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Changes in hot and dry extremes in central Europe have been attributed to atmospheric circulation
anomalies and land-atmosphere interactions. However, the strength of the underlying causal links and
their historical trends have not been quantified. Here, we use Causal Effect Networks (based on the
Peter andClarkmomentary conditional independence algorithm) and show that hot extreme events in
central Europe are driven primarily by anomalous atmospheric patterns and soil water deficiency. Dry
extreme events are mainly induced by anomalous atmospheric patterns and soil moisture memory,
andonlymarginally by temperature changes.We find that in the period 1979–2020, the influence of dry
soil on temperature has been amplified by 67% during compound hot and dry extremes, while the
impact of atmospheric drivers on soilmoisture has intensifiedby 50% (36%) during compound (single)
extremes. This work highlights the strengthened causal links of compound hot and dry extremes with
their underlying drivers under global warming, which can lead to non-linear interactions and increase
adaptation challenges.

Anthropogenic global warming continues to set new records. 2023 was the
warmest calendar year on record: for the first time, the mean global surface
temperature has exceeded every day 1 °C above the pre-industrial level1.
Accordingly, 2023 boreal summer (June, July, andAugust)was thewarmest
season, with August and July 2023 being the warmest months in the ERA5
data record1. In Europe, while the 2022 summer was the hottest ever
recorded, summer 2023 was the fifth warmest, with temperatures 0.83 °C
higher than average2.

Heatwaves pose a serious threat to human health, as shown by the
increase of high temperature-related fatalities in Europe3. According to the
World Meteorological Organization, heatwaves are the most impactful
weather hazard in Europe by far, being responsible for up to 93% of deaths
resulting from weather-, climate-, and water-related extremes in the
1970–2019 period4. Furthermore, the occurrence of European heatwaves
has increased almost four times faster compared to the rest of the northern
midlatitudes over the past 42 years, making Europe one of the main

heatwave hotspots worldwide5. According to Zschenderlein et al.6, the most
prominent physicalmechanisms that lead to the occurrence of heatwave are
adiabatic heating following subsidence, advection of warm air at the surface
level, and diabatic heating due to surface sensible heat fluxes or incoming
solar radiations7. The combination of adiabatic warming and high radiative
heating due to clear-sky conditions could lead to persistent and intense
anomalous Rossby waves, thus enhancing the increase of surface
temperatures8.

If on the one hand, it is straightforward to understand that a warmer
atmosphere leads to higher surface temperatures, its impact on wet-dry
conditions is more complex. According to thermodynamics principles, air
moisture holding capacity increases with warmer temperatures9,10, thus
assuming constant relative humidity and neglecting dynamical aspects,
more rainfall extremes due to global warming are expected. Nevertheless,
high temperatures often sustain dry conditions as well, leading to water
scarcity and soil moisture depletion, following a positive soil moisture-
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temperature feedback process11,12. The dual increase of these extreme con-
ditions wasmanifested in Europe during 2023, where high temperatures led
to dry soils and drought conditions in the southern part of the continent,
with the spreadingof numerouswildfires across theMediterranean region13.

Therefore, given the numerous mechanisms behind drought devel-
opments, it is crucial to distinguish among different types of water scarcity,
whether they are related to a lack of precipitation, soil humidity, water or
groundwater discharge, and freshwater availability for society. The afore-
mentioned drought definitions are associated with different variables and
could be driven by different atmospheric processes14,15. A direct impact of
climate change on precipitation decline has been detected for the Medi-
terranean region16, while dry conditions over central and northern Europe
are likely more related to the increased evaporative losses and reduced soil
moisture caused by warmer temperatures11,17.

The impacts and cascading effects of drought events also dependon the
timescales at which these events develop. Generally, droughts are slowly
evolving phenomena, which are usually evaluated on a monthly basis18.
However, low levels of precipitation combined with extreme temperatures
can result in fast transitions todry conditionson sub-monthly scales, leading
toflashdroughts19. These dry extremes recently gained attentiondue to their
devastating and sudden impacts on crop yields and water supply all around
the globe20–22, as soil water content is strongly affected due to the abrupt
increase of evaporative demand23. To capture the short duration of flash
droughts, previous studies have analyzed these events setting the temporal
resolution to the pentad scale, i.e., a series of 5 consecutive days24,25, also in
line with the typical duration of hot extremes, which develop on timescales
of at least 3 days26,27. Therefore, the pentad timescale is also adopted in this
study to capture both hot and dry conditions.

When heatwaves and droughts co-occur, their impacts can be exa-
cerbated, leading tomore serious negative effects both on the ecosystem and
society. For instance, co-occurring heatwaves and droughts can lead to a
higher likelihood of crop failures, tree mortality, wildfires, reduced
streamflow, and greater water shortage28. Such co-occurring extremes have
been classified as compound events, i.e., situations where two or more
hazards/drivers co-occur and are responsible for enhanced weather and
climate-related impacts3,29,30.

Throughout the last decade, an increase in hot and dry events has been
observed globally29,31, and this increasing trend is expected to continue with
global warming32. Therefore, it is urgent to quantify the joint occurrence of
these hazards, as highlighted in the IPCC 6th assessment report33,34, and to
investigate the interdependencies between different drivers of hot and dry
compound events, aiming at reducing their impacts with more accurate
predictions and early warning systems31.

Compoundhot anddry events can be triggeredby both local and large-
scale drivers on a variety of temporal scales. Mukherjee et al.31 identify local
conditions such as vapor pressure deficit, potential evaporation, and pre-
cipitation as important variables. Next to thermodynamic ones, dynamic
drivers such as large-scale atmospheric circulation patterns have been
identified29 as precursors of hot and dry events as well: the prevalence of
long-lasting high-pressure systems often leads to prolonged hot conditions
and reduced precipitation35. However, the complex interactions between
local thermodynamic effects and large-scale remote atmospheric drivers
may also influence the intensity and duration of compound hot and dry
extremes36. Hence, understanding the causal relationships between both
local and larger-scale climate drivers for a specific region can provide a
holistic understanding of these events.

Recent studies have investigated the drivers of compound hot and dry
events by using probabilistic methods to assess the dependence between the
two28,37. A clear distinction between the mechanisms behind single and
compound extremes could bebeneficial to improve sub-seasonal to seasonal
forecasts and to implement appropriate adaptationmeasures.Moreover, the
detection and quantification of causal pathways of compound events
remains an open question.

Causal analysis has beengaining attention in thefield of climate science
as it has shown to be useful to deepen our understanding of the physical

relationships among various processes and variables of the Earth system.
Indeed, causal algorithms are capable of detecting directional dependencies
ruling out spurious correlations resulting from random coincidence38.
Several causal methods have been applied to Earth System Science39. For
instance, traditional Granger causality40,41 is based on linear auto-regressive
models to address bivariate causal associations. If on the one hand this
interpretationof themodel is straightforward, on theotherhand, it is limited
to linear and stationary bivariate time series39.Moreover, if the systemunder
study ismadebyweakly coupled subsystems,Granger causalitymay fail42. In
this case, more refined methodologies, like convergent cross mapping
(CCM)43,43,44 may help, enabling the detection of causality in deterministic
nonlinear dynamic systems with weak to moderate couplings and non-
separable variables45.

Here, we employ Causal Effect Networks (CENs) obtained with the
Peter and Clark momentary conditional independence (PCMCI)
algorithm46, a method based on the conditional independence framework
which allows to investigate causal associations in large time series datasets.
In the context of our analysis, PCMCIoffers several strengthswith respect to
othermethodologies likeCCM.First of all, it is suited tohandle conditioning
on multiple variables without excessive computational cost, making it a
practical choice for complex, large-scale data. Moreover, it can be applied
both in a linear and nonlinear manner, making it more flexible to different
research scenarios. In the present study, we employ it under a linear fra-
mework, in conjunctionwith conditional partial correlation. This is done to
allow a clear interpretation of the found relationships, bridging the gap
between statistical analysis and physical mechanisms. PCMCI has suc-
cessfully been applied todetect causal relationships in theEarth system, such
as the boreal summer tropical—extratropical links47, the Atlantic hurricane
activity48, polar vortex dynamics49, the North Atlantic Oscillation (NAO),
and Mediterranean winter temperatures50 and the Indian summer
monsoon51.

Hence, in this study we aim to (i) quantify the causal links from
potential remote and local drivers to single and compound hot and dry
extremes in central Europe, (ii) assess the prediction power of the identified
causal drivers, and (iii) investigate the evolution of the causal linkswith time
and varying temperature/soil humidity conditions. In particular, we focus
on the causal relationships between Water Surplus/Deficit (WSD), 2 m air
temperature (T2m), and atmospheric precursors (i.e., Z500—geopotential
height at 500 hPa height). We find that global warming can exacerbate hot
and dry extreme conditions by linearly increasing the strength of the causal
drivers, as well as impact the strength of causal links in a nonlinearmanner.

Results
Atmospheric circulation patterns of hot and dry extremes
Throughout this study, we use daily data from the ERA5 reanalysis dataset52

with a spatial resolutionof 1° × 1°, averagedon5-day time steps, considering
the typical durations of the synoptic high-pressure systems and hot/dry
events. In Fig. 1a, b, we showT2mandWSDanomalies inAugust 2003 over
central Europe (CEU), where we observe a T2m positive anomaly of 3.2 K
and a WSD negative anomaly of –2.3mm per day. During the 1979–2020
period, the frequency of hot extremes (T2m >T2m95th) has significantly
increased inCEU at the rate of 0.5 events per decade, while theirmagnitude,
i.e., the seasonal-mean T2m anomaly of hot extremes, shows a non-
significant slight increase (0.002 K per decade, Fig. 1c, d). As for dry
extremes (WSD <WSD5th, Fig. 1e, f), the magnitude, i.e., the absolute
seasonal-meanWSD anomaly of dry extremes, has significantly intensified
at the rate of ∣–0.2∣mm per day per decade, while the frequency also
increased (0.17 events per decade), non-significantly.

Anomalous atmospheric circulation has been suggested as a potential
driver of hot or dry extremes. Figure 2 shows composites of 500-hPa geo-
potential height (Z500) anomalies in the Northern Hemisphere from two
pentads before to after single hot (Fig. 2a), single dry (Fig. 2b), and com-
pound extremes (T2m > T2m95th andWSD <WSD5th, Fig. 2c) in the CEU
region. When comparing the composites shown in Fig. 2a–c, a consistent
pattern emerges, i.e., a high-pressure system over central Europe together
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with a low-pressure system in the North Atlantic. However, while during
hot extremes the wave shows to propagate eastward, covering the eastern
North Pacific, North America, the North Atlantic, central Europe, and
central Siberia (lag –1 to lag 1, Fig. 2a), during dry extremes the high-
pressure system over central Europe persists up to lag 1 (Fig. 2b). During
compound extremes, both the wave propagation and the persistent high
pressure over CEU are observed (Fig. 2c). To analyze the atmospheric
precursors of single and compound hot and dry extremes, we construct
three-time series, namely the Z500T, Z500W, and Z500c indices. These are
one-dimensional time series which represent the linear correlation at each
pentad time step between the respective composite field at lag –1 (i.e., 5 days

prior to the extremes) and the Z500 field over the blue rectangle
(30°N–60°N, 170°W–30°E) shown in Fig. 2. The choice of the representative
area of the atmospheric precursors is based on their hindcast ability onT2m
andWSD (see Supplementary material for further details, Figs. S1, S2, and
Supplementary note S1). The atmospheric precursors are evaluated only at
lag –1 because in this case the composite signals are both intense and
significant, especially over CEU, which is not true in the case of lag –2
(see Fig. 2).

Next, we investigate the correlation (via the Pearson coefficient and
conditional probability) between the atmospheric precursors identified in
Fig. 2 and theoccurrenceof hot anddry extremes (Fig. 3). SummerT2mand

Fig. 2 | Anomalous atmospheric circulation before and after single and com-
pound hot and dry extremes in central Europe. Composites of Z500 fields for
a single hot extremes (T2m > T2m95th), b single dry extremes (WSD <WSD5th), and
c compound hot and dry extremes (T2m > T2m95th and WSD <WSD5th) in central
Europe (CEU). The composites are computed from two pentads before to two

pentads after the extremes (from the top row to the bottom row). The red box
represents the CEU region, while the blue box is the precursor region used to
evaluate the atmospheric conditions influencing CEU. Black dots are drawn if the
Z500 anomaly is significant at α = 0.05.

Fig. 1 | Study region and trends of hot and dry extremes in central Europe. aT2m
and bWSD anomalies in August 2003 over CEU, marked by the red rectangle.
c–f Interannual variations in frequency (c, e) and magnitude (d, f) of hot (T2m >
T2m95th) (c, d) and dry (WSD < WSD5th) (e, f) extremes in CEU. In (c–f),

magnitude is the seasonal-mean T2m (WSD) anomaly of the hot (dry) extremes;
solid lines represent a significant linear regression with p < 0.05, while dashed lines
are non-significant linear regression.
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WSD in central Europe show a negative correlation of –0.68 (p < 0.01, 3a).
The co-occurrence of lowWSD and high T2m leads to compound hot and
dry extremes, which is quantified by the Standardized Compound Hot and
Dry Index (SCHDI, see Methods). The theoretical marginal distributions
(normal distributions) reveal that the frequency of hot extremes increases
from 5% (by definition) to 28% when only pentads with Z500T anomalies
higher than the 95th percentile are considered. Similarly, during pentads
characterized by Z500W > Z500W,95th, the frequency of dry extremes
increases from 5% to 23% (Fig. 3a). Consistently, a positive correlation is
evident betweenZ500c andSCHDI (Fig. 3b),with a linear regression slopeof
0.64 (p < 0.01). The frequency of compound hot and dry extremes increases
from 5% to 34% when Z500c > Z500c,95th. This is consistent with the
atmospheric circulation coupling36 driving the compound hot and dry
extremes, i.e., a high pressure accompanied by less cloud and subsidence,
which results in enhanced solar radiation and decreased precipitation53.

Causal Effect Networks and hindcast models
To investigate the causal pathways linking T2m and WSD with their
atmospheric precursors and surface drivers, we calculate the (CENs, see
Methods) for single and compound hot and dry extremes (Fig. 4). When
investigating single extremes, both Z500T and Z500W are used (Fig. 4a),
while for compound extremes only Z500c is considered (Fig. 4b). We
consider lags of–1,–2, and–3,which alignwith the typical occurrence of the
precursor of hot/dry events, and we only show the significant causal links in
the following analysis (p < 0.05). In the single extreme CEN (Fig. 4a), T2m
has two significant causal parents at lag –1, Z500T (Z500T→T2m, β = 0.35,
i.e., if Z500T increases by 1 standard deviation (s.d.) at lag –1, T2m will
increase by 0.35 (s.d.) at lag 0) andWSD (WSD→ T2m, β = –0.18). These
two causal links can be interpreted respectively as (i) Z500T → T2m:
decreased cloud cover, which leads to increased solar radiation reaching the
surface53 and (ii) WSD → T2m: increased sensible heat flux due to sup-
pressed evapotranspiration by limited soil moisture54.

WSD shows three significant causal parents at lag –1: Z500W
(Z500W→WSD,β = –0.39),T2m(T2m→WSD,β = 0.17), andWSDitself
(WSD→WSD, β = 0.16). Z500W→WSD is associated with high pressure
and air subsidence, and therefore decreased precipitation55. T2m → WSD
can be interpreted as a positive relationship between air temperature and
moisture, according to the Clausius-Clapeyron scaling56. WSD → WSD
indicates the soil moisture memory57. Notably, although Z500W and Z500T

share a linear temporal correlation coefficient of 0.73 (see Table S1), distinct
links fromZ500T to T2mand fromZ500W toWSD emphasize the necessity
of considering these two atmospheric precursors separately.

Compared with single extremes, compound hot and dry events are
characterized by twomechanisms, including the atmospheric coupling and
the land-atmosphere interaction36. It is therefore critical to derive the CEN
for compound extremes by taking into account Z500c instead of both Z500T
and Z500W. The peculiar feature of the compound CEN is that Z500c is
identified as the causal parent of both T2m (Z500c → T2m, β = 0.36) and
WSD (Z500c →WSD, β = –0.34)(Fig. 4b). This is motivated by the atmo-
spheric coupling36 which simultaneously leads to high solar radiation and
low precipitation, and thus causes the co-occurrence of hot and dry
extremes. The other links maintain the same directions as in the single
extreme CEN, though with minor variations in the strength of the β values,
including WSD → T2m (β = –0.17), T2m → WSD (β = 0.27), and
WSD→WSD (β = 0.22).

Based on the drivers identified in the single extremes CEN (Fig. 4a), we
hindcast the variations of T2m and WSD using a multivariate linear
regression model. To assess the performance of models with different
combinations of identified causal drivers we use the area under the receiver
operating characteristic curve (AUC) score (for more details, seeMethods),
as shown in Fig. 4c–f. The hindcast model generally exhibits a higher AUC
for hot and dry extremes compared to moderate conditions.

From the performance of the hindcast models, we notice that T2m
variations are better predicted by Z500T than by WSD if a single driver is
considered (see dotted lines in Fig. 4c). Indeed, the AUC score of the single-
driver hindcastmodel ranges from 0.70 to 0.77with Z500T and from 0.68 to
0.74 with WSD. However, the best hindcast is achieved when both Z500T
and WSD are included (black solid line in Fig. 4c), with the AUC score
rangingbetween0.73 and0.80.As forWSDvariability, theAUCscore of the
single-driver hindcast model with Z500W,WSD, and T2m range from 0.63
to 0.73, from 0.57 to 0.70, and 0.51 to 0.60, respectively (Fig. 4e). Panels 4c, e
imply atmospheric precursors are more dominant for both T2m andWSD
variability, and our precursors have a stronger hindcast power for T2m than
WSD changes.

T2m and WSD variations are also hindcasted using causal drivers
identified in the compound CEN (Fig. 4b), with the AUC scores shown in
Fig. 4d, f. The results are generally consistent with the ones based on the
single extremeCEN,with twomajor differences: (i) when hindcasting T2m,

Fig. 3 | Distribution of T2m, WSD, and SCHDI, and their correlations to the
atmospheric drivers. Scatter plots of a T2m and WSD anomalies and b Z500c
anomalies and SCHDI. The dotted lines represent linear regressions of the
respective samples. Marginal PDFs are derived for the entire summer (black solid
curves), for T2m events when Z500T > Z500T,95th (red solid curve), forWSD events
when Z500W > Z500W,95th (orange solid curve), and for SCHDI events when

Z500c > Z500c,95th (brown solid curve). The percentages quantify the frequency of
T2m, WSD, and compound extremes for the whole summer (in black) and when
Z500T > Z500T,95th for T2m extremes (in red), when Z500W > Z500W,95th for WSD
extremes (in orange), and when Z500c > Z500c,95th for compound events
(in brown).
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the difference between the hindcast power of Z500 andWSD is larger in the
compound case compared to the single case, especially for the middle
quantiles (red and blue dotted lines in Fig. 4c, d); (ii) when hindcasting
WSD, the hindcast power ofWSD is higher than the atmospheric precursor
if the dry extreme threshold is lower than the 30th percentile based on the
compound extreme CEN (Fig. 4f), which is not seen in the single extreme
one (Fig. 4e).

The interannual trend of causal links
Next,we analyze thehistorical trends ofβvalues by calculatingCENsusing a
10-yearmoving window over the 1979–2020 period (see Fig. 5). The results
show significant changes in T2m and WSD at the rate of 0.7 K per decade
and–0.2 mmperdayperdecade, respectively,with thewarming trendmore
intense than the drying trend (Fig. 5a). Moreover, the SCHDI has increased
at the rate of 0.16 per decade (Fig. 5a). However, no significant trend is

Fig. 4 | Single and compound extreme CENs and AUC scores of hindcast models.
Left and right panels refer to single and compound extremes, respectively. a, bCENs
with significant links; AUC scores for hindcasts of (c, d) T2m and (e, f) WSD based
on the drivers identified in the single extreme CEN (c, e) and based on the drivers
identified in the compound CEN (d, f). In (c–f), when threshold <50th, the event to
compute the AUC score is defined as WSD <WSDthreshold and T2m < T2mthreshold;

when threshold ≥50th, the event to compute the AUC score is defined as
WSD >WSDthreshold and T2m > T2mthreshold. Solid lines represent the hindcast
models based on all possible drivers, dotted lines represent the hindcast models
based on single drivers. Note that the x-axis ranges from colder to hotter state in
(c, d) and from wetter to drier state in (e, f).
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Fig. 5 | Interannual trends of climate variables, atmospheric drivers, and causal
links strength. Interannual trends of a standardized summer seasonal-mean of
T2m, WSD, and SCHDI and b atmospheric precursors. c–f Interannual trends of β
values (c, d) for the single extremeCEN and (e, f) for the compoundCEN. Solid lines
in (a, b) represent year-mean values, dashed lines in (a–f) represent regressions with

p < 0.05 and shadows in b cover the range from the seasonal 5th to the 95th per-
centiles. Circles and squares in (c–f) represent the causal links leading to T2m and
WSD variations, respectively, while unfilled and filled scatters represent causal links
where atmospheric precursors and land drivers are the causal drivers, respectively.
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detected in the atmospheric precursors, nor in themedian or in the extreme
values (Fig. 5b). In contrast, an increasing strength (in absolute value) of
some of the causal links (Fig. 5c–f) is evident. β values of Z500W →WSD
and Z500c → WSD links present a decreasing trend of –0.05 per decade
(Fig. 5d, f), while the β value ofWSD→ T2m shows a significant change at
the rate of –0.03 per decade (Fig. 5e) in the compound CEN. Thus, we
estimate the relative changes of the causal link strength for the analyzed
period via

β̂2010�2020 � β̂1979�1989

β̂1979�1989

; ð1Þ

where β̂ is the valueof the causal strength estimated fromthe regression lines
(see Fig. 5f). We find that the absolute impact of dry soil on temperature is

amplified by 67% for the compound CEN (β̂
WSD!T2m

2010�2020 ¼ �0:25 and

β̂
WSD!T2m

1979�1989 ¼ �0:15, see the purple dashed line of Fig. 5e), while the
absolute influence of atmospheric drivers on soil moisture is intensified by

50% for compound CENs (β̂
Z500c!WSD

2010�2020 ¼ �0:42 and

β̂
Z500c!WSD

1979�1989 ¼ �0:28, see the blue dashed line of Fig. 5f) and 36% for single

CENs (β̂
Z500W!WSD

2010�2020 ¼ �0:49 and β̂
Z500W!WSD

1979�1989 ¼ �0:36, see the blue
dashed line of Fig. 5d). This implies that the overall warmer and drier
climate has a stronger impact on the causal links during compound hot and
dry extremes than during single extremes.

We further perform three experiments to check how the background
states of seasonal temperature and soil moisture content influence the
strength of the causal links (Fig. 6).We constructCENs using sub-selections
of 10 years based on increasing seasonal T2m90th, decreasing seasonal
WSD10th and increasing seasonal SCHDI90th (see Supplementary material,
Figs. S3a–c). A sensitive test shows that our results are robust to changes in
the length of the sub-selection window (see Supplementary material, Sup-
plementary note S2 and Figs. S4–S6). Here, we only focus on those links for
which the influence of the background state is significant at α = 0.05 and
strong enough (absolute value of correlation coefficient between the causal
link strength and corresponding climate variables (i.e., T2m, WSD, or
SCHDI) > 0.7). The historical intensification of Z500W→WSD link (Fig. 5)
is related to soil water content decrease (Fig. 6d). The historical stronger
WSD→ T2m link (Fig. 5) can be attributed to both the warmer and drier
background conditions (Fig. 6a, c, e).

While the aforementioned link variations are consistent with the ones
detected in the observations, these experiments show that another causal
link, namely WSD→WSD, could undergo a potentially significant varia-
tion with higher temperature and lower soil moisture (Fig. 6b, d, f). In the
single extreme CEN, the WSD→WSD link exhibits a positive correlation
with T2m90th (linear regression coefficient equal to 0.10 per K) and a
negative onewithWSD10th (linear regression coefficient equal to –0.071 per
mmday−1). In the compoundCEN, theWSD→WSDlink is amplifiedwith
increasing seasonal SCHDI90th (unitless) at the rate of 0.342 per 1 unit of
seasonal SCHDI90th (Fig. 6f). The two changes in WSD → T2m and
WSD→WSDsuggest thatWSDas a causal driver is themost affectedby the
seasonal background state.

The change in the strength of the causal link ismore pronounced in the
compound CEN compared to the single extreme one. Although the
WSD → T2m link is amplified in both cases, its β value exceeds the 10%
significance test confidence bounds (purple shadows) (Fig. 6e) only in the
compound CEN. For high values of the seasonal SCHDI90th, the
WSD→T2m link reaches twice its average value computed from the entire
42 years set (Fig. 6e), which is not observed with varying T2m90th (Fig. 6a)
and WSD10th (Fig. 6b). This further distinguishes the compound extremes
case from the single one apart from the atmospheric circulation coupling:
T2m and WSD co-vary more strongly when the background state is both
warmer and drier.

SST patterns favoring hot and dry conditions in central Europe
Previous literature has associated the “Atlantic low-Europe high” pattern
depicted in Fig. 2a (lag –1 and lag 0) with sea surface temperature (SST)
anomalies in the North Atlantic58, which motivates us to investigate the
related variations in SST. The composite of SST anomalies for the 10 years
with the highest seasonal-mean Z500T shows a positive anomaly over
western North America, central Europe, and central northern Siberia, with
negative anomalies over North Pacific, eastern North America, North
Atlantic, and eastern Europe (Fig. 7d). Furthermore, the low-pressure sys-
tem over the mid-latitude North Atlantic associated with high Z500T dee-
pens over Greenland, which resembles a negative phase of the NAO
(Fig. 7b). The composite for the highest 10 seasonal Z500W is similar to the
Z500T pattern, although we notice a more pronounced positive center over
central Europe, a high-pressure system to the south of the Atlantic low, and
generally negative Z500 anomalies in the Arctic (Fig. 7c).

The corresponding SST anomaly in Fig. 7d, e reveals both similarities
and differences. During years with high seasonal mean Z500T, significant
negative SSTanomalies canbeobserved in themid- andhigh-latitudeNorth
Atlantic, with positive anomalies occurring in the subtropics and negative
anomalies over the tropical North Atlantic (Fig. 7d). To quantify this rela-
tionship, we calculate the yearly summer-mean SST in midlatitude North
Atlantic (45°–20°W, 45°–15°N58, shown in Fig. 7a as SSTAtlantic).We found
that yearly summer-mean SSTAtlantic is significantly correlated with Z500T
(r = –0.63, p < 0.01) and Z500W (r = –0.44, p < 0.01). In addition, warm
anomalies occur over the North Pacific, from the northeastern part of the
North Pacific towards the eastern and central tropical Pacific, while cold
anomalies cover the western tropical Pacific. Similarly, during years with
high seasonal mean Z500W, we observe a southward cold-warm-cold SST
pattern over the North Atlantic and a warmer eastern Pacific Ocean
(Fig. 7e). However, cold anomalies over the tropical Atlantic in Fig. 7e are
not as significant as the ones in Fig. 7d.

Furthermore,we investigate the influenceof theSSTAtlanticon the single
and compound extreme CENs by using sub-selections of 10 years based on
increasing seasonal-mean SSTAtlantic. As shown in Fig. S7, colder Atlantic
SSTs have a similar impact on the single extreme CEN (Fig. S7a, S7b) as
warmer temperatures in central Europe (Fig. 6a, b), especially regarding to
WSD → T2m and WSD → WSD. However, Atlantic SSTs do not sig-
nificantly affect the compound extreme CENs (Fig. S7c, S7d).

Discussion
In this study, we link single and compound hot and dry extremes in central
Europe to their large-scaleatmosphericprecursorsand local surfacedrivers and
quantify the causal pathways based on the PCMCI causal algorithm. Our
analysis reveals that ten days before hot and dry extreme events, a distinct
atmospheric configuration characterized by a high-pressure system over the
CEU and a concomitant low-pressure system in the western North Atlantic
emerges, which then becomes significant five days before the occurrences of
extremes (Fig. 2). This atmospheric pattern can be further correlated to a zonal
cold-warm-cold SST pattern across the North Atlantic and warmer tempera-
tures in the eastern North Pacific (Fig. 7). Notably, when these atmospheric
precursors exceed their 95th percentile, the likelihood of single hot, single dry,
andcompoundextremes showa6-, 5-, and7-fold increase, respectively (Fig. 3).

The CEN analysis shows that the intra-seasonal T2m variability is
influenced by both the atmospheric pattern (Z500T → T2m,
AUC ≈ 0.70–0.77) and the WSD (WSD → T2m, AUC ≈ 0.68–0.74).
Similarly, the WSD variability is also predominantly governed by its
atmospheric precursor (Z500W→WSD, AUC ≈ 0.63–0.73), while changes
in its own dynamics (WSD → WSD, AUC ≈ 0.57–0.70) and temperature
anomalies (T2m → WSD, AUC ≈ 0.51–0.60) show a weaker causal effect
(Fig. 4). Moreover, under warming and drying trends, WSD results as the
most affected variable: its causal effect on the other actors increases
(WSD → T2m and WSD → WSD), while becoming more sensitive to
changes of its causal precursors (Z500W →WSD, Figs. 5 and 6).

By building and comparing CENs for the single and compound
extremes separately, we show that compound hot and dry events are the
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Fig. 6 | Variation of causal links with T2m and WSD conditions. Changes of β
values in (a–d) single extreme and (e, f) compound CENs. Each β value is calculated
using 10 yearsmovingwindow according to (a, b) increasing seasonal T2m90th, (c,d)
decreasing seasonal WSD10th, and (e, f) increasing seasonal SCHDI90th. 10% con-
fidence bounds (shadows) are computed by calculating 1000 surrogates β values
from bootstrapped sets of 10 years. The shown linear regressions (dashed lines) are
significant at α = 0.05 and are characterized by a correlation coefficient between β

value and corresponding climate variables (i.e., T2m, WSD, or SCHDI) > 0.7.
Circles and squares represent the causal links leading to T2m andWSD, respectively,
while unfilled and filled scatters represent causal links where atmospheric precursors
and land drivers are the causal drivers, respectively. Notice that the x-axis ranges
from colder to hotter state in (a, b), from wetter to drier state in (c, d), and from
colder/wetter to hotter/drier state in (e, f).
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result of (i) amplified atmospheric coupling, which is indicated by the causal
effect of atmospheric precursor on both T2m and WSD in the compound
CEN (Fig. 4a, b) and (ii) intensified land-atmosphere interactions, revealed
by a stronger and more significant intensification of theWSD→ T2m link
with high SCHDI thanwith single extremes indices (Figs. 5, 6).While being
in accordance with prior studies36,59–61, here we are able to quantify the
differences between the causal links in single and compound CENs. During
1979–2020, the strength of the WSD → T2m link is amplified by 67% for
compound CEN (Fig. 5e), and the strength of Z500c → WSD
(Z500W → WSD) increases by 50% (36%) for compound (single) CEN
(Fig. 5d, f). Moreover, although the warming or drying conditions intensify
the land-atmosphere interactions when separately analyzed (Fig. 6a, c), the
strength of theWSD→ T2m link reaches twice its average value under the
co-occurrence of hot and dry conditions (Fig. 6e). Thus, ourfindings help to
explain the more pronounced increase of compound extremes37.

Previous studies attempted todecompose thewarming trend inEurope
into its dynamic62 and thermodynamic components63. The dynamic part
refers to whether the frequency or intensity of atmospheric circulation is
conducive to hot and dry extremes, while the thermodynamic one repre-
sents whether the forcing of the atmospheric or surface drivers get
strengthened due to warming. To distinguish their relative importance,
earlier studies have employed quantile-regression analysis between T2m
and circulation features62,64 to calculate the dynamic changes and then
interpret the residual as thermodynamic changes. However, the quantile
regression does not allow a quantitative causal analysis. In our study, we
apply CENs to directly assess the thermodynamic forcing by analyzing the
changes in the causal links. Our results provide statistical evidence for the
key role of the thermodynamic drivers, which is evidenced by the variations
in the strength of the causal links (Figs. 5, 6).

Europe has been affected by hot and dry extremes at an enhanced pace
compared to other northern mid-latitude regions, with a rise of ~0.61 days
per decade5 and a significant increase inflash droughts occurrences by up to
80%65.Ourfindings are in linewith these studies andprovidedeeper insights
into global warming influence on the occurrence of hot and dry extremes.
Generally, both T2m variability and WSD changes are more sensitive to
their atmospheric precursor (Fig. 8a). By analyzing the historical trends
(Fig. 5), we observe three ways leading to a warmer and drier climate,
through (i) the stronger strength of causal drivers, (ii) the enhanced strength
of causal links, and (iii) the intensified strength of both causal drivers and
causal links (Fig. 8a). The latter two scenarios pose an extra risk to the hot
and dry extreme effects due to their nonlinear nature. For instance, T2m
increases if soilmoisture decreases (T2m/ β2T ×WSD), and thus the overall
drying trend directly affects temperature even considering a constant β2T .

However,we showthatβ2T hasbeen intensifyingover the last decades aswell,
fromwhich the nonlinear effect on T2m due to the simultaneous variations
of both WSD and β2T .

Under warming or drying trend, three causal links are significantly
intensified (Fig. 8b), includingWSD→T2m(β2T ), Z500W→WSD(β1W), and
WSD→WSD (β3W). The heightened response of WSD→ T2m (β2T ) under
hot and dry conditions is associated with reduced evapotranspiration due to
limited soil moisture, leading to increased sensible heat flux66. The increasing
strength of Z500W→WSD(β1W) causal link can be explainedby an enhanced
hydrological cycle and an increasing concurrence of soil drought and atmo-
spheric aridity due to land-atmosphere interaction. Once high pressure leads
to reduced precipitation, theWSDwill quickly respond due to the overall soil
moisture shortage67. The sensitivity of WSD → WSD (β3W) to temperature,
rarely reported before, can be comprehended within the context of soil
moisture-limited regime68. In this scenario, a positive feedback loop initiated
by a deficit in soil moisture causes a reduction in evaporation. This conse-
quently causes a temperature increase, leading to a decreased cloud cover and
precipitation, ultimately resulting in a further decline in soil moisture.

Global warming will further add to these nonlinear effects, especially
for compound events. On the one hand, historical observations already
show a stronger increase in the causal pathways of compound CEN com-
pared to the single extremeCEN(β1W andβ2T , Fig. 8b).On theotherhand,we
show that under a warmer and drier climate soil moisture memory could
increase (β3W , Fig. 8b), and indeed some studies have already reported a
continuous warming temperature and drying soil in central Europe and
over larger areas69,70. These spatio-temporal variations in temperature and
soil moisture imply further changes in the causal links, especially under
different emission scenarios. Further research is needed to quantify the risks
based on future climate projections and to assess the CEN of hot and dry
extremes with other human-related drivers included to disentangle the
anthropogenic contribution from the natural variability.

Methods
Data
In this study, we focus on hot and dry extremes located in central Europe,
defined as the continental region between 45°N –55°N, 3°E–18°E (Fig. 1).
We analyze daily data from the ERA5 reanalysis dataset52 with a spatial
resolution of 1° × 1° for summer (June, July, August, JJA) during the
1979–2020period, including 2m temperature (T2m), 500-hPa geopotential
height (Z500), precipitation (Pr), potential evapotranspiration (PET), and
sea surface temperature (SST). All mentioned fields are detrended and
anomalies are calculated at pentads (5-day averages) time steps, thus
removing the climatological cycles.

Fig. 7 | Large-scale atmospheric patterns and sea surface temperature.
a Standsardized seasonal-mean Z500T, Z500W, and theAtlantic-mean SST anomaly.
Dots representing the top 10 years of corresponding time series. The Atlantic region
is indicated by the dashed red box in (b–e). Z500 anomaly composites during top 10
years ofbZ500T and cZ500W seasonalmean. SST anomaly composites during top 10

years of d Z500T and e Z500W seasonal mean. In (b–e), black dots represent grid
points where the anomaly is significant at α = 0.05, solid red box refers to central
Europe, dashed red box refers to the region in the North Atlantic Ocean that is
related to CEU hot and dry extremes.
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T2m is selected as a local variable to assess hot conditions, while the
WSD as a local indicator of wet/dry conditions. The WSD is expressed in
millimeters per day (mmd−1) and defined as the difference between
cumulated Pr and PET for a given location i and period t71:

WSDði; tÞ ¼ Prði; tÞ � PET ði; tÞ: ð2Þ

Standardized compound hot and dry index
To analyze hot and dry compound extremes, we consider the SCHDI. The
SCHDI is calculated following Li et al.71 using T2m and WSD as variables:

SCHDIi ¼ Φ�1 F P T2m≥T2mi;WSD≤WSDi

� �� �� �
; ð3Þ

where Φ−1 is the inverse of the standard normal distribution and F
is the marginal cumulative distribution of the variable
T ¼ P T2m≥T2mi;WSD≤WSDi

� �
, i.e., F = P(T ≤ t), to remap the joint

probability P into the uniform distribution in [0, 1]. T2mi and WSDi are
T2m and WSD on timestamp i.

We evaluate the association betweenT2m andWSDusing Kendall’s τ,
checking its statistical significance. Then, we used BiCopSelect, an R func-
tion to select the optimal copula function based on the Akaike Information
Criterion (AIC), which allows us to calculate the joint cumulative dis-
tribution of T2m andWSD. The BiCopSelect function includes 37 potential
bivariate copulas, including Gaussian, Student-t copula, Clayton, Gumbel,
Frank, Joe, BB1, BB6, BB7, BB8 copulas, as well as the rotated versions of
Clayon, Joe, Gumbel, BB1, BB6, BB7, BB8 copulas (10.32614/CRAN.-
package.VineCopula). Among these families, the Gaussian copula (with
par = –0.68) is the best fit for our data, which is further validated by the
Cramér-von Mises (CvM) goodness of fit (GOF) test. We obtain
CvMp−value = 0.89 and CvMstatistic = 0.06. This supports our choice of
Gaussian copula to calculate the SCHDI.

Next, we calculate empirically the distribution F (which corresponds to
the Kendall distribution function when the variable considered is
P T2m≤T2mi;WSD≤WSDi

� �
) to ensure that the joint cumulative dis-

tribution is uniformly distributed within the range [0, 1]72,73. Finally, we
calculate the inverse of the standard normal distribution to obtain
the SCHDI.

Definitionof extremesand the impact of atmospheric precursors
We define a hot extreme as an event occurring at time t when

T2mðtÞ≥T2m95th; ð4Þ

whereT2m95th is the 95th percentile of T2manomaly. A dry extreme occurs
whenever

WSDðtÞ≤WSD5th; ð5Þ

with WSD5th the 5th percentile of WSD anomaly. A compound event is
detected at t if both conditions defined by Eqs. (4) and (5) hold.

Based on the previous definitions, we build Z500 composite fields for
T2m,WSD, and compound extremes at different lags (see Fig. 2). Focusing
on a region corresponding to three ridge-trough pairs, we construct
precursors time series by computing the linear correlation between the
composite field at lag –1 and the Z500 field at each time step. This is done
for each of the three composites, obtaining the Z500 precursor time series
for T2m extremes (Z500T), WSD extremes (Z500W), and compound
extremes (Z500c).

To analyze the influence of atmospheric precursors on the occurrence
of weather extremes, the marginal distributions of T2m,WSD, and SCHDI
are calculated for both the entire JJA period and for time steps where the
atmospheric precursor is amplified, i.e., Z500T > Z500T,90th,
Z500W > Z500W,90th, and Z500c > Z500c,90th (see Fig. 3).

PCMCI causal discovery algorithm
The PCMCI algorithm is a two-step causal discovery tool that allows to
distinguish between causal and spurious dependences among a set of time
series, here defined as actors74,75. PCMCI considers a time lag among actors,
thus detecting the causal influence of one actor on others at a later point in
time. PCMCI relies on several assumptions, such as (i) causal sufficiency, (ii)
causal stationarity, (iii) the absence of instantaneous causal effects from one
variable to another, (iv) the causalMarkovcondition, and(v) the faithfulness46.

Fig. 8 | Schematic summary. a Linear hindcast model of T2m and WSD based on causal drivers and the changes in the Causal Effect Networks. b Physical mechanisms
highlighted by our causal analysis.
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Given a set ofN actors, we callXt
i the realization at time t of variableXi.

The objective is to find a set of causal parents P for each actor Xt
i :

PðXt
i Þ :¼ fXt�τ

j : Xj 2 X ; τ > 0;Xt�τ
j ! Xt

ig for i; j ¼ 1; 2; :::;N; ð6Þ

where X is the set of actors, τ is a certain lag and Xt�τ
j ! Xt

i indicates the
direct causation (link) from Xt�τ

j to Xt
i . Two actors Xt

i and Xt�τ
j are con-

nected by a direct link if and only if

Xt�τ
j ?6? Xt

i jX n fXt�τ
j g; ð7Þ

which reads Xt
i andX

t�τ
j are not conditionally independent given the set of

actors X minus Xt�τ
j .

The set of parents is determined via iterative independence testing
among the actors, using a test statistic of choice and analyzing different time
lags. In this study, we use partial correlation, a regression-based test statistic,
assuming near-linear interactions between actors at least in a first-order
approximation. We focus on lags –1, –2, and –3, covering a period of up to
15 days and show significant causal links (p < 0.05).

The PC step is a condition selection stage designed to identify a pro-
visional set of causal parents P̂ðXt

i Þ for every Xt
i at a certain significance

threshold α. It works as follows:
1. it checks if the unconditional cross correlation ρðXt�τ

j ;Xt
i Þ is sig-

nificant, for every considered lag τ and pair i, j;
2. if so, it checks if the conditional cross correlation with one condition

ρðXt�τ
j ;Xt

i jXt�1
i Þ is significant, where only the actor with the strongest

absolute correlation with Xt
i is used

75;
3. step 2 is repeated by increasing the number of conditions, until the

number of possible causal parents is equal to or smaller than the
number of conditions needed to calculate the next partial correlation; if
the partial correlation between actors Xt

i and Xt�τ
j is still significant,

Xt�τ
j is identified as a provisional parent of Xt

i : X
t�τ
j 2 P̂ðXt

i Þ.

At the end of the PC step, each actor has its own set of provisional
parents. The objective of the MCI stage is to get the definitive set of parents
for each actor. This is done by verifying whether an actor and each of its
provisional parents are still not conditionally independent given both their
set of parents:

Xt�τ
j ?6?Xt

i jPðXt
i Þ n fXt�τ

j g;PðXt�τ
j Þ: ð8Þ

The significance of the causal link is based on the p-values of the MCI test.
To take into accountmultiple significance testing, the Benjamini-Hochberg
false discovery rate approach76,77 is used to correct the p-values. To perform
PCMCI the Python package Tigramite version 5.0 is used (https://github.
com/jakobrunge/tigramite).

The analysis results in a CEN, an object composed of nodes repre-
senting each actor, and links, directed from the parent to the actor, weighted
by the strength of the causal interaction and specific to the lag τ at which the
interaction occurs. The weight of the causal link Xt�τ

j ! Xt
i , i.e., the causal

link strength, which we call β value, represents the expected change in Xi in
s.d. units at time t when Xj gets perturbed at time t–τ by one s.d.78.

Statistical hindcast model based on causal precursors
Weuse the setof identifiedcausalparents tobuildhindcastmodelsofT2mand
WSD by applying multivariate linear regression. Next, we calculate the Area
Under theCurve (AUC) score to test the performance of the hindcastmodels.

The AUC score is an index derived from the receiver operating char-
acteristic (ROC) curve, a graphical representation to illustrate the perfor-
mance of a binary classifier model across various threshold values79. For
different threshold settings on a predefined set of observed events, true and
false positive rates (i.e., the number of correctly and wrongly predicted
events, respectively) are computed from the predicted time series and used

to build the ROC curve. The AUC is a commonly used metric to evaluate
model predictions in climate science80. An AUC= 1.0 indicates perfect
predictive skill, while an AUC ≤ 0.5 means no skill.

To avoid overfitting, we use a fivefold cross-validation test. Fivefold
cross-validation means that the dataset is split into five equal-sized (or as
close to equal as possible) subsets. The hindcast model is trained on four of
these subsets (training set) but only validated with the remaining one
(testing set), based on the AUC score. In this way, every individual data is
incorporated into four various training sets and used once as the validation
set, which ensures our evaluation accurately reflects the model’s perfor-
mance on previously unseen data.

Bootstrapping and significance
To analyze the sensitivity of the strength of the β values to the occurrence of
hot, dry, and compound extremes in CEU, we construct multiple CENs for
different time windows, going from periods characterized by more intense
events to less intense ones. The length of the time window is set to 10 JJA
seasons, in order to have enough data for statistical representativeness of the
resulting running time series. Thus, consecutive groups of 10 summer seasons
(i.e., 33 intervals in the 42 years 1979 to 2020) are unambiguously ranked
according to the three extreme scenarios, via the 90th percentile of T2m, the
10th percentile of WSD and the 90th percentile of the SCHDI. This way, we
can construct 33 different CENs for each of the three scenarios and, subse-
quently, assess for each link the β value change going from more extreme to
less extreme time periods. The significance of the computed links strength is
evaluated by calculating 1000 surrogates ofβ value obtained by randomly sub-
selecting 10 JJA seasons out of the 42 considered years and checking if the
obtained value lies outside the 90% confidence interval (two-sided test).

Considering that the time series obtained by the 10 JJA seasonsmoving
window are not independent of one from the other, the significance test
should be based on the shuffle of independent blocks of 10 seasons81.
However, this shuffling would only result in ~4 sets of surrogate series,
which is insufficient to perform the significance test. Therefore, we also use
blocks of 7 and 5 seasons to perform the shuffle, producing 1000 surrogates.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data presented in this manuscript are available through the Copernicus
ClimateChange ServiceClimateData Store (CDS, https://doi.org/10.24381/
cds.adbb2d47 and https://doi.org/10.24381/cds.bd0915c6) for ERA5 rea-
nalysis data.

Code availability
All the codes for analysis are available via https://github.com/tiany97/CEU_
CEN. All analyzes were done in R (v.4.3.1) and Python (v.3.9.18) with
Package Tigramite (v.5.1.0.3).
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