regions affected by the seasonal migration of the ITCZ have a relatively higher degree,
particularly regions associated with monsoon systems. In general, extended landmasses and
coastal regions have a higher degree compared to extended seas and oceans, which brings out

the land-water contrast in the temporal dynamics of the ÕLR.

The spatio-temporal dynamics of the ITCZ results in an ÕLR network that has a high
degree of clustering (C = 0.684) and a modular community structure (see figure 2). Further,
the large spatial structure of the ITCZ promotes long-range teleconnections in the climate,

which results in long-range links in the ÕLR network (see figure 3 (f)) [Donges et al., 2009,

Boers et al., 2014]. Consequently, the topology of the ÕLR network exhibits some small-world
characteristics, suggesting that the spatio-temporal dynamics of the ITCZ plays an important
role in enabling such characteristics particularly highly efficient energy transfer mechanism.

Steps followed to determine the small-worldness of the ÕLR network are discussed in the section
“Materials and Methods”. In functional climate networks, small-world characteristics enable
the efficient (uniform and swift) distribution of energy across the globe [Tsonis and Roebber,
2004]. Thus stabilizing the climate against climatic fluctuations and preventing prolonged
extreme events such as droughts, excess rainfall, heatwaves, El Niño–southern oscillations, etc.
[Tsonis and Roebber, 2004, Tsonis and Swanson, 2008]
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Boundary effects due to spatial embedding

The spatial domain of our study is bounded by artificially induced boundaries, which makes
the spatial distribution of network measures susceptible to the effects of spatial embedding.
Boundaries destroy links with nodes that are outside of the spatial domain. Moreover, the
reduction of links is non-uniform. Nodes near the boundaries suffer higher reductions than
those in the interior [Rheinwalt et al., 2012, Gupta et al., 2021]. This could lead to incorrect
interpretation of network measures. Therefore, testing for boundary effects on the network

measures is critical. We test the effect of spatial embedding on the degree (k) of the ÕLR
network according to the procedure proposed in Rheinwalt et al. [2012]. In this procedure,
we construct 1000 surrogate random networks with the same link probability based on spatial
link distance as the original network. Such random networks are known as spatially embedded
random networks. To adjust for the boundary effects, we subtract the degree estimated from
the mean of 1000 surrogates from the original degree.

The activity in ÕLR due to the migration of the ITCZ is restricted to the tropics. Con-
nections between the nodes in the spatial domain considered here and the nodes outside will
be negligible. Therefore, we expect boundary effect corrections will not significantly influence
the network topology. The effect will be quantitative. Indeed, as seen from figure 2, the orig-
inal and modified degrees are in excellent qualitative agreement. Hence, we discuss both the
qualitative and quantitative aspects of the original degree in this work.

k

k

k

(a) Degree

(c) Modified degree

(b) Boundary effect estimate

Figure 2: Boundary effects on the spatial distribution of degree (k) due to spatial
embedding. (a) original degree, (b) boundary effect estimate from mean of 1000 surrogates
and (c) modified degree obtained by subtracting the boundary effect estimate from the original
degree.
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The impact of Sahara desert region

The connections to the nodes belonging to the Sahara desert region have been removed while
examining the intra-community connections of the Southern hemisphere (SH) community. Fig-
ure 3 shows the intra-community connections of the SH community with the nodes belonging
to the Sahara region. We observe that the nodes in the Sahara region are connected to other
regions in the SH community, such as southern Africa, South America, the Maritime continent,

and the Pacific Ocean. As discussed in the paper, the ÕLR dynamics over these regions is as-
sociated with high convective activity and cloudiness. In contrast, the Sahara desert is devoid

of such activities. Since the ÕLR dynamics over the Sahara desert and other regions are due
to different physical mechanisms, we remove the connections of the nodes in the Sahara region
while analysing intra-community connections.

Figure 3: Intra-community connections of the SH community: connections with the
Sahara desert region. The connections are shown using the greater circles. Please note that
connections have been under-sampled for better visualization. The figure is created using
the matplotlib basemap toolkit library (version 1.4.1, matplotlib.org/basemap/stable/) in
Python.

Figure 4 shows the PDFs of intra-community degree (kc) for the SH community with and
without the nodes over the Sahara desert region. As expected, we observe a connectivity loss
when connections with the Sahara desert region nodes are ignored. Loss in degree is observed at
the higher end of the distribution. However, the rest of the distributions are in good agreement.

Testing for multiple comparison biases

It is important to correct for the biases arising due to multiple-testing/comparison in functional
complex networks, where connections are established using statistical similarity measures. We
use the method proposed by Boers et al. [2019] to correct multiple-comparison biases for spa-
tially embedded functional climate networks. Their method considers that edges associated
with physical climate mechanisms exhibit coherent spatial patterns, in contrast to edges as-
sociated with random coincidences. The approach entails constructing surrogate networks by
randomly rewiring the links while preserving the link density of the original network. Next,
we estimate each node’s regional link density in the surrogate network. As suggested in Boers
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Figure 4: Degree distribution: pdf of intra-community degree for the SH community with
and without nodes belonging to the Sahara desert region.

et al. [2019], we consider 1000 surrogates to obtain the null distribution. Nodes with a regional
link density, estimated for the original network, greater than 99.9th percentile of the null-model
distribution are considered significant.

Figure 5: Classification of nodes according to the multiple comparison testing ap-
proach by Boers et al. [2019]: nodes in the blue region have a regional link density higher
than the 99.9th percentile of the null distribution. In contrast, those in red-hatched regions
have lower.

Figure 5 shows the significant (blue region) and insignificant (red hatched region) nodes. We
observe from the figure that significant nodes correspond to the Northern (NH) and Southern
Hemisphere (SH) communities (see Figure 2 of the manuscript). These communities have a
high link density and also contain long-range teleconnections (LD > 2500 km) [Boers et al.,
2019] (see figure 3 of the manuscript). On the other hand, many insignificant nodes belong to
communities with low link density and short-range links, such as the Equatorial Pacific and
Atlantic Oceans (EPAO) and Equatorial Indian and Pacific Oceans (EIPO) communities (see
Table 1 of the manuscript). Figure 6 compares the pdfs of link distance for the original network
and the network consisting of just the significant nodes, referred to as the modified network.
We can clearly observe the drop in the number of short-range links in the pdf of the modified
network compared to that of the original network. Meanwhile, the distributions for long-range
links (LD > 2500 km) are in good agreement.

We observe that the insignificant nodes belong to communities with low intracommunity
link density (ρ). Low ρ indicates that these communities are sparsely connected, which we

attribute to incoherent spatio-temporal dynamics of ÕLR occurring in these regions. Regions
encompassed by the EIPO and EPAO communities are prone to regional and mesoscale climate
oscillations that enhance variability and incoherence. For example, the EIPO community expe-
riences convective activities associated with boreal summer intraseasonal oscillations (BSISO)
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and Madden Julian oscillations (MJO) [Kikuchi, 2021].
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Figure 6: Link distance distribution: pdfs of link distance (LD) for the original and modified
networks.

One of the primary objectives of this work is to classify tropical meteorology, which consists
of rich phenomena across a wide range of spatio-temporal scales. Our classification unravels the
regions of large-scale organized coherent OLR dynamics due to the planetry scale intertropical
convergence zone (ITCZ) as well as the regions of incoherent dynamics due to mesoscale con-
vective systems, intraseasonal oscillations and many others. As demonstrated above, multiple-
comparison tests are very restrictive, and adopting them would lead to excluding nodes that do
not exhibit coherent spatial patterns [Boers et al., 2019]. Identifying incoherent regions is also
important. Activities occurring here are often responsible for extreme events such as excessive
rainfall/droughts and climate variability in the tropics. For example, convective activity as-
sociated with BSISO originates in the Indian Ocean (EIPO community). It moves northward
towards India, disturbing the rainfall pattern during the Indian monsoon. Therefore, we do not
adopt multiple testing in this study.
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Effect of spatial resolution

We examine the effect of finite sampling on the Salton similarity index (S) by performing the
analysis on a spatial grid of higher resolution than the original one. We calculate the difference
in the network topology between decade-2 (2002− 2011) and decade-3 (2012− 2021) networks.
The finer spatial grid has spatial resolution of 0.5◦ × 0.5◦ while the original grid is coarser
with resolution of 1◦ × 1◦. Figure 7 compares the S estimated on the finer and coarser spatial
grids for decade-2 and decade-3 networks. Results from both spatial grids are in very good
agreement. Therefore, we perform our analysis on the coarse spatial grids.

S
S

(a) 1◦ × 1◦

(b) 0.5◦ × 0.5◦

Figure 7: Effect of spatial sampling on the Salton similarity index (S): spatial distri-

bution of S estimated for decade-2 to decade-3 ÕLR networks with spatial sampling resolution
of (a) 1◦ × 1◦ and (b) 0.5◦ × 0.5◦.
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