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AI-guided few-shot inverse design of HDP-
mimicking polymers against drug-resistant
bacteria

Tianyu Wu1,7, Min Zhou 2,7, Jingcheng Zou 3, Qi Chen3, Feng Qian1,
Jürgen Kurths 4,5,6, Runhui Liu 2,3 & Yang Tang 1

Host defense peptide (HDP)-mimicking polymers are promising therapeutic
alternatives to antibiotics and have large-scale untapped potential. Artificial
intelligence (AI) exhibits promising performance on large-scale chemical-
content design, however, existing AI methods face difficulties on scarcity data
in each family of HDP-mimicking polymers (<102), much smaller than public
polymer datasets (>105), and multi-constraints on properties and structures
when exploring high-dimensional polymer space. Herein, we develop a uni-
versal AI-guided few-shot inverse design framework by designing multi-modal
representations to enrich polymer information for predictions and creating a
graph grammar distillation for chemical space restriction to improve the
efficiency of multi-constrained polymer generation with reinforcement
learning. Exampled with HDP-mimicking β-amino acid polymers, we success-
fully simulate predictions of over 105 polymers and identify 83 optimal poly-
mers. Furthermore, we synthesize an optimal polymer DM0.8iPen0.2 and find
that this polymer exhibits broad-spectrum and potent antibacterial activity
against multiple clinically isolated antibiotic-resistant pathogens, validating
the effectiveness of AI-guided design strategy.

As the global risk of antimicrobial resistance continues to escalate, it is
urgent to develop alternative strategies to combat antibiotic-resistant
bacteria1–4. One of the pressing clinical needs is the discovery of pro-
mising broad-spectrum antibacterial agents against both Gram-
positive and Gram-negative bacteria, especially against antibiotic-
resistant pathogens5,6. Host defense peptides (HDPs) have garnered
considerable attention owing to the advantages of broad-spectrum
antibacterial property and low susceptibility to antimicrobial
resistance7,8. However, the application of HDPs is hindered by their
easy enzymatic degradation and expensiveness9,10. HDP-mimicking

polymers have been designed to address the shortcomings of natural
HDPs and have emerged as promising antimicrobial alternatives11–15.
Furthermore, the discovery of HDP-mimicking antibacterial polymers
is limited to conventional designing and optimization strategy, which
is semiempirical and inefficient. Artificial intelligence (AI) enables rapid
design and optimization of various chemical-contents16–21, and it is
expected to substantially accelerate the discovery of promising HDP-
mimicking polymers22–25.

Nevertheless, two orthogonal challenges inhibit the practical
usage of AI for polymers design, specifically in polymer prediction and
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polymer generation. For polymer prediction, the available few-shot
data of peptide-mimicking polymers (102 or even fewer) in each family
ismuch smaller thandata of polymers frompublic datasets (105–106 or
evenmore)26–28. This scarcity of data leads to a serious issue for causing
overfitting of the predictive model when method transfer, resulting in
a decline in performance of the predictive models. For polymer gen-
eration, polymer space is constructed by numerous variables of poly-
mers in structures, composition, chain length etc., presenting
challenges for AI to efficiently and accurately explore for reasonable
polymers with multiple desirable property constraints, of which some
may even be inversely related, in the vast high-dimensional polymer
space29. This challenge implies that the existingAImethods focusmore
on optimizing polymers with tailored sequence or composition, since
thesepolymers canbe coarse-grained simulatedor enumerated30, than
exploring for novel chemical structures for subunits31–33. Conse-
quently, there is an urgent need to develop an efficient AI method
which is capable of predicting and generating novel polymer struc-
tures with multi-constraints using few-shot polymer data.

To address those two challenges above, hereinwedevelopan end-
to-end AI-guided few-shot inverse design framework to realize an
effective exploration of novel polymers under the condition of few-
shot data andmultiple constraints in high-dimensional polymer space.
To enhance the performance of predictive model for polymers, we
construct multi-modal polymer representations to enrich the multi-
scale polymeric information for few-shot polymer data. This increases
the alignment between predictive models and actual polymer systems
compared to one single representation34,35. To accurately explore for
novel polymer structures within desired properties, we develop a
grammar knowledge distillation, which distills a graph grammar frag-
ment set according to the existed few-shot polymer data and recom-
bines these grammar as distilled molecules set to restrict the high-
dimensional polymer space. These process contributes to improve the
efficiency of AI exploration under multi-constraints and ensure the
chemical rationality and availability of polymer structures. HDP-
mimicking β-amino acid polymers have attracted significant atten-
tion and demonstrated enormous potential for various applications
due to striking structural similarity to natural peptides, superior bio-
compatibility and high resistance to protease hydrolysis13,36–38. By
implementing our AI design framework, using only 86 HDP-mimicking
β-amino acid polymers as a model39–43, we successfully simulate pre-
dictions of over 105 polymers and indeed identify 83 candidates exhi-
biting broad-spectrum activity against antibiotic-resistant bacteria. In
addition, we synthesize an optimal polymer DM0.8iPen0.2 and find that
this polymer demonstrates broad-spectrum and potent antibacterial
activity against drug-resistant clinically isolated pathogens, which
validates the effectiveness and reliability of our AI design method.
Furthermore, our framework is a completely data-driven method and
it can be universally transferred to various few-shot polymer design
tasks. With constructing proper predictive model and generative
model, the usage can be further expanded. In one word, AI-guided
polymer design accelerates the discovery of potent antimicrobial
agents against antibiotic-resistant bacteria and offers a promising
strategy to combat antibiotic resistance.

Results
Framework overview
The main procedure of our polymer inverse design framework was
illustrated in Fig. 1. First, we collected a set of existing data comprising
chemical structures and their bioactivity activity of HDP-mimicking β-
amino acid polymers. The chemical structure of the totally 86 poly-
mers was composed of a positively charged subunit (dimethyl (DM),
monomethyl (MM)) and a hydrophobic subunit (cyclopentyl (CP),
cyclohexyl (CH), etc.) in different proportions with the total chain
length of 20 (Fig. 1a and Supplementary Fig. 1). Previous studies indi-
cated that the biological activity of β-amino acid polymers was mainly

influencedbyvarying the side chain hydrophobicity (side chain carbon
atom number and its atomic spatial arrangement) and the ratio of
hydrophobic component/positively charged component. The anti-
bacterial activity data including theminimum inhibitory concentration
(MIC) values of polymers against Gram-positive bacterial Staphylo-
coccus aureus (S. aureus) and Gram-positive bacterial Escherichia coli
(E. coli), as well as hemolytic toxicity data was collected with the
minimum concentration to cause 10% hemolysis (HC10) values (Sup-
plementary Data 1). Due to the characteristics of abundant structures
of β-amino acid polymers, we conducted a refined classification
according to the different position of side chain substituents and
cyclic/non-cyclic substitution pattern and defined 11 scaffolds to
accurately characterize the polymer structure one-on-one (Fig. 1a,
Supplementary Fig. 2, Supplementary Table 1 and Supplementary
Data 2). Secondly, we transformed the polymer structure into multi-
modal polymer representations to capture comprehensive multi-scale
polymer information for training the predictive model so as to
enhance themodel performance (Fig. 1b). Then, we developed a graph
grammar distillation method to pre-train the generative model for
generating β-amino acid polymers structures which tend to rationality
and availability based on the chemical principle (Fig. 1c). Specifically,
the chemical structure of collected β-amino acids polymer aforemen-
tioned and homologous natural α-amino acids were resolved into a
variety of molecular graph grammar fragments, which were subse-
quently recombined to form new molecules (Supplementary Data 3).
The process of resolution-recombination was iterated and these
recombinedmassmolecules were used for pre-training the generative
model (SupplementaryData 4 and Supplementary Data 5), allowing for
the generation of a more focused polymer chemical space. Our graph
grammar distillation method could not only contribute to restrict the
vast and high-dimensional chemical space of polymers but also gen-
erate more reasonable novel polymer structures for practical usage.
Finally, we combined these two pre-trained models in reinforcement
learning (RL) to form a polymer inverse design framework. The pre-
dictive and the generative model were respectively regarded as the
environment and the agent to construct a RL pattern. The generative
model generated a set of novel polymers and the predictive models
provided the corresponding rewards after the evaluation of their
bioactivity and structures. Through these rewards, the parameters of
the generative model were updated to search for new polymer struc-
tures in next RL episode. With such iteration of generative and pre-
dictive model, a set of candidate polymers were finally discovered
according to the predefined bioactivity values.

Construction and evaluation of the multi-modal polymer
representations
To overcome the limitation associated with the limited information
available from few-shot polymers, we employed the multi-modal
polymer representations to extract comprehensive multi-scale poly-
mer information. First, we constructed a text-sequence polymer
representation using BigSMILES44 and we further introduced a defini-
tion to incorporate information about the proportion of cationic and
hydrophobic subunits in the polymer chain, so as to extract the global-
level polymer information.

Secondly, we constructed a polymer graph representation by
concreting the linking rules of bonding descriptors in BigSMILES
syntax, which demonstrated the connection relationships between the
subunits in polymer, as new nodes and edges in polymer graph to
extract local-level polymer information (see Methods). Finally, we
utilized the descriptors from the Mordred calculator45 to describe the
characteristics and properties of cationic and hydrophobic subunits.
To ensure as much information as possible are embedded in descrip-
tors,weemployed amachine learning-baseddescriptor downselection
process46, filtering out 40 optimal descriptors with strong correlation
to target activity from the original 3654 descriptors (see Methods). In
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Fig. 1 | Framework overview. a By collecting 86 data comprising chemical struc-
tures and their bioactivity of β-amino acid polymers, we develop an AI-guided few-
shot inverse design framework to find promising polymers with broad-spectrum
antibacterial efficacy and low cytotoxicity. In addition, we conduct a refined clas-
sification according to the different position of side chain substituents and cyclic or
non-cyclic substitution pattern, which defines a scaffold set for the following
polymer generation. x and y are defined as the percentages of a positively charged
subunit and a hydrophobic subunit in β-amino acid polymers, respectively. “R1, R2,
R3, R4”means thatmore thanone substitutionpoint should be decorated.Note that

all subunits are achiral. b We conduct a multi-modal polymer representation
method, including text sequence, graph with additional polymer settings and
descriptors embedded with 2D- and 3D-properties of subunits to expand formulti-
scale polymer information to realize few-shot polymer prediction. c We develop a
graph grammar distillationmethod in which we utilize β-amino acids and natural α-
amino acids to learn the split graph grammar fragments. These fragments are
reconstructed as distilled molecule dataset to pre-train the generative model to
restrict the huge chemical space for exploration.
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addition, we conducted the data augmentation on three multi-modal
polymer representations by introducing permutation invariance47,
which allowed for significant reductions in prediction errors for multi-
component systems (see Methods).

In this manuscript, we randomly selected 80% of collected 86
polymers as the training set Dtrain_ori and the rest of 20% of data were
set as the unseen testing set Dtest. Thus, all models were trained and
evaluated in samedata situation.Wefirst evaluated theperformanceof
applying descriptor downselection and data augmentation that were
two important operations of influencing the input representations.We
defined an augmented training dataDtrain_aug, which contained original
training data Dtrain_ori along with additional data by tuning all possible
polymer sequences of cationic and hydrophobic subunits in all
representations. In this stage, we constructed 4 classic machine
learning based regression models, including Gradient Boosting Deci-
sion Tree (GBDT)48, Random Forest (RF)46, Extreme Gradient Boosting
(XGB)49 and Adaptive Boosting (Adaboost)50 for bioactivity prediction.
The model performance was characterized by calculating the mean
R-squared coefficient (R2). We applied a 15-fold cross validation on
Dtrain_ori and Dtrain_aug to evaluate the performance of different models
with fixed descriptors (Fig. 2a–l and Supplementary Fig. 9).

Generally speaking, GBDT models performed best than other
methods on each task (Fig. 2a–c for GBDT, Fig. 2d–f for RF, Fig. 2g–i for
XGB, Fig. 2j–l for Adaboost). The results showed that the mean R2
values of GBDT forDtrain_ori increased gradually to the 0.626, 0.640 and
0.795 on predicting the values of MICS.aureus, MICE.coli and HC10 of
polymers with applying descriptors downselection, showing that more
related information was selected step by step (Fig. 2a–c, blue boxes).
After applying data augmentation, the mean R2 values showed a more
obvious increase to 0.739, 0.681 and 0.831 for Dtrain_aug compared to
using Dtrain_ori, indicating the increased prediction accuracy (Fig. 2a–2c,
red boxes). Via a final evaluationwith GBDT onDtest, themean R2 values
reached 0.672, 0.537 and 0.834 for MICS.aureus, MICE.coli and HC10,
regarding as a machine learning baseline in this manuscript. Results for
all machine learning models on Dtest were demonstrated in Fig. 2m–o.

Moreover, we further studied the performance of all the pre-
dictive networkby combing threemodals of text sequence ofpolymer,
polymer graph and descriptors with applying descriptor down-
selection and data augmentation discussed before. In addition, we
added GBDT, RF, XGB and Adaboost as basic benchmark models and
we also introduced the most commonly used polymer representation
of Morgan fingerprints51,52 for comparison. All models were trained on
Dtrain_aug and evaluated on Dtest for performance comparison, and R2
was again used as the metric. We designed different deep neural net-
work structures for each single representation and an integrated fra-
mework for multi-modal representations (see Methods). With final
evaluation on Dtest, it was obviously found that GBDT again demon-
strated the best in all machine learning based models with mean R2
values of 0.672, 0.537 and 0.834 for MICS.aureus, MICE.coli and HC10

(Fig. 2m–o). The “Descriptor_Opt” demonstrated the best in all single
representationwithmeanR2 values of 0.606, 0.415 and0.852,whereas
themean R2 values ofMorgan was 0.606, 0.415 and 0.852. In addition,
the combination of three modals “Seq+Graph+Descriptor_Opt”
showed the highest mean R2 values at 0.697, 0.556 and 0.900, indi-
cating that our constructed multi-modal polymer representations
obviously improved the accuracy and stability of the predictive model
for few-shot polymers (More results concluded in Supplementary
Fig. 13 and Supplementary Tables 3, 4).

We further compared in detail about the bioactivity of all poly-
mers between the predictive values and the real measured ones
(Fig. 3a). We divided the data according to the positively charged
subunit andhydrophobic subunit so as tomore rigorously embody the
differences of the compositions (Supplementary Fig. 1). Note that log
transformationwas performed to all the estimated results. The final R2
scores of ourmodel reached0.91, 0.88 and0.91 onMICS.aureus, MICE.coli

and HC10 for DM series polymers, and 0.92, 0.84 and 0.96 on MM
series polymers. It was obviously found from the radar plot that the
predicted values highly fit real measured values, indicating that our
predictive model was capable of making credible predictions of the
bioactivity of β-amino acid polymers.

Moreover, considering the variegation of antibacterial polymers
and the rarity of partial types of polymers, we evaluated the
transferability of our proposed method in order to broaden its applic-
ability. We collected additional data on α-amino acid polymers53,
polymethacrylates54–57, polymethacrylamides58 and other categories59–61

to evaluate the transferability of our model (Supplementary Data 6).
Note that we use the metric of mean absolute error (MAE) to show
direct difference of the transferability performance of our model in
different categories of antibacterial polymers. According to the eval-
uated results, for α-amino acid polymers, the MAE was only 0.51 and
0.79 forMICS.aureus andMICE.coli, which was close to theMAE of β-amino
acidpolymers (0.17 and0.40 forMICS.aureus andMICE.coli, Fig. 3b–e). This
fact suggested promising prospects for transferring our method to
other categories of antibacterial polymers that possess similar struc-
tural characteristics to β-amino acid polymers. For polymethacrylates,
the MAE reached 1.24 and 1.95 (nearly six times than β-amino acid
polymers) for MICS.aureus and MICE.coli, respectively (Fig. 3f–i). For
polymethacrylamides, the MAE reached 2.33 and 3.75 (nearly ten times
than β-amino acid polymers) for MICS.aureus and MICE.coli, respectively
(Fig. 3j–m). These results showed that our model encountered chal-
lenges when predicting the properties of other polymers for example
polymethacrylates and polymethacrylamides due to substantial dis-
similarities with β-amino acid polymers. In summary, our model
demonstrated promising transferability to α-amino acid polymers
which had highly similarity with our trained data of β-amino acid
polymers, while our model were not suggested to be directly trans-
ferred to other categories beforewe further improved the performance
of the model (All results shown in Supplementary Figs. 14–22).

Performance evaluation of graph grammar distillation
We evaluated the performance of the generative model produced from
the pre-training of graph grammar distillation using ChEMBL62 as a
control, which was a commonly used dataset to pre-train a generative
model and included abundant and diverse chemical structures. We
conducted a fine-tuning process with reinforcement learning (RL) for
450 iterations on these two pre-trained generative models to generate
polymer subunits with desired chemical structures in multiple given
constraints of carbon atoms number and elemental composition in
the side chain structure (Task 1 in Method). The generated subunits
were scored as reward feedback (details of the rewards see Methods).
The subunit that met the given constraints would get a positive
reward, and the subunit that did not met the constraints would get a
negative reward.

The results showed that in the last several iterations inRL training,
the average total rewards of polymers on the values of MICS.aureus and
carbon atom constraints for graph grammar distillation pre-trained
generative model got a positive value, indicating that the generated
subunits met the design requirements (Fig. 4a). In contrast, the cor-
responding average total rewards in the ChEMBL pre-trained gen-
erative model obtained the negative values (Fig. 4a), indicating that
many generated subunits were hard to meet the design requirements,
especially for carbon atom constraint (Fig. 4b, c). More comparative
results between themodel pre-trained byChEMBL and graph grammar
distillation were shown in Supplementary Figs. 25–27. We further
evaluated the performance of the graph grammar distillation pre-
trained generative model in multi constraints of all three bioactivities,
polymer carbon atom number and carbon ring number (Task 2 in
Methods, Supplementary Figs. 28, 29). These results exhibited that
graph grammar distillation successfully restricted the high-
dimensional chemical space and the generative model pre-trained by
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it possessed the strong capabilities for an efficient customized gen-
eration of polymer subunits.

To verify the structural diversity of generated polymers by our
generative model under multiple constraint conditions, we generated

the β-amino acid polymer library consisting of 2114 types of hydro-
phobic subunits for every cationic subunit and visualized all hydro-
phobic subunits with Topological Data Analysis Mapper (TMAP)63.
These hydrophobic subunits covered the possible side chain
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minimum inhibitory concentration (MIC) for S. aureus (MICS.aureus) and E. coli
(MICE.coli) and the value of the minimum concentration to cause 10% hemolysis
(HC10) with the metric of R-squared coefficient (R2). Descriptor_Init to Descrip-
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quartile (right) of the results. The line in the box indicates themedian. Thewhiskers
refer to the most extreme, nonoutlier data points, with minima on the left and
maxima on the right. m–o Property prediction results of unseen test set Dtest with
deep neural network on MICS.aureus, MICE.coli and HC10 with different polymer
representation combination (n = 10). The borders of the boxes indicate the first
quartile (left) and the third quartile (right) of the results. The line in the box indi-
cates the median. The whiskers refer to the most extreme, nonoutlier data points,
with minima on the left and maxima on the right. “Seq” is the abbreviation of
“Sequence” (Source data are provided as a Source Data file).
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structures, encompassing various substitution forms, equally dis-
tributed as the defined scaffolds, including the representative six
styles of β-amino acid polymers (Fig. 4d). This indicated that our
graph grammar distillation based generative model was able to gen-
erate various of β-amino acid polymers with abundant cationic and
hydrophobic subunits for the discovery of novel antibacterial
candidates.

Visualized analysis of AI-predicted structure and activity of
β-amino acid polymers
We made overall predictions on three bioactivities of the generated
cationic-hydrophobic β-amino acid polymers with the aforementioned
2114 types of hydrophobic subunits. The ratio of cationic to hydro-
phobic subunit was limited to 0.1 to 0.9 (9 samples). Thus, the bioac-
tivity data of 19,026 polymers could be generated for each cationic

subunit. Taking the DM/MM as a representative cationic subunit, we
visualized three predicted distributions of the bioactivities of
MICS.aureus, MICE.coli and HC10 and we further categorized the polymers
according to the different ranges of carbon numbers in hydrophobic
subunits (Fig. 4e–j). According to the prediction, for polymers with DM
subunit, concretely 85.0%, 92.2% and 92.8% of polymers in each range
(5-6, 7-8 and 10-11) reached theMIC values < 25μgmL−1 against S. aureus
(Fig. 4e) and 44.1%, 36.5% and 28.6% against E. coli (Fig. 4f). Whereas, for
polymers with MM subunit, less polymers possessed high activity
against S. aureus and E. coliwithMIC value < 25μgmL−1, and 7.2%, 29.7%
and 21.7% polymers in each range reached the value against S. aureus
(Fig. 4h) and 7.5%, 2.1% and 0.0% against E. coli (Fig. 4i). These results
indicated that the polymers with DM subunit showed greater oppor-
tunities to explore the promising broad-spectrum antibacterial poly-
mers. Moreover, for the given threshold of HC10 value > 50μg mL−1,
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Fig. 3 | Results of the predictive model. a Comparison between predicted values
and real measured values for β-amino acid polymers. Results show a desirable
accuracy, with the metric of R-squared coefficient (R2) reaching 0.91, 0.88 and 0.91
on the values of the minimum inhibitory concentration for S. aureus (MICS.aureus), E.
coli (MICE.coli) and the value of the minimum concentration to cause 10% hemolysis
(HC10) on polymers with dimethyl (DM) subunit, and 0.92, 0.84 and 0.96 on poly-
mers with monomethyl (MM) subunit. Text abbreviations (HE, OC, etc.) mean

different hydrophobic subunits. All values are transformed values by natural loga-
rithm. b–m Comparison between predicted values and real measured values for α-
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no matter what the cationic subunit was DM or MM, the ratios of the
generated polymers in 19,026 samples gradually decreased with an
increasing carbon number (Fig. 4g, j). The aforementioned findings
guided us to select an appropriate range of carbon numbers (<11) for
better polymer activity in the following design.

Visualized analysis of AI-predicted antibacterial selection index
(SI) of β-amino acid polymers
We further made overall predictions on antibacterial SI of the
generated β-amino acid polymers as one of the important para-
meters to evaluate selectivity and safety of the antibacterial
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Fig. 4 | Results of the generative model and visualized analysis. a–c Average
reward curves show opposite model performance when fine-tuning model pre-
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minimum inhibitory concentration for S. aureus (MICS.aureus) and number of carbon
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(Source data are provided as a Source Data file).
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agents64. Herein, we focused on exploring the optimal antibacterial
β-amino acid polymer with a high SI value by finding the suitable
hydrophobic subunit using DM as cationic subunit. We used a
uniform manifold approximation and projection (UMAP)65 to pro-
ject all β-amino acid polymers with DM subunit onto a 2D embed-
ding chemical space (Fig. 5). We collected the SI values of all
generated 19,026 polymers by calculating HC10/MIC against S.
aureus and E. coli, respectively, and we conducted the classification
and visualized analysis on these data according to the range of SI.
Finally, we filtered out 9 broad-spectrum antibacterial candidates
with both high activities and SI values including 4 different struc-
tures of hydrophobic subunits. It was worth noting that most
suboptimal polymers (greed, gray and yellow points) were clus-
tered near the candidates (red star), which inspired us to make a
detailed exploration for the hidden candidates in the near space of
the optimal polymer points.

Discovery of broad-spectrum antibacterial candidate polymers
We run our framework to discover broad-spectrum antibacterial
polymers with desirable bioactivities (MICS.aureus < 25μg mL−1,
MICE.coli < 25μg mL−1 and HC10 > 100μg mL−1). We conducted a sys-
tematical exploration for candidate polymers by using different β-
amino acid polymer scaffolds (Supplementary Figs. 30–50), and finally
found 83 novel broad-spectrum antibacterial candidates by limiting
the carbon number of hydrophobic subunit to less than 11 (Supple-
mentary Tables 6–20). Displaying the scaffold of β3-amino acid as a
hydrophobic subunit example model (Task 3 in Methods), we col-
lected 640 β-amino acid polymers using DM as the cationic subunit
and various substituted β3-amino acids in the RL fine-tuning process
(Fig. 6a). We made a prediction on the values of MICS.aureus, MICE.coli

and HC10 with the predictive model, and projected all values in a 3D-
space with the three properties as coordinates (Fig. 6b). From these
results, we finally filtered out 5 candidate polymers in this polymer

SIS. aureus<5, SIE. coli <5

SIS. aureus>5 or SIE. coli >5

5<SIS. aureus<10, SIE. coli >10

SIS. Aureus>10, 5<SIE. coli <10

SIS. Aureus>10, SIE. coli >10

SIS. aureus = 11.968 
SIE. coli = 10.978

SIS. aureus = 12.732
SIE. coli = 19.586

SIS. aureus = 23.243
SIE. coli = 10.981

SIS. aureus = 32.727
SIE. coli = 16.082

Fig. 5 | Chemical space visualization with Uniform manifold approximation
and projection (UMAP) colored by the selected index (SI) values of generated
polymers. We construct a chemical space with the generated polymers bearing
dimethyl (DM) as positively charged subunit. Eachpolymer is colored according to
the values of the SI for S. aureus (SIS.aureus) and E. coli (SIE.coli) by the predictied
values of the minimum inhibitory concentration for S. aureus (MICS.aureus), E. coli

(MICE.coli) and the value of the minimum concentration to cause 10% hemolysis
(HC10). Polymers with desirable SI values (SIS.aureus > 10 and SIE.coli > 10) are dis-
played with red stars. Moreover, it can be clearly found that most suboptimal
polymers with SIS.aureus> 5 or SIE.coli > 5 (green, yellow and gray points) are clus-
tered together nearby the red star points, meaning that more potential structures
exist around them (Source data are provided as a Source Data file).
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scaffolds which meet ideal properties (MICS.aureus < 25, MICE.coli< 25
and HC10 > 100) (Table 1). In addition, we expanded our model on
poly(α-amino acid) and polypeptoid scaffolds to explore further
potential application of our method (Supplementary Figs. 51–55). All
experimental settings were same, and we also screened out several
broad-spectrum antibacterial candidate polymers.

Synthesis and broad-spectrum antibacterial validation of AI-
predicted β-amino acid polymers
In order to verify the accuracy and reliability of the AI system for
predicting antibacterial activity and hemolytic toxicity of HDP-

mimicking β-amino acid polymers, we selected the β-amino acid
polymers DMxiPeny from the numerous candidate polymers. Firstly,
the DM monomer and iPen monomer were copolymerized and sub-
sequently deprotected to obtain the β-amino acid polymers with dif-
ferent ratios of positive charge and hydrophobicity (Fig. 7a)66. Gel
permeation chromatography (GPC) characterization of the N-Boc-
protected polymers showed a narrow distribution ofmolecular weight
(D = 1.09–1.15) and controllable molecular weight as well as chain
length (DP = 20–23) (Fig. 7b and Table 2). Proton nuclear magnetic
resonance (1H NMR) of N-Boc-deprotected polymers implied a con-
tinuous increase in the proportion of hydrophobic subunit (Fig. 7c).
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Fig. 6 | Discovery of broad-spectrum antibacterial polymers bearing β3-
amino acid. a Various β3-amino acid generated in the discovery process with fixed
dimethyl (DM) subunit. Note that all subunits are achiral. x and y are defined as the
percentages of a positively charged subunit and a hydrophobic subunit in β-amino
acid polymers, respectively.b 3D-projection of the bioactivities on the values of the
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while purple plots are the projection on (MICS.aureus, MICE.coli) space. Red stars are
polymers reaching three desired properties of MICS.aureus < 25, MICE.coli < 25 and
HC10 > 100, simultaneously.

Table 1 | Display of the final filtered out candidate polymers with predicted properties

Structure Polymer x:y HC10(μg mL−1) MICS.aureus (μg mL−1) MICE.coli(μg mL−1)

NH NH
OO

H3N

x y

20

Candidate 1 9:1 119.6 8.31 24.9

NH NH
OO

H3N

x y

20

Candidate 2 7:3 134.6 15.5 14.6

NH NH
OO

H3N

x y

20

Candidate 3 8:2 137.7 13.9 15.2

Candidate 4 9:1 214.8 12.7 20.0

Candidate 5 8:2 156.9 10.2 24.1

HC10 means the value of the minimum concentration to cause 10% hemolysis, while MICS.aureus andMICE.coli mean the values of the theminimum inhibitory concentration for S. aureus and E. coli.
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Then, we tested the hemolytic toxicity against human red blood
cells (hRBCs) and cytotoxicity of this polymer libraries using Human
umbilical vein endothelial cell line (HUVEC) and the African green
monkey kidney fibroblasts (COS7) cells as representative mammalian
cells, and found that the hemolytic and cytotoxic activities increased
(values decreased) along with the increasing ratio of the iPen com-
ponent, with the minimum concentration to cause 50% hemolysis
(HC50) values dropping from 200μg mL−1 to 12.5μg mL−1 and the
minimum concentration to cause 50% inhibition (IC50) values drop-
ping from 200μg mL−1 to 75μg mL−1. When the hydrophobicity ratio
reached 30%, the hemolysis of the polymers was significant (Fig. 7d–f).
In addition, we also tested the antibacterial activity of these polymers
against multiple drug-resistant Gram positive and Gram negative
bacteria including three strains of methicillin-resistant S. aureus
(MRSA), clinically isolated multidrug-resistant strains S. aureus R03

and two strains of vancomycin resistant enterococcus (VRE), and two
strains of multidrug-resistant Escherichia coli. All these polymers dis-
played strong and broad-spectrum antibacterial activities with MIC in
the range of 6.25–50μgmL−1.When the hydrophobicity ratiowas in the
range of 20–40%, the polymers showed potent activities against all
bacterial strains with MIC in the range of 6.25–12.5μg mL−1 (Table 3).
Combining the experimental data of hemolysis, cytotoxicity and
antibacterial activities, DM0.8iPen0.2 as the optimal antibacterial can-
didate exhibited broad-spectrum and potent antibacterial activity,
which was consistent to our results predicted by AI system. Our AI
system made accuracy predictions on antibacterial activity, and also
found out the cationic/hydrophobic subunit ratio with low toxicity.
Furthermore, DM0.8iPen0.2 showed desirable antibacterial selectivity
with SI values against mammalian cells of hRBC, HUVEC and COS7 at
12–32 (Fig. 7g–i), and antibacterial SI values bigger than 10 indicated
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Fig. 7 | Experimental validation. a Synthesis of host defense peptides-mimicking
β-amino acid polymers DMxiPeny (x + y = 1, y = 0–0.5), R represents the side chain
from one of the starting monomers of DM and iPen. b Gel permeation chromato-
graphy (GPC) traces of N-Boc-protected DMxiPeny. c Proton nuclear magnetic
resonance (1HNMR)characterizationofN-Boc-deprotectedDMxiPeny. H1,H2 andH3

represent the characteristic peaks from iPen component within polymers.
d Hemolysis of polymers against human red blood cells (hRBCs). HC50 means the

minimum concentration to cause 50% hemolysis. e Cytotoxicity of polymers
against Human umbilical vein endothelial cell line (HUVEC) cells. IC50 means the
minimumconcentration to cause 50% inhibition. fCytotoxicity of polymers against
African green monkey kidney fibroblasts (COS7) cells. g–i Selectivity index (SI) of
the optimal polymer DM0.8iPen0.2 calculated from HC50/MIC against hRBCs, IC50/
MIC against HUVEC cells and COS7 cells. MIC means the minimum inhibitory
concentration.

Article https://doi.org/10.1038/s41467-024-50533-4

Nature Communications |         (2024) 15:6288 10



that the candidate has selective antibacterial activity and potential
application11,67,68, proving the discovery of promising antimicrobial
alternatives. It was worth noting that DM0.8iPen0.2 possessed a unique
structure characterized by different hydrophobic subunits in com-
parison to previously reported antimicrobial β-amino acid polymers.
Importantly, our prediction showed that DM0.8iPen0.2 had lower
cytotoxicity and improved antimicrobial selectivity compared to
amphiphilic polymers reported earlier, which utilized DM as the
cationic subunit and hydrophobic subunits with lower carbon num-
bers, such as DM:CHx, DM:βCP, DM:βCH42.

Antimicrobial mechanism study of β-amino acid polymer
(DM0.8iPen0.2)20
We investigated the antimicrobial mechanisms of the optimal polymer
(DM0.8iPen0.2)20 against drug-resistant positive and drug-resistant
negative bacteria. For the representative gram-positive bacteria of S.
aureus, we conducted cytoplasmic membrane depolarization assay
using DiSC3(5) dye as the bacterial membrane potential probe and
cytoplasmicmembranepermeability assay using propidium iodide (PI)
dye as nucleic acid staining reagent to evaluate the interaction
between (DM0.8iPen0.2)20 and bacterial membrane. It was found that
(DM0.8iPen0.2)20 displayed a significant depolarization effect on S.
aureus comparable to Triton X-100 (TX-100) and a strong membrane
permeabilization effect (Fig. 8a, b). Scanning Electron Microscope
(SEM) characterization demonstrated that the cell membrane of
(DM0.8iPen0.2)20 treated S. aureus have obvious damage compared to
untreated and normal S. aureus (Fig. 8c). In addition, we con-
ducted the time-laps fluorescent confocal imaging to observe a
dynamic sterilization process using the green fluorescent dye-
labeled (DM0.8iPen0.2)20. After treating S. aureus with dye-labeled
(DM0.8iPen0.2)20 at 1 ×MBC (minimum bactericidal concentration), it
wasobserved that (DM0.8iPen0.2)20with greenfluorescence andPIwith
red fluorescence entered into the bacteria cytoplasm almost simulta-
neously at about 30s, which echoed the strong membrane permeabi-
lization effect (Fig. 8d). The above experiments all implied an
antimicrobial mechanism by which (DM0.8iPen0.2)20 killing drug-
resistant S. aureus by strong interaction with bacteria membrane. For
the representative gram-negative bacteria of E. coli, we found that
(DM0.8iPen0.2)20 have strong outer membrane perturbation ability via
outer membrane permeabilization test (Fig. 8e). Continuous studies
indicated that (DM0.8iPen0.2)20 displayed a strong depolarization and
permeabilization effect against E. coli, which was consistent with
experimental results of wrinkles appearing on the membrane surface
of (DM0.8iPen0.2)20 treated E. coli in SEM characterization (Fig. 8f, g,
Supplementary Fig. 56). Moreover, the confocal imaging of dynamic
sterilization process demonstrated that (DM0.8iPen0.2)20 with green
fluorescence was gradually enriched on the membrane surface and
then PI with red fluorescence started to entered into the bacteria
cytoplasm (Fig. 8h). All those experimental results indicated that
(DM0.8iPen0.2)20 killed drug-resistant E. coli via antibacterial mechan-
ism of membrane damage.

Discussion
Artificial intelligence (AI) has alreadymade significant contributions to
the entire life-cycle of drugdesign. However, there is currently a lackof
efficient AI methods specifically tailored for designing host defense
peptide-mimicking polymers, mainly due to the scarcity number of
available polymers in each family and multi-constraints when explor-
ing the vast high-dimensional polymer space. In this study, we have
developed an end-to-end AI-guided inverse design framework to rea-
lize effective exploration of novel host defense peptide-mimicking
polymers under the conditions of 86 few-shot polymer data.

By applying multi-modal polymer representations, we extract
multi-scale polymer information to improve the accuracy of the pre-
dictive model for few-shot data setting. All quantitative results prove a
high reliability and stability of the predictive model, which can be fur-
ther applied for the design process. Moreover, we distill the knowledge
of ourβ-amino acids data and the naturalα-amino acids data, helping to
construct a more concentrated chemical space for exploration. Thus,
the generative model is able to efficiently generate polymers with high
chemical rationality and synthetic feasibility undermultiple constraints
on desired bioactivities, toxicity and structures. Through iterative
prediction andgeneration in reinforcement learning,wegeneratemore
than 105 novel cationic-hydrophobic β-amino acid polymers, and we
finally find 83 optimal polymers with the desired properties.

We also synthesize one of the predicted candidates, DM0.8iPen0.2,
and verify the bioactivities. This polymer displays broad-spectrum and
potent antibacterial activity and desirable antibacterial selectivity,
indicating the effectiveness and feasibility of our AI strategy. Further-
more, our proposed data-driven AI strategy exhibits robust adaptability
and holds great potential for application in various other domains
beyond just a few-shot polymer or molecular systems. Through the
utilization of our AI framework, we open up fresh opportunities to
tackle the pressing challenge of efficiently identifying promising
antibacterial polymers to counteract the growing threat of antibiotic
resistance. In future studies, it worth exploring the AI-guided
antimicrobial polymer design on more backbone types of polymers
and more factors, such as various polymer descriptors, to more
effectively find antimicrobial polymer candidates belonging to
diverse species.

Methods
Data preprocessing
Wemade same data preprocessing to all the antibacterial activity data
includingMIC values aswell asHC10 values. If the endpoint of bacterial

Table 2 | Gel permeation chromatography (GPC) character-
ization of N-Boc protected DMxiPeny

x:y Mn(g mol−1) DP D

10:0 5100 22 1.12

9:1 4900 22 1.13

8:2 5020 23 1.15

7:3 4500 22 1.13

6:4 4400 23 1.12

5:5 3600 20 1.09

Mnmeans the obtained number averagemolecular weight,Dmeans dispersity index,DPmeans
degree of polymerization.

Table 3 | Minimum inhibitory concentration (MIC) values of
library DMxiPeny(x:y) against clinically isolated drug-resistant
bacterial

Strain MIC(μg mL−1)

10:0 9:1 8:2 7:3 6:4 5:5

Staphylococcus aureus USA300 25 12.5 12.5 12.5 12.5 12.5

Staphylococcus aureus MU50 25 12.5 12.5 12.5 12.5 25

Staphylococcus aureus Newman 50 25 12.5 12.5 12.5 50

Staphylococcus aureus R02 25 12.5 12.5 12.5 12.5 25

Staphylococcus aureus R03 25 25 12.5 12.5 12.5 25

Vancomycin resistant enterococcus-1 12.5 6.25 6.25 6.25 6.25 12.5

Vancomycin resistant enterococcus-2 12.5 6.25 6.25 6.25 6.25 12.5

Escherichia coli JM109 25 12.5 12.5 12.5 12.5 25

Escherichia coli R19 50 25 12.5 12.5 12.5 25

Pseudomonas aeruginosa R09 12.5 6.25 6.25 6.25 6.25 25

Pseudomonas aeruginosa R10 12.5 12.5 6.25 6.25 6.25 25

Values in bold indicate the performance of DM0.8iPen0.2 which is chosen as the optimal anti-
bacterial candidate.
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Fig. 8 | Antimicrobialmechanism study. aCytoplasmicmembrane depolarization
of (DM0.8iPen0.2)20 against S. aureus USA300. TX-100 means Triton X-100. MIC
means the minimum inhibitory concentration. b Cytoplasmic membrane perme-
ability of (DM0.8iPen0.2)20 against S. aureus USA300. c Scanning Electron Micro-
scope (SEM) characterization on S. aureus USA300 with and without
(DM0.8iPen0.2)20 treatment at 1 ×MBC. The SEM sample was prepared once, and at
least 50 fungal cells were observed individually in the sample, showing results
similar to the representative SEM images shown in the figure.MBCmeansminimum
bactericidal concentration. d Time-laps confocal fluorescence imaging on the

interaction between S. aureusUSA300 and fluorescent dye-labeled (DM0.8iPen0.2)20
at 1 ×MBC, in the presence of propidium iodide (PI). e Outer membrane perme-
ability of (DM0.8iPen0.2)20 against E. coli R19. f Cytoplasmic membrane depolariza-
tion of (DM0.8iPen0.2)20 against E. coliR19. g SEM characterization on E. coliR19with
and without (DM0.8iPen0.2)20 treatment at 1 ×MBC. The SEM sample was prepared
once, and at least 50 fungal cells were observed individually in the sample, showing
results similar to the representative SEM images shown in the figure. h Time-laps
confocal fluorescence imaging on the interaction between E. coli R19 and fluor-
escent dye-labeled (DM0.8iPen0.2)20 at 1 ×MBC, in the presence of PI.
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growth had not been arrived during the experiment, the values was
estimated to be the current available value. (e.g., for the experimental
estimated value HC10 > 400μg mL−1, it was seen as 400μg mL−1). Note
that natural logarithm transformation was performed to all the esti-
mated results due to the regular values so that all the results were
transformed as integers labels for corresponding properties (e.g.,
“12.5”was recorded as “3”, “400”was recorded as “8”). All models were
trained to predict the natural logarithm of all properties.

Polymer data augmentation
An important property for cationic-hydrophobic β-amino acid poly-
mers, or more specifically for multi-component polymers is that
the machine learning or deep learning model used should follow the
permutation invariance of the polymer input, i.e. the results of the
model should not be influencedby the order of the components, and it
could be formulated as,

H =M1½ðp1, r1Þ, ðp2,r2Þ�=M1½ðp2, r2Þ, ðp1, r1Þ�,
S=M2½ðp1, r1Þ, ðp2, r2Þ�=M2½ðp2, r2Þ, ðp1, r1Þ�,
E =M3½ðp1, r1Þ, ðp2, r2Þ�=M3½ðp2, r2Þ, ðp1, r1Þ�,

8><
>: ð1Þ

whereM1,M2,M3 were differentmap functions from the polymer input
to corresponding properties, H, S, E were the value of MICS.aureus,
MICE.coli and HC10, respectively, p, r were the polymer unit and its
composition information. In the previous work47, it had been proved
that by considering the permutation invariance, the model accuracy
can be improved. In this way, we reasonably introduced this property
as a method for data augmentation, aiming at improving the accuracy
of the predictive model. Detailed, we adjusted the order of the input
cationic and hydrophobic subunits and the feature orders in all
representations were also changed with the same property label, so as
to avoid the influence of the input order.

Multi-modal random polymer representation
Translating polymers into machine readable vectors was one impor-
tant problem with ongoing concerns for polymer informatics69. Dif-
ferent from micromolecules with deterministic topology connections
of atoms and bonds, it was hard to completely represent random
polymerswith unregular sequence by general representationmethods
for micromolecules (e.g., SMILES or graphs) due to the intrinsically
stochastic nature of polymers44. Generally considering, the property of
a polymer was mainly decided by 1) structures of subunits and 2)
subunit sequence connection, while for randompolymers, the subunit
ratio should be taken into consideration instead of sequence con-
nection. In our work, we proposed a multi-modal polymer repre-
sentation method from the following three perspectives:

Molecular descriptors. Molecular descriptors are mathematical
representation of chemicals which are generally used to build pre-
dictive models. We used an open-sourcedMordred calculator45, which
included 1826 two- and three-dimensional descriptors. For cationic-
hydrophobic polymers, descriptors of both the cationic and hydro-
phobic subunits were calculated and stacked together, totally dimen-
sioned 3654 for candidate descriptor vector with adding composition
information r1,r2 of two subunits. Then we applied a two-stage
descriptor downselection strategy with a stage of statistical down-
selection and a stage of machine learning based downselection46. In
the first stage, constant or almost constant descriptors were dropped
from the initial set (Init., 3654 descriptors), and descriptors with var-
iance larger than 10% of the mean value across the initial set were
filtered out as validate set (Var., 1014 descriptors). Next, we evaluated
Spearman rank correlations of each descriptor pair, and descriptors
with correlation higher than 0.9 as well as correlation with the target
property (MICS.aureus, MICE.coli and HC10) lower than 0.05 were filtered
out as correlation set (Cor., 182, 171, 174 descriptors for MICS.aureus,

MICE.coli and HC10, respectively). In the second stage, a recursive fea-
ture elimination (RFE) method70 was introduced on the Cor. descrip-
tors set based on a random forest (RF)model.With RF regression, each
descriptor was eliminated recursively according to the importance
rankings until the last descriptor. Then, a 15-fold cross-validation was
adopted with repeated stratified subsampling descriptors. The prin-
ciple of choosing the optimized descriptor set was to choose a
descriptor which has the lowest mean RMSE. In this way, descriptors
with most important information related on the target property were
selected. In our work, we chose 40 descriptors as the optimized
molecular descriptors (Opt., 40 descriptors for MICS.aureus, MICE.coli

and HC10, respectively) for part of the input of the predictive model
(Results of selected descriptors are shown in Supplementary Figs. 3–8,
and supplied predictive results are shown in Supplementary Fig. 9).

Molecular representations. Molecular representations are another
popular ways to encode molecules. In recent polymer informatics,
BigSMILES is a recently developed structurally-based line notation to
reflect the stochastic nature of polymer molecules44. Compared with
molecular descriptors, hidden chemical information could be learned
frommolecular representations via a data-drivenpattern. According to
the syntax of BigSMILES, we developed two kinds of other rules to
completely define cationic-hydrophobic β-amino acid polymers, and
also these rules are universal for other random polymers.

Sequence representation. Traditional SMILES strings generally
consisted of various atom tokens (e.g., “C”, “O”, “[NH3+]”), bond
tokens (e.g., “=”, “#”) and branching tokens (e.g., “()”, “1,2”) to encode
molecules. In BigSMILES sequence, the stochastic object and the
bonding descriptors were two new joined elements compared with
basic SMILES grammar. We further introduced several additional
definition so as the composition information of each repeated subunit
in the stochastic object could be expressed, which was not included
in BigSMILES. Take DM0.6BU0.4 as an example, it could be written as:
{[>]NC(C)(C)C(C[NH3+])C=O.[+rn = 60], NC(CCCC)CC=O[<].[+rn = 40]},
where “[+rn = 60]” showed that the DM subunit has the ratio of 60%.
“>” and “<” were two conjugate types of boding descriptors showing
how repeat units were linked. For simplicity, we omitted exterior
strings (since they are all same for our cationic-hydrophobic β-amino
acid polymers) and we used the simplification style. Other cationic-
hydrophobic polymers were defined like such. After collecting all
characters involved, the one-hot encoding of the BigSMILES strings
couldbegenerated as the input. All the sequences arewrittenmanually
and it is hard to be applied to large-scale datasets for further perfor-
mance comparison, since there is still notmature toolkit for polymers.

Graph representation. Similarly, we construct graph representa-
tion for random polymers according to the BigSMILES syntax, shown
in Supplementary Fig. 10. In BigSMILES syntax, bond descriptors are
introduced to specify where and how repeat units can be joined with
another repeat unit. Bonding descriptors are placed on atoms of a
repeat unit that could form direct bonds with another repeat unit. In
BigSMILES, there are two types of bonding descriptors: one is the “$”
descriptor, or AA-type descriptor, which means it can only be con-
nected with the same descriptors; the other is the “<” and “>”
descriptors, or AB-typedescriptor, whichmeansonedescriptor should
be connectedwith the conjugate descriptor. These rules are translated
into our tasks to represent a cationic-hydrophobic amphiphilic β-
amino acid polymer.

Predictive network
We testified the property prediction performance using various of
representations and we set Morgan fingerprints, which was widely
used in polymer property prediction35, as baseline. In this study, we
mainly used the following combinations according to three proposed
multi-modal representations with properly designed network struc-
tures for specific tasks71,72: 1) Descriptor vector (fromDescriptor_Init to
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Descriptor_Opt), 2) Sequence vector, 3) Graph vector, 4) Sequence
vector and Descriptor vector (Seq+Descriptor_Opt), 5) Graph vector
and Descriptor vector (Graph+Descriptor_Opt), 6) Sequence vector,
graph vector and Descriptor vector (Seq+Graph+Descriptor_Opt).
Noted thatweused the optimized descriptors for fusing since they had
reached better model performance.

Network architectures. For situation 1), we transformed the descrip-
tor feature Ff by subtracting the means and dividing by the standard
deviations as normalization process and we simply trained a Fully-
connected Feed-forward Neural Network (FFN) for prediction. The
dimensionality of the input feature Fj is [B,ND] and the dimensionality
of the input layer of FNN is [ND,Df], whereB is thenumber of batch size,
ND is the number ofdescriptorsused andDf is thedimensionality of the
hidden layers in FNN. For 2), we used the bidirectional Gate Recurrent
Unit (GRU)73,74 to extract the hidden information embedded in
Sequence vector, and can be formulated as,

hk

!
=GRU
��!ðtk ,hk�1

��!Þ,
hk

 
=GRU
 ��ðtk ,hk�1

 ��Þ,
8<
: ð2Þ

where tk was the token embedding, and hk

!
,hk

 
were bidirectional hid-

den states for the kth token of a string embedded by GRU, and the
current hidden state hk was obtained as,

hk = ðhk

!
,hk

 Þ: ð3Þ

Finally, we used Fs to denote the contextual representation of a
sequence string with length n as,

Fs = ðh0,h1, � � � ,hnÞ: ð4Þ

The dimensionality of the input sequence vector is [B, n] and the
dimensionality of the sequence embedding is [n,Ds], where B is the
number of batch size, n is the number of each input sequence andDs is
the dimensionality of the hidden layers in GRU. The final dimension-
ality of the sequence feature Fs is [B,Ds].

For 3), we apply a Bidirectional Message Communication GNN75,
which makes full use of the node message for more effective message
interactions to extract the local information embedded in the graph.
The network structures can be seen in Supplementary Fig. S11 and the
pseudocode of the model were concluded in Supplementary Infor-
mation as Algorithm 1.

Specifically, the input of the algorithm is each polymer graph
G=ðV, EÞ and all of its atom attributes xv(8v 2 V) and bond attributes
xevw (8evw 2 E). The initial node feature h0

v is simply the atomattributes,
while the initial edge feature h0

evw
is the bond attributes. Then,

according to the network depth T, a T steps message aggregation and
update procedure is applied. In each step t, each nodemessage vector
mt + 1

v is aggregated according to its incoming edges and each edge
message vector met + 1vw

is aggregated according to its neighbor nodes,
shown as,

mt + 1
v =MAXðht

euv
Þ � SUMðht

euv
Þ,u 2 N ðvÞ,

mt + 1
evw

=MEANðht
v,h

t
wÞ,

(
ð5Þ

where MAX, SUM, MEAN are the corresponding aggregating strat-
egy,⊙ is an element-wise multiplication operator. Then the obtained
message vectors of node and edge mt + 1

v ,mt + 1
evw

are concatenated with
the corresponding current hidden states to be sent to the commu-
nicate function which use an addition operator as communicative
kernel to calculate the communicative vector pt + 1

v ,pt + 1
evw

. Then
the hidden state of the node and edge are updated with skip

connection as,

ht + 1
v =Ut

vðpt + 1
v ,h0

v Þ=ReLUðh0
v +Wv � pt + 1

v Þ,
ht + 1
evw

=Ut
eðpt + 1

evw
,h0

evw
Þ=ReLUðh0

evw
+We � pt + 1

evw
Þ,

(
ð6Þ

whereReLU is the rectified linear unit andWv,We are learnedmatrices.
After T step iteration, a GRU based readout function is applied to
the final node representation hT

v to get the graph-level representation
Fg as,

Fg =
X
v2V

GRUðhT
v Þ: ð7Þ

The dimensionality of the input atom vector and bond vector in graph
are [B,Nv, Fv] and [B,Ne, Fe], and the dimensionality of the atom
embedding and bond embedding in Bidirectional Message Commu-
nication GNN are [Fv,Dg] and [Fe,Dg], where B is the number of batch
size, Nv,Ne are the atom number and bond number in each input
molecular graph, Fv and Fe are the number of attributes for each atom
andbond andDg is the dimensionality of the hidden layers in GNN. The
final dimensionality of the graph feature Fg is [B,Dg]. For 1)-3), the
network structures can be seen in Supplementary Fig. 11.

Since 4), 5) and 6) involved multiple polymer vectors, we devel-
oped a multi-modal polymer representation method with adjustable
network blocks for specific representations. A core motivation was
how to learn more abundant chemical information from limited data
points and how to find connections and differences between infor-
mation in diverse representations. From feature descriptors, various
basic chemical or calculated information could be gained. In contrast,
from sequence or graph representations, distributions of atoms
and bonds on spatial and numerical were explicitly displayed, while
more implicit information, which might not be calculated through a
specific equation, was generally learned with the help of data-
driven deep learning. Since the available data are very limited, to
learn better polymer feature for few-shot prediction, we tempted to
merge various representations which is one of the main contributions
of our work.

The main structure included several customized representation
learning blocks to extract implicit information from various repre-
sentations (descriptors, sequence and graph here), and this process
could be formulated as,

Fj =CombineðFf , Fs, Fg Þ, ð8Þ

where Combine was the function to assemble different representa-
tions with adding and stacking, and Fjwas the joint feature by stacking
all the vector features with the dimensionality of [B,Dj], Dj =D +ND

(D =Df =Ds =Dg). According to the different input representations in
4), 5) and 6), different blocks are inserted as shown in Supplemen-
tary Fig. 12.

Then a Transformer-based feature combination block was built
with the input of Fj. The Transformer had been proved as a powerful
model on various fields through its power on extracting comprehen-
sive information. To find connections between the learned implicit
information from Sequence and Graph representation and the explicit
information embedded in descriptors, we further used descriptors Ff
as the attention bias in the self-attention mechanism, and this process
could be formulated as:

Q= FjWQ,K = FjWK ,V = FjWV , ð9Þ

AttentionðFjÞ= softmaxðQK>=
ffiffiffiffiffiffi
dK

q
+ Ff ÞV , ð10Þ
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where WQ, WK, WV were the corresponding projecting matrices of Q
(query), K (keys), V (values), dK was the dimension of keys, Attention
was the self-attentionmechanism in Transformer and softmaxwas the
softmax function. With the calculation of the Transformer block and
feedforward network (FNN) block, we got the final predictions of the
properties with the dimensionality of [B,1],

P =FNNðTransformerðFj, Ff ÞÞ: ð11Þ

Predictive model training settings. We randomly split the training
data Dtrain_aug into 8:1:1 train/valid/test ratios and we applied bayesian
optimization to find the optimal hyper-parameters. Then we used the
optimized parameters to retrain the model for 10 independent runs
with different random seeds. Specifically, a dynamic changed learning
rate was usedwith the Adamoptimizer withmean squared error (MSE)
loss to train the model. We set an initial learning rate as 10−4 and it
would be doubled as amax learning rate in 5 warm up training epochs,
and finally the learning would return the 10−4 as a final value. The
training epoch and the batch size were set as 100 and 16 respectively.
In each epoch, if the validation MSE reduced, the model would be
saved. The parameters of each block of GNN, GRU, Transformer and
FNNwere all recorded in Supplementary Table 2. In addition, since the
operation of randomdata splittingwould cause uneven distribution of
training data, we applied the ensembling technique, which is a com-
mon technique in machine learning. Multiple independently trained
models with different random seeds were combined to produce an
averaging predictions so as to prevent overfitting on partial results.
After training, the unseen testing data Dtest was used to evaluate the
performance of the model, using the R-squared coefficient (R2, higher
R2 means better performance of the model) and root-mean-squared
error (RMSE, lower RMSE means better performance of the model) as
metrics. The implementation of themodel relies on Pytorch and RDKit
package.

Scaffold-decorator generative network
Take thehydrophobic subunit “BU” as anexample, its SMILES stringwas
“NC(CCCC)C C=O”, which could also be seen as that a side chain “[*]
CCCC”was decorated to the scaffold “NC([*])CC=O”, where “[*]”was the
special attachment token for substitution. For scaffold with more
than one substitution, a symbol “∣” was introduced to differentiate
decorations76. Therefore, the core problem of polymer design could be
transformed as finding the optimized decoration for the specific scaf-
fold to formulate subunits for polymer with desirable properties. We
summarized the whole designing procedure in two stages. Firstly, we
pre-trained a GRU-based molecular scaffold-decorator with the ability
of generating valid subunits. Secondly, a reinforcement learning fine-
tuning stage was adopted to explore the chemical space for optimal
polymers. When fine-tuning, each reasonable molecule would be
recorded for the convenience of final analysis and evaluation.

Network architectures. The implementation of scaffold-decorator
network was totally an encoder-decoder architecture with attention
mechanism. The encoder was a bidirectional RNN sequenced with an
embedding layer and three layers of bidirectional GRU cells of 256
dimensions. Then the hidden states were sent to the decoder, which
was a single direction RNN sequenced with an embedding layer, three
layers of GRU cells of 256 dimensions. Finally, an global attention layer
as adopted to sumup the output of the encoder and the decoder, and a
liner layer was connected to calculate the probability of each possible
token xi. The model was trained to maximize the Negative Log-
Likehood (NLL) loss written as:

NLL ðSÞ= �
Xn
i= 1

log Pðxijx<i, scaffoldÞ, ð12Þ

where P(xi∣x<i) was the probability when sampling the ith token of
decoration sequence S with given the previous tokens and the input
scaffold.

Graph grammar distillation
A direct idea was that the subunits for which we would like to explore
had similar structures thus these structuresmust distributed closely in
the huge chemical space (Supplementary Fig. 24). Generally, our β-
amino acids have similar structures with natural α-amino acids. How-
ever, if we pre-training our model with large-scale public data, those
rules for constructing complex structures or undesirable chemical
elements (e.g., Br,Cl) may also be embedded in the model. Thus, it
takes a long time for further RL fine-tuning to adjust the parameters to
avoid generating those subunits. Thereby,wefirst collected all cationic
and hydrophobic β-amino acids in our data and several natural α-
amino acids structures (Supplementary Fig. 23). Then, we used a
hyper-graph based data-efficient graph grammar learning method
(DEG)77 to collect various graph grammar rules from the given amino
acids. Thus, various grammar rules were learned automatically from
the training data, and specific rules could be learned according to the
given data if needed. By doing so, we extracted grammar knowledge
and we recombined these grammar to construct a distilled set of
molecules. Then, we similarly used the RECAP rules to slicemolecules,
gaining 0.3 million pairs of scaffold-decoration data. We took these
data to pre-train a generative model with the same structures above
and constructed a more-focused chemical space embedded in the
model for further exploration, so as to accelerate the search efficiency
under multi constraints for RL agent.

Reinforcement learning
To further guide our generative model pre-trained by graph grammar
distillation toward relevant areas in chemical space according to cus-
tomized requirements, we adopted REINVENT 2.078. It is a recently
developed reinforcement learning method for de novo drug design,
for fine-tuning to carry out a constellation of specific tasks of design.
By fine-tuning, various user-defined requirements could be satisfied to
generate molecules of interest. In our cases, we realized the following
requirements: 1) polymer generation under various scaffold subunit
structures (e.g., “NC([*])CC=O”, “NCC(C=O)1[*]C1”, “NC1[*]C1C=O”), 2)
polymer generation under multi-objective constraints (e.g., carbon
numbers, ring number and MICS.aureus/MICE.coli/HC10 thresholds).

The main roles in REINVENT 2.0 included a prior modelMPrior, an
agentmodelMAgent and a scoremodulating block. Thepriormodelwas
the pre-trained scaffold-decorator generative model introduced
above, while the agent model shared the identical network structures
and the initialization parameters of the agent model as completely the
same as the prior model. The score modulating block could be
regarded as the environment which fed back rewards according to the
targeted scoring functions.

Then we introduced the reinforcement learning cycle. First, the
agentmodelMagent sampled batch of SMILES decorations for a specific
scaffold, and the decorated polymer were scored according to the
scoring function Sscore (introduced in Eq. (15)). Among each course of
sampling molecules, the agent chose the next possible token, seen as
the action Aaction, according to the current token sequence, regarded
as the state Sstate in the RL framework. Thus, the agent learned a con-
ditional probability p(A∣S) to generate the desiredmolecules when the
episodes go on. To train the agent model, we used the NLL, similar to
Eq. (12), to represent the agent likelihood of the generated decoration
sequence S as NLL(S)Agent. Then S would be given to the prior model
MPrior to calculate the augmented likelihood with the score SscoreðSÞ.
Ultimately, the loss of the agent could be calculated as:

NLL ðSÞAugmented = NLL ðSÞPrior � σSscoreðSÞ, ð13Þ

Article https://doi.org/10.1038/s41467-024-50533-4

Nature Communications |         (2024) 15:6288 15



loss = ½NLLðSÞAugmented � NLLðSÞAgent�2, ð14Þ

where σ was the scalar value to scale up the output of the score
function. During the training process, we collected all valid generated
molecules for data analysis, and molecules with desired properties
would be further filtered out for experimental validation.

Generative model training settings. For the graph grammar distilla-
tion pre-training process, the training epoch, batch size and the
learning rate were set as 450, 256 and 10−3 respectively. The dimen-
sionality of hidden layers of GRUwas set as 256. For the reinforcement
learning fine-tuning process, the training epoch, batch size and the
learning rate were set as 450, 30 and 10−9 respectively. Also, we use the
negative log likelihood (NLL) loss to train the model and the imple-
mentation of the model relies on Pytorch and RDKit package. All
hyperparameters are concluded in Supplementary Table 5.

Score and metric
In this study, we aimed to find more potential cationic and hydro-
phobic subunit combinations with specific composition rations, which
satisfied the desired properties: MICS.aureus < 25, MICE.coli > 25 and
HC10 > 100. Moreover, we designed several penalty rules or custo-
mized constraints to accelerate the learning process with narrowing
down the scopeof exploration. Thefinal score function SscoreðSÞ, which
could also be seen as the reward in RL, was written as:

SscoreðSÞ= SpropertyðSÞ+ SpenaltyðSÞ+ SconstrainðSÞ, ð15Þ

where Sproperty, Spenalty, Sconstrain were three different parts of target
activities, penalty of irrationality and customlized constraints for
scoring.

Property score. We used the previously trained predictive network to
calculate the value ofMICS.aureus, MICE.coli andHC10 respectively. For all
the calculated values, we applied score transformations (sigmoid for
HC10 and reverse sigmoid for MICS.aureus and MICE.coli) so that each
component returned a value between [0,1] (the higher the better). This
operation helped to avoid one-sided impacts of single-properties and
adjust the influence of multi-parameter objectives, and the property
scoring function could be written as:

SpropertyðSÞ=a �MICS:aureusðSÞ+b �MICE: coliðSÞ+ c � HC10ðSÞ, ð16Þ

where a, b and cwere adjustable weights showing that which the agent
should put more focus on. They were decided by customized design
demands. In this work, we focused more on the antimicrobial activity
and hence, we set a larger value for a = b = 2 than c = 1.

Penalty score. To improve the rationality and correctness of the
generated molecules, we designed several structural penalties as the
penalty scoring function,

SpenaltyðSÞ=
�5, when molecule is invalid ,

�3, when unexpected elements exist :

�
ð17Þ

Constrain score. To further constrain the structures of the generated
molecules, we also designed several constraints which can be used
alternatively,

SconstrainðSÞ=
C=2, Cnumber ≤ X ,

�2, Cnumber >X ,

�
+
�3, R > Y ,

0, R ≤ Y ,

�
ð18Þ

whereCnumber was the carbon number of the final decoratedmolecule,
R was the ring number and X, Y were adjustable constants to decide
howmany carbon atoms or howmany circles should be generated. As
discussed before, to prove the rationality of the generated polymers,
we set X = 11 and Y = 1 in our exploration settings to prove the toxicity
without chemical structural rationality.

Evaluation settings
To exactly find new candidate polymers with desired properties, we
set three situations to evaluate the performance of the generative
model pre-trained by graph grammar distillation. It is worth noting
that in all situations, we fixed the cationic monomer as DM and MM
structures and focused on designing new hydrophobic monomers.
This helped to improve the synthetic possibility for final validation.
Even new cationic monomers were not taken into consideration. It
was still a challenging problem since there still existed multi-
constraints (structures, properties etc.) and should be taken into
consideration to adjust hydrophobic subunits. Details are outlined
below: Task 1: Cationic: DM/MM, hydrophobic: any scaffold, reward
design:

SscoreðSÞ= 2 �MICS:aureusðSÞ+ SpenaltyðSÞ: ð19Þ

Task 2: Cationic: DM/MM, hydrophobic: any scaffold, reward
design:

SscoreðSÞ=2 �MICS:aureusðSÞ+2 �MICE: coliðSÞ
+ 1 �HC10ðSÞ+ SpenaltyðSÞ+ SconstrainðSÞ,

ð20Þ

where X = 11, Y = 1. Task 3: Cationic: DM, hydrophobic: NC([*])C C(=O),
reward design:

SscoreðSÞ= 1 �MICS:aureusðSÞ+ 1 �MICE: coliðSÞ+ 3 � HC10ðSÞ
+ SpenaltyðSÞ+ SconstrainðSÞ,

ð21Þ

where X = 11, Y = 1.
Task 1 was designed to evaluate the performance of the model

pre-trained by graph grammar distillation and the model pre-trained
by ChEMBL. Task 2 referred to analysis the distributions of the gen-
erated polymers with evaluations by the predictive model, aiming at
further find the desirable area with more possible optimal candidates
under multiple-constrains. Following the results in Task 2, we made
further qualifications on a specific scaffold structure, aiming exploring
more candidate polymer with specific scaffold for real-work synthesis,
as Task 3. Note that we defined a high weight for HC10 which was
mainly due to the fact that for polymers with a fixed DM subunit, most
polymers showed undesirable property on HC10 and we gave more
weights on it.

Materials
All chemical reagents and solvents were used without further pur-
ification. Anhydrous dichloromethane (DCM) and anhydrous Tetra-
hydrofuran (THF) were purchased from Sigma-Aldrich. Ethyl acetate
(EtOAc) and other solvents were purchased from Shanghai Titan
Technology Co., Ltd. Synthesized chemicals were purified using a
SepaBean machine equipped with Sepaflash columns produced by
Santai Technologies Inc in China. The water used in these experi-
ments was obtained from aMillipore water purification systemwith a
resistivity of 18.2MΩ.cm. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) was purchased from MACKLIN
regent, Shanghai. Dulbecco’s modified Eagle medium (DMEM) were
purchased from Hyclone (USA).
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Cell lines
Human umbilical vein endothelial cell line (HUVEC) and the African
green monkey kidney fibroblasts (COS7) cells were obtained from the
Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

Measurements
Nuclear magnetic resonance (NMR) spectra were collected on a
Bruker spectrometer at 400MHz using CDCl3 as the solvent and
600MHz using D2O as the solvent. The corresponding chemical
shifts were referenced to residual protons in the deuterated NMR
solvents. High resolution electrospray ionization time-of-flight mass
spectrometry (HRESI-MS) was collected on a Waters XEVO G2 TOF
mass spectrometer. Gel permeation chromatography (GPC) was
performed on a Waters GPC instrument equipped with a refractive
index detector (Waters 2414) using dimethylformamide (DMF),
supplemented with 0.01 M LiBr, as the mobile phase at a flow rate of
1mLmin−1 at 50 °C. TheGPCwere equipped by a Tosoh TSKgel Alpha-
2500 column (particle size 7 μm) and a Tosoh TSKgel Alpha-3000
column (particle size 7 μm) linked in series. Relative number-
average molecular weight (Mn), degree of polymerization (DP) and
dispersity index (D) were calculated from a calibration curve using
polymethylmethacrylate (PMMA) as standards. Before GPC char-
acterization, all samples were filtered through 0.22 μm polytetra-
fluoroethylene (PTFE) filters. Optical density (OD) value and
fluorescence value were recorded on a multifunction microplate
reader (SpectraMax M2).

Synthesis of β-lactams
(±)-3-tert-Butyloxycarbonylaminomethyl-4,4-dimethyl azetidin-2-one
(3, β-lactam DM, Supplementary Fig. 57) was synthesized by follow-
ingpreviously reportedprocedure43. Briefly, 3,3-Dimethylallyl bromide
(15.0 g, 0.1mol) and potassium phthalimide (20.4 g, 0.11mol) potas-
siumphthalimidewasmixed in 300mLDMF. The reactionmixturewas
stirred vigorously at room temperature for 16 h and then poured into
800mL ice water with vigorous stirring to result precipitate. The
precipitate was collected by filtration andwashing with ethanol to give
the crude product. After removing the solvent under vacuum, the
intermediate compound 1 (Supplementary Fig. 57) was directly used
without purification (20.0 g, 93.0%). 1H NMR (400MHz, CDCl3, Sup-
plementary Fig. 58): δ 7.90-7.78 (m, 2H), 7.72-7.66 (m, 2H), 5.27 (dt,
J = 7.2, 1.2 Hz, 1H), 4.5 (d, J = 7.2 Hz, 2H), 1.83 (s, 3H), 1.70 (s, 3H). HRESI-
MS (Supplementary Fig. 59): m/z calculated for C13H14NO2 [M+H]+:
216.1025; Found: 216.1024.

To a solution of the intermediate compound 1 (20.0 g,
0.093mol) in dichloromethane (50mL) was added chlorosulfonyl
isocyanate (10.4 mL, 0.11 mol) under N2 atmosphere. The reaction
mixture was stirred for 30min at 0 °C and then warmed up to
room temperature for 72 h. Then the reaction mixture was poured
into a suspension of Na2SO3 (41.6 g, 0.33 mol) and Na2HPO4

(46.9 g, 0.33 mol) in water (800mL) and was stirred for 12 h. The
aqueous phase was extracted with dichloromethane (3 × 500mL).
The organic phase was combined and then dried over anhydrous
magnesium sulfate and concentrated under vacuum to give the
crude product. The crude product was purified by recrystalliza-
tion from ethyl acetate and hexane to afford maleimide-protected
DM (compound 2, Supplementary Fig. 57) as white solid (14.6 g,
60.8%). 1H NMR (400MHz, CDCl3, Supplementary Fig. 60): δ 7.89-
7.81 (m, 2H), 7.77-7.67 (m,2H), 6.00 (br, 1H), 4.09 (dd, J = 8.0, 14.0
Hz, 1H), 3.91 (dd, J = 8.0, 14.0 Hz, 1H), 3.41 (t, J = 8.0 Hz, 1H), 1.47
(s, 3H), 1.45 (s, 3H). HRESI-MS (Supplementary Fig. 61): m/z cal-
culated for C14H15N2O3 [M+H]+: 259.1083; Found: 259.1084.

To a solution of above compound 2 (14.6 g, 56.5mmol) in
methanol (200mL) was added a solution of hydrazin hydrate (80%
solution in water, 14 mL). The reaction mixture was stirred at 70 °C
for 12 h to result precipitate. After removing the precipitate by

filtration, the filtrate was coevaporated with toluene (3 × 200mL)
for removing the residual hydrazine hydrate. The residue, di-tert-
butyl dicarbonate (Boc2O, 24.6 g, 113.0mmol) and triethylamine
(15.3 mL, 113.0mmol) weremixed in 500mLmethanol. The reaction
mixture was refluxed for 6 h. After filtration, the solvent was con-
centrated under vacuum to give the residue. The residue was dis-
solved in dichloromethane (200mL) and then washed sequentially
with hydrochloric acid solution (1 N), sodium hydroxide solution
(1 N) and brine (200mL). The organic phase was dried over anhy-
drous magnesium sulfate and then concentrated under vacuum to
give the crude product, which was directly purified by column
chromatography to obtain β-Lactam DM (compound 3, Supple-
mentary Fig. 57) as white solid (9.7 g, 75.2%). 1H NMR (400MHz,
CDCl3, Supplementary Fig. 62): δ 5.9 (s, 1H), 4.9 (s, 1H), 3.66-3.56 (m,
1H), 3.28 (t, J = 10.2 Hz, 1H), 2.97 (t, J = 7.8 Hz, 1H), 1.45 (s, 3H), 1.43 (s,
9H), 1.37 (s, 3H). 13C NMR (100MHz, CDCl3, Supplementary Fig. 63):
δ 169.01, 155.79, 79.58, 58.24, 54.80, 37.07, 28.62, 28.37, 22.86.
HRESI-MS (Supplementary Fig. 64): m/z calculated for
C11H20N2NaO3 [M+Na]+: 251.1372; Found: 251.1371.

4-(2-methylpropyl)azetidin-2-one (compound 4, β-lactam iPen,
Supplementary Fig. 57) was synthesized according to the method
reported in previous literature66. Briefly, to a solution of 5-Methyl-1-
hexene (3.5 g, 35.6mmol, 1.0 equiv.) in dichloromethane (10mL),
chlorosulfonyl isocyanate (3.3mL, 37.4mmol, 1.05 equiv.) was added
at 0 °C under N2 atmosphere. The reaction mixture was stirred for
3 days at room temperature then monitored by thin layer chromato-
graphy (TLC). The reaction was quenched via carefully transferring
into thebuffer (200mL) consisting of anhydrous sodium sulfite (13.5 g,
106.8mmol, 3.0 equiv.) and disodium hydrogen phosphate (15.2 g,
106.8mmol, 3.0 equiv.), the mixture was stirred for overnight and
extracted with dichloromethane (3 × 100mL), then the organic layer
was combined and dried over anhydrous MgSO4. After removing the
solvent under vacuum, the crude product was purified by silica gel
column chromatography to afford β-lactam iPen (compound 4) as
colorless oil (2.1 g, 41.7% yield). 1H NMR (400MHz, CDCl3, Supple-
mentary Fig. 65): δ 6.06 (s, 1H), 3.60-3.54 (m, 1H), 3.04 (ddd, J = 14.8,
4.8, 2 Hz, 1H), 3.04 (dq, J = 14.8, 1.2Hz, 1H), 1.69-1.49 (m, 3H), 1.26-1.10
(m, 2H), 0.89 (d, J = 6.8Hz, 6H). 13C NMR (100MHz, CDCl3, Supple-
mentary Fig. 66): δ 168.87, 48.22, 43.09, 35.07, 33.14, 27.70, 22.34.
HRESI-MS (Supplementary Fig. 67): m/z calculated for C8H15NNaO [M
+Na]+:164.1051; Found 164.1053.

Synthesis of β-amino acid polymers
All polymerizations of β-lactams were carried in nitrogen-regulated
glove box at room temperature. Initiator (tBuBzCl), β-lactams (DM and
iPen) and the base catalyst LiHMDS were dissolved in dry THF to a
concentration of 0.2M respectively. The positive charge and hydro-
phobic composition of β-amino acid polymers was controlled by the
initial feed ratio of tBuBzCl: DM: iPen. Briefly, 2mL β-lactams with
different volume ratios of DM: iPen were mixed, after adding 100μL
tBuBzCl solution in THF and 300μL LiHMDS in THF into the mixture
sequentially, the reaction mixture was stirred for 12 h. When the
polymerization reaction was completed, the reaction mixture was
poured into cold petroleum ether (PE, 45mL) to precipitate out the
crude product as a white solid, followed by centrifugation (2810 g) to
remove the solvent. The crude product was dissolved in 2mL THF
followed by pouring cold petroleum ether (45mL) to precipitate out
the crude product. The N-Boc protected polymers were purified by
dissolution-precipitation process using THF/PE (2mL/45mL) three
times and vacuum drying for overnight to give a white solid. The
number-average molecular weight (Mn) and polydispersity index (D)
were characterized by GPC using N, N-dimethylformamide (DMF) as
the mobile phase.

N-Boc protected polymers were dissolved in trifluoroacetic acid
(2mL). Then the mixture was under shaking for 2 h at room
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temperature. After removing the solvent under a nitrogen flow, the
residue was dissolved in methanol (1mL), followed by addition of
cold MTBE (45mL) to precipitate out the crude polymers. The crude
polymers were purified by three times of dissolution-precipitation
process using methanol/MTBE (1mL/45mL) and vacuum drying for
overnight. The purified polymers were dissolved in Milli-Q water and
lyophilized to obtain a white powder in the form of TFA salt (>80.0%
yield), which was further characterized by 1H NMR and used for
antibacterial assay.

Minimum inhibitory concentration (MIC) assay
11 strains of gram positive and negative bacteria were respectively
cultured in Luria-Bertani (LB)medium for 9 h at 37 °C under shaking at
200 rpm. After centrifugation at 4000 rpm for 5min, the bacteria in
the culture medium were collected and re-suspended in Mueller-
Hinton (MH) medium to 2 × 105 CFU mL−1 as the working suspension.
The deprotected polymer DMxiPeny libraries were respectively diluted
to concentrations ranging from 3.13μg mL−1 to 400μg mL−1 by a two-
fold gradient dilution in a 96-well plate. After mixing equal volumes of
bacterial cells suspension (50μL) and DMxiPeny solution (50μL) in
each well, the 96-well plates were incubated at 37 °C for 9 h to collect
OD values on a SpectraMax®M2 plate reader. MHmediumwas used as
the blank; bacteria in MH medium was used as positive control. The
percentage of bacterial cells survival was calculated from the equation
below:

Cell growth ð%Þ= ODpolymer
600 �ODblank

600

ODcontrol
600 �ODblank

600

× 100: ð22Þ

The MIC value was defined as the lowest concentration of an anti-
microbial agent to completely inhibit microbial growth. Measure-
ments were performed in duplicates, and the experiments were
repeated at least twice.

Hemolysis assay
Fresh human blood was washed with Tris-buffered saline (TBS, pH =
7.2) for three times and the collected human red blood cells (hRBCs)
were diluted to 5% (v/v) with TBS to obtain working suspension.
DMxiPeny solution were diluted to concentrations ranging from 3.13 to
400μg mL−1 by a two-fold gradient dilution in a 96-well plate. After
mixing an equal volume of hRBCs suspension and DMxiPeny solution,
96-well plates were incubated at 37 °C for 1 h. TBS was used as the
blank, themixture of TritonX-100 (0.1% inTBS) and hRBCswas used as
the positive control. After centrifugation, 80μL of the supernatant in
each well was transferred to another 96-well plate and the optical
density (OD) value was collected at 405 nm. The percentage of
hemolysis was calculated from

hemolysis ð%Þ= ODpolymer
405 �ODblank

405

ODcontrol
405 �ODblank

405

× 100: ð23Þ

The HC50 was defined as the concentration of a compound to cause
50% hemolysis. Measurements were performed in triplicate. The
experiments were repeated three times independently.

All sourced blood for hemolysis assays were donated by the
Shanghai RuiJin RehabilitationHospital before the blood is disposed as
scheduled and no recruitment information was supplied to the
researchers of this project as per the agreement with University of East
China University of Science and Technology Human Ethics Approval,
therefore recruitment information are unknown.

Cytotoxicity assay
The cytotoxicity of β-amino acid polymers was studied using MTT
assay. Specifically, COS-7 andHUVEC cells were respectively incubated
in Dulbecco’s Modified Eagle’s Medium (DMEM) containing FBS (10%)

and penicillin/streptomycin (1%) at 37 °C in a humidified atmosphere
containing 5 °C CO2. Cells were seeded in a 96 well plates at 5000 cells
in 100μL DMEMmedium for each well and the plates were incubated
at 37 °C in a humidified atmosphere containing 5% CO2 for 24 h. Dif-
ferent concentrations of DMxiPeny solution ranging from 400μg mL−1

to 3.13μg mL−1 were prepared and added to HUVEC and COS-7 cells,
respectively. The plates were incubated for another 48 hours. An ali-
quot of 10μL MTT solution (5mg mL−1) in phosphate buffered saline
(PBS) was added in each well and the plate was incubated for 4 h. After
removing the supernatant, 150μL DMSO was added in each well and
then the plate was shaken for 15min beforemeasuring the absorbance
at 570 nm on a microplate reader. The untreated cells were used as
positive control, DMEM solution was used as blank. The percentage of
cell viability was calculated from

Cell viability ð%Þ= Apolymer
570 � Ablank

570

Acontrol
570 � Ablank

570

× 100: ð24Þ

The IC50 was defined as the minimum concentration to cause 50%
inhibition. All experiments were carried out with three replicates. Each
experiment was repeated at least twice.

Synthesis of dye-labeled (DM0.8iPen0.2)20
The dye-labeled β-amino acid polymer (DM0.8iPen0.2)20 was synthe-
sized according to the protocol in our previous study79. Briefly, the
initiator Dye-NHS ester, co-initiator LiHMDS, DMmonomer and iPen
monomer were dissolved in dried tetrahydrofuran (THF) to the
solution with a final concentration of 0.2 M inside a glove box. DM
(1.6mL), iPen (0.4mL) and Dye-NHS ester (0.1mL) were mixed and
stirred. Subsequently, LiHMDS (0.3mL) was quickly added into the
mixture. The reaction mixture was stirred for 6 h at room tempera-
ture and then quenched with 5 drops of MeOH. After removing the
solvent under N2 flow, the residue was dissolved in THF (1mL) and
transferred to a centrifuge tube, followed by slowly addition of cold
PE (45mL) into the mixture to precipitate out a yellow product. The
N-Boc protected polymer was further purified via three times of
dissolution-precipitation process using the solvent of THF/PE (1mL/
45mL) then vacuum dried and characterized by GPC using DMF
containing 10mM LiBr as mobile phase. This polymer was dissolved
in 2mL TFA and stirred at room temperature for 2 h to remove the
Boc protection. After removing the TFA under N2 flow, the residue
was dissolved in MeOH (1mL), followed by slow addition of cold
methyl tert-butyl ether (MTBE, 45mL) to precipitate out a yellow
product. The N-Boc deprotected polymer was further purified via
three times of dissolution-precipitation process using the solvent of
MeOH/MTBE (1mL/45mL) then vacuum dried and dissolved in Milli-
Q water. Subsequently, the solution was subjected to lyophilization
to give a final dye-labeled polymer (DM0.8iPen0.2)20, which was used
for confocal imaging.

Time-lapse fluorescent confocal imaging assay
The confocal imaging assay for drug-resistant S. aureus and drug-
resistant E. coli was conducted according to the protocol in our pre-
vious study80. Briefly, the dye-labeled (DM0.8iPen0.2)20 (4 ×MBC, green
fluorescence) and propidium iodide (40mM, red fluorescence) were
mixed in equal volumes to prepare a working solution. In addition, the
bacteria were cultured in LB medium at 37 °C for 6 h to obtain the
bacterial suspension, the bacterial suspension was washed by PBS
buffer and then diluted in MH medium to achieve a working suspen-
sion with a cell density of 1 × 107 CFU mL−1. 10μL of the bacterial sus-
pensionwas dropped into a glass-bottomed cell culture dish for 10min
to allow the bacteria to attach to the bottom. Subsequently, 10μL of
working solutionwas added to the bacterial drop. The confocal images
were captured at the various time points for three channels: bright
field, 488 nm (green fluorescence) and 562 nm (red fluorescence),

Article https://doi.org/10.1038/s41467-024-50533-4

Nature Communications |         (2024) 15:6288 18



respectively. These images were used to record the bactericidal
process.

Outer membrane permeabilization assay
The outer membrane permeabilization assay for drug-resistant E. coli
was conducted according to the protocol in our previous study43.
Briefly, the bacteria were cultured in LB medium at 37 °C for 6 h to
obtain the bacterial suspension, the bacterial suspension was washed
by PBSbuffer and then diluted inHEPESmedium (5mMHEPES, 20mM
glucose, pH= 7.4) to achieve a working suspension with a cell density
of 3 × 108 CFUmL−1, followed by addition of 1-N-phenyl-naphthylamine
(NPN) dye at a final concentration of 10μM. 90μL of working sus-
pension containingNPNwasadded to eachwell of a 384-well plate. The
fluorescence changes (excitation λ = 350nm, emission λ = 420nm)
were recorded on a SpectraMax®M2 plate reader (Molecular Devics,
USA). Once the fluorescence intensity remained stable, 10μL of
(DM0.8iPen0.2)20 was added to the bacterial solution, and the fluores-
cence intensity was recorded continuously.

Cytoplasmic membrane depolarization assay
The cytoplasmic membrane depolarization for drug-resistant S.
aureus and drug-resistant E. coli was conducted according to the
protocol in our previous study43. The drug-resistant bacteria were
cultured in LB medium at 37 °C for 6 h, and then the bacterial
suspension was diluted in HEPES medium (5mM HEPES, 20mM
glucose, pH = 7.4) to achieve a working suspension with a cell
density of 1 × 107 CFU mL−1, followed by addition of 3, 3’-dipro-
pylthiadicarbocyanine iodide (diSC3(5)) dye at a final concentra-
tion of 0.8 μM. The bacterial suspension was incubated for 1 h,
followed by the addition of KCl to a final concentration of 0.1 M
to balance the cytoplasmic and external K+ concentration. 90 μL
of bacterial suspension containing diSC3(5) was added to each
well of a 384-well plate. The fluorescence changes (excitation
λ = 622 nm, emission λ = 673 nm) were recorded on a Spec-
traMax®M2 plate reader (Molecular Devics, USA). Once the
fluorescence intensity remained stable, 10 μL of (DM0.8iPen0.2)20
and 0.1% Triton X-100 as the positive control was separately
added to the bacterial solution and the fluorescence intensity was
recorded continuously.

Cytoplasmic membrane permeabilization assay
The cytoplasmic membrane permeabilization assay for drug-resistant
S. aureus and drug-resistant E. coli was conducted according to the
protocol in our previous study43. The drug-resistant bacteria were
cultured in LB medium at 37 °C for 6 h, and then the bacterial sus-
pension was diluted in HEPES medium (5mM HEPES, 5mM glucose,
pH= 7.4) to achieve a working suspension with a cell density of 1 × 108

CFU mL−1, followed by addition of propidium iodide (PI) dye at a final
concentration of 10μM. 150μL of bacterial suspension containing PI
was added to each well of a corning 96-well plate. The fluorescence
changes (excitation λ = 535 nm, emission λ = 617 nm) were recorded on
a SpectraMax®M2 plate reader (Molecular Devics, USA). Once the
fluorescence intensity remained stable, 10μL of (DM0.8iPen0.2)20 was
added to the bacterial solution and the fluorescence intensity was
recorded continuously.

SEM characterization of bacteria morphology
The SEM characterization for drug-resistant S. aureus and drug-
resistant E. coli was conducted according to the protocol in our pre-
vious study79. Briefly, the drug-resistant bacteria were cultured in LB
medium at 37 °C for 9 h, and then the bacterial suspension was diluted
in LB medium to achieve a working suspension with a cell density of
1 × 107 CFU mL−1, followed by addition of (DM0.8iPen0.2)20 at a final
concentration of 1 ×MBC. The bacterial suspension was incubated at
37 °C for 30min. An untreated bacteria suspension was used as the

control. (DM0.8iPen0.2)20 treated and untreated bacteria were col-
lected by centrifugation at 1700 × g for 5min. They were washed with
phosphate buffer saline (PBS) once and then fixed with 4% glutar-
aldehyde in phosphate buffer (PB) at 25 °C overnight. The bacteria
were further washed with PBS and dehydrated with gradient ethanol
(EtOH) solutions (30, 50, 70, 80, 90, 95, and then 100% ethanol). The
samples were dried in air and then used for Field Emission Scanning
Electron Microscopy (FESEM) characterization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All collected raw data of β-amino acid polymers, α-amino acid poly-
mers, polymethacrylates, polymethacrylamides and other categories
are available on GitHub: https://github.com/TianyuWu813/polymer_
prediction. All raw data to train the generative model are available on
https://github.com/TianyuWu813/polymer_generation. The source
data for all figures and tables in the manuscript and in the Supple-
mentary Information are provided with this paper. Source data are
provided with this paper.

Code availability
Codes supporting this study are available on GitHub and Zenodo:
https://github.com/TianyuWu813/polymer_prediction for polymer
property prediction81 and https://github.com/TianyuWu813/polymer_
generation for polymer generation82.
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