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Abstract
Bioenergy crops can cut greenhouse gas (GHG) emissions, yet often bring hard-to-quantify
environmental impacts.We present an approach for integrating global land usemodeling into life
cycle assessment (LCA) to estimate effects of bioenergy crops. The approach involvesmethodological
choices connected to time horizons, scenarios of GHGprices and socioeconomic pathways, and
flexible data transfer betweenmodels. Land-use change emissions are treated as totals, avoiding
uncertain separation into direct and indirect emissions. The land usemodelMAgPIE is used to
generate scenarios up to 2070 of land use, GHG emissions, irrigation and fertilizer use with different
scales of perennial grass bioenergy crop deployment.Wefind that land use-related CO2 emission for
bioenergy range from2 to 35 tonne TJ−1, depending on bioenergy demand, policy context, year and
accountingmethod. GHGemissions per unit of bioenergy do not increase with bioenergy demand in
presence of an emission tax.With aGHGprice of 40 or 200 $ tonne−1 CO2,GHGper bioenergy
remain similar if the demand is doubled. A carbon tax thus has a stronger effect on emissions than
bioenergy demand. Thesefindings suggest that even a relativelymoderate GHGprice (40 $ tonne−1

CO2) can prevent significant emissions, highlighting the critical role governance plays in securing the
climate benefits of bioenergy. However, realizing these benefits in practice will depend on a coherent
policy framework for pricingCO2 emissions from land-use change, which is currently absent. Overall,
our approach addresses direct and indirect effects associatedwith irrigation,machinery fuel and
fertilizer use as well as emissions. Thanks to a global spatial coverage and temporal dimension, it
facilitates a systematic and consistent inclusion of indirect effects in a global analysis framework.
Future research can build on our open-source data/software to study different regions, bioenergy
products or impacts.

1. Introduction

Bioenergy is both high-profile and controversial as a potential key option tomitigate climate change. Unlike
other renewable energy but like fossil energy, bioenergy is a combustible energy form and can be easily
transported and stored. Biofuels can substitute fossil fuels in aviation, shipping and other sectors where
electrification is challenging (Cavalett andCherubini 2022, Luderer et al 2022) and, if successfully combined
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with carbon capture and storage, deliver negative CO2 emissions (Fajardy andMacDowell 2017, EASAC2018,
Field et al 2020).

At the same time, there are concerns that bioenergy crops can compete with food production and exacerbate
issues connected towater and land scarcity (Smith et al 2015,Heck et al 2018,Humpenöder et al 2018,Naomi
et al 2018, Luderer et al 2019). Another concern is emissions associatedwith biomass feedstocks, which includes
releases of CO2 by vegetation and soil directly or indirectly caused by land use, N2O emissions related to
fertilizers and fossil fuel emissions in supply chains (Tonini et al 2016, Staples et al 2017, Kwon et al 2021).

Several families of tools have been used for assessing environmental aspects of bioenergy crops, including
land usemanagementmodels, life cycle assessment (LCA), economic (partial) equilibriummodels, energy
systemmodels and integrated assessmentmodels (Jeswani et al 2020,Welfle et al 2020, Calvin et al 2021, Escobar
and Laibach 2021, Xu et al 2022). Distinctions betweenmodel groups are not always clear. For example,
integrated assessmentmodels frequently incorporate global land usemodels in their full or reduced form
(Harfoot et al 2014,Wise et al 2014, Stehfest et al 2019), and LCA can be coupledwith economic equilibrium
modelling (Searchinger et al 2008,Dandres et al 2011).

In the LCA community, theway to represent emissions indirectly induced by bioenergy land use—often
termed indirect land use change (ILUC) emissions—has beenwidely debated (Ahlgren andDi Lucia 2014,
Finkbeiner 2014, Schmidt et al 2015). ILUC emissions occurwhen bioenergy crops displace crops elsewhere and
ultimately lead to expansion of agricultural land at expenses of natural land. ILUC estimates vary substantially
depending on the type of biomass, assumed context and approach (Wicke et al 2012, Ahlgren andDi
Lucia 2014). For example, one case study finds that uncertain choices pertaining to land representation
attributes in a bioenergy land use changemodel change estimated emissions by 20%–30% (Plevin et al 2022).
Over the years, improvements inmethods have reducedmedians ormeans of ILUC estimates, frommore than
100 tonneCO2e TJ

−1 to less than 10 tonneCO2e TJ
−1 (Wicke et al 2012), but without reducing inherent

uncertainty (Zilberman 2017, Daioglou et al 2020). This uncertainty calls for further development of approaches
and new investigations to help improve ILUC estimates and understanding of emission implications of
bioenergy land use.

Furthermore,many previous ILUC studies are limited in that they assume a biofuel demand for a given
region and given year to compute ILUC factors, while in reality, biofuel demand, emission fluxes and
relationships between the twowill vary across time and space. Approaches that couple LCA and global land
systemmodels can potentially overcome this limitation because global land usemodels consider total emissions
from land use changes so that all emissions become direct and the conundrumof ILUC that relies on artificially
constructed boundaries in time and space is avoided. Examples of global land systemmodel areMAgPIE
(Dietrich et al 2019), theGCAMagriculture and land usemodel (Wise et al (2014) andGLOBIOM (Havlík et al
2014), which simulate future land systems in response to given sets of assumptions andmechanisms. Such
models are used standalone or coupledwith energy-economymodels in integrated assessmentmodel (IAM)
model frameworks (Popp et al 2017, Rose et al 2020).

The aimof this research is to outline and test an approach for integrating scenarios fromglobal land use
modelling into LCA to estimate direct and indirect effects of large-scale bioenergy crop production. The
approach allows for incorporating global land use dynamics into LCA in scenarios reflecting different
assumptions, for example in terms of the shared socioeconomic pathways (SSPs) (O’Neill et al 2014, Popp et al
2017), governance of emissions from land use, orwhether bioenergy crops are irrigated or not. This is achieved
by defining a set of scenario dimensions to be analysed, and then by systematically feeding parameter values from
the land usemodelling–such as fertilizer use, water irrigation, and land use-related emissions–into the LCA.
Rather than singling out an ILUC factor based on a static snapshot and/or consideration of a subset of the land
use sector as inmany previous assessments, the approach deals with total global emissions from all land-use
changes (direct and indirect and over time) in a consistentmanner andwithout the need for a distinction
between direct or indirect emissions.

We demonstrate the use of the approach through a case study of second-generation grassy bioenergy crops
for the years 2030–20706, showing scenario LCA results for land occupation, total greenhouse gas emissions and
fossil fuel greenhouse gas emissions. Grassy bioenergy crops are chosen because they usually represent themain
type of bioenergy feedstock in future scenarios (Rogelj et al 2018, Rose et al 2020). Besides, compared to
conventional crops, perennial grasses (e.g., switchgrass,miscanthus) typically offer advantages such as increased
soil carbon storage, avoidance of tillage, capacity to restore degraded land and improved biodiversity (Robertson
et al 2017, Yang et al 2018, Englund et al 2020). The case study applies data from the established land usemodel
MAgPIE (Dietrich et al 2022), which has provided pathways for SSPs and contributed to several IPCC reports
(Popp et al 2017, Rogelj et al 2018, Smith et al 2019,Nabuurs et al 2022).Wemake available data and software

6
Bioenergy is often divided intofirst and second generation, where the former refers to bioenergy from food or feed crops and the latter to

non-edible plants such as perennial grasses.
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that can be built on in future research (Arvesen et al 2022;Data availability statement). The software is based on
Brightway2 (Mutel 2017), a Python-based tool increasingly employed for prospective LCA (Cox et al 2018,
Besseau et al 2019, Joyce andBjörklund 2022, Sacchi et al 2019, Sacchi et al 2022).

2.Methods

This section describesmethods and data used to combine land usemodelling and LCA to analyse effects of
second-generation grassy bioenergy crops for the years 2030–2070. The chosen time horizon until 2070 aims to
strike a balance between understanding potentialmechanisms and implications on the one hand, and limiting
uncertainties associatedwith future trajectories on the other hand. The time horizon allows for a sufficiently
long-termperspective to address long-term challenges of climate changemitigation and food supply, while
maintaining reasonable assessments ofmechanisms and effects. Further, land usemodelling results to be
presented later show a trend of cumulative land use emissions plateauing inmost scenarios by 2070; this also
adds support for our chosen time horizon.

First, in section 2.1, we present the principles for scenario integration that are considered in our analysis.
Section 2.2 then presents an overall description of land usemodelling with themodelMAgPIE, before
section 2.3 details the specific land use scenarios analyzed.Next, section 2.4 treats different options for
incorporating land useCO2 results from land usemodels into LCA. Last, section 2.5 presents datasets used to
carry out scenario-based LCAof grassy bioenergy crops for 2030–2070.

2.1. Principles for scenario integration
Land systemmodel variablesmay havemixed levels of specificity or aggregation, alsowithin the samemodel. For
example, variables of the land systemmodelMAgPIE differentiate yields of different types of crops.We refer to
such variables as ‘crop-specific’, or just ‘specific’, variables. OtherMAgPIE variables including emissions do not
differentiate between crop types. These undifferentiated variables are aggregated to represent the entire
agriculture sector, i.e., for example fertilizer use is reported as an aggregated value representative of all crops
grown for bioenergy and other purposes (food, feed,fiber).We refer to such variables as ‘aggregated’ variables.

2.1.1. Crop-specific variables
Themost straightforward case of implementing land systemmodel variables in LCA iswhen coefficients can be
derived directly from crop-specific variables representing the average for the crop type in question. For example,
in an LCAof grassy bioenergy crops, an LCA coefficient for cropland occupation (in units of km2-yr PJ−1 or
similar) can be derived from a specific grassy bioenergy average crop yield (in units of tonne ha−1 yr−1 or
similar)7. It is common for land systemmodules of integrated assessmentmodels to simulate specific crop yield
values (Li et al 2020), sometimes also distinguishing irrigated and rainfed bioenergy crops (Dietrich et al 2019).

Higher precision is an obvious benefit of using specific variables as opposed to aggregated variables. A
conceptual limitation is that indirect effects resulting from competition and interplay between different types of
agricultural crops are not captured. In other words, combined effects (on fertilizer application, irrigation, etc)
for thewhole agricultural sector are disregarded. Indirect land use changes and consequent CO2 emissions
cannot be captured, as these effects are inherently related to developments of thewhole agricultural sector.

In practice, the availability of crop-specificmodel variables can be limited. For example, specific variables
available fromMAgPIE are limited to crop production, area and yield, which in the context of LCA aremainly
relevant for land occupation. Thus, if the goal is to integrate scenario information fromMAgPIE into LCA,
anothermethod needs to be sought.

2.1.2. Differences in aggregate variables
An alternative way of implementing land systemmodel variables in LCA is to calculate differences in aggregated
variables between a bioenergy scenario and a zero-bioenergy scenario and let this difference represent net effects
of bioenergy. For example, this approachmay take land use in thewhole agricultural sector in a scenario with
bioenergy less agricultural land use in a scenariowithout bioenergy, and then attribute the net difference to
bioenergy. To illustrate with numbers, say that a scenario in a given year has 100 EJ bioenergy production from
bioenergy crop typeX and total agricultural land use 2000million ha; while a scenariowithout bioenergy has 0
production frombioenergy crop typeX and total agricultural land use 1700million ha. This would yield land
occupation ( )2000 million ha 1700 million ha- /( )EJyr EJyr yrPJ100 0 30 km1 1 2 1- =- - - .Meanwhile, say
that the land usemodel specifically estimates land occupation for bioenergy crop typeXof 25 km2-yr PJ−1 for

7
It is established convention in LCA to analyze land occupation in units ofm2-yrMJ-1, km2-yr PJ-1 or similar units; see for example

Huijbregts et al (2017) or Luderer et al (2019).
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the given year in the scenario with bioenergy. In this example, the land occupation estimate is 5 km2-yr PJ−1

higherwith the difference in aggregate variables approach compared to the specific estimate.
In this way, effects are attributed to bioenergy based on a difference in an aggregate variable that represents

the land use of thewhole agricultural sector. The differencemust apply to a given geographical area, which can
be theworld, as in the case studywewill report, or a specific world region. In the latter case, leakage effects need
to bemonitored; otherwise, theymay go undetected. Generally, we do not expect net differences to be negative,
but this can occur through indirect routes in themodelled system.

A key benefit of using differences in aggregate variables is that it allows for capturing indirect andmarket-
mediated effects that are relevant for policy and other decision processes, and that cannot be ascertained from
specific variables (e.g., land use change and relatedCO2 emissions, food crop production causing changes in
fertilizer orwater demands of food production elsewhere). Further, a practical benefit is the possibility to
unravel crop-specific effects in the absence of available crop-specific variables. This can increase the feasibility of
using landmodel scenario data for LCA.

Two potential disadvantages are lower transparency andmore difficult results interpretation, relative to
when using specific variables. Lower transparency and interpretability will tend to occur because results are
subject to competition (market-mediated) effects between different types of crops, for which the underlying
mechanisms can be difficult to disentangle. In other words, uncertainty is higher due to the lack of truly
detectable cause-effect chains. It is not necessarily straightforward to decompose land systemmodel results into
individualmechanisms or components; for example, to distinguish between substitution effects, price-induced
changes, and direct land replacement (Daioglou et al 2020).

2.2. Land usemodelling
Weemploy theMAgPIE 4 open-source land-usemodelling framework (Dietrich et al 2019,Dietrich et al 2022).
MAgPIE combines economic and biophysical approaches to simulate spatially explicit global scenarios of land
use and environmental interactions. It is a global partial equilibriummodel of the land-use sector that operates
in a recursive dynamicmode and incorporates spatially explicit information into an economic decision-making
process.

MAgPIE takes regional conditions such as demand for agricultural commodities, technological
development, and production costs as well as spatially explicit data on biophysical constraints into account.
Geographically explicit data on biophysical conditions (e.g., carbon densities for vegetation, litter and soil,
agricultural productivity such as crop yields) are sourced from the LPJmL landmodel (Schaphoff et al 2018, von
Bloh et al 2018, Lutz et al 2020,Herzfeld et al 2021), then aggregated using a clustering algorithm (Dietrich et al
2013).

Land types inMAgPIE include cropland (food, feed,material, and bioenergy), pasture and rangeland, forest
(primary, secondary andmanaged), other land (non-forest vegetation, abandoned agricultural land, and
deserts), and urban land. International trade follows historical patterns and economic competitiveness. Food
demand is derived based on population growth and dietary transitions, accounting for changes in foodwaste
and intake, with shifting shares of animal calories, processed products, andmore. Production is distributed
among areas viaminimizing production costs8.

Crop yield increases due to technological change aremodelled endogenously based on regionally different
investment-yield ratios and interest rates (Dietrich et al 2012,Dietrich et al 2014). Hence, themodel
simultaneously optimizes yield-increasing technological change and cropland expansion, which is especially
relevant for long-termprojections.

Bioenergy crop yield patterns are based on LPJmL.Due to the lack of robust data on second generation
bioenergy, land-use intensity data fromDietrich et al (2014) is used to calibrate bioenergy yields inMAgPIE.
LPJmLbioenergy yields in Europe, consistent with observations fromwell-managed test sites, are assumed to
match the highest observed land-use intensification. Bioenergy yields in other regions are scaled down based on
European land-use intensity, with calibration factors of 0.46 for Sub-SaharanAfrica and 0.6 for India, reflecting
considerable yield gaps compared to best practices. These yield gaps can be closed inMAgPIE in the future due to
yield-increasing technological change.Moreover, technological change can also shift the technological frontier.

Annual net CO2 emissions from land-use change are calculated based on changes in carbon stocks of
vegetation, litter and soil. Tomitigate single year biases, we calculate an average value by applying a low-pass
filter that distributes annual net CO2 over time (Humpenöder et al 2022). Changes in vegetation carbon stocks

8
This usuallymeans that highly productive areas arefirst taken into production andmarginal areas last.However, as different production

categories (e.g., food and bioenergy) compete for land, it is not always clear what landwill be used nextwhen bioenergy production is
expanded. Inmany cases themodel will expand into natural vegetationwhich promises the next highest yield, but in other cases also
reshufflingmight happen switching areas for bioenergywith areas for food or boosting overall productivity via investments into yield
increases (R&Dandmanagement).
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are subject to land-use dynamics such as conversion of forest into agricultural land. In case of re-/afforestation
orwhen agricultural land is taken out of production, regrowth of natural above ground vegetation removes CO2

from the atmosphere, but changes in soil organic carbon are not accounted for.
Nitrogen inputs on cropland via industrial and intentional biologicalfixation, andN2O emissions from

agricultural soils and animal wastemanagement, are estimated using a nitrogen budgets (Bodirsky et al 2014,
Stevanović et al 2017). CH4 emissions from enteric fermentation, animalwastemanagement and rice cultivation
are estimated based on feed demand,manure, and rice cultivation area, respectively (Popp et al 2010, Stevanović
et al 2017). In the case of GHGemission pricing, CO2 emissions are reduced endogenously through reduced
conversion of natural land, while CH4 andN2O emissions are reduced based onmarginal abatement cost curves.

2.3. Land use scenarios
To be able to examine effects of bioenergy under different conditions, we define a set of scenario assumptions
that are inputs to the land use scenariomodelling. Three key scenario dimensions are considered: (i)Bioenergy
demand (2 variants with bioenergy demand in addition to 1with zero demand); (ii) shared socioeconomic
pathway (SSP) (3 variants); and (iii) greenhouse gas (GHG) price for the land sector (3 variants). These scenario
dimensions are varied in the land usemodelling to generate a total of 2× 3× 3= 18 individual scenario LCA
datasets and associated analyses. The SSPs are a set offive narratives outlining potential pathways for human
development and global environmental changes throughout the 21st century; we refer to previous studies for
descriptions of their characteristics (O’Neill et al 2014, Riahi et al 2017). Our scenarios have amore quantitative
than qualitative or narrative-based nature, but are linked to the narratives of the three selected SSPs (Popp et al
2017), as characteristics of the different SSPs, such as land productivity growth and globalization, are
incorporated into the land usemodelling.

For this study, endogenous rates of yield-increasing technological change are derived for each of the SSPs
using the scenarios with zero bioenergy demand andGHGprice. In other scenarioswith higher bioenergy
demand orGHGprice, the corresponding SSP-specific trajectory is used as exogenous input (i.e., rates of change
are the same for a given SSP and follow the scenario with zero demand and zeroGHGprice.

The three scenario dimensions are described in the following.

2.3.1. Bioenergy demand
The present study considers three stylized demands for global second-generation grassy bioenergy crops:

(i) B50: Linear increase in annual demandwith 50 EJ yr−1 demanded in 2050 (and linear increase thereafter).

(ii) B100: Linear increase in annual demandwith 100 EJ yr−1 demanded in 2050 (and linear increase thereafter).

(iii) B0: Constant zero (0 EJ yr−1) demand.

The B50 demand is in the lower end of estimates of technical potentials for dedicated biomass production
systems (with food security and environmental constraints considered) according to IPCCAR6 (Nabuurs et al
2022). The B50 andB100 demands both fall in the low-medium range of bioenergy deployments in IPCCAR6
integrated assessmentmodel scenarios to limit global warming to 2 °C (Riahi et al 2022). B50 andB100 are
sufficiently different to enable identification of potential non-linear changes in the global land systemdepending
on bioenergy demand.

Note that B50 andB100 scenarios are used as basis for separate LCAdatasets. B0, on the other hand, is only
used as a reference when employing differences in aggregated variables (i.e., B100-B0 values or B50-B0 values),
as explained previously. As the focus of the current study is second-generation grassy bioenergy crop, we assume
no future growth infirst generation bioenergy.

2.3.2. Shared socioeconomic pathway
The shared socioeconomic pathways (SSPs) reflect different evolutions in socioeconomic factors and are
currently an established component in climate change research (Bauer et al 2017, O’Neill et al 2014, Riahi et al
2017). In the context of land systemmodelling, the choice of SSP can affect food, feed andmaterial demands,
trade, interest rates, nitrogen efficiency andwater protection (Popp et al 2017). By defining LCAdata based on
scenarios for different SSPs, one can represent such variations in the LCA.

While all available SSPs can be relevant, in this studywe select three SSPs:

(i) SSP1: ‘Taking the green road’.

(ii) SSP2: ‘Middle of the road’.

5

Environ. Res. Commun. 6 (2024) 125004 AArvesen et al



(iii) SSP5: ‘Taking the highway’.

These are chosen here because they span the full range ofmitigation challenges portrayed by the SSP
framework.We do not pay explicit attention to varying levels of adaptation challenges asmost strongly
emphasized by SSP3 and SSP4, as adaptation challenges are less relevant for our current purposes.

2.3.3. GHGprice
To represent varying degrees of governance of land use change emissions, we apply a varying price toCO2

emissions fromdeforestation and other changes in natural vegetation.With this approach, the scope of forest
protection policy is not explicitly defined but is implicitly represented through theCO2 price. It is important to
note that all CO2 emissions from land-use change, whether directly or indirectly caused by bioenergy crop
cultivation, are subject to pricing. To simplify, we treat afforestation separately based on existing policies,
omitting anyCO2 price-induced afforestation from themodelling.

Specifically, we consider three CO2 emission price trajectories (‘T’ denotes ‘tax’):

(i) T200: Linear increase with 100$ t−1 CO2 in 2030 and 200$ t
−1 CO2 in 2050.

(ii) T40: Linear increase with 20$ t−1 CO2 in 2030 and 40 t
−1 CO2 in 2050.

(iii) T0: Constant zero (0)CO2 price.

We also price CH4 andN2O emissions from agriculture based on these CO2 price trajectories.We convert
CH4 andN2O toCO2-equivalents using IPCCAR5 100-year global warming potential (GWP) conversion
factors of 28 and 265, respectively.

2.4. Time dynamics for land useCO2 emissions
Among the outputs of land usemodelling, land use change and consequent CO2 emissions tend to be
particularly subject to temporal variations. Unlike fertilizer use, N2O emissions, irrigation, etc that occur
continuously with bioenergy production, land use changes andCO2 emissions are typically dominated by one-
time land use change events. Based on this rationale, we present three options for determining LCA coefficients
for land use-relatedCO2 (in units of tonneCO2TJ

−1 or similar):

(i) Current year (annual): For example, LCA for year 2030 is based on annual CO2 emissions per unit of annual
bioenergy production in 2030, LCA for year 2035 on annuals for 2035, etc. This is themost straightforward
option, but resultsmay be highly variable over time, and sensitive to one-time land use change events and
thus exhibit excessively large emissions for early years of bioenergy deployment.

(ii) Fixed average based on cumulative effects for a chosen time: For example, LCAs for any year between 2025
and 2070 are based on cumulative CO2 emissions in 2025–2070 divided by the total amount of bioenergy
produced in the same time interval. This option distributes effects evenly over the chosen period. It is thus
insensitive to large one-time emissionfluxes and avoids uncertain allocation of emissions to specific years,
but it can have the artifact that bioenergy production is assigned responsibility for emissions that happened
decades before. Another artifact can be that a different chosen time horizon leads to different cumulative
effects.

(iii) Running cumulative from a chosen start year: For example, with 2025 as start year, LCA for year 2030 is
based on cumulative CO2 emissions for 2025–2030 per unit of cumulative bioenergy production, LCA for
2035 on cumulative values for 2025–2035, etc. This option canmake results less sensitive to one-time events
compared to option (i) above. A different chosen time horizon can lead to different cumulative effects
similarly as with option (ii). Results for the end year of the time horizonwill be the same for option (ii) and
(iii), but results for intermediate years can be different.

2.5. Life cycle assessment
Wehere describe the LCAdatasets used for the case study of global grassy bioenergy crops.We distinguish
between a default LCAdataset that is independent ofMAgPIEmodelling and scenarios (the ‘Default dataset’),
and scenario-based variants that incorporateMAgPIE scenario results (the ‘scenario-based dataset’). In general,
connections to the LCAdatabase Ecoinvent (Wernet et al 2016, Ecoinvent 2019) aremade to cover supply chains
of fertilizers, pesticides,machinery and other inputs. The software that accompanies this paper loads the default
dataset and creates scenario-based dataset variants by replacing default coefficients with coefficients derived
from the scenarios.
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Table 1 displays assumptions and sources for the default LCAdataset. This dataset contains only fixed
(scenario-independent) coefficients and is established based on different sources and assumptions. It is the LCA
dataset before the integration ofMAgPIE scenarios.

Table 2 presents the assumptions, sources and approaches to generate the scenario-based LCAdatasets,
using the default LCAdataset presented above as a starting point.We generate 18 individual datasets for each
modeled year in correspondencewith the 18 scenarios (section 2.3).

As table 2 indicates, the differences in aggregate variables approach (section 2.1) is employed for land
occupation, nitrogen and irrigation requirements, andCO2, CH4,N2O andNH4 emissions. The differences in
aggregate variables approach is our preferred option because it captures total (‘direct’ and ‘indirect’) effects on
the agricultural sector, and can be applied consistently for all variables defined inMAgPIE outputs. Further, we
use thefixed average approach for quantifying land use-relatedCO2 to capture long-termdevelopments while
avoiding uncertain allocation to specific years (section 2.4).

To aggregate CO2, CH4,N2O into total anthropogenic GHGemissions, we use IPCCAR5 100-year global
warming potential (GWP) conversion factors of 28 and 265 for CH4 andN2O, respectively. The 100-yearGWP
has traditionally been the defaultmetric used by TheUnitedNations FrameworkConvention onClimate
Change (UNFCCC). Othermetrics, such as the 20-year GWPor the 100-year global temperature potential,
differ in concept or account for the time-based characteristics of gases differently (Shine et al 2005). Results are
usually sensitive to the use of alternativemetrics when emissions of short-lived species (e.g., CH4) are
prominent, while they tend to provide similar results when emissions of CO2 and other long-lived gases are
dominant. In our cases, emissions of CH4 are relatively small, sowe do not expect variations in ourmainfindings
if othermetrics thanGWP100 are used to characterize the impacts.

3. Results

Wedivide this section into two parts, which presents results obtained solely fromMagPIE land usemodelling
(section 3.1) and results after scenario integration into LCA (section 3.2).

Table 1.Overview of assumptions and sources for default LCAdataset. Asterisk indicates stressors that are included in the software and data
accompanying this article (seeData availability statement), but that do not contribute to impact categories selected forfinal analysis and
presentation of results (i.e., land occupation and greenhouse gas emissions).

Default LCAdataset

Land occupation Assume default yield value 20 tDMha−1 yr−1 and gross energy content 18GJ t−1. This yields land

occupation of 27.8 km2 yr−1 PJ−1.

Nitrogen fertilizer (asN) Assume 4.8 t t−1 biomass based onWang et al (2012), Ashworth et al (2015), Ecoinvent (2019)
(miscanthus), and Escobar et al (2017). Include 2 t packaging per t fertilizer asN (Ecoinvent 2019).

Phosphorus fertilizer (as P2O5) Assume 4.8 t t−1 biomass. Include 2 t packaging per t fertilizer as P2O5. Sources are the same as for

nitrogen fertilizer.

Pesticides Assume 0.15 kg t−1 biomass based onAshworth et al (2015), Ecoinvent (2019) (miscanthus),
Escobar et al (2017) andMorales et al (2015). Include 2 t packaging per t pesticide

(Ecoinvent 2019).
Seed Assume 1%of production is used as seed (consistent withMAgPIE).
Irrigation Assume 250m3 t−1 biomass based on Escobar et al (2017), assuming site with relatively low irriga-

tion ismost representative.

Diesel use by agriculturalmachinery Assume 150MJ t−1 biomass based onWang et al (2012), Ashworth et al (2015) and Escobar et al
(2017). Assume lubricating oil corresponding to 4.5%of diesel fuel based onAthanassiadis et al

(1999), Dias andArroja (2012), andMorales et al (2015).
Transport of biomass Assume 100 km lorry transport (Field et al 2020)
CO2 andCH4 to air CO2 andCH4:Omitted, outside of scope of default dataset.

N2O andNH4
* to air Assume 1%N2O-Nand 2%NH4-NperN fertilizer based on IPCC (2006) andNemecek and

Kägi (2007).
NOx to air

* Assume 21%NOx emission perN2O emission (Nemecek andKägi 2007).
NO3- to groundwater

* Assume 10%NO3-Nper perN fertilizer, based on lower-bound values in (IPCC 2006).
Phosphorus (particulates) to surface
water*

Assume 1.27 kg P per kg biomass (Ecoinvent 2019) (miscanthus).

PO4
3− to surface water* Calculate 28 μg PO4

3− per kg biomass based onNemecek andKägi (2007).
Pesticides to soil* Assume amount emitted to soil equals amount applied.

Natural land transformation* Omitted, outside of scope of default dataset.
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3.1. Land usemodel results
While our study presents a global assessment, the underlying analysis withMAgPIE ismulti-regional. As
explained previously in section 2.2, the calculations are based on 18 scenarios, comprising two bioenergy
demands (B50 andB100), three SSPs (SSP1, SSP2, SSP5) and three CO2 tax levels (T0, T40, T200). As
background to understand global results presented later,figure 1 illustrates howMAgPIE chooses to allocate
grassy bioenergy production tomainworld regions over time. TheMAgPIE scenarios that will be used for
integration into LCA allow irrigation and are represented by figure 1(a) and (b). Alternative scenario runs
without irrigation for bioenergy production are shown infigure 1(c); these are included here for context and
illustrative purposes but are not part of the scenario integration into LCA in our study. In B50 andB100 alike, the
bulk of production occurs in Latin America (LAM), India (IND), United States of America (USA) andChina
(CHA), in that order of importance. In addition, Sub-SaharanAfrica (SSA) contributesmodestly after 2055 in
B100. There are small-to-moderate contributions fromother regions (aggregated to ‘Other’ infigure 1).

In our scenarios, irrigation is the primary factor enabling bioenergy production in India.Without irrigation,
bioenergy production isminimal due to the country’s largely unfavourable conditions for rainfed agriculture
(figure 1(c)). The scenarios assume future investments in irrigation infrastructure to enhance productivity on
marginal lands, therebymaking bioenergy production viable.While this assumptionmay seemoptimistic given
India’s current constrained hydrological budgets (Devineni et al 2022), the scenarios are deliberately
exploratory, focusing on potential supply, rather than goal-oriented. This approach allows for awide range of
possible future outcomes in the LCA analysis and helps to identify areaswhere system transformations can
achieve the largest benefits. For Sub-SaharanAfrica after 2055 in B100 (figure 1(b)), yield-increasing
technological change leads to food productionwith declining land intensity. This releases agricultural land,
which progressively becomes abandoned, allowing for gradual bioenergy expansion at reduced competition for
land andwater between food and energy crop production.

Figure 2 compares world-average land use-relatedCO2 emission factors for grassy energy crops over time
with the three calculation options (section 2.4): fixed average, running cumulative and current year. The results
represent combined land use and land use changeCO2, and overall range approximately from2 to 35 tonneCO2

TJ−1 across the different scenarios and accounting options. The running cumulative (figures 2(b), (e), (h)) and

Table 2.Overview of assumptions and sources for scenario-based LCAdatasets. Asterisk indicates stressors that are included in the software
and data accompanying this article (seeData availability statement), but that do not contribute to impact categories selected (i.e., land
occupation and greenhouse gas emissions) for final analysis and presentation of results.

Scenario-based LCAdatasets

Land occupation Calculated fromMAgPIE scenario outputs using differences in aggregate variables approach (section 2.1).
Nitrogen fertilizer Same as above.

Phosphorus fertilizer Same as default LCAdataset owing to lack of scenario-specific information.

Pesticides Same as above.

Seed Same as above.

Irrigation Calculated fromMAgPIE scenario outputs using differences in aggregate variables approach (section 2.1).
Diesel use by agricultural

machinery

Weuse the default diesel consumption, dieseldef, of 150MJ t−1 and land occupation, landdef, of 28 km
2 yr−1

PJ−1 from table 1 as a starting point.We then assume diesel per unit biomass changes in proportion to the

relative change in land occupation, scaled by 0.5, following the for-

mula: ( )diesel diesel 0.5 diesel land land landsce def def sce def def= + ´ ´ - dieselsce is the scenario-specific

diesel consumption and landsce the scenario-specific land occupation.We assume this linear adjustment can be

applied for the range of land occupation values observed in our land usemodel results (i.e., rage 12–28 km2

yr−1 PJ−1, as depicted later infigure 3). For example, if landsce is 14 km
2 yr−1 PJ−1, dieselsce is 113MJ t−1.

Finally, we assume lubricating oil corresponding to 4.5%of diesel fuel (based on references in table 1).
Transport of biomass Same as default LCAdataset.

CO2 andCH4 to air Calculated fromMAgPIE scenario outputs using differences in aggregate variables approach (section 2.1) and
forCO2 the fixed average approach (section 2.4).

N2O andNH4
* to air Calculated fromMAgPIE scenario outputs using differences in aggregate variables approach (section 2.1).

NOx to air
* Assume 21%NOx emission perN2O emission (Nemecek andKägi 2007). Hence, NOx scale in proportion to

N2O as calculated fromMAgPIE outputs.

NO3- to groundwater
* Assume 10%NO3-Nper perN fertilizer, based on lower-bound values in IPCC (2006). Hence, NO3- scale in

proportion to nitrogen fertilizer use as calculated fromMAgPIE outputs.

Phosphorus (particulates)
to surfacewater*

Same as default LCAdataset.

PO4
3− to surface water* Same as default LCAdataset.

Pesticides to soil* Same as default LCAdataset.

Natural land

transformation*
Calculated fromMAgPIE scenario outputs using differences in aggregate variables approach and fixed average

approach as for CO2.

8

Environ. Res. Commun. 6 (2024) 125004 AArvesen et al



Figure 1.Grassy bioenergy production formainworld regions for B50 (a) andB100 (b) scenarios respectively. For each panel (B50 and
B100), results are based onnineMAgPIE scenarios with combinations of three SSPs and three GHGprice trajectories. Thick solid lines
representmedians and dotted linesmaximumandminimumacross nine B50 andB100 scenarios, respectively. LAMLatin America;
IND: India; USA:United States of America; CHA:China; SSA: Sub-SaharanAfrica. ‘Other’ is an aggregate of seven other regions.

Figure 2.Coefficients for land use-relatedCO2 emissions per unit of bioenergy using the approaches of (a)fixed average, (b) running
cumulative and (c) current year (annual). Thick solid or dashed lines represent selected individual scenarios (six scenarios in each
subplot) and shaded areas the total ranges across eighteen scenarios.
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current year (figures 2(c), (f), (i)) approaches yield relatively large CO2 emissions for early years of bioenergy
deployment. This is attributable to relatively small production volumes and sensitivity to individual land use
change from land clearing and crop establishment causing large emission fluxes in early years. The coefficients
generally, but not always, decline over timewith these two approaches. Thefixed average approach (figures 2(a),
(d), (g)) exhibits the lowest coefficients in early years (especially before 2040) butmay exhibit h.c. than the other
approaches for late years. This is becausewith this approach, all coefficients are determined based on cumulative
values until 2070, and thus coefficients for early years ‘benefit’ fromhigh production in late years.

It follows from the definition of thefixed average approach that coefficients are constant over time. In
contrast, the running cumulative and current year approaches showdeclining trends overall and, especially for
T40 andT200, tend to plateau in late years towards 2070.

Figure 2 also shows that the emissions are considerably higherwithout CO2 taxation (T0). The effect of
taxation has a stronger effect onCO2 emissions than the bioenergy demand itself. Across all scenarios, B100-
T200 has a similar profile to B50-T200, and overall smaller emissions thanB50-T0. Emissions per unit bioenergy
do not scale linearly with the demand of bioenergy, but depend on the policy context. This indicates the
importance that governance can play for reducing the climate impacts connected to bioenergy deployment, as a
regulated international land use framework can reduce risks associatedwith direct and indirect deforestation
and prioritize bioenergy crops onmarginal or abandoned cropland. At the same time the difference in emissions
betweenmoderate (T40) and high (T200)CO2 taxation are rather small, suggesting that alreadymoderate
taxation can suffice to preventmajor emissions. The difference between T0 andT40/T200 is smallest for SSP1
with a factor of around two, while the factor is around 3 for SSP2 and SSP5. This reflects lower population
growth and lower competition for land due tomore sustainable diets (less livestock) in SSP1.

The differing dynamics in B100-T0 across SSP1, SSP2 and SSP5 infigure 2 are caused bymultiple
overlapping and partly counteracting factors. These factors include stricter water protection policies that reduce
irrigation, leading tomore land conversion in SSP1/SSP5 (this contributes to higher emissions in SSP1/SSP5);
and lower population growth and agricultural demand in SSP1/SSP5 compared to SSP2 (contributing to lower
emissions in SSP1/SSP5). After around 2050, CO2 emissions fromLUCdecrease in SSP1/SSP5 as population
growth stabilizes, while in SSP2, emissions increase due to delayed population peaking and rising bioenergy
demand.

Figure 3 compares coefficients for land occupation based on crop-specific variables and differences in
aggregate variables. The value 20 km2-yr PJ−1, roughly amiddle range value in thefigure, is equivalent to 28 t
DMha−1 yr−1 if assuming 18GJ t−1. The land use values depicted infigure 3 are broadly similar for the two
approaches with themedian of the aggregate variables being constantly slightly higher than the one of the
specific variables. Land use decreases from2030 to around 2050 but not so after around 2050. This has to dowith
effects of yield-increasing technological progress dominating before 2050, and effects of increasing scarcity of

Figure 3.Coefficients for agricultural land occupation for grassy energy crops using the approaches of specific yield variables and
differences in aggregate variables. Thick solid lines representmedians and shaded areas 10%–90% ranges across eighteenMAgPIE
scenarios. Upper and lower dotted lines representmaximumandminimum, respectively, across eighteen scenarios.
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productive land dominating after 2050. Somewhat broader ranges are evident for the differences in aggregate
variables approach, which could be interpreted as reflecting greater uncertainty for this approach.

Given that the B50 andB100 demands are defined at the global level, results from the differences in aggregate
variables approach are onlymeaningful at global scale9. Results derived from crop-specific variables from
MAgPIE are provided infigure A1 in the appendix, however. Among themajor producing regions of bioenergy
(see figure 1), India stands outwith low specific land use per bioenergy production (figure A1). Land scarcity in
India in combinationwith growing food demand drive investments in yield-increasing technological change.
Due to spill-over effects, technological change does not only benefit food and feed crops yields but also increases
bioenergy crop yields.

3.2. Life cycle assessment results
While the results presented previously in section 3.1 are solely based on theMagPIEmodel, results in the current
section include LCA calculations with scenario integration. Figure 4 presents an overview of results fromLCAs
with scenario integration (based on the 18 scenarios from section 3.2), as well as for the default LCA case (i.e.,
without scenario integration), which is included for comparison. Results for land occupation displayed in
figures 4(a)–(c) are distinguished from results related to land use in section 3.1 in that they cover both urban and
agricultural land use and include land use occurring upstream in supply chains (e.g., land use associatedwith
fertilizer and othermaterials production). Contributions from supply chain land use are consistently small (a
few percent) across scenarios, however.

Land occupation per unit bioenergy is overall comparable for the different demand scenarios. Themedian of
B100 sample values for 2030–2040 is 19.2 km2-year PJ−1 and for B50 22.1 km2-year PJ−1. Themedian of B100
values for 2060–2070 are 18.8 km2-year PJ−1 and for B50 16.6 km2-year PJ−1. Differences in land occupation can

Figure 4. Life cycle land occupation (a)–(c), total anthropogenicGHG emissions (d)–(f), and fossil fuel GHGemissions (g)–(i) for
grassy energy crops in 2030–2070 for a total of eighteen scenarios (six unique scenarios in each row of subplots).

9
If wewere to obtain the same type of results for different regions, wewould need to re-runMAgPIEwith regional bioenergy demand

scenarios replacing the global B0, B50 andB100 scenarios.
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bemainly explained by deviations in investments into land savingR&D. In particular, high demand can trigger
more R&D investments and thereby leading to lower land occupation per unit bioenergy. However, R&D
investments in the scenario aremainly determined by the choice of the SSP scenario aswell the biophysical
condition and less so by the different bioenergy demands, leading to a rather inconclusive picturewhen looking
at land occupation rates in single scenarios.

There is a tendency for highGHGprice to yield lower land occupation, with themedian of all T200, T40 and
T0 2030–2070 values being 18.0, 18.3 and 19.1 km2-year PJ−1, respectively.10 These results suggest a co-benefit
of GHGprice in terms of reduced land use, although the effect is not especially strong in general. The co-benefit
can be explained by less (emission intensive) land expansion andmore land use intensification via investments
into technological changewithGHG taxation. Land occupation is generally higher for SSP1 and SSP5 than SSP2.
This is primarily attributable to stricter water protection policies in SSP1 and SSP5 (environmental flow
protection)which restrict thewater available for irrigation. Reducedwater availability for irrigation translates
intomore conversion of forest and other natural land to cropland in SSP1/SSP5, which results in higher land
occupation in SSP1/SSP5 compared to SSP2.

Figures 4(d)–(f) shows the total anthropogenic GHGemissions including the contributions from impacts of
both land use emissions and the fossil fuel emissions from the supply chain, while figures 4(g)–(i) shows supply
chain impacts only. Land use-relatedCO2 is themain contributor to total GHG impacts, but, as will be addressed
later in this section, there are also non-negligible contributions from fossil fuel emissions. For total
anthropogenic GHGemissions (figures 4(d)–(f)), for whichCO2 emissions is a dominant contributor, the
presence or absence of aGHGprice is the key factor, consistent withwhat observed infigure 2. For scenarios
withGHG taxation, larger (B100) or lower (B50) bioenergy demand does not consistently correlate with
emissions, as all the values are at a similar level. Themain difference is thus connected towhether there is a GHG
tax or not, rather than the amount of bioenergy supplied. Lower differences occur in SSP1, as this is themost
sustainable pathwaywhere improvements in the agri-food sector, dietary changes, land use regulations, and
relatively lowpopulation growth contribute to decreased competition for land and thus reduce risks of
deforestation.

Fossil CO2 andCH4 emissions are quitemixed across different bioenergy demands, shared socioeconomic
pathways andGHGprice (figures 4(g), (h), (i)). There is a tendency for SSP1 to show lower emissions than SSP2
and SSP5. This ismainly attributable to lower fertilizer and irrigation requirements, which is again related to
SSP1 being themost sustainable pathway, including improvements in the agricultural sector. For SSP2 and
SSP5, some high fossil emissions can be observed for scenarioswith highGHGprice (T200), suggesting a trade-
off between agricultural and fossil CO2, but the evidence is not clear. Emissions for the default dataset (indicated
with an asterisk in the figure), which is independent ofMAgPIE scenarios, are higher than for the scenarios based
onMAgPIE, in large part owing to higher demands for irrigation. In general, stronger reductions in supply chain
fossil fuel emissions over time can be expected if changes towards LCAbackground systemwere considered.

Figures 5 and 6 showLCA results broken down intomain categories of contributing activitites. Results for
the default LCAdataset indicate total land occupation of 29 km2-year PJ−1, of which 97% is agricultural area

Figure 5.Breakdowns of life cycle land occupation (a), total anthropogenic GHG emissions (b) and fossil CO2 andCH4 onlyGHG
emissions (c) for grassy energy crops using default (i.e., scenario-independent) LCI dataset. In bothfigures 5 and 6, ‘Land-related CO2

andCH4’ refers to emissions as quantified byMAgPIE. ‘Land use and change’ represents agricultural land use; ‘Fertilizer supply’
represents fertilizer supply chains; ‘Machinery use’ includes fuel oil andmachinery supply chains aswell as direct emissions from fuel
burning; ‘Irrigation’ represents effects water supply; and ‘Agrochemical use emissions’N2Oemissions from agriculture.

10
This is based on the differences in aggregate variables approach.With specific variables we see the same behavior with overall lower land

occupancy in taxation scenarios, but with overall lower values given that the indirect effects are unaccounted (T200=17.8, T40=17.7 and
T0=18.5 km2/year/PJ).

12

Environ. Res. Commun. 6 (2024) 125004 AArvesen et al



occupied by the energy crops themselves and the remainder is attributable to seeds application and agricultural
and urban land occupation upstream in supply chains (figure 5(a)). Similarly, impacts from total GHG
emissions amount to 7.9 t CO2e TJ

−1 (figure 5(b)) and 5.0 t CO2e TJ
−1 if counting fossil CO2 andCH4 only

(figure 5(c)). Notable sources of non-fossil emissions areN2O from crops (‘Agrochemical use emissions’ the
figures) andN2O fromproduction of nitric acid, an input to nitrogen fertilizer production (subsumed under
category ‘Fertilizer supply’). Fertilizer supply is the strongest contributing activity to emissions, followed by
irrigation, whose emissions are predominantly due towater pumpsmostly driven by electricity (and some by
diesel).

Even for the scenarios with highGHGprice (T200), agricultural CO2 is themajor source of total GHG
emissions. Other sources combined contribute the same order ofmagnitude as agricultural CO2 to total
emissions. Despitefixed values for CO2 across years due to the fixed average approach, ‘Land-relatedCO2 and
CH4’ vary across years infigure 6 due to varying CH4. Some negative CH4 emissions values occur (22%ofCO2

emissions at themost and 12%at the secondmost). Emissions associatedwith both fertilizers, irrigation and
machinery (which correlate inversely with yields) are rather constant over time (figure 6).

4.Discussion

Our analysis involves somemixing of average data and data relating to a change, which is sometimes argued as
undesirable (Heijungs 1997, Ekvall et al 2005). Thismixing occurs because average data, including for
background processes, are combinedwith data resulting froman assumed change in bioenergy demand. Also,
the differences in aggregate variables approach implies that certain activities (e.g., food production)not linked to
bioenergy through actualflows ofmaterials, energy or services contribute to the LCAof bioenergy, whichmay be
seen as inconsistent with attributional LCA (Sandén andKarlström2007,Majeau-Bettez et al 2018). At the same
time, our approach allows for implicitly dealingwith the fundamental underlying issues of land as a limited
global resource, competition over global land, and land systems as co-producers of biomass for different
purposes (Fujimori et al 2019). Furthermore, when the goal is to analyse future scenarios for deployment starting

Figure 6.Breakdowns of total GHG emissions for grassy energy crops for six scenarios (a)–(f) in 2030–2070. T200 scenarios are shown
as an example with high governance of land use-relatedCO2 emissions. For definitions of stacked categories, see figure 5 caption.
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from low levels and rising to high levels, clear distinctions between average and change effects can be intrinsically
difficult to establish.

Previous estimates of land use-relatedCO2 emissions varywidely depending on feedstocks,methodology
and region (Creutzig et al 2015, Jeswani et al 2020). Our results (fixed average approach) appear well below the
upper range of estimates in literature (Ahlgren andDi Lucia 2014,Daioglou et al 2020), but appear consistent
with results from scenarios in the IAM-based EMF-33 project (Rose et al 2020). Our T40 andT200 results appear
in the lower range of estimates in literature (Ahlgren andDi Lucia 2014,Daioglou et al 2020).

The scenarios with indirect protection of forests throughCO2 taxes (T40 andT200) exhibit emissions
around a half or a third of the emissionswith zero tax (T0), but little differences occur between T40 andT200.
This indicates that governance of emissions from land use change, via CO2 taxes in ourmodelling, is highly
important up to a certain level but less sowhenmoving frommoderate to high governance taxation. Further, in
T40 andT200, GHGemissions per unit bioenergy remain similar in B50 and in B100 (which has twice the
demand of B50), suggesting that GHGemissions per unit of bioenergy do not increase with bioenergy demand in
presence of an emission tax in the analyzed demand range.

The assumption in T40 andT200 that CO2 emissions from all forms of land-use change are uniformly priced
reflects an idealized policy scenario. Although a clear implementation pathway for achieving such policy
coherence is not yet established in policy discussions, comprehensive CO2 emission pricing in the land system is
a criticalmechanism for the international community to protect carbon-rich ecosystems (Popp et al 2014).

One limitation of the analysis is that effects on soil organic carbonwithin cropland are excluded because
MAgPIE’s treatment of soil carbon density currently does not distinguish different types of cropland.However,
perennial grasses can sequester soil carbon at potentially high rates owing to their deep root systems (Valin et al
2015, Jeswani et al 2020). Estimates in the literature vary substantially but generally indicate that perennial
grasses cultivated on former croplands could yield soil carbon sequestration of 0.2–2.2 t C ha−1 yr−1 on average
over a few decades (Don et al 2012,Qin et al 2012,Qin et al 2016,McCalmont et al 2017). This is equivalent to
2.0–20 t CO2TJ

−1 for an average yield of 20 tDMha−1 yr−1 at 18GJ t−1, which is somewhat lower but same
order ofmagnitude as our results. On the other hand, theremay be no soil carbon sequestration benefits if
perennial grasses are cultivated on former grasslands or forests (Don et al 2012, Qin et al 2016).

Overall, this study proposes an approach andmake available data and software for integrating global land use
model scenarios into LCA, facilitating systematic scenario integration of not just total land use changeCO2

emissions, but also of total effects onCH4 andN2O emissions and land, fertilizer and irrigation requirements
within a consistent framework.Owing to the use of a land usemodel with global coverage, uncertain and
artificially constructed distinctions between ‘direct’ and ‘indirect’ emissions are avoided, as all emissions become
‘total’. The approach favors consideration of direct and indirect effects associatedwith irrigation,machinery fuel
and fertilizer use as well as emissions. Thanks to a global spatial coverage and temporal dimension, it facilitates a
systematic and consistent inclusion of indirect effects in a global analysis framework.

The approach, data and software can be built on in future research. They are suitable for applicationwithin
the framework of climate protection scenarios of the IPCC–for example through adopting the SSPs as in the
present study–climate protection targets or climate change impact scenarios, or through integrating future
scenario changes into the LCAbackground system. The latter can be pursued by building on existing efforts
(Mendoza Beltran et al 2020, Sacchi et al 2022) and identifiedGHGmitigation strategies for agricultural
bioenergy (Kwon et al 2021), and alignswith the idea that foreground and background systems should be
consistently defined in prospective LCA (Arvesen andHertwich 2011, Gibon et al 2015, Arvidsson et al 2018). As
an illustrative example, wemay consider GHGemissions associatedwithmachinery fossil diesel use11. These
emissions amount to 0.8 t CO2e per TJ biomass in scenario SSP2-B50-T200 for the year 2050. Replacing fossil
diesel by biodiesel produced frombiomass from scenario SSP2-B50-T100 could reduce the emissions by three-
fourths (from0.8 to 0.2 t CO2e per TJ)

12. Using cleaner energy throughout the supply chain (including in
transport) of various commodities will further reduce emissions.

Futureworkmay test the approach for specific world regions, other bioenergy feedstocks or impact
categories, or for scenarios with even higher bioenergy deployment than in the present work. Using the
approach for other regions or feedstocks will require new land usemodel runswith bioenergy demand set for the
specific region and feedstock in question.Wewill welcome further discussion on the suitability of the approach
andmethods choices.

11
Reflected as ‘Machinery use’ in figure 6, with the small difference that ‘Machinery use’ infigure 6 also includesminor emissions from

machinery and lubricant production.
12

Calculatedwith results for SSP2-B50-T200 and year 2050 from the current analysis, combinedwith assumed additional GHG emissions
of 8.3 kgCO2e t

−1 from industrial conversion and 3.2 kg CO2e t
−1 from transport frombiorefinery, and a 45%Fischer–Tropsch conversion

efficiency (Gvein et al 2023).
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Appendix. Regional land occupation factors

Figure A1 shows land occupation for grassy energy crops using specific yield variables for the fivemost
important regions in terms of grassy bioenergy production (see figure 1) and aggregate global results (‘World’).
The global results are an aggregate of twelveworld regions in total.

Figure A1.Agricultural land occupation for grassy energy crops based on specific yield variables calculated byMAgPIE. Thick solid
lines representmedians, light shaded areas 10%–90%percentiles and dark shaded areas 25%–75%percentiles across eighteen
scenarios. Upper and lower dotted lines representmaximumandminimum, respectively, across eighteen scenarios. Results are based
on 18MAgPIE scenarios. LAMLatin America; IND: India; USA:United States of America; CHA: China; SSA: Sub-SaharanAfrica.
‘World’ is aggregate of twelveworld regions in total.
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