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Abstract
This study investigates spatiotemporal variability of residual soil moisture during the OND (October-November-Decem-
ber) season in Ethiopia and its implications for crop productivity. Employing advanced statistical techniques, we analyze 
spatial and temporal distribution of soil moisture across Ethiopia from 1981 to 2020, focusing on selected crops including 
legumes: chickpea, field peas, common bean, soybean and alfalfa, to assess the potential of residual moisture to support 
post-rainy season cropping. Results indicate pronounced east-west moisture gradients, with eastern regions of Ethiopia 
exhibiting lower moisture levels (< 60 kg.m-2) compared to western regions (> 150 kg.m-2). The central highlands, which 
are pivotal for agricultural activities, demonstrate significant variability in moisture (standard deviations > 25 kg.m-2), with 
implications on agricultural sustainability. The northern and southeastern tips of the country are particularly vulnerable 
to prolonged drought, where climate change and frequent dry spells exacerbate moisture deficits, consequently impacting 
crop productivity. Despite these challenges, promising opportunities for future crop production emerge in the southeastern 
region, which is characterized by increasing moisture trend over time (τ = 0.59). Findings further indicate that residual 
moisture adequately meets and supports crop water requirements in the western, central, and southwestern Ethiopia. In 
these regions, residual moisture supports more than 90% of cropland water requirements of various crops during the initial 
and late-season growth stages, whereas water requirement coverage drops to less than 20% during the mid-season growth 
stage. Therefore, by utilizing residual soil moisture alongside supplemental irrigation, Ethiopian farmers can meet crop 
water needs for double cropping and enhance resilience to climate variability.

Keywords  Agricultural sustainability · Climate resilience · EOFs · Legumes · Post-harvest cropping · Residual moisture
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1  Introduction

Understanding the dynamics of soil water availability is 
central to implementing sustainable agricultural practices, 
especially in regions prone to seasonal variations in precipi-
tation. Soil water availability refers to the amount of water 
present in the soil that is accessible to crops for their growth 
and development (Bhattacharya 2021). It is influenced by 
a range of factors that include soil type, soil texture, soil 
structure, and organic matter content. Adequate soil water 
availability is crucial for crop growth, as water is essential 
for key physiological processes, including nutrient uptake, 
photosynthesis, and transpiration (Blum and Blum 2011; 
Waraich et al. 2011).

Soil moisture (which is correlated with soil water avail-
ability) is a fundamental variable crucial for crop produc-
tivity worldwide (Gaona et al. 2023). Regardless of the 
hydrological regime of a particular area, soil moisture is a 
pivotal component determining crop productivity. However, 
the process of climate change poses significant challenges 
to soil moisture regimes, with potential for knock-on effects 
on crop productivity (Demem 2023; Gornall et al. 2010; 
Kotir 2011). Agricultural water management technologies 
and practices are crucial for boosting agricultural output, 
increasing crop yields, and reducing reliance on unpredict-
able rainfall systems (Nguru et al. 2023; Srivastav et al. 
2021). The dynamics and availability of soil moisture not 
only influence what crop to grow, but also dictate the timing 
of cropping patterns, ultimately shaping agricultural strate-
gies and productivity outcomes. Understanding the relation-
ship between climate change and soil moisture dynamics 
is imperative for devising effective adaptation measures 
in agriculture (Hatfield et al. 2011). Without comprehen-
sive spatially explicit studies on soil moisture regimes and 
trends, agricultural transformation efforts such as introduc-
tion of a second or third crop in a calendar year remain very 
limited or constrained by anecdotal evidence.

Across many countries in Africa, including Ethiopia, 
farmers utilize post-harvest moisture (also known as residual 
moisture) to cultivate additional crops following the main 
growing season, thereby increasing agricultural productiv-
ity per unit area (Goff et al. 2010; Minta et al. 2014; Mwila 
et al. 2021). Even in areas characterized by a monomodal 
climate regime, farmers can harness any residual moisture 
from the main season to cultivate short-period crops (Kar 
and Kumar 2009). For example, in Ethiopia, it is common 
practice to cultivate legumes such as, chickpea during the 
OND season (Getachew 2019; Kebede 2020; Korbu et al. 
2022; Loon et al. 2018). Many legume crops have low water 
requirements and short growing periods, making them well-
suited for cultivation with residual moisture. Beyond their 
role in crop production, leguminous crops can contribute to 

soil fertility (Bationo et al. 2011; Mapfumo 2011; Mwila et 
al. 2021). Nitrogen-fixing legume species introduced during 
the post-harvest season can enhance soil nitrogen availabil-
ity, consequently improving productivity for the subsequent 
main seasons.

Although post-rainy season agricultural practices such 
as growing second and third crops are crucial for ensur-
ing food security (Howden et al. 2007; Mapfumo 2011), 
enhancing soil fertility (Bodner et al. 2015; Mwila et al. 
2021), and providing fodder for livestock (Brychkova et 
al. 2022; Minta et al. 2014), their adoption is declining 
and not universally applicable for several reasons as dis-
cussed by Kar and Kumar (2009). This decline in adoption 
of such practices may arise due to (a) a lack of knowledge 
regarding suitable crops for residual moisture utilization, 
(b) uncertainty regarding whether post-harvest moisture 
levels are adequate to support crop growth, and (c) insuf-
ficient awareness among farmers about the efficacy of such 
practices. In this study, we employed Empirical Orthogonal 
Functions (EOFs) to classify a large domain into smaller, 
homogeneous regions and assess the potential of residual 
soil moisture to meet the water demands of legume crops. 
This approach allowed us to identify areas with similar 
moisture variability and evaluate their potential to support 
secondary cropping. Unlike point-location-based studies, 
this method enables us to cover larger areas with consis-
tent moisture variability, providing a broader assessment of 
regional potential.

Climate change can be characterized by heightened 
variability in precipitation patterns and an increase in the 
intensity and frequency of extreme weather events (Brown 
et al. 2017; Cattani et al. 2018; IPCC 2014). As a climate 
change adaptation approach, post-rainy season cropping 
could provide a climate resilient option to boost agricultural 
yields. Given the high variability of post-rainy season mois-
ture availability, improved water management practices are 
essential (Danga et al. 2009). Efficient water management 
practices, informed by analysis of soil moisture content and 
crop water demand, are essential for optimizing post rainy 
season legume-based cropping systems.

In Ethiopia, optimizing post-rainy season cropping prac-
tices is critical, due to the country’s distinct climate and 
variable rainfall patterns. In this study empirical analysis 
conducted in Ethiopia is leveraged to investigate the opti-
mization of post-rainy season cropping through detailed 
residual soil moisture analysis. To date, few studies have 
attempted to investigate post-rainy season moisture avail-
ability for the second cropping. For instance, Korbu et al. 
(2022), have demonstrated a response of chickpea cultivars 
to varying moisture-stress. In addition, Yang et al. (2021) 
have illustrated improved cereal crop yields associated 
with soil moisture conditions in the Upper Blue Nile Basin 
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(UBNB) by integrating a process-based crop and hydrologic 
models. These studies have been conducted at both the field 
level and on a basin-wide scale.

There remains a need to conduct a residual soil water 
availability assessment for cropping after the main rainy 
season on a country-wide scale to optimize the utilization 
of arable lands for double cropping. This study places a spe-
cific emphasis on post-rainy season residual soil moisture 
analysis for informed decision-making. The study has two 
objectives: (i) to investigate residual soil moisture levels, 
along with their temporal and spatial fluctuations, following 
the main rainy season, spanning from October to Decem-
ber (OND) across Ethiopia; (ii) to investigate the viability 
of cultivating selected legume crops during the post-rainy 
season, while accounting for the presence of residual soil 
moisture within identified climatic zones.

2  Materials and Methods

2.1  Study Area and Agroecologies

The study was conducted for Ethiopia, which is positioned 
in the eastern part of the African continent, and character-
ized by an extensive complex of mountain ranges and deep 
valleys, covering much of the central and northern regions 
(Abera et al. 2019). The country’s climate reveals substan-
tial variations due to altitude differences and its proximity to 
the equator (Fazzini et al. 2015; Jury 2010). Ethiopia expe-
riences distinct wet and dry seasons, with the main rainy 
season, locally known as kiremt, typically occurring from 
June to September (JJAS), and a shorter rainy season, called 
belg, from March to May (MAM) (Segele and Lamb 2005). 
Figure 1 depicts the study area map and the agroecologies of 
Ethiopia as defined by the Ethiopian Ministry of Agriculture 
(MoA).

Agriculture has vast significance for Ethiopia, provid-
ing livelihoods for a large portion of the population and 
making a substantial contribution to the national economy 
(Evangelista et al. 2013; Yigezu Wendimu 2021). Ethio-
pia’s agroecologies cover a wide spectrum of agricultural 

Fig. 1  Study area map showing the distribution of agroecologies in Ethiopia
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support research in renewable energy and agricultural appli-
cations. Specifically, our study has incorporated temperature 
variables (minimum, maximum, and mean), relative humid-
ity, solar radiation, wind speed, and dew point temperature 
from these datasets at 0.25◦ × 0.25◦  spatial resolution.

2.3  Crop Coefficients and Masks Datasets

This study utilizes the crop information database resource 
(developed by the Food and Agriculture Organization (FAO) 
of the United Nations) to access crop coefficients for cal-
culating the water requirements of individual crop species 
(FAO 2023). The FAO database offers extensive informa-
tion on crop water needs, irrigation techniques, and water 
management practices for a wide range of crops cultivated 
globally. It encompasses detailed data on crop-specific 
parameters, including evapotranspiration rates, irrigation 
scheduling recommendations, and water use efficiency met-
rics. In addition, we employed cropland masks version v03 
sourced from the Anomaly Hotspots of Agricultural Produc-
tion (ASAP) data catalog (https://data.jrc.ec.europa.eu/) to 
quantify cropland fractions across the country (Pérez-Hoyos 
et al. 2017).

3  Soil Moisture and Crop Water 
Requirement Analysis Methods

3.1  Spatiotemporal Analysis of OND Residual Soil 
Moisture

Long-term averages, variabilities, and monotonic shifts 
in residual soil moisture, were calculated using sample 
mean, standard deviations, and Kendall-Tau trend statistics, 
respectively.

To identify and categorize the overall distribution of 
moisture levels (for assessing the adequacy of moisture 
to sustain crop water requirements across Ethiopia), we 
set threshold values denoting dry, normal, and wet condi-
tions. The thresholds for moisture values used to differenti-
ate between wet, normal, and dry days were determined by 
averaging the respective 10th and 90th percentiles (Heino 
et al. 2023; Knapp et al. 2015) of moisture levels in each 
homogeneous climate region over time (Huijgevoort et al. 
2012). Considering the extreme soil moisture values below 
the 10th percentile (86.69 kg.m-2) are insufficient to meet 
the water demands of most crops, and values above the 90th 
percentile (116.24  kg.m-2) represent surplus, we utilized 
these threshold values to categorize moisture levels into dry 
(< 86.69  kg.m-2), normal (86.69  kg.m-2−  116.24  kg.m-2), 
and wet (> 116.24  kg.m-2) conditions. In addition, we 
defined a dry spell as ten or more consecutive dry days with 

systems, from highland cropping to pastoralism in lowland 
areas (Asefa et al. 2020; Demem 2023). Highland agricul-
ture includes the cultivation of crops such as teff, wheat, 
barley, maize, and pulses. Lowland areas, particularly in the 
eastern and southeastern parts of the country, have arid to 
semi-arid climates (Abera et al. 2019). Pastoralism is prev-
alent in these regions, with communities raising livestock 
such as cattle, goats, sheep, and camels (Alemayehu et al. 
2020). Agro-pastoralism, combining crop cultivation with 
livestock rearing, is practiced in some lowland areas with 
access to water sources.

2.2  Climate and Elevation Datasets

This study employs the Global Land Data Assimilation 
System (GLDAS) dataset, a comprehensive global offline 
land surface modeling system utilizing the Noah Land 
surface model, focusing on around 36 land surface fields. 
The model is driven by observed and reanalysis meteoro-
logical fields, facilitating the generation of a diverse array 
of surface and subsurface soil moisture data across vary-
ing depths: the top 10 cm, 10–40 cm, 40–100 cm, and 100–
200 cm layers. GLDAS provides multiple versions of the 
soil moisture dataset, containing v2.0, v2.1, and v2.2 (Beau-
doing and Rodell 2019; Rodell et al. 2004). For this study, 
we specifically utilize v2.0 and v2.1. In v2.0, the Noah land 
surface model is simulated through enforcing of Princeton 
meteorological input data for the period spanning 1948 to 
2014. On the other hand, v2.1 is generated by combining 
both model and observational data, covering the time frame 
from 2000 to the present. The datasets selected for this study 
have a spatial resolution of 0.25◦ × 0.25◦  and are tempo-
rally resolved on a daily basis. Considering cultivation of 
crops with shallow root depth during the post-rainy season, 
we utilized soil moisture data from the top 40 cm depth for 
this study.

The GLDAS Elevation dataset, derived from GTOPO30 
(EROS 2017; Guth et al. 2021), a global digital elevation 
model with a horizontal grid spacing of 30 arc seconds, has 
been sourced from the GLDAS data repository (https://ldas.
gsfc.nasa.gov/gldas/elevation). This dataset is utilized in 
the Penman-Monteith reference evapotranspiration (ETo ) 
equation to calculate crop water requirements.

Agroclimatology datasets sourced from the National 
Aeronautics and Space Administration (NASA) via the Pre-
diction Of Worldwide Energy Resources (POWER) platform 
(https://power.larc.nasa.gov/) and AgERA5 through Coper-
nicus Data Store (CDS) (Boogaard et al. 2020), were uti-
lized for point location and spatial crop water requirements 
analysis, respectively. These datasets offer a comprehensive 
range of solar and meteorological data, including rainfall, 
temperature, wind speed, humidity, and solar radiation, to 
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The classification was based on the close association of each 
data point with the minimum squared distances within its 
respective region relative to data points in other regions.

3.3  Crop Selection and Crop Water Requirements 
Analysis

To inform agricultural productivity and climate adaptation 
among smallholder farmers, we explore the potential of inte-
grating available post-rainy season soil moisture levels with 
selected drought tolerant legume crop water requirements. 
One approach involves assessing the water needs of differ-
ent crop species based on their physiological traits, growth 
stages, and prevailing environmental conditions. Drawing 
on both scientific knowledge and traditional farming prac-
tices observed across Ethiopia, particularly the cultivation 
of second crops after the main season (JJAS), we chose 
legume food and feed crops such as chickpea (Cicer arieti-
num), field peas (Pisum sativum), common bean (Phaseo-
lus vulgaris), soybean (Glycine max) and alfalfa (Medicago 
sativa) for evaluation in leveraging residual soil moisture to 
support double cropping (Minta et al. 2014).

Crop water requirements (ETc ) are analyzed employ-
ing the Penman-Monteith method that is a widely used 
approach for estimating reference evapotranspiration (ETo

), which represents the rate of evapotranspiration from a 
well-watered reference surface under standard weather 
conditions (Abraham and Muluneh 2022; Allen 1998). The 
formula for calculating ETo  using the Penman-Monteith 
method is as follows:

ETo =
0.408× ∆ (Rn −G) + γ × 900

T+273
× u× (es − ea)

∆ + γ × (1 + 0.34× u)

Where:

	● ETo  = Reference evapotranspiration (mm/day)
	● Rn  = Net radiation at the crop surface (MJ/m2/day).
	● G  = Soil heat flux density (MJ/m2/day).
	● T  = Mean daily air temperature at 2 m height (°C)
	● u  = Wind speed at 2 m height (m/s)
	● es  = Saturation vapor pressure (kPa)
	● ea  = Actual vapor pressure (kPa)
	● ∆  = Slope of the saturation vapor pressure curve 

(kPa/°C)
	● γ  = Psychrometric constant (kPa/°C)

The psychrometric constant (γ ) is a parameter used to quan-
tify the relationship between air temperature and the vapor 
pressure gradient in the atmosphere, and it is defined as the 
ratio of the specific heat of moist air at constant pressure 

less than 86.69  kg.m-2 (below the 10th percentile) of soil 
moisture value and assessed the occurrences of dry spells 
during the season.

The non-parametric Kernel Density Estimation (KDE) 
technique is employed both temporally and spatially to 
estimate the probability density distribution of residual soil 
moisture values. KDE is utilized to identify clusters or areas 
of heightened density within the dataset, enabling the explo-
ration of its underlying structure (Gramacki 2018; Wang and 
Scott 2019). This method provides a smoothed approxima-
tion of the Probability Density Function (PDF), facilitating 
a visual representation of the data distribution. To reduce 
noise in the data, Scott’s Rule of Thumb bandwidth selec-
tion criterion as discussed by Bashtannyk and Hyndman 
(2001) is applied. Threshold values of 1.5 for spatial and 1.0 
for temporal density distributions analysis are established.

3.2  Homogeneous Climate Regions Classification

To decompose the covariance structure of spatial soil mois-
ture data into dominant modes of variability, EOF analysis 
Dawson (2016) has been applied to identify major patterns of 
moisture variability within the dataset. Thus, unsupervised 
K-means clustering algorithm Li and Wu (2012) is utilized 
to partition the soil moisture dataset into clusters, minimiz-
ing the sum of squared distances between data points and 
their corresponding cluster centroids. To address drawbacks 
associated with the traditional K-means algorithm, such as 
sensitivity to initial centroids and slow convergence issues, 
we adopted the efficient K-means + + initializer and executed 
the algorithm multiple times with different initializations 
(Fränti and Sieranoja 2019; Bahmani et al. 2012).

To standardize the data and remove seasonal patterns, a 
time-mean was calculated at each grid point, and anomalies 
were then derived. To address changes in grid size particu-
larly at higher latitudes, an area-weighting technique based 
on the square root of the cosine of latitude was applied 
(Baldwin et al. 2009; Dawson 2016; Hannachi et al. 2009; 
Rieger et al. 2021).

Empirical Orthogonal Functions (EOF) analysis was per-
formed on the anomaly data for the OND season, spanning 
a 40-year period (1981–2020). This analysis identified four 
dominant modes explaining the highest variability during 
this season (these EOF modes are provided in supplemen-
tary materials Figure S1). Subsequently, KMeans clustering 
was applied to these EOF modes, resulting in the identifica-
tion of five centroids representing clusters.

The determination of the number of centroids follows 
to the Elbow criterion as mentioned by Nainggolan et al. 
(2019) and was substantiated by domain experts judgment. 
This approach effectively classified the country into five 
distinct and non-overlapping homogeneous climate regions. 
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	● Kc  is the crop coefficient

By integrating the selected crops and assuming a uniform 
planting date of October 1st for all crops, coupled with 
careful assessments of their water requirements utilizing the 
FAO-recommended Penman-Monteith method (Allen et al. 
2005; Pereira et al. 2021), we present our research findings 
based on homogeneous climate regions for the OND season.

To better quantify the extent by which post-rainy residual 
soil moisture supports each crop’s water requirements, we 
used pixel-based spatial analysis. We selected specific pixel 
locations representing normal (i.e., average), driest (i.e., < 
10th percentile), and wettest (i.e., > 90th percentile) condi-
tions and conducted pixel-based assessments of crop water 
requirements. Furthermore, to refine the analysis solely on 
croplands, we utilized a cropland mask to exclude non-crop-
land areas and conducted spatial analysis covering the entire 
country to assess crop water requirements for the mentioned 
crops.

The harvest period for all legume crops is considered 
to be at the end of December, coinciding with the residual 
soil moisture duration assessed in this study. However, it 
should be noted that not all crops may reach complete late-
stage development or full maturity by this time. In addi-
tion, regions exhibiting high soil moisture variability often 
experience a delayed harvest period compared to areas with 
lower soil moisture variability (Nepal et al. 2021; Usowicz 
et al. 2019).

4  Results

4.1  Seasonal and Monthly Post-rainy Soil Moisture 
Variability

Figure 2 illustrates the long-term soil moisture climatology, 
standard deviations, and trends in Ethiopia (1981–2020). 
The wet regions are predominantly located in the central 
and western parts of the country, with soil moisture exceed-
ing 150 kg.m-2 across central-western Ethiopia. A gradient 
is evident moving from west to east, reaching as low as 
60 kg.m2 in the southeastern tips of the country (Fig. 2(a)). 

to the latent heat of vaporization of water. The formula to 
calculate the psychrometric constant is:

γ =
cp · P
ε · λ

Where:

	● γ  = Psychrometric constant (kPa/°C)
	● cp  = Specific heat of moist air at constant pressure (kJ/

kg/°C)
	● P  = Atmospheric pressure (kPa)
	● ε  = Ratio of the molecular weight of water vapor to the 

gas constant for dry air (dimensionless)
	● λ  = Latent heat of vaporization of water (kJ/kg)

To calculate the psychrometric constant, several parameters 
are typically employed, including the specific heat of moist 
air, atmospheric pressure, the ratio of molecular weights 
between water vapor and dry air, and the latent heat of 
vaporization of water (Tabari 2010). The following typical 
values for these parameters are utilized in the calculation 
process.

	● cp  ≈ 1.013 kJ/kg/°C
	● P  ≈ Standard atmospheric pressure (calculated based 

on altitude)
	● ε  ≈ 0.622
	● λ  ≈ 2.45 kJ/kg at 0 °C (this value varies slightly with 

temperature)

The individual components of the Penman-Monteith equa-
tion represent different factors influencing evapotrans-
piration, including radiation, temperature, wind speed, 
humidity, and soil properties. These components are com-
bined to estimate the overall rate of evapotranspiration from 
the reference surface. Thus, the crop water requirement is 
calculated using:

ETc = ETo × Kc

Where:

Fig. 2  Seasonal soil moisture (a) Climatology, (b) Standard deviation, (c) Trend in the OND season for 1981–2020 period
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linked to a reduction in moisture during these months of the 
season. In contrast, the soil moisture trends are relatively 
consistent across all months of the season, with slight varia-
tions in the magnitude of the trend observed at the central 
and northeastern tips of the country (Fig. 3(g-i)).

4.2  Long Term Residual Moisture Characteristics 
Across Ethiopia

Considering the threshold values established (dry 
days < 86.69 kg.m-2 and wet days > 116.24 kg.m-2) based on 
the 10th and 90th percentiles of moisture level values, Fig. 4 
illustrates the percentages of wet, normal, and dry days dur-
ing the season. The majority of wet days are concentrated 
in the western region (Fig. 4(a)), while normal days are dis-
tributed throughout the country, excluding the western and 
easternmost tips (Fig. 4(b)). A high percentage of dry days 
is observed primarily at the northern and southeastern tips 
of the country (Fig. 4(c)).

Soil moisture exhibits high variability along the central and 
western highlands, particularly extending from the central 
highlands to the northwestern tips of the country (standard 
deviations > 25  kg.m-2). In contrast, the eastern low land 
regions demonstrate relatively low variability, with the 
northeastern region exhibiting the lowest (standard devia-
tions < 7.5 kg.m-2) (Fig. 2(b)). The northeastern and north-
western regions exhibit strong increasing soil moisture 
trends, while the southeastern region also displays a mod-
erate increase in trends. Overall, there is a decreasing soil 
moisture trend along the central south-north direction and 
increasing soil moisture trends in the northwest and eastern 
regions (Fig. 2(c)).

Figure 3 displays the soil moisture average, variability, 
and trends during the months of the OND season. The high-
est soil moisture levels are observed in October, followed 
by a decrease in November and December (Fig. 3(a-c)). Soil 
moisture variability follows a similar pattern, as depicted in 
Fig. 2(b), and this variability also declines from October to 
December (Fig. 3(d-f)). This decrease in variability may be 

Fig. 3  Soil moisture climatology (first row(a-c)), Standard deviations (second row(d-f)), and Trends (third row(g-i)) are presented for October (first 
column), November (second column), and December (third column) over the period 1981–2020
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southeastern tips of the country (Fig. 5(b)). This suggests 
the possibility of these regions staying dry (below the mini-
mum threshold) for consecutive seasons. Additionally, a 
significant number of dry days within dry spells is observed 
in most parts of the eastern regions, particularly in the cen-
tral-eastern and northern regions of Ethiopia. Moreover, 
the frequency of dry spell occurrences ranges from 1 to 55, 
with the highest frequencies observed between 30 and 45 

Figure 5 depicts the number of dry spells, count of dry 
days within those spells, and frequency of dry spell occur-
rences across the country. A larger number of dry spells occur 
in the eastern parts of the country, particularly in most areas 
of southeastern, certain pocket areas in the southwestern 
tips, and in northern regions of Ethiopia (Fig. 5(a)). In these 
areas, the number of dry spells is high, with the count of dry 
days in these spells exceeding 150 days in the northern and 

Fig. 5  Seasonal number of (a) dry spells and (b) number of dry days within dry spells, and (c) the frequency of dry spells across Ethiopia for the 
period 1981–2020

 

Fig. 4  Seasonal percentages of (a) wet days, (b) normal days, and (c) dry days during the OND season for the period 1981–2020
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dry years such as 2007–2012 in Reg-1, 1983–1988 in Reg-
3, 2012–2018 in Reg-4, and 1991–1996 in Reg-5. The lon-
gest consecutive dry period is observed in Reg-2, spanning 
from 2001 to 2020, with the exception of two normal years 
(i.e., 2006 and 2013). In Reg-2, it is notable that the mois-
ture level remains above the long-term mean from 1981 
to 2000, except for small negative amplitude anomalies in 
1984 and 1987. This region exhibits significant moisture 
variability and a pronounced decreasing trend in moisture 
levels, as depicted in Fig. 2(b, c). Moreover, significant wet 
years, such as 1997–2000, are observed in all regions except 
Reg-5.

Figure 8 presents the long-term time series smoothed by 
a 7-year moving average for homogeneous climate regions, 
showcasing the decadal soil moisture trends in these regions 
using Kendall-Tau trend test (Hussain and Mahmud 2019). 
The figure illustrates increasing moisture trends across all 
regions until 1997. However, after that point, Reg-2 (trend 
magnitude, τ = −0.60) and Reg-4 (τ = −0.67) reveals 
decreasing trends, with Reg-2 experiencing a particularly 
sharp decline. Reg-1’s trend continues to increase until 
2003, followed by a moderate decline and subsequent 
increase (τ = 0.30). In contrast, Reg-3 (τ = 0.26) and 
Reg-5 (τ = 0.59) consistently show increasing moisture 
levels. It is evident that the magnitude of seasonal decreas-
ing trends in Reg-2 and Reg-4 is substantially high, aligning 
with the observations in Fig. 8. The increase in soil moisture 
trends in Reg-1 and Reg-3 is moderate in both seasonal and 
decadal time scales, while the decadal increase in trend in 
Reg-5 is considerably larger. On the other hand, the annual 
trend (as shown in supplementary materials Figure S2) is 
low in Reg-1, Reg-3, and Reg-5.

(Fig. 5(c)). These areas are dispersed throughout the eastern 
part of Ethiopia, with the southeastern and northern regions 
revealing a high frequency of dry spells.

4.3  Homogeneous Regions and Their Attributes of 
Residual Soil Moisture

The regionalization process (see Sect. 3.2) clustered Ethi-
opia into five homogeneous climate regions: northwest, 
central, northeast, southwestern-central, and southeast. Fig-
ure  6(a) illustrates the five homogeneous climate regions 
in Ethiopia, determined by post-rainy season (OND) soil 
moisture levels.

The seasonal cycles of the five homogeneous post-
rainy season soil moisture climate regions are depicted in 
Fig. 6(b), which indicates that the moisture levels in Reg-
1, Reg-2, and Reg-3 undergo a gradual decline throughout 
the months of the season. In contrast, the soil moisture in 
Reg-4 and Reg-5 increases until the end of October and then 
starts declining towards the end of the season. Moreover, 
the initial moisture level of Reg-1 at the start of the sea-
son is higher than that of all other regions, and its lowest 
value at the end of the season is higher than the seasonal 
maximum moisture of some regions (e.g., Reg-3 and Reg-
5). Generally, the moisture level amplitude significantly dif-
fers among the homogeneous regions throughout the season 
Fig. 6(b).

The interannual variabilities of homogeneous moisture 
regions significantly differ from one another, as demon-
strated by the varying amplitudes of moisture anomalies 
shown in Fig. 7. Notably, there are significant consecutive 
dry years, i.e., below the long-term average, across homoge-
neous regions. Examples include the periods of consecutive 

Fig. 6  (a) The five homogeneous soil moisture regions in Ethiopia: Northwest (Reg-1), Central (Reg-2), Northeast (Reg-3), Southwestern-central 
(Reg-4), and Southeast (Reg-5); (b) Seasonal cycles of average soil moisture in homogeneous regions for 1981-2020 period
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while Reg-4 is a bit right-skewed, and Reg-3 and Reg-5 
indicate a normal distribution. This suggests that high mois-
ture levels are prevalent in Reg-1 and Reg-2, while the areas 
in Reg-4 are characterized by relatively lower moisture 
levels. Temporally, all regions resemble close to a normal 
distribution.

As indicated in Tables  1 and 79% of the time, post-
rainy season moisture values fall between the 10th and 

Figure  9 presents the spatial and temporal densities of 
soil moisture levels. The spatial and temporal coverage of 
the range of soil moisture values are comparable in their 
respective homogeneous climate regions. For instance, Reg-
1, Reg-2, and Reg-4 reveal a wider range of moisture levels 
coverage, whereas Reg-3 and Reg-5 exhibit moisture levels 
concentrated in a narrow band of values. Spatially, Reg-1 
and Reg-2 show a moderately left-skewed distribution, 

Fig. 7  Interannual variabilities in soil moisture within homogeneous soil moisture regions of Ethiopia
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critical for promoting sustainable agricultural systems in 
water-scarce regions.

To address this need, we conducted tests on five legume 
crops known for their ability to withstand low water stress 
and which are characterized by short growing periods. 
Table 2 outlines the legume crops, their respective lengths 
of growing periods across three stages (initial, mid-season, 
and late), and their corresponding crop coefficients.

Figure 10 indicates the daily water requirements for the 
five legume crops across different homogeneous regions of 
Ethiopia characterized by normal, extreme dry, and wet soil 
moisture conditions. Under wet conditions, soil moisture 
levels in Reg-1, Reg-2, and Reg-4 in Ethiopia are adequate 
to meet the daily water needs of these crops. Conversely, 
Reg-3 and Reg-5 of Ethiopia exhibit sufficient moisture 
levels to support crop growth until late October, yet these 
regions experience water stress during the mid-season and 
late stage, with a water deficit of approximately 5  mm/
day in the latter stage. In drier locations, all regions lack 
adequate moisture to sustain crop growth, even during the 
initial stage. However, at normal moisture levels, the Reg-
1, Reg-2, and Reg-4 regions indicate the potential to sup-
port legume crop water requirements if supplemented with 

90th percentiles in their respective homogeneous climate 
regions. It is not surprising that temporally every region’s 
10th to 90th percentiles of moisture values fall within 
the same percentages, considering that the homogeneous 
regions were classified based on the temporal variability of 
the seasonal (OND) soil moisture. However, the spatial cov-
erage of these ranges of values differs from region to region. 
It is also important to note that the spatial distribution of the 
highest moisture values in Reg-1, Reg-2, and Reg-4 cov-
ers 65.9%, 90.7%, and 48.9% of the regions’ areas, respec-
tively. Although Reg-3 and Reg-5 also exhibit a wider area 
coverage of moisture levels in their respective regions, the 
range of these values is narrower and smaller in magnitude, 
as depicted in Fig. 9(c, e).

4.4  Cropping assessment based on crop water 
requirements

Cropping strategies that can prioritize (a) utilization of 
residual soil moisture, (b) incorporation of drought-toler-
ant crops, (c) maintain a short growing season (maximum 
120 days), and (d) align with crop water requirements are 

Fig. 8  Long-term temporal trends of residual soil moisture in homogeneous regions of Ethiopia. The long-term time series data is smoothed on a 
decadal time scale (7 years) to reduce high-frequency variability
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requirements for the five legume crops across cropland 
areas in Ethiopia. Cropland covers approximately 30.1% 
of the total country area. At the initial growth stage, a high 
percentage of cropland areas (99.6% for chickpea, 94.7% 
for field peas, 99.4% for alfalfa, 99.4% for common bean, 

irrigation (maximum of 4.5 mm/day) during the mid-season 
and late growing stages.

Figure  11 illustrates the spatial distribution of the dif-
ference between residual soil moisture and crop water 

Table 1  Lower (10th ) and Upper (90th ) percentiles of soil moisture 
values in homogeneous regions of Ethiopia, along with the percent-
ages of corresponding temporal and spatial soil moisture values cover-
age within the lower and upper percentiles
Regions Percentiles [10th −  90th 

] (kg.m-2)
Percentages 
[Temporal/Spatial]

Reg-1 [99.13–141.31] [79.74% / 65.58%]
Reg-2 [79.96–132.94] [79.38% / 90.65%]
Reg-3 [80.78–99.210] [79.44% / 69.85%]
Reg-4 [90.54–124.49] [79.67% / 48.89%]
Reg-5 [73.49–99.510] [79.25% / 80.09%]

Table 2  Crop types, their corresponding crop coefficients (Kc), and 
growth stages employed to assess crops development during the OND 
season, utilizing residual soil moisture
Legume Crops Crop coefficients Kc(days) Refs.
Chickpea 0.26(25), 1.08(40), 0.52(> 65) (FAO 2023)
Fieldpeas 0.50(50), 1.15(35), 0.30(> 85) (FAO 2023)
Common bean 0.40(40), 1.15(35), 0.54(> 75) (FAO 2023)
Soybean 0.50(30), 1.15(40), 0.50(> 75) (FAO 2023)
Alfalfa 0.40(30), 0.95(30), 0.40(> 60) (FAO 2023)

Fig. 9  Spatial and temporal density of soil moisture in homogeneous 
regions of Ethiopia (1981–2020). The top three panels in the row pres-
ents (a) Reg-1, (b) Reg-2, and (c) Reg-3; the central panel displays a 

map of homogeneous regions, and the last two panels in the row cor-
respond to (d) Reg-4 and (e) Reg-5
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for soybean. Residual soil moisture in the central and east-
ern highlands of Ethiopia becomes insufficient to meet mid-
season crop water requirements for all crops. In addition, 
moisture deficits exceeding − 4.5 mm/day are observed in 
the central rift valley, eastern, and northern regions of the 
country. However, in most parts of the central and western 

and 97.2% for soybean) support crop water requirements for 
these crops. These areas are primarily concentrated in the 
central and western regions of Ethiopia.

During the mid-season growth stage, the spatial coverage 
significantly reduces to 18.9% for chickpea, 3.6% for field 
peas, 29.5% for alfalfa, 7.4% for common bean, and 10.4% 

Fig. 10  Daily crop water requirements for chickpea, field peas, com-
mon bean, soybean, and alfalfa, alongside available residual soil mois-
ture (SM) during the OND season across regions of Ethiopia. Columns 

represent soil moisture conditions (dry, normal, and wet) in respec-
tive regions, while rows indicate homogeneous regions from Reg-1 
to Reg-5
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Fig. 11  Spatial distributions across Ethiopia of the difference between residual soil moisture (SM) and crop water requirements (CWR) for chick-
pea, field peas, alfalfa, common bean, and soybean at their initial, mid-season, and late-season growth stages
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optimize their selection of crop species, crop varieties and 
management practices based on their specific agroecologi-
cal context. This is becoming more important because of the 
protracted impacts of droughts in the horn of Africa and in 
Ethiopia particularly as mentioned by Degefie et al. (2019), 
with climate projections indicating that the frequency and 
intensity of such droughts is likely to increase (Haile et al. 
2020).

A key finding is that the eastern regions, particularly the 
northern and southeastern parts, are identified as particu-
larly vulnerable to unreliable post-rainy season cropping, 
due to the prevalence of consecutive dry days and frequent 
dry spells. This finding helps to explain why agriculture is 
already constrained in these regions for the main season, 
and exhibits even more serious constraints for the post crop-
ping period. Abera et al. (2019) indicate that the effects of 
climate change further compound the challenges, impact-
ing surface water availability and exacerbating moisture 
deficits in these regions of Ethiopia. Conversely, the south-
eastern region of Ethiopia shows a promising trend with a 
substantial increase in moisture trends, suggesting potential 
opportunities for future post-harvest cropping of legume 
crops. The exponential decline in soil moisture in the Reg-
1, Reg-2, and Reg-3 throughout the months of the season 
is likely explained by the withdrawal of Ethiopian summer 
rainfall (main rainy season) from northeast to southwest, 
following the trajectory of the Inter-Tropical Convergence 
Zone (ITCZ), as described in several studies (Gleixner et 
al. 2017; Segele and Lamb 2005; Segele et al. 2009) and 
the soil moisture’s correlation with rainfall. The longest 
consecutive dry period, spanning from 2001 to 2020, is 
observed in Reg-2, consistent with the findings of Jimma et 
al. (2023), who utilized annual soil moisture data to assess 
trends in soil moisture across the country. These year-to-
year variabilities within homogeneous climate regions are 
likely attributed to topographic effects, as well as local and 
global moisture drivers.

Our study further highlights the capacity of residual soil 
moisture to fulfill the water demands of selected legume 
crops, thereby rendering specific areas conducive to post-
rainy season cropping, particularly the western, central, 
and southwestern regions. However, it is noteworthy that 
supplemental irrigation may be necessary for some crops 
during the late growing stages in certain areas to mitigate 
moisture deficits and ensure optimal crop growth and yield. 
Furthermore, in regions that possess higher soil moisture 
values, such as wetter pocket areas in the southeastern 
region, implementation of supplementary irrigation could 
augment existing moisture levels, thereby enhance the 
potential for post-harvest cropping in the region.

Our findings have significant implications for sustain-
able intensification of agriculture in Ethiopia. Firstly, it 

highlands of Ethiopia, moisture deficits are less than 1 mm/
day, which may be tolerated by legume crops’ low moisture 
resistance capabilities or supplemented by minimal irriga-
tion to sustain crop growth all along this growth stage. Dur-
ing the late-season growth stage, crop water requirements 
for most of the legume crops investigated are adequately 
supported by residual moisture across cropland areas, with 
the exception of chickpea and soybean in the northernmost 
regions of the country.

5  Discussion

Our study investigates the spatiotemporal variability of soil 
moisture during the OND season in Ethiopia and its poten-
tial contribution to supporting legume-based improvements 
in agricultural productivity. Through empirical analysis 
employing advanced statistical techniques, we unraveled 
the spatial and temporal distribution and trends of soil mois-
ture across Ethiopia over the four decadal period from 1981 
to 2020. Our primary focus was to investigate the potential 
of residual moisture to support post-rainy season cropping 
of legumes, particularly in light of adverse climate impacts 
on crop yield and the need for agricultural transformation to 
meet escalating food demand driven by population growth 
in the face of a changing climate.

Ethiopia’s diverse topography, agroecologies, and cli-
mate variability play pivotal roles in shaping the heteroge-
neous distribution of soil moisture across the country. Our 
findings demonstrate pronounced soil moisture gradients 
between the eastern and western regions of Ethiopia, with 
the former characterized by comparatively lower moisture 
levels. The eastern regions of Ethiopia predominantly con-
sist of lowlands, comprising a significant portion of the 
country’s landscape. Characterized by arid and semi-arid 
agroecology, these lowland areas typically receive annual 
rainfall of less than 200  mm, accompanied by high tem-
peratures reaching up to 50◦ C (Berihun et al. 2023; Jimma 
et al. 2024). This combination of climatic factors, includ-
ing elevated temperatures and limited rainfall, contributes 
to reduced soil moisture availability in the eastern region, 
rendering it less conducive to post-rainy season cropping 
activities as already observed in other studies (Agutu et al. 
2021; Temam et al. 2019).

Notably, the central region of Ethiopia, encompassing 
the highlands renowned for intensive agricultural prac-
tices, exhibits substantial moisture variability, imposing 
challenges regarding the sustainability of future agricul-
tural activities in this crucial agricultural hub. The spatial 
heterogeneity of soil moisture underscores the need for tai-
lored agricultural strategies that account for local moisture 
conditions, enabling farmers to spatially and temporally 
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While our findings offer valuable insights for farmers, 
agricultural stakeholders and policymakers to optimize 
post-rainy season cropping strategies, we acknowledge the 
limitations of our study and emphasize the need for fur-
ther research to deepen our understanding of the predicted 
crop viability in localized regions. Further research efforts 
employing process-based crop modeling, and incorporating 
soil properties and crop management strategies, combined 
with crop field trials across the different regions, would 
enhance understanding. Moreover, refining climate datasets 
through regional modeling approaches can provide more 
detailed insights by capturing fine-grained spatial variations 
overlooked in coarse-resolution analyses, thus improv-
ing the robustness and accuracy of our findings, and guid-
ing more targeted interventions for sustainable agricultural 
development in Ethiopia.
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underscores the potential for cultivating legume crops in 
non-overlapping growing seasons across different regions 
of Ethiopia, thereby enabling double harvesting and 
strengthening food security (Renard and Tilman 2021). 
Secondly, the availability of residual moisture presents an 
opportunity to incorporate legumes as secondary crops, 
potentially enhancing nutritional security because of their 
high protein content (Kebede 2020; Neda 2020; Semba et 
al. 2021). Thirdly, the residual moisture during the OND 
period can contribute to soil fertility replenishment, par-
ticularly through its use for the cultivation of legumes for 
nitrogen fixation. Moreover, our findings bear significance 
for informing strategic planning initiatives aimed at agricul-
tural transformation in Ethiopia to effectively address food 
security concerns in the face of a changing climate.

6  Conclusion

Our study provides insights into the spatiotemporal vari-
ability of soil moisture in Ethiopia and its potential for 
enhancing agricultural productivity. By rigorous empirical 
analysis and employing Empirical Orthogonal Functions, 
we have identified significant gradients in soil moisture lev-
els across Ethiopia, shaped by its diverse topography, agro-
ecology, and climate variability. These findings emphasize 
the importance of understanding soil moisture dynamics in 
optimizing post-rainy season cropping strategies.

Our research findings highlight the vulnerability of cer-
tain regions, particularly the eastern areas, to unreliable 
post-rainy season cropping due to moisture deficits, poten-
tially exacerbated by climate change. However, there are 
promising opportunities for future legume crop production, 
especially in the southeastern region, where moisture levels 
show a notable increasing trend. Furthermore, we empha-
size the crucial role of residual soil moisture in sustaining 
agricultural productivity, particularly in regions character-
ized by wetter moisture levels. By leveraging this resource 
and implementing supplemental irrigation where necessary, 
farmers can enhance their crop yields and resilience to cli-
mate variability.

Our study contributes to the broader discourse on agri-
cultural sustainability and resilience to climate change, 
providing a foundation for future research and inform-
ing strategies to enhance food security and livelihoods in 
Ethiopia. The implications of our findings offer actionable 
insights for agricultural stakeholders and policymakers. By 
incorporating our research into decision-making processes, 
policymakers can formulate evidence-based policies aimed 
at promoting sustainable agricultural practices and ensuring 
food security in Ethiopia.
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