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Abstract
Partially synchronized solitary states occur frequently when a synchronized system of networked
oscillators with inertia is perturbed locally. Several asymptotic states of different frequencies can
coexist at the same node. Here, we reveal the mechanism behind this multistability: additional
solitary frequencies arise from the coupling between network modes and the solitary oscillator’s
frequency, leading to significant energy transfer. This can cause the solitary node’s frequency to
resonate with a Laplacian eigenvalue. We analyze which network structures enable this resonance
and explain longstanding numerical observations. Another solitary state that is known in the
literature is characterized by the effective decoupling of the synchronized network and the solitary
node at the natural frequency. Our framework unifies the description of solitary states near and far
from resonance, allowing to predict the behavior of complex networks from their topology.

1. Introduction

Many natural and human-made systems are characterized by various degrees of synchronization, which is
one of the most fundamental common aspects of their collective behavior [1]. Therefore, important
extended systems as diverse as the heart, the brain, firefly populations, chemical reactions, and power grids,
are ubiquitously modeled as networks of interconnected oscillators [2–6]. In some, such as power grids,
global synchronization is essential for their proper functioning, in others, such as the brain, it can indicate
severe dysfunction. The tendency to synchronize, and thus the function of the system, is strongly influenced
by the underlying network’s topology.

The paradigmatic models for understanding this relationship between structure and function in coupled
oscillator networks are the Kuramoto model [7] and its variants. These models feature extremely rich
collective behavior, such as chimera states, frequency clusters, isolated desynchronization, and spatial chaos
[2–9]. The Kuramoto model with inertia [10, 11] has been developed independently to study
synchronization properties in power grids [12, 13] and biological systems [14].

The transition from decoupling to synchrony in Kuramoto networks is characterized by spatial chaos, a
form of extreme multistability [15]. This regime typically has several states with similarly sized basins of
attraction [16, 17]. Among the most prominent are frequency clusters [18, 19], the simplest of which are
solitary states. In a solitary state, only one or a few independent oscillators are phase-shifted [20] or, in the
presence of inertia, start to rotate at their own frequencies [21], while the rest of the network remains
synchronized. Solitary states are especially prominent for the important situation of localized large
perturbations [22–24] and they are particularly likely for perturbations at leaf nodes [22, 25]. Localized
perturbations are important in systems like power grids, where single component failures are common and
can lead to desynchronization and blackouts [26].
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Figure 1. Example trajectories of solitary states of intermediate and natural frequencies. Frequencies (φ̇i) and time-averaged
energy flow ps (moving average over 10 time units) between solitary and synchronous component are shown for a complex
oscillator network, see [34] for an animation and the network topology (supplementary figure S2). The system is perturbed twice,
with the timing indicated by vertical dashed lines. Both perturbations consist of an instantaneous step of∆φ̇75 = 6 at node 75’s
frequency. The first perturbation brings the system from the synchronized regime into an intermediate solitary state in resonance
with the synchronized cluster. The second perturbation causes the transition to a natural solitary state, where the solitary node is
effectively decoupled and the oscillations of the synchronized cluster are much smaller. The distinct blue trajectory belongs to the
solitary node 75 in figure 2.

Interestingly, numerical studies have revealed that solitary nodes can exist not only at the natural
frequency of the oscillators, but also at intermediate frequencies [17, 25]. In addition, the presence of
multistability in these solitary nodes has been identified, allowing for the coexistence of both intermediate
and natural solitary states [17, 25] at the same node.

Previous work has discussed the role of a networks’ topology in understanding its overall response to
perturbations and the emergence of various stable states [6, 22, 25, 27, 28]. In some contexts, the frequency
and stability of the solitary states have been studied in terms of decoupling and entrainment arguments [23,
29]. These explanations do not account for either intermediate frequency solitaries or the coexistence of
several solitary states at the same node.

In this work, we use averaging theory [30] and linear response to develop a theory of the resonant
coupling between the synchronized cluster and the solitary node. We uncover that the described phenomena
arise from the cluster’s resonantly excited complex network structure. This leads to a non-zero mean energy
flow between the synchronized cluster and the solitary node, and a frequency shift (figure 1). While works
like [31–33] have previously considered the interaction between individual oscillators and the mean field,
such an interaction between collective network modes and individual oscillators has not been previously
described. Here, we uncover how the network’s topology shapes the landscape of solitary states and illustrate
our findings with a range of example systems, ranging from conceptual models to fully complex networks.

2. Model

In the following, we will use the Kuramoto model with inertia on complex networks
[10, 11, 22, 23, 28, 35, 36]. It is given by the coupled second-order equations

mi φ̈i = Pi −αi φ̇i −
N∑

j=1

pij
(
φi,φj

)
, (1)

where φi are the phases of the N oscillators, Pi the driving powers, themi are inertia constants, and the
αi > 0 are damping coefficients. The coupling is given in terms of the weighted coupling matrix

{
κij
}
as

pij
(
φi,φj

)
= κij sin

(
φi −φj

)
. (2)

Note that the coupling matrix is symmetric, κij = κji, hence the coupling function is antisymmetric,
pij =−pji. We parametrize the model equation (1) such that the synchronous state coexists with various
stable attractors of different degree of synchronization. In particular, we set Pi = 1 for producers, Pi =−1
for consumers, αi = 0.1, and κij = 6 for connected nodes (i, j). This is the parameter regime of, for example,
real-world power grids [17, 22, 23, 25, 35].

To better understand the asymptotic behavior of the system, we recall a few properties of its attractors. In
a synchronous state, we have φi(t) = φ∗

i + ω̂t, and constant frequencies φ̇∗
i = ω̂, and the phases satisfy

Pi −αi ω̂ =
∑N

j=1 pij(φ
∗
i ,φ

∗
j ). By going to a corotating frame via φi → φi − ω̂t, we can always set ω̂ = 0, and

will assume so from now on. The pij(φ∗
i ,φ

∗
j ) can be interpreted as the energy flowing through the network to
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Figure 2. Local topological features determine the existence and relative occurrence of asymptotic solitary frequencies ωs in a
synthetic power grid observed after perturbations, see [38]. Three solitary states are clearly distinct from the natural frequencies at
±10; they occur at leaf nodes 74, 75 and 84 which have highly connected neighbors (cf [25]) as shown in the insets. Nodes shown
as ‘+’ (‘−’) have Pi = 1 (−1). See figure S2 for the full network, and figure 1 for a solitary state of node 75.

balance out the driving powers Pi, (this is the physical interpretation for power grids), and αi determines the
restoring force of the frequency. The natural frequencies of the uncoupled oscillators (i.e. when all κij = 0)
are determined by the condition that driving power and restoring force are in balance: Ωi := Pi/αi. Solitary
states in systems of coupled oscillators can be quite similar to the natural solitary states of uncoupled
oscillators, which can serve as an approximation [22].

In this work we consider so-called frequency solitary states, in which one or a few independent oscillators
rotate at a distinct frequency, while the rest of the network forms a large synchronized cluster. For simplicity,
we restrict ourselves to 1-solitaries, which have only a single solitary oscillator at a node that we denote z.
However, the considerations in this work apply to the case of several solitary nodes as well, see supplemental
material [34], section I.F (SM I.F). We denote the synchronized cluster S= {i : 1⩽ i ⩽ N, i ̸= z}, and the
long-term time average by ⟨⟩. Then, for the purpose of this work, a solitary state is defined by ⟨φ̇z(t)⟩= ωs

and ⟨φi(t)⟩= ωsync, with ωs ̸= ωsync. Such solitary states only exist in the presence of inertia [24].
To illustrate the phenomenon we describe and explain in this paper, we show simulation results in

figure 2. It displays the different asymptotic frequencies actually observed following single node
perturbations in a complex network, the topology of which was generated with [37]. The |ωs|, that coincide
with ωs · sgn(Pz), are the absolute values of the mean asymptotic solitary frequencies ωs of the trajectories
φ̇z(t) at the solitary nodes z. The trajectories are won from integrating equation (1) from many initial
conditions generated by perturbing the synchronous state (see [38] for code and details). Here, asymptotic
states are counted as 1-solitary if there is exactly one node with frequency |ωs|> 1, cf figure S4. Note that
many solitary frequencies are close to the natural frequencies at Ωi =±10. We define such solitary states
with ωs ≈ Ωz as natural. However, when perturbations occur at nodes 74, 75 and 84, they can also induce
intermediate frequencies. We define solitary states with such intermediate mean frequency |ωs|< |Ωz| as
resonant, because (i) the fluctuation of the nodes in S is more excited (see figure 1), and (ii) because we show
that ωs is in resonance with a network mode. The nodes 74, 75 and 84 share a specific topological property:
they are leaf nodes (degree-1 nodes) with a high-degree neighbor. The intermediate resonant solitary states
occur at all such nodes in this network (and other networks), and only at these nodes, discarding marginal
effects. We explore this strong link between the topology and the asymptotic behavior of the nodes in the
following sections.

3. Ansatz and self-consistency

Here, we present our main result: the framework that allows us to make predictions of solitary states and
relate them to the network’s topology. The framework predicts the existence and stability of both natural and
resonant solitary states. It consists of an ansatz and a self-consistent equation it has to fulfill.

An ansatz is a proposed form of a solution, often justified by prior knowledge about the system, and its
sole purpose is to insert it and evaluate the result it produces. Here, the ansatz is a change of coordinates
without loss of generality.

We begin by introducing suitable notation for describing a solitary leaf node z and a synchronized cluster
S= {i : 1⩽ i ⩽ N, i ̸= z}. For simplicity, we will assume that αi andmi are constant throughout S. Node z is
connected to S through the intermediary node k ∈ S. With all introduced notations, the considered system
has the form

3
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mφ̈i = Pi −αφ̇i −
N∑

j=1

κij sin
(
φi −φj

)
, i ∈ S, (3)

mzφ̈z = Pz −αzφ̇z −κzk sin(φz −φk) . (4)

The coupling between subsystems S and z is given by pzk, which we decompose into a long-term time average
ps := ⟨pzk⟩ and a mean zero part posczk (t):

pzk (t) = κzk sin [φz (t)−φk (t)] := ps + posczk (t) . (5)

Note that we do not have an explicit expression for ps and posczk (t) yet, but obtain them later.
Our ansatz for the trajectories, is to split the linear motion in time with the mean frequency from the

mean zero part, similarly to pzk in equation (5),

φi (t) := ωsynct+ϑ∗i +ϑi (t) fori ∈ S, (6)

φz (t) := ωsynct+ϑ∗k +ϑz (t) := ωst+ϑ∗k + εψz (t) , (7)

for some small ε that we determine later. We define ωsync and ωs as the long term average frequency of the
synchronized cluster, and the solitary oscillator, respectively. This means ⟨ϑi(t)⟩= 0= ⟨ψz⟩(t) by
construction. The ϑ∗i are a synchronous state of S given a fixed power injection ps at node k. Note that the
ansatz is without loss of generality, and can be formally considered as a change of variables. We use the form
equations (6) and (7) because if a solitary state occurs, ψz(t) and ϑi(t) are bounded, and the corotating
solitary frequency, defined as ωc := ωs −ωsync, is non-zero, cf supplementary video 1 [34]. We can use the
ansatz equations (5)–(7) to determine the mean-zero part of the solitary trajectory ψz(t), however, it is more
informative to determine ωs and ps from the ansatz as a characterization of the solitary state.

To determine ωs, we note that a condition for the existence of a solitary state at ωs is that both ωs and ps
have to fulfill a self-consistent equation. The argument goes as follows. For ψz(t) to stay bounded, and for ωs

to be the long-term average of the solitary node’s frequency, the long-term average of ϑ̈z = εψ̈z has to be zero.
Demanding this for equation (4) provides us with the condition 0= Pz −αzωs − ps. We can interpret ps as a
measure for the mean coupling of S and z, while ωs stands for their incoherence. Note that this relationship
between ωs and ps can be observed in figure 1: in synchrony (ωs = 0) there is a steady high energy flow
ps = Pz; in the natural solitary state, the mean energy flow ps ≈ 0 and the system is effectively decoupled. For
intermediate resonant solitary states, there is some intermediate amount of energy transfer 0< |ps|< |Pz|.

If we now can express ps as a function of ωs, the above condition for a solitary state to have well-defined
frequency becomes a self-consistent equation for ωs:

0= Z(ωs) := Pz −αzωs − ps (ωs) . (8)

The self-consistency function Z(ωs) is defined as the average change of the solitary frequency as a
function of the solitary mean frequency: Z(ωs) := ⟨mzϑ̈z⟩(ωs). A potentially stable solitary state at ωs requires
the correct sign of the change in Z with frequency: if a change in ωs leads to a larger change in ωs in the same
direction, the solitary frequency is linearly unstable, and vice versa. If we imagine ωs as slowly varying, we
havemzω̇s = Z(ωs). Thus, we expect the sign of the derivative ∂ωsZ(ωs) to be informative about the stability
of the solitary state, at least as a proxy. In other words, by introducing the explicitly time-dependent ansatz
equations (6) and (7), we get a non-autonomous system from equations (3) and (4). We are looking for limit
cycles of this system that correspond to fixed points in the long-term averaged dynamics. These fixed points
are solutions ωs of equation (8): mean frequencies that are allowed to persist by the dynamics, and that are
stable under small perturbations.

To obtain the solutions, our strategy is as follows. We assume that we can linearize equations (3) and (4)
in ϑi(t) and ε to obtain a system that quantitatively reflects the behavior of the trajectory of the solitary state.
We will analyze the linearized system using averaging, and see that this is justified in many regimes. Together
with the self-consistent equation, we obtain a proxy system for the description of solitary states. If the proxy
system is stable, we conclude that a solitary state can (but is not guaranteed to) exist at ωs. If the proxy system
does not admit a stable solution for specific parameters, we interpret this as evidence that a solitary state
cannot exist with those parameters. Numerically, we see that if the proxy system admits a stable solution, we
often do find solitary states with a large basin. We interpret this to mean that the mechanism revealed by the
proxy system is indeed responsible for the formation and stabilization of solitary states.

To follow the strategy outlined above and evaluate equation (8) to get predictions for solitary frequencies
and their stability, we first need to determine ps as a function of ωs. We present a derivation in the next
section, and an interpretation and alternative derivation thereafter.

4
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4. Averaging

Here, we outline the derivation of our main result, an explicit form for ps(ωs). For a detailed step-by-step
instruction, we refer to the supplemental material [34], section I (SM I).

Both ps and ωs depend on the trajectories φz(t) and φk(t) of the solution to equations (3) and (4). To
obtain an explicit approximation of the solution, we will leverage a version of the averaging theorem [30]
(and references therein).

We start by giving a brief summary of the averaging method following [30]. Let 0⩽ ε≪ 1, and
x ∈ U⊆ Rn for a bounded set U. Let f : Rn ×R×R+ → Rn be a Cr function with r⩾ 2 (at least twice
continuously differentiable) that is time-periodic with period T> 0, and that determines the
non-autonomous periodic dynamical system

ẋ= εf(x, t,ε) . (9)

Define the associated autonomous averaged system as

ẏ= ε
1

T

ˆ T

0
f(y, t,0)dt := εf(y) . (10)

The averaging theorem states that a system of the form equation (9) can be cast into the form

ẏ= εf(y)+ ε2f1 (y, t,ε) , (11)

where f 1 is also of period T in t. This can be achieved by a coordinate change. Moreover, solutions x(t) of
equation (9) and y(t) of equation (10) that are ε-close stay ε-close on a timescale t∼ ε−1. Further,
hyperbolic fixed points of equation (10) have corresponding unique ε-close hyperbolic periodic orbits of the
same stability type. We will leverage this theorem as follows: By using the ansatz equations (6) and (7) and
appropriate approximations, we cast the system equations (3) and (4) into the form equation (9). In the
proper coordinate frame, the system is time-periodic and slowly varying. We can then find approximate
solutions by solving its corresponding averaged system for fixed points. Those solutions, in particular ϑk(t),
enable us to calculate ps as a function of ωs and close the self-consistent equation, equation (8).

First, we need to approximate the highly nonlinear dynamics in equations (3) and (4) appropriately.
Since the synchronized oscillators from the cluster S are weakly perturbed by the solitary rotation, we assume
smallness of ϑi(t), which is also justified by numerical observations, see figure 1 and [34, 38]. Therefore, we
linearize the system equations (3) and (4) with respect to ϑi(t) ∈ S around the origin. It is crucial not to
linearize with respect to ϑz(t), because it is not bounded. For example, the coupling function pzk in
equations (4) and (5) is approximated to linear order in ϑk as

pzk (t)≈ κzk {sin [ωct+ εψz (t)]−ϑk (t)cos [ωct+ εψz (t)]} . (12)

From now on, ps and posczk (t) represent the mean and oscillating part of the approximated pzk. To write the
obtained system in vector form, we define the vectors eki := δik, where δik = 1 if i= k, and δik = 0 else.

Introducing ϑ⃗(t) with components ϑi(t) for all i ∈ S, the linearized system is

m
¨⃗
ϑ=−α

˙⃗
ϑ− L∗ϑ⃗+ ekposczk (t) , (13)

mzϑ̈z =Pz −αz

(
ϑ̇z +ωsync

)
− ps − posczk (t) , (14)

where L∗ is the effective coupling Laplacian on the synchronized cluster with weights L∗ij = κij cos(ϑ∗i −ϑ∗j )

and eigenvectors v⃗[ℓ]. We have successfully transformed into a frame that accounts for the power imbalance
due to ps. This can be seen from the fact that ps does not appear in the equation for S, equation (13), since the
synchronized cluster steady state accounts for the average power injection ps from the solitary node with the
ωsync rotation.

Second, we need to properly take care of the fact that equations (13) and (14) become a non-autonomous
system when we insert the explicitly time-dependent ansatz equations (6) and (7) into pzk. We introduce a
timescale ε−1 that splits the autonomous and non-autonomous parts in equations (13) and (14). It allows us
to write the system in a perturbative form, in which averaging can be applied. Such a scaling can be achieved,
if node k has a sufficiently high degree (SM I.A). In that case, there is a Laplacian eigenvalue λ[r] that is highly
correlated to the node’s degree dk. We will observe in the examples below that the solitary frequency tunes
itself towards resonance with such eigenmodes: ω2

s ∼ λ[r].

5
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The rescaling is given by

t=

√
m

λ[r]
t ′, Pi =

P ′
i α

√
λ[r]√

m
, κij =

κ ′
ijα

√
λ[r]

√
m

, (15)

dropping the prime from now on. Further, we set ε= α/
√
mλ[r] ≪ 1. In other words, by rescaling the time

axis we can absorbm in equation (13), and set α, P, and κ to ε, εP and εκ. We choose ε such that, while the
rescaled κ remains of order one, the eigenvalues of the rescaled effective Laplacian L∗ for the eigenmodes
localized at k are of order ε−1. As a result, we treat Lr = εL∗ as being of order one. Equations (13) and (14)
become

¨⃗
ϑ=ε

[
− ˙⃗
ϑ+ ekposczk (t)

]
− Lrϑ⃗, (16)

ϑ̈z =
εm

mz

[
Pz −

αz

α
φ̇z − pzk (t)

]
. (17)

Third, a crucial step for solvability is to approximate εpzk(t), cf equation (12), to first order in ε, which
finally allows us to identify an explicit expression for ps in terms of ϑk and ωc,

εpzk (t)≈ εκzk (sinωct−ϑk (t)cosωct) , (18)

ps ≈ κzk⟨ϑk (t) sinωct⟩. (19)

Equation (16) has the form of the perturbation of the Hamiltonian system
¨⃗
ϑ=−Lrϑ⃗, where the

perturbation is of order ε. The perturbation is caused partly by the presence of ϑz(t), and by other small
terms, such as damping. The appropriate perturbative approach in this case is averaging [30], where one
should first write the system for the slowly varying amplitudes x⃗(t) and z⃗(t) of the network modes ξ⃗(t),
i.e. the amplitudes of the periodic solutions of the unperturbed system. This is achieved by diagonalization of

the Laplacian with the linear transformation Qij := v[j]i ,

ξ⃗ (t) := QTϑ⃗(t) := x⃗(t)cosωct− z⃗(t) sinωct. (20)

The amplitude dynamics for x⃗(t) and z⃗(t) can be inferred with the invertible van der Pol transformation
(spelled out in equation (S50)) into the frame rotating at the driving frequency ωc. These amplitude
dynamics is then decomposed into modes resonant with ωc and non-resonant modes. For the sake of brevity
and clarity, we refer to SM I for details. Most importantly, the contributions of both types of modes are small
for different reasons. On one hand, the resonant modes give small contributions due to a small prefactor
ε∆∼ ω2

c −λ[r]. On the other hand, the non-resonant modes, where ε∆ is of O(1), give small contributions
due to their weak localization, allowing us to average the dynamics of the slowly varying x⃗(t) and z⃗(t). We
obtain an autonomous system that is a good approximation (ε-close) of the non-autonomous system for
time scales up to ε−1 [30]. This averaged system (equation (S55)) is linear with a unique solution that gives
us the average amplitudes x⃗∗ and z⃗∗ of all modes. From those, we obtain the average trajectory of ϑk(t), and
insert it into equation (19) to get an expression for ps(ωs). This finally provides us with the explicit form of
the self-consistent equation (8):

0= Z(ωs) = Pz −αzωs − ps

= Pz −αzωs −
κ2zk
2

N−1∑
ℓ=1

αωc

(
v[ℓ]k

)2

(
λ[ℓ] −mω2

c

)2
+α2ω2

c

. (21)

In equation (21), the sum runs over eigenmodes ℓ of L∗, with eigenvalue λ[ℓ] and eigenvector v⃗[ℓ]. To
efficiently evaluate equation (21), we assume that the dependence of L∗ and its eigenmodes on ps is weak.
This is a reasonable assumption if the synchronized cluster is significantly larger than the solitary cluster
(node z), and the energy injected at node k dissipates quickly into S. Practically, the ϑ∗i , that depend on ps,
can be well approximated by the φ∗

i , that do not (SM I.B).
Lastly, to close equation (21), we need to relate the solitary frequency ωs to ωc, its relative value to S. It

can be shown by summing over equation (1) for all i ∈ S and i= z, that the α-weighted sum of frequencies
decays towards zero from all initial conditions, hence (N− 1)αωsync +αzωs = 0 (see SM I.A.). This gives us

ωc (ωs) =

(
1+

αz

(N− 1)α

)
ωs. (22)

6
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This linear relationship between ωs and ωc is useful in solving equation (21).
Having obtained an explicit, closed, self-consistent equation for ωs from our ansatz, we now turn to its

interpretation and evaluation to make predictions of solitary attractor states and compare them to
simulations.

5. Interpretation: a linear response picture

In this section, we provide an alternative derivation that is a shortcut to equation (21), using linear response
theory. For an extensive account of linear response in inertial Kuramoto networks, we refer to [28]. As a
motivation, we start by discussing the natural interpretation that the linear response offers, and that can also
be deducted from the resulting equation (21).

The obtained form of ps in equation (21) has a natural interpretation. The solitary state, with frequency
ωs, perturbs the synchronized cluster S, with relative frequency ωc. The response ϑ⃗(t) of the cluster S
oscillates at frequency ωc with amplitudes ai and some well-defined phase shifts δi, e.g.
ϑk(t)∼ ak sin(ωct+ δk). The phase shift δk enables a non-zero energy flow ps between S and z, which is
responsible for maintaining the relative frequency shift ωc. The energy flow is proportional to the amplitude

of the response, and especially the local amplitude of the corresponding eigenvector v[ℓ]k for each mode ℓ.
Thus, large energy flows can occur if ωc is close to resonance with an eigenmode of S that is localized at k. As
ωc determines the magnitude of energy flow, but also shifts with the energy flow itself, the system can
robustly tune itself towards such resonances if they are present. This resonant tuning mechanism predicts
why certain topological features, namely the ones causing highly localized modes, enable the generation of
additional solitary states, cf section 6.

Following this interpretation, we can directly derive the result for Z(ωs) in equation (21) using linear
response theory, see SM I.C. We observe that the nonlinear part of posczk (t) in equation (16) is eventually
averaged out in the averaging approach. Linear response can be readily applied, if we neglect this
nonlinearity from the outset. The assumption that this nonlinearity is sufficiently small can be justified,
when it is only one of several contributions to the overall coupling of a well-connected node k. In this case,
the cluster S is harmonically driven by sinωct, and linear response similar to [28] can be used to calculate its

response for each network mode ℓ separately, including the modal amplitudes a(k)[ℓ]i (ωc) at node i and modal
phase lags δ[ℓ](ωc) given by

a(k)[ℓ]i (ωc) :=
κkzv

[ℓ]
i v[ℓ]k√(

λ[ℓ] −mω2
c

)2
+α2ω2

c

, (23)

sinδ[ℓ] (ωc) :=− αωc√(
λ[ℓ] −mω2

c

)2
+α2ω2

c

. (24)

Here, the superscript (k) indicates that the perturbation caused by φz enters S at node k. For each mode ℓ, the
nodal amplitudes depend on the mismatch between the driving frequency ωc and the eigenmodes of the
network associated with the λ[ℓ], as well as the localization of the corresponding eigenvectors at nodes i and
k. The damping slightly shifts the location of the resonance peaks in the amplitude away from
ωc =±

√
λ[ℓ]/m and makes their height finite.

Combining the modal responses linearly provides us with a trajectory for the ϑi,

κkzϑ
(k)
i (t) =

N−1∑
ℓ=1

a(k)[ℓ]i sin
(
ωct+ δ[ℓ]

)
. (25)

From the trajectory of ϑk we can determine the time averaged energy flow ps = ⟨pzk⟩ in terms of the
amplitudes and phase lags:

ps (ωc) =−κkz
2

N∑
ℓ=1

a(k)[ℓ]k (ωc) sinδ
[ℓ] (ωc) (26)

=
κ2zk
2

N−1∑
ℓ=1

αωc

(
v[ℓ]k

)2

(
λ[ℓ] −mω2

c

)2
+α2ω2

c

, (27)

which is the exact same as in equation (21). In fact, the terms in the denominators in the sum over all modes
in equation (21) resemble the resonance curve of linear oscillators. It is known as Cauchy–Lorentz
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distribution, Lorentz(ian) function, or Breit–Wigner distribution. Due to the generalization to the resonance
of a network S, the Lorentzians are summed over all N − 1 network modes associated to the λ[ℓ]. Each
contribution is weighted by the localization of the corresponding eigenvector v⃗[ℓ] at node k, quantified by(
v[ℓ]k

)2
. This is how the topology affects the distribution of resonance in the network, see also [28].

We remark that both approaches used to derive equation (21) straightforwardly generalize to a solitary
node connected to several nodes in S, see SM I.D. The back-reactions of the network combine linearly, and
we simply sum over all neighbors of z (equation (S74)).

Furthermore, a treatment of heterogeneous system parameters within S is also possible, see SM I.E.

6. Evaluation

Here, we make some general statements about the properties and solutions of our main result, equation (21),
and provide some examples.

First, note that the obtained expression for ps = ⟨pzk⟩ in equation (21), has the same sign as ωc.
Therefore, ps is antisymmetric in ωc and hence in ωs ∼ ωc, cf equation (22). It follows that equation (21) is
invariant under ωs →−ωs while Pz →−Pz, i.e. generators and consumers behave similarly with their solitary
frequencies having opposite signs. In fact, it is easy to see from equation (21) that all solutions lie between
zero and the natural frequency, 0⩽ |ωs|⩽ |Ωz|= |Pz|/αz. We see these bounds and symmetry properties
confirmed in figure 2, and the examples below.

As discussed above, the linear stability of solutions of Z(ωs) = 0 can be heuristically determined by
evaluating the derivative: the orbit at ωs is indicated to be linearly stable if ∂ωsZ(ωs)< 0 and linearly unstable
if ∂ωsZ(ωs)> 0. This consideration gains importance with the numerical observation that the instantaneous
solitary frequency φ̇z(t) oscillates with time around ωs, cf figure 1. The solution to Z(ωs) = 0 is an
intersection of ps(ωs) and the straight line Pz −αzωs with slope−αz. Therefore, stability is given if
−αz < ∂ωsps(ωs). Graphically, this means that ps(ωs) intersects the straight line from below, counting in
positive ωs direction.

The existence of solitary frequencies ωs as solutions to equation (21) relies on sufficiently high

eigenvector localization at the neighboring node k, quantified by
(
v[ℓ]k

)2
. Such high localization is present in

random networks of high degree heterogeneity [39]. Indeed, we observe in figure 2 and in the examples
below that resonant solitary states are most common at degree-one nodes with a high degree neighbor [25],
and that the solitary frequency scales with the degree dk of node k. For an estimate of the relation between the
eigenvector localization, the corresponding eigenvalue and the node’s degree, we refer to SM I.A.

The existence of solutions to equation (21) also depends on system parameters and their topological
distribution. Whether and which solitary states exist in a complex system is a complex question with no easy
answer, but we can provide some insights (see SM II.D for more details). Generally, the parameters need to
be chosen in an intermediate regime, such that the synchronous state is not globally attractive, but the
coupling is also not too weak. Relatively small damping αi and strong coupling κij, such as in power grids, are
an indicator for this. We remark that solving the self-consistent equation (21) is an efficient way to determine
which solitary states exist. Numerical simulations of the dynamics as in figure 2 are more precise but more
expensive.

We now illustrate the power of equation (21) using two examples. First we give a minimal effective model
that exhibits the resonant tuning mechanism cleanly; then a full complex network with a complex resonant
response. We compare the results with numerical simulations [40]. Further examples can be found in the SM
II.B.

6.1. Example I: Two-node model
A minimal model that still shows tristability with two distinct solitary frequencies is a system that neglects
the response of the network beyond the node k. We have a solitary node (z= 1), its neighbor (k= 2), and the
rest of the network is assumed to have infinite inertia, and thus no dynamics. This model is shown in the
inset in figure 3(right). The neighbor has n links into the infinitely inert part, each with coupling strength K.
See SM II.A for details.

The left panel in figure 3 shows the graphical solution of equation (21) for this example system. We see
the energy absorbed in node 1 by frequency adaptation, a straight line given by P1 −αωs, and the energy flow
due to the network’s response, ps(ωs) = ⟨p12⟩(ωs). The energy flow has a single peak centered around the
only network mode, which is close to λ≈ Kn. At the intersections of these two curves, we have zeros of
equation (21). However, the linear stability heuristic suggests that only intersections with ∂ωsZ< 0 are
candidates for stable solitary states. Indeed, numerical simulations confirm the existence of the stable
solutions, and that they correspond to the intersections, where ps comes from below.

8



New J. Phys. 26 (2024) 113016 J Niehues et al

Figure 3. Network modes shape the landscape of solitary attractor states for the two-node model (inset). (left) Intersections
between the straight line P1 −αωs and the mean energy flow ps(n= 6) generate stable and unstable solutions according to
equation (21). We use P1 = 1, α= 0.1. The single peak of ps is centered around the network mode close to

√
Kn. (right)

Bifurcation diagram with the bifurcation parameter n. The two stable branches are connected by an unstable branch and centered
around the network mode. Numerical simulations [38] confirm predictions of both the location and stability of solitary states.

Figure 4. Solutions of equation (21) for a dense sprout node (i = 74) in a synthetic power grid (figure 2). For the sake of clarity,
we slightly modified the node parameters to reduce the number of intersections in the figure (see SM II.C).

Repeating this solution process for equation (21) for a range of n, we can draw the bifurcation diagram in
figure 3(right). Each vertical slice corresponds to the top view of an intersection plot like the one in the left
panel. For this minimal example system, we can obtain an explicit expression for several branches n(ωs) of
stable or unstable solutions (see SM II.A) that correspond to the intersections in the left panel. These
branches predict that for n≲ 12, there is a pair of a stable and an unstable solution ωs due to the resonance
peak around λ, and a third, stable solution at ωs ≈ Ω1 = P1/α. For larger values of n, the second and third
solutions annihilate, while the first converges to ωs → Ω1. Numerical simulations with random initial
conditions [38] closely correspond to the predicted frequency and stability of solitary states, confirming the
existence of tristability between the synchronous state and solitary states at multiple frequencies, and
confirming the overall accuracy of our results.

In summary, this minimal example system shows that the resonant (intermediate) solitary state and the
natural (decoupled) solitary state are two ends of a spectrum of frequencies, and connected by an unstable
branch of solutions. Further, the natural frequency is an upper bound for solitary frequencies and can be
approached by tuning the resonant network mode higher.

6.2. Example II: Complex network
We now apply our result to the complex network shown in figures 2 and S2. For models of this complexity,
the self-consistent equation has to be solved numerically for every node. We observe that intermediate
resonant solitary states are located at leaf nodes with neighbor degree⩾ 6, (cf [25]). Figure 4 shows the
solutions of equation (21) for z= 74 for slightly heterogeneous parameters.

As many network modes are excited, the response curve ps(ωs) is considerably more complex than for the
two-node model. However, simulation results reveal that there is still one dominant mode with high
localization at the root node k. Solitary states obtained from random initial conditions are frequently found
in close resonance with the dominant mode, or close to the natural frequency.

There are several tentative observations we can make by looking at complex networks, (see also SM II.C,
figures S5 and S6 for more examples): (i) If the self-consistent equation yields more solitary states than the
one at the natural frequency, there are two dominating solitary states: the one at the natural frequency, and
one in resonance with a localized network mode. There can also be many additional solutions with small
basins of attraction, cf figures S4 and S5.

(ii) equation (21) tends to overestimate the magnitude of the most prominent solution for ωs slightly,
which can already be observed in the effective model (cf figures 3 and 4). (ii) The most prominent natural
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solitary state lies at an intermediate frequency that has a high and broad peak in ps and some distance to the
next solutions. This can be understood by considering that every peak in ps produces a pair of solutions, a
stable one and an unstable one, and that the solitary frequency φz(t) is modulated around ωs, cf figure 1. Leaf
nodes with high neighbor degree [25], typically produce such situations (cf SM I.A) with a highly localized
network mode that results in a high peak. Thus, these findings explain why such nodes feature resonant
solitary states with intermediate frequencies. (iii) Besides the main peak at the most localized network mode,
there can be several minor peaks that result in solitary states with much smaller basins of attraction due to
three reasons: First, the peaks might be narrow, such that the stable and unstable solution are close, second,
the peak might not exceed the intersection with the straight line by much, hence the pair of solutions is
already close to their annihilation bifurcation, and third, the peak might be close to other peaks and their
solutions. This can account for the observation that parts of the phase space can be dominated by basin
boundaries of many, different, unlikely states [16], inducing transient chaos [17].

As a closing remark, the derivation of the minimal model, and the explicit relationship between network
mode and neighbor degree (SM I.A and II.A), suggest the following. Even in complex networks, the neighbor
degree dk can serve as an upper bound for the (squared) intermediate solitary frequency, when weighted with
the coupling κij. This is also observed numerically (figure S8).

7. Summary and discussion

We present an analytical description of the effective coupling between a solitary oscillator and the
synchronized cluster in a complex network. To approximate the trajectories, we utilize partial linearization
and an averaging theorem. This way, we discover that a resonant excitation of the linear modes of the
synchronized cluster can couple coherently to the shifted frequency of the solitary state, resulting in a large
energy flow between the synchronized cluster and the solitary oscillator, and effectively shifting the frequency.

We have mainly found that intermediate solitary states, first observed in [25], are actually resonant
solitary states, and we have uncovered how the network’s topology shapes their properties. Furthermore, we
have unified their analytical description with the one of natural solitary states [22], and shown that there is a
spectrum connecting those extremes.

Our self-consistent framework predicts solitary states in reduced models, where it is solvable, and is also
in excellent agreement with what we observe numerically in the original complex networks. With this
structure-function relationship, we can explain the observation that solitary states appear mostly in specific
parts of the network [18], more specifically leaf nodes and tree-shaped structures, which act as weak points
in perturbation scenarios [17, 22, 25, 35]. These results have important implications for improving grid
stability through modifications of parameters [41–43] and topology [22, 44–46]: our framework can be used
to evaluate how these modifications affect the presence and stability of potentially harmful solitary attractors
and their proximity to the synchronous state. Furthermore, we can efficiently identify the troublemaker
nodes that tend to desynchronize the easiest due to their intermediate frequencies: resonant solitary states at
certain leaf nodes (dense sprout nodes, see [25, 34]). We can identify them from the network topology only,
and without expensive simulations. It has been shown that targeted control of such troublemaker nodes can
improve grid stability drastically [47].

8. Conclusion and outlook

While the presented mechanism can explain the potential existence and stability of resonant solitary states,
there are still open questions that require further investigation. A key practical question is the estimation of
the basin boundaries of these states, which would provide deeper insights into the dynamics and robustness
of synchronous systems against perturbations [17, 33, 35, 36, 48]. It is known that the basin boundaries
depend on the phase and frequency [17, 22, 23]. Averaging the phase dependence out, an estimate of the
basin boundaries in ω-direction could be estimated by the turning points of Z(ω) around a stable solution.

Detailed numerical studies suggest that additional classes of attractive states exist, and the interaction of
losses on the lines and resonant energy flow remains unexplored [23]. Furthermore, a more detailed study of
the interaction of multiple solitary nodes with distinct frequencies or in frequency clusters is needed (see SM
I.F for an outline).

Finally, while this paper focuses on explaining a known phenomenon of Kuramoto oscillators, which
exhibit a purely sinusoidal coupling, our derivation generally only demands a 2π-periodic coupling function.
This includes coupling functions with phase shifts and harmonics. It would also be interesting to treat
phase-amplitude oscillators that play a central role in networks such as power grids [49]. We expect that the
overall analytical approach we introduced is a promising tool in describing the synchronization of rotation
and oscillation, and leave it to future work to develop and adapt our theory to address a wide range of models.
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