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Abstract

Bioenergy crops can cut greenhouse gas (GHG) emissions, yet often bring hard-to-quantify
environmental impacts. We present an approach for integrating global land use modeling into life
cycle assessment (LCA) to estimate effects of bioenergy crops. The approach involves methodological
choices connected to time horizons, scenarios of GHG prices and socioeconomic pathways, and
flexible data transfer between models. Land-use change emissions are treated as totals, avoiding
uncertain separation into direct and indirect emissions. The land use model MAGPIE is used to
generate scenarios up to 2070 of land use, GHG emissions, irrigation and fertilizer use with different
scales of perennial grass bioenergy crop deployment. We find that land use-related CO, emission for
bioenergy range from 2 to 35 tonne TJ ', depending on bioenergy demand, policy context, year and
accounting method. GHG emissions per unit of bioenergy do not increase with bioenergy demand in
presence of an emission tax. With a GHG price of 40 or 200 $ tonne ' CO,, GHG per bioenergy
remain similar if the demand is doubled. A carbon tax thus has a stronger effect on emissions than
bioenergy demand. These findings suggest that even a relatively moderate GHG price (40 $ tonne ™
CO,) can prevent significant emissions, highlighting the critical role governance plays in securing the
climate benefits of bioenergy. However, realizing these benefits in practice will depend on a coherent
policy framework for pricing CO, emissions from land-use change, which is currently absent. Overall,
our approach addresses direct and indirect effects associated with irrigation, machinery fuel and
fertilizer use as well as emissions. Thanks to a global spatial coverage and temporal dimension, it
facilitates a systematic and consistent inclusion of indirect effects in a global analysis framework.
Future research can build on our open-source data/software to study different regions, bioenergy
products or impacts.

1

1. Introduction

Bioenergy is both high-profile and controversial as a potential key option to mitigate climate change. Unlike
other renewable energy but like fossil energy, bioenergy is a combustible energy form and can be easily
transported and stored. Biofuels can substitute fossil fuels in aviation, shipping and other sectors where
electrification is challenging (Cavalett and Cherubini 2022, Luderer et al 2022) and, if successfully combined

© 2025 The Author(s). Published by IOP Publishing Ltd
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with carbon capture and storage, deliver negative CO, emissions (Fajardy and Mac Dowell 2017, EASAC 2018,
Field etal 2020).

At the same time, there are concerns that bioenergy crops can compete with food production and exacerbate
issues connected to water and land scarcity (Smith et al 2015, Heck et al 2018, Humpendoder et al 2018, Naomi
etal 2018, Luderer et al 2019). Another concern is emissions associated with biomass feedstocks, which includes
releases of CO, by vegetation and soil directly or indirectly caused by land use, N,O emissions related to
fertilizers and fossil fuel emissions in supply chains (Tonini et al 2016, Staples et al 2017, Kwon et al 2021).

Several families of tools have been used for assessing environmental aspects of bioenergy crops, including
land use management models, life cycle assessment (LCA), economic (partial) equilibrium models, energy
system models and integrated assessment models (Jeswani et al 2020, Welfle et al 2020, Calvin et al 2021, Escobar
and Laibach 2021, Xu et al 2022). Distinctions between model groups are not always clear. For example,
integrated assessment models frequently incorporate global land use models in their full or reduced form
(Harfoot et al 2014, Wise et al 2014, Stehfest et al 2019), and LCA can be coupled with economic equilibrium
modelling (Searchinger et al 2008, Dandres eral 2011).

In the LCA community, the way to represent emissions indirectly induced by bioenergy land use—often
termed indirect land use change (ILUC) emissions—has been widely debated (Ahlgren and Di Lucia 2014,
Finkbeiner 2014, Schmidt et al 2015). ILUC emissions occur when bioenergy crops displace crops elsewhere and
ultimately lead to expansion of agricultural land at expenses of natural land. ILUC estimates vary substantially
depending on the type of biomass, assumed context and approach (Wicke eral 2012, Ahlgren and Di
Lucia 2014). For example, one case study finds that uncertain choices pertaining to land representation
attributes in a bioenergy land use change model change estimated emissions by 20%—30% (Plevin et al 2022).
Opver the years, improvements in methods have reduced medians or means of ILUC estimates, from more than
100 tonne CO,e TJ ! to less than 10 tonne CO,e TJ ™! (Wicke et al 2012), but without reducing inherent
uncertainty (Zilberman 2017, Daioglou et al 2020). This uncertainty calls for further development of approaches
and new investigations to help improve ILUC estimates and understanding of emission implications of
bioenergy land use.

Furthermore, many previous ILUC studies are limited in that they assume a biofuel demand for a given
region and given year to compute ILUC factors, while in reality, biofuel demand, emission fluxes and
relationships between the two will vary across time and space. Approaches that couple LCA and global land
system models can potentially overcome this limitation because global land use models consider total emissions
from land use changes so that all emissions become direct and the conundrum of ILUC that relies on artificially
constructed boundaries in time and space is avoided. Examples of global land system model are MAgPIE
(Dietrich et al2019), the GCAM agriculture and land use model (Wise et al (2014) and GLOBIOM (Havlik et al
2014), which simulate future land systems in response to given sets of assumptions and mechanisms. Such
models are used standalone or coupled with energy-economy models in integrated assessment model (IAM)
model frameworks (Popp et al 2017, Rose et al 2020).

The aim of this research is to outline and test an approach for integrating scenarios from global land use
modelling into LCA to estimate direct and indirect effects of large-scale bioenergy crop production. The
approach allows for incorporating global land use dynamics into LCA in scenarios reflecting different
assumptions, for example in terms of the shared socioeconomic pathways (SSPs) (O’Neill et al 2014, Popp et al
2017), governance of emissions from land use, or whether bioenergy crops are irrigated or not. This is achieved
by defining a set of scenario dimensions to be analysed, and then by systematically feeding parameter values from
the land use modelling—such as fertilizer use, water irrigation, and land use-related emissions—into the LCA.
Rather than singling out an ILUC factor based on a static snapshot and/or consideration of a subset of the land
use sector as in many previous assessments, the approach deals with total global emissions from all land-use
changes (direct and indirect and over time) in a consistent manner and without the need for a distinction
between direct or indirect emissions.

We demonstrate the use of the approach through a case study of second-generation grassy bioenergy crops
for the years 2030—-2070°, showing scenario LCA results for land occupation, total greenhouse gas emissions and
fossil fuel greenhouse gas emissions. Grassy bioenergy crops are chosen because they usually represent the main
type of bioenergy feedstock in future scenarios (Rogelj et al 2018, Rose et al 2020). Besides, compared to
conventional crops, perennial grasses (e.g., switchgrass, miscanthus) typically offer advantages such as increased
soil carbon storage, avoidance of tillage, capacity to restore degraded land and improved biodiversity (Robertson
etal 2017, Yangetal 2018, Englund ef al 2020). The case study applies data from the established land use model
MAGgPIE (Dietrich et al 2022), which has provided pathways for SSPs and contributed to several IPCC reports
(Popp etal 2017, Rogelj et al 2018, Smith et al 2019, Nabuurs et al 2022). We make available data and software

Bioenergy is often divided into first and second generation, where the former refers to bioenergy from food or feed crops and the latter to
non-edible plants such as perennial grasses.
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that can be built on in future research (Arvesen et al 2022; Data availability statement). The software is based on
Brightway2 (Mutel 2017), a Python-based tool increasingly employed for prospective LCA (Cox et al 2018,
Besseau et al 2019, Joyce and Bjérklund 2022, Sacchi et al 2019, Sacchi et al 2022).

2. Methods

This section describes methods and data used to combine land use modelling and LCA to analyse effects of
second-generation grassy bioenergy crops for the years 2030-2070. The chosen time horizon until 2070 aims to
strike a balance between understanding potential mechanisms and implications on the one hand, and limiting
uncertainties associated with future trajectories on the other hand. The time horizon allows for a sufficiently
long-term perspective to address long-term challenges of climate change mitigation and food supply, while
maintaining reasonable assessments of mechanisms and effects. Further, land use modelling results to be
presented later show a trend of cumulative land use emissions plateauing in most scenarios by 2070; this also
adds support for our chosen time horizon.

First, in section 2.1, we present the principles for scenario integration that are considered in our analysis.
Section 2.2 then presents an overall description of land use modelling with the model MAgPIE, before
section 2.3 details the specific land use scenarios analyzed. Next, section 2.4 treats different options for
incorporating land use CO, results from land use models into LCA. Last, section 2.5 presents datasets used to
carry out scenario-based LCA of grassy bioenergy crops for 2030-2070.

2.1. Principles for scenario integration

Land system model variables may have mixed levels of specificity or aggregation, also within the same model. For
example, variables of the land system model MAgPIE differentiate yields of different types of crops. We refer to
such variables as ‘crop-specific’, or just ‘specific’, variables. Other MAgPIE variables including emissions do not
differentiate between crop types. These undifferentiated variables are aggregated to represent the entire
agriculture sector, i.e., for example fertilizer use is reported as an aggregated value representative of all crops
grown for bioenergy and other purposes (food, feed, fiber). We refer to such variables as ‘aggregated’ variables.

2.1.1. Crop-specific variables

The most straightforward case of implementing land system model variables in LCA is when coefficients can be
derived directly from crop-specific variables representing the average for the crop type in question. For example,
in an LCA of grassy bioenergy crops, an LCA coefficient for cropland occupation (in units of km*-yr PJ ' or
similar) can be derived from a specific grassy bioenergy average crop yield (in units of tonneha ™' yr ' or
similar)’. It is common for land system modules of integrated assessment models to simulate specific crop yield
values (Li et al 2020), sometimes also distinguishing irrigated and rainfed bioenergy crops (Dietrich et al 2019).

Higher precision is an obvious benefit of using specific variables as opposed to aggregated variables. A
conceptual limitation is that indirect effects resulting from competition and interplay between different types of
agricultural crops are not captured. In other words, combined effects (on fertilizer application, irrigation, etc)
for the whole agricultural sector are disregarded. Indirect land use changes and consequent CO, emissions
cannot be captured, as these effects are inherently related to developments of the whole agricultural sector.

In practice, the availability of crop-specific model variables can be limited. For example, specific variables
available from MAEPIE are limited to crop production, area and yield, which in the context of LCA are mainly
relevant for land occupation. Thus, if the goal is to integrate scenario information from MAgPIE into LCA,
another method needs to be sought.

2.1.2. Differences in aggregate variables

An alternative way of implementing land system model variables in LCA is to calculate differences in aggregated
variables between a bioenergy scenario and a zero-bioenergy scenario and let this difference represent net effects
of bioenergy. For example, this approach may take land use in the whole agricultural sector in a scenario with
bioenergy less agricultural land use in a scenario without bioenergy, and then attribute the net difference to
bioenergy. To illustrate with numbers, say that a scenario in a given year has 100 EJ bioenergy production from
bioenergy crop type X and total agricultural land use 2000 million ha; while a scenario without bioenergy has 0
production from bioenergy crop type X and total agricultural land use 1700 million ha. This would yield land
occupation (2000 million ha — 1700 million ha)/(100 EJyr~! — 0 EJyr~!) = 30 km?yrPJ~!. Meanwhile, say
that the land use model specifically estimates land occupation for bioenergy crop type X of 25 km*-yr PJ " for

7 Itis established convention in LCA to analyze land occupation in units of m*-yr MJ!, km?-yr P or similar units; see for example
Huijbregts et al (2017) or Luderer et al (2019).
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the given year in the scenario with bioenergy. In this example, the land occupation estimate is 5 km?-yr PJ !
higher with the difference in aggregate variables approach compared to the specific estimate.

In this way, effects are attributed to bioenergy based on a difference in an aggregate variable that represents
the land use of the whole agricultural sector. The difference must apply to a given geographical area, which can
be the world, as in the case study we will report, or a specific world region. In the latter case, leakage effects need
to be monitored; otherwise, they may go undetected. Generally, we do not expect net differences to be negative,
but this can occur through indirect routes in the modelled system.

A keybenefit of using differences in aggregate variables is that it allows for capturing indirect and market-
mediated effects that are relevant for policy and other decision processes, and that cannot be ascertained from
specific variables (e.g., land use change and related CO, emissions, food crop production causing changes in
fertilizer or water demands of food production elsewhere). Further, a practical benefit is the possibility to
unravel crop-specific effects in the absence of available crop-specific variables. This can increase the feasibility of
using land model scenario data for LCA.

Two potential disadvantages are lower transparency and more difficult results interpretation, relative to
when using specific variables. Lower transparency and interpretability will tend to occur because results are
subject to competition (market-mediated) effects between different types of crops, for which the underlying
mechanisms can be difficult to disentangle. In other words, uncertainty is higher due to the lack of truly
detectable cause-effect chains. It is not necessarily straightforward to decompose land system model results into
individual mechanisms or components; for example, to distinguish between substitution effects, price-induced
changes, and direct land replacement (Daioglou et al 2020).

2.2.Land use modelling

We employ the MAGPIE 4 open-source land-use modelling framework (Dietrich et al 2019, Dietrich et al 2022).
MAgPIE combines economic and biophysical approaches to simulate spatially explicit global scenarios of land
use and environmental interactions. It is a global partial equilibrium model of the land-use sector that operates
in arecursive dynamic mode and incorporates spatially explicit information into an economic decision-making
process.

MAGgPIE takes regional conditions such as demand for agricultural commodities, technological
development, and production costs as well as spatially explicit data on biophysical constraints into account.
Geographically explicit data on biophysical conditions (e.g., carbon densities for vegetation, litter and soil,
agricultural productivity such as crop yields) are sourced from the LPJmL land model (Schaphoft et al 2018, von
Bloh etal 2018, Lutz et al 2020, Herzfeld et al 2021), then aggregated using a clustering algorithm (Dietrich et al
2013).

Land types in MAgPIE include cropland (food, feed, material, and bioenergy), pasture and rangeland, forest
(primary, secondary and managed), other land (non-forest vegetation, abandoned agricultural land, and
deserts), and urban land. International trade follows historical patterns and economic competitiveness. Food
demand is derived based on population growth and dietary transitions, accounting for changes in food waste
and intake, with shifting shares of animal calories, processed products, and more. Production is distributed
among areas via minimizing production costs".

Crop yield increases due to technological change are modelled endogenously based on regionally different
investment-yield ratios and interest rates (Dietrich et al 2012, Dietrich et al 2014). Hence, the model
simultaneously optimizes yield-increasing technological change and cropland expansion, which is especially
relevant for long-term projections.

Bioenergy crop yield patterns are based on LPJmL. Due to the lack of robust data on second generation
bioenergy, land-use intensity data from Dietrich et al (2014) is used to calibrate bioenergy yields in MAgPIE.
LPJmL bioenergy yields in Europe, consistent with observations from well-managed test sites, are assumed to
match the highest observed land-use intensification. Bioenergy yields in other regions are scaled down based on
European land-use intensity, with calibration factors of 0.46 for Sub-Saharan Africa and 0.6 for India, reflecting
considerable yield gaps compared to best practices. These yield gaps can be closed in MAgPIE in the future due to
yield-increasing technological change. Moreover, technological change can also shift the technological frontier.

Annual net CO, emissions from land-use change are calculated based on changes in carbon stocks of
vegetation, litter and soil. To mitigate single year biases, we calculate an average value by applying a low-pass
filter that distributes annual net CO, over time (Humpendder et al 2022). Changes in vegetation carbon stocks

8 This usually means that highly productive areas are first taken into production and marginal areas last. However, as different production
categories (e.g., food and bioenergy) compete for land, it is not always clear what land will be used next when bioenergy production is
expanded. In many cases the model will expand into natural vegetation which promises the next highest yield, but in other cases also
reshuffling might happen switching areas for bioenergy with areas for food or boosting overall productivity via investments into yield
increases (R&D and management).
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are subject to land-use dynamics such as conversion of forest into agricultural land. In case of re- /afforestation
or when agricultural land is taken out of production, regrowth of natural above ground vegetation removes CO,
from the atmosphere, but changes in soil organic carbon are not accounted for.

Nitrogen inputs on cropland via industrial and intentional biological fixation, and N,O emissions from
agricultural soils and animal waste management, are estimated using a nitrogen budgets (Bodirsky et al 2014,
Stevanovic et al 2017). CH, emissions from enteric fermentation, animal waste management and rice cultivation
are estimated based on feed demand, manure, and rice cultivation area, respectively (Popp et al 2010, Stevanovié
etal2017). In the case of GHG emission pricing, CO, emissions are reduced endogenously through reduced
conversion of natural land, while CH, and N,O emissions are reduced based on marginal abatement cost curves.

2.3.Land use scenarios

To be able to examine effects of bioenergy under different conditions, we define a set of scenario assumptions
that are inputs to the land use scenario modelling. Three key scenario dimensions are considered: (i) Bioenergy
demand (2 variants with bioenergy demand in addition to 1 with zero demand); (ii) shared socioeconomic
pathway (SSP) (3 variants); and (iii) greenhouse gas (GHG) price for the land sector (3 variants). These scenario
dimensions are varied in the land use modelling to generate a total of 2 x 3 x 3 = 18 individual scenario LCA
datasets and associated analyses. The SSPs are a set of five narratives outlining potential pathways for human
development and global environmental changes throughout the 21st century; we refer to previous studies for
descriptions of their characteristics (O’Neill et al 2014, Riahi ef al 2017). Our scenarios have a more quantitative
than qualitative or narrative-based nature, but are linked to the narratives of the three selected SSPs (Popp et al
2017), as characteristics of the different SSPs, such as land productivity growth and globalization, are
incorporated into the land use modelling.

For this study, endogenous rates of yield-increasing technological change are derived for each of the SSPs
using the scenarios with zero bioenergy demand and GHG price. In other scenarios with higher bioenergy
demand or GHG price, the corresponding SSP-specific trajectory is used as exogenous input (i.e., rates of change
are the same for a given SSP and follow the scenario with zero demand and zero GHG price.

The three scenario dimensions are described in the following.

2.3.1. Bioenergy demand
The present study considers three stylized demands for global second-generation grassy bioenergy crops:

(i) B50: Linear increase in annual demand with 50 EJ yr ' demanded in 2050 (and linear increase thereafter).
(ii) B100: Linear increase in annual demand with 100 EJ yr ' demanded in 2050 (and linear increase thereafter).

(iii) BO: Constant zero (0 EJyr ') demand.

The B50 demand is in the lower end of estimates of technical potentials for dedicated biomass production
systems (with food security and environmental constraints considered) according to IPCC AR6 (Nabuurs et al
2022). The B50 and B100 demands both fall in the low-medium range of bioenergy deployments in IPCC AR6
integrated assessment model scenarios to limit global warming to 2 °C (Riahi et al 2022). B50 and B100 are
sufficiently different to enable identification of potential non-linear changes in the global land system depending
on bioenergy demand.

Note that B50 and B100 scenarios are used as basis for separate LCA datasets. B0, on the other hand, is only
used as a reference when employing differences in aggregated variables (i.e., B100-B0 values or B50-B0 values),
as explained previously. As the focus of the current study is second-generation grassy bioenergy crop, we assume
no future growth in first generation bioenergy.

2.3.2. Shared socioeconomic pathway
The shared socioeconomic pathways (SSPs) reflect different evolutions in socioeconomic factors and are
currently an established component in climate change research (Bauer etal 2017, O’Neill et al 2014, Riahi et al
2017). In the context of land system modelling, the choice of SSP can affect food, feed and material demands,
trade, interest rates, nitrogen efficiency and water protection (Popp et al 2017). By defining LCA data based on
scenarios for different SSPs, one can represent such variations in the LCA.

While all available SSPs can be relevant, in this study we select three SSPs:

(i) SSP1: ‘Takingthe greenroad’.
(i) SSP2: ‘Middle of the road’.
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(iii) SSP5: ‘Taking the highway’.

These are chosen here because they span the full range of mitigation challenges portrayed by the SSP
framework. We do not pay explicit attention to varying levels of adaptation challenges as most strongly
emphasized by SSP3 and SSP4, as adaptation challenges are less relevant for our current purposes.

2.3.3. GHG price
To represent varying degrees of governance of land use change emissions, we apply a varying price to CO,
emissions from deforestation and other changes in natural vegetation. With this approach, the scope of forest
protection policy is not explicitly defined but is implicitly represented through the CO, price. It is important to
note that all CO, emissions from land-use change, whether directly or indirectly caused by bioenergy crop
cultivation, are subject to pricing. To simplify, we treat afforestation separately based on existing policies,
omitting any CO, price-induced afforestation from the modelling.

Specifically, we consider three CO, emission price trajectories (‘T” denotes ‘tax’):

(i) T200: Linear increase with 100$ t ' CO, in 2030 and 200$ t ' CO, in 2050.
(ii) T40: Linear increase with 20$ t ' CO, in 2030 and 40t~ CO, in 2050.

(iii) TO: Constant zero (0) CO, price.

We also price CH, and N,O emissions from agriculture based on these CO, price trajectories. We convert
CH, and N, O to CO,-equivalents using IPCC AR5 100-year global warming potential (GWP) conversion
factors of 28 and 265, respectively.

2.4. Time dynamics for land use CO, emissions

Among the outputs of land use modelling, land use change and consequent CO, emissions tend to be
particularly subject to temporal variations. Unlike fertilizer use, N,O emissions, irrigation, etc that occur
continuously with bioenergy production, land use changes and CO, emissions are typically dominated by one-
time land use change events. Based on this rationale, we present three options for determining LCA coefficients
for land use-related CO, (in units of tonne CO, TJ ' or similar):

(i) Currentyear (annual): For example, LCA for year 2030 is based on annual CO, emissions per unit of annual
bioenergy production in 2030, LCA for year 2035 on annuals for 2035, etc. This is the most straightforward
option, but results may be highly variable over time, and sensitive to one-time land use change events and
thus exhibit excessively large emissions for early years of bioenergy deployment.

(i) Fixed average based on cumulative effects for a chosen time: For example, LCAs for any year between 2025
and 2070 are based on cumulative CO, emissions in 2025-2070 divided by the total amount of bioenergy
produced in the same time interval. This option distributes effects evenly over the chosen period. It is thus
insensitive to large one-time emission fluxes and avoids uncertain allocation of emissions to specific years,
but it can have the artifact that bioenergy production is assigned responsibility for emissions that happened
decades before. Another artifact can be that a different chosen time horizon leads to different cumulative
effects.

(iii) Running cumulative from a chosen start year: For example, with 2025 as start year, LCA for year 2030 is
based on cumulative CO, emissions for 2025-2030 per unit of cumulative bioenergy production, LCA for
2035 on cumulative values for 2025-2035, etc. This option can make results less sensitive to one-time events
compared to option (i) above. A different chosen time horizon can lead to different cumulative effects
similarly as with option (ii). Results for the end year of the time horizon will be the same for option (ii) and
(iii), but results for intermediate years can be different.

2.5. Life cycle assessment

We here describe the LCA datasets used for the case study of global grassy bioenergy crops. We distinguish
between a default LCA dataset that is independent of MAgPIE modelling and scenarios (the ‘Default dataset’),
and scenario-based variants that incorporate MAgPIE scenario results (the ‘scenario-based dataset’). In general,
connections to the LCA database Ecoinvent (Wernet et al 2016, Ecoinvent 2019) are made to cover supply chains
of fertilizers, pesticides, machinery and other inputs. The software that accompanies this paper loads the default
dataset and creates scenario-based dataset variants by replacing default coefficients with coefficients derived
from the scenarios.
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Table 1. Overview of assumptions and sources for default LCA dataset. Asterisk indicates stressors that are included in the software and data
accompanying this article (see Data availability statement), but that do not contribute to impact categories selected for final analysis and
presentation of results (i.e., land occupation and greenhouse gas emissions).

Default LCA dataset

Land occupation Assume default yield value 20 t DM ha ™' yr~ " and gross energy content 18 GJ t . This yields land
occupation of 27.8 km? yr7l pjL.
Nitrogen fertilizer (as N) Assume 4.8 tt~ ' biomass based on Wang et al (2012), Ashworth et al (2015), Ecoinvent (2019)
(miscanthus), and Escobar et al (2017). Include 2 t packaging per t fertilizer as N (Ecoinvent 2019).

Phosphorus fertilizer (as P205) Assume 4.8 tt ' biomass. Include 2 t packaging per t fertilizer as P205. Sources are the same as for
nitrogen fertilizer.
Pesticides Assume 0.15kgt ™' biomass based on Ashworth et al (2015), Ecoinvent (2019) (miscanthus),
Escobar et al (2017) and Morales et al (2015). Include 2 t packaging per t pesticide
(Ecoinvent 2019).
Seed Assume 1% of production is used as seed (consistent with MAgPIE).
Irrigation Assume 250 m’ t ' biomass based on Escobar et al (2017), assuming site with relatively low irriga-

tion is most representative.
Diesel use by agricultural machinery Assume 150 MJ t ' biomass based on Wang et al (2012), Ashworth et al (2015) and Escobar et al
(2017). Assume lubricating oil corresponding to 4.5% of diesel fuel based on Athanassiadis et al
(1999), Dias and Arroja (2012), and Morales et al (2015).

Transport of biomass Assume 100 km lorry transport (Field et al 2020)
CO,and CH,4 to air CO, and CH,: Omitted, outside of scope of default dataset.
N,O and NH," to air Assume 1% N,O-N and 2% NH,4-N per N fertilizer based on IPCC (2006) and Nemecek and
Kagi (2007).
NO, to air” Assume 21% NO, emission per N,O emission (Nemecek and Kigi 2007).
NO;s- to ground water” Assume 10% NO3-N per per N fertilizer, based on lower-bound values in (IPCC 2006).
Phosphorus (particulates) to surface Assume 1.27 kg P per kg biomass (Ecoinvent 2019) (miscanthus).
water”
PO} to surface water* Calculate 28 ug PO; ™ per kg biomass based on Nemecek and Kiigi (2007).
Pesticides to soil”* Assume amount emitted to soil equals amount applied.
Natural land transformation™ Omitted, outside of scope of default dataset.

Table 1 displays assumptions and sources for the default LCA dataset. This dataset contains only fixed
(scenario-independent) coefficients and is established based on different sources and assumptions. It is the LCA
dataset before the integration of MAGPIE scenarios.

Table 2 presents the assumptions, sources and approaches to generate the scenario-based LCA datasets,
using the default LCA dataset presented above as a starting point. We generate 18 individual datasets for each
modeled year in correspondence with the 18 scenarios (section 2.3).

As table 2 indicates, the differences in aggregate variables approach (section 2.1) is employed for land
occupation, nitrogen and irrigation requirements, and CO,, CH,, N,O and NH, emissions. The differences in
aggregate variables approach is our preferred option because it captures total (‘direct’ and ‘indirect’) effects on
the agricultural sector, and can be applied consistently for all variables defined in MAgPIE outputs. Further, we
use the fixed average approach for quantifying land use-related CO, to capture long-term developments while
avoiding uncertain allocation to specific years (section 2.4).

To aggregate CO,, CHy, N,O into total anthropogenic GHG emissions, we use IPCC AR5 100-year global
warming potential (GWP) conversion factors of 28 and 265 for CH, and N, O, respectively. The 100-year GWP
has traditionally been the default metric used by The United Nations Framework Convention on Climate
Change (UNFCCC). Other metrics, such as the 20-year GWP or the 100-year global temperature potential,
differ in concept or account for the time-based characteristics of gases differently (Shine et al 2005). Results are
usually sensitive to the use of alternative metrics when emissions of short-lived species (e.g., CH,) are
prominent, while they tend to provide similar results when emissions of CO, and other long-lived gases are
dominant. In our cases, emissions of CH, are relatively small, so we do not expect variations in our main findings
if other metrics than GWP100 are used to characterize the impacts.

3. Results

We divide this section into two parts, which presents results obtained solely from MagPIE land use modelling
(section 3.1) and results after scenario integration into LCA (section 3.2).

7



10P Publishing

Environ. Res. Commun. 6 (2024) 125004

A Arvesen et al

Table 2. Overview of assumptions and sources for scenario-based LCA datasets. Asterisk indicates stressors that are included in the software
and data accompanying this article (see Data availability statement), but that do not contribute to impact categories selected (i.e., land
occupation and greenhouse gas emissions) for final analysis and presentation of results.

Scenario-based LCA datasets

Land occupation

Nitrogen fertilizer

Phosphorus fertilizer

Pesticides

Seed

Irrigation

Diesel use by agricultural
machinery

Transport of biomass
CO,and CH, to air

N,O and NH," to air
NO, to air”®

NO:;- to ground water”

Phosphorus (particulates)
to surface water”

PO;™ to surface water”

Pesticides to soil”

Natural land
transformation”

Calculated from MAPIE scenario outputs using differences in aggregate variables approach (section 2.1).
Same as above.
Same as default LCA dataset owing to lack of scenario-specific information.
Same as above.
Same as above.

Calculated from MAGPIE scenario outputs using differences in aggregate variables approach (section 2.1).
We use the default diesel consumption, diesel s of 150 MJ t~ ' and land occupation, land .p 0f 28 km?yr !
PJ ™! from table 1 as a starting point. We then assume diesel per unit biomass changes in proportion to the
relative change in land occupation, scaled by 0.5, following the for-
mula:diesel,, = dieselgr + 0.5 x dieselgr X (landg,, — land o) /land gr diesels., is the scenario-specific
diesel consumption and land,,, the scenario-specific land occupation. We assume this linear adjustment can be
applied for the range of land occupation values observed in our land use model results (i.e., rage 12-28 km?
yr71 PJ L as depicted later in figure 3). For example, if land,,. is 14 km? yfl P, diesel,,is 113 MJ t .
Finally, we assume lubricating oil corresponding to 4.5% of diesel fuel (based on references in table 1).
Same as default LCA dataset.

Calculated from MAGPIE scenario outputs using differences in aggregate variables approach (section 2.1) and
for CO, the fixed average approach (section 2.4).

Calculated from MAPIE scenario outputs using differences in aggregate variables approach (section 2.1).
Assume 21% NO, emission per N,O emission (Nemecek and Kégi 2007). Hence, NOy scale in proportion to
N,O as calculated from MAgPIE outputs.

Assume 10% NO;-N per per N fertilizer, based on lower-bound values in IPCC (2006). Hence, NO;_scale in
proportion to nitrogen fertilizer use as calculated from MAGPIE outputs.

Same as default LCA dataset.

Same as default LCA dataset.
Same as default LCA dataset.
Calculated from MAGPIE scenario outputs using differences in aggregate variables approach and fixed average
approach as for CO,.

3.1.Land use model results

While our study presents a global assessment, the underlying analysis with MAgPIE is multi-regional. As
explained previously in section 2.2, the calculations are based on 18 scenarios, comprising two bioenergy
demands (B50 and B100), three SSPs (SSP1, SSP2, SSP5) and three CO, tax levels (T0, T40, T200). As
background to understand global results presented later, figure 1 illustrates how MAgPIE chooses to allocate
grassy bioenergy production to main world regions over time. The MAgPIE scenarios that will be used for
integration into LCA allow irrigation and are represented by figure 1(a) and (b). Alternative scenario runs
without irrigation for bioenergy production are shown in figure 1(c); these are included here for context and
illustrative purposes but are not part of the scenario integration into LCA in our study. In B50 and B100 alike, the
bulk of production occurs in Latin America (LAM), India (IND), United States of America (USA) and China
(CHA), in that order of importance. In addition, Sub-Saharan Africa (SSA) contributes modestly after 2055 in
B100. There are small-to-moderate contributions from other regions (aggregated to ‘Other’ in figure 1).

In our scenarios, irrigation is the primary factor enabling bioenergy production in India. Without irrigation,
bioenergy production is minimal due to the country’s largely unfavourable conditions for rainfed agriculture
(figure 1(c)). The scenarios assume future investments in irrigation infrastructure to enhance productivity on
marginal lands, thereby making bioenergy production viable. While this assumption may seem optimistic given
India’s current constrained hydrological budgets (Devineni et al 2022), the scenarios are deliberately
exploratory, focusing on potential supply, rather than goal-oriented. This approach allows for a wide range of
possible future outcomes in the LCA analysis and helps to identify areas where system transformations can
achieve the largest benefits. For Sub-Saharan Africa after 2055 in B100 (figure 1(b)), yield-increasing
technological change leads to food production with declining land intensity. This releases agricultural land,
which progressively becomes abandoned, allowing for gradual bioenergy expansion at reduced competition for
land and water between food and energy crop production.

Figure 2 compares world-average land use-related CO, emission factors for grassy energy crops over time
with the three calculation options (section 2.4): fixed average, running cumulative and current year. The results
represent combined land use and land use change CO,, and overall range approximately from 2 to 35 tonne CO,
TJ ' across the different scenarios and accounting options. The running cumulative (figures 2(b), (e), (h)) and
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Figure 1. Grassy bioenergy production for main world regions for B50 (a) and B100 (b) scenarios respectively. For each panel (B50 and
B100), results are based on nine MAgPIE scenarios with combinations of three SSPs and three GHG price trajectories. Thick solid lines
represent medians and dotted lines maximum and minimum across nine B50 and B100 scenarios, respectively. LAM Latin America;
IND: India; USA: United States of America; CHA: China; SSA: Sub-Saharan Africa. ‘Other’ is an aggregate of seven other regions.
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Figure 2. Coefficients for land use-related CO, emissions per unit of bioenergy using the approaches of (a) fixed average, (b) running
cumulative and (c) current year (annual). Thick solid or dashed lines represent selected individual scenarios (six scenarios in each
subplot) and shaded areas the total ranges across eighteen scenarios.
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Figure 3. Coefficients for agricultural land occupation for grassy energy crops using the approaches of specific yield variables and
differences in aggregate variables. Thick solid lines represent medians and shaded areas 10%-90% ranges across eighteen MAgPIE
scenarios. Upper and lower dotted lines represent maximum and minimum, respectively, across eighteen scenarios.

current year (figures 2(c), (f), (1)) approaches yield relatively large CO, emissions for early years of bioenergy
deployment. This is attributable to relatively small production volumes and sensitivity to individual land use
change from land clearing and crop establishment causing large emission fluxes in early years. The coefficients
generally, but not always, decline over time with these two approaches. The fixed average approach (figures 2(a),
(d), (g)) exhibits the lowest coefficients in early years (especially before 2040) but may exhibit h.c. than the other
approaches for late years. This is because with this approach, all coefficients are determined based on cumulative
values until 2070, and thus coefficients for early years ‘benefit’ from high production in late years.

It follows from the definition of the fixed average approach that coefficients are constant over time. In
contrast, the running cumulative and current year approaches show declining trends overall and, especially for
T40 and T200, tend to plateau in late years towards 2070.

Figure 2 also shows that the emissions are considerably higher without CO, taxation (T0). The effect of
taxation has a stronger effect on CO, emissions than the bioenergy demand itself. Across all scenarios, B100-
T200 has a similar profile to B50-T200, and overall smaller emissions than B50-T0. Emissions per unit bioenergy
do not scale linearly with the demand of bioenergy, but depend on the policy context. This indicates the
importance that governance can play for reducing the climate impacts connected to bioenergy deployment, as a
regulated international land use framework can reduce risks associated with direct and indirect deforestation
and prioritize bioenergy crops on marginal or abandoned cropland. At the same time the difference in emissions
between moderate (T40) and high (T200) CO, taxation are rather small, suggesting that already moderate
taxation can suffice to prevent major emissions. The difference between T0 and T40/T200 is smallest for SSP1
with a factor of around two, while the factor is around 3 for SSP2 and SSP5. This reflects lower population
growth and lower competition for land due to more sustainable diets (less livestock) in SSP1.

The differing dynamics in B100-T0 across SSP1, SSP2 and SSP5 in figure 2 are caused by multiple
overlapping and partly counteracting factors. These factors include stricter water protection policies that reduce
irrigation, leading to more land conversion in SSP1/SSP5 (this contributes to higher emissions in SSP1/SSP5);
and lower population growth and agricultural demand in SSP1/SSP5 compared to SSP2 (contributing to lower
emissions in SSP1/SSP5). After around 2050, CO, emissions from LUC decrease in SSP1/SSP5 as population
growth stabilizes, while in SSP2, emissions increase due to delayed population peaking and rising bioenergy
demand.

Figure 3 compares coefficients for land occupation based on crop-specific variables and differences in
aggregate variables. The value 20 km?-yr PJ !, roughly a middle range value in the figure, is equivalent to 28 t
DM ha™'yr~'ifassuming 18 GJ t . The land use values depicted in figure 3 are broadly similar for the two
approaches with the median of the aggregate variables being constantly slightly higher than the one of the
specific variables. Land use decreases from 2030 to around 2050 but not so after around 2050. This has to do with
effects of yield-increasing technological progress dominating before 2050, and effects of increasing scarcity of
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Figure 4. Life cycle land occupation (a)—(c), total anthropogenic GHG emissions (d)—(f), and fossil fuel GHG emissions (g)—(i) for
grassy energy crops in 20302070 for a total of eighteen scenarios (six unique scenarios in each row of subplots).

productive land dominating after 2050. Somewhat broader ranges are evident for the differences in aggregate
variables approach, which could be interpreted as reflecting greater uncertainty for this approach.

Given that the B50 and B100 demands are defined at the global level, results from the differences in aggregate
variables approach are only meaningful at global scale’. Results derived from crop-specific variables from
MAGPIE are provided in figure A1 in the appendix, however. Among the major producing regions of bioenergy
(see figure 1), India stands out with low specific land use per bioenergy production (figure A1). Land scarcity in
India in combination with growing food demand drive investments in yield-increasing technological change.
Due to spill-over effects, technological change does not only benefit food and feed crops yields but also increases
bioenergy crop yields.

3.2. Life cycle assessment results
While the results presented previously in section 3.1 are solely based on the MagPIE model, results in the current
section include LCA calculations with scenario integration. Figure 4 presents an overview of results from LCAs
with scenario integration (based on the 18 scenarios from section 3.2), as well as for the default LCA case (i.e.,
without scenario integration), which is included for comparison. Results for land occupation displayed in
figures 4(a)—(c) are distinguished from results related to land use in section 3.1 in that they cover both urban and
agricultural land use and include land use occurring upstream in supply chains (e.g., land use associated with
fertilizer and other materials production). Contributions from supply chain land use are consistently small (a
few percent) across scenarios, however.

Land occupation per unit bioenergy is overall comparable for the different demand scenarios. The median of
B100 sample values for 2030-2040 is 19.2 km?*-year PJ ' and for B50 22.1 km*-year PJ . The median of B100
values for 2060—2070 are 18.8 kmz—year PJ !and for B50 16.6 kmz—year PJ L. Differences in land occupation can

? If we were to obtain the same type of results for different regions, we would need to re-run MAgPIE with regional bioenergy demand
scenarios replacing the global B0, B50 and B100 scenarios.
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Figure 5. Breakdowns of life cycle land occupation (a), total anthropogenic GHG emissions (b) and fossil CO, and CH4 only GHG
emissions (c) for grassy energy crops using default (i.e., scenario-independent) LCI dataset. In both figures 5 and 6, ‘Land-related CO,
and CH,’ refers to emissions as quantified by MAGPIE. ‘Land use and change’ represents agricultural land use; ‘Fertilizer supply’
represents fertilizer supply chains; ‘Machinery use’ includes fuel oil and machinery supply chains as well as direct emissions from fuel
burning; ‘Irrigation’ represents effects water supply; and ‘Agrochemical use emissions’ N,O emissions from agriculture.

be mainly explained by deviations in investments into land saving R&D. In particular, high demand can trigger
more R&D investments and thereby leading to lower land occupation per unit bioenergy. However, R&D
investments in the scenario are mainly determined by the choice of the SSP scenario as well the biophysical
condition and less so by the different bioenergy demands, leading to a rather inconclusive picture when looking
atland occupation rates in single scenarios.

There is a tendency for high GHG price to yield lower land occupation, with the median of all T200, T40 and
T02030-2070 values being 18.0, 18.3 and 19.1 km*-year PJ ', respectively.'’ These results suggest a co-benefit
of GHG price in terms of reduced land use, although the effect is not especially strong in general. The co-benefit
can be explained by less (emission intensive) land expansion and more land use intensification via investments
into technological change with GHG taxation. Land occupation is generally higher for SSP1 and SSP5 than SSP2.
This is primarily attributable to stricter water protection policies in SSP1 and SSP5 (environmental flow
protection) which restrict the water available for irrigation. Reduced water availability for irrigation translates
into more conversion of forest and other natural land to cropland in SSP1/SSP5, which results in higher land
occupation in SSP1/SSP5 compared to SSP2.

Figures 4(d)—(f) shows the total anthropogenic GHG emissions including the contributions from impacts of
both land use emissions and the fossil fuel emissions from the supply chain, while figures 4(g)—(i) shows supply
chain impacts only. Land use-related CO, is the main contributor to total GHG impacts, but, as will be addressed
later in this section, there are also non-negligible contributions from fossil fuel emissions. For total
anthropogenic GHG emissions (figures 4(d)—(f)), for which CO, emissions is a dominant contributor, the
presence or absence of a GHG price is the key factor, consistent with what observed in figure 2. For scenarios
with GHG taxation, larger (B100) or lower (B50) bioenergy demand does not consistently correlate with
emissions, as all the values are at a similar level. The main difference is thus connected to whether there isa GHG
tax or not, rather than the amount of bioenergy supplied. Lower differences occur in SSP1, as this is the most
sustainable pathway where improvements in the agri-food sector, dietary changes, land use regulations, and
relatively low population growth contribute to decreased competition for land and thus reduce risks of
deforestation.

Fossil CO, and CH, emissions are quite mixed across different bioenergy demands, shared socioeconomic
pathways and GHG price (figures 4(g), (h), (i)). There is a tendency for SSP1 to show lower emissions than SSP2
and SSP5. This is mainly attributable to lower fertilizer and irrigation requirements, which is again related to
SSP1 being the most sustainable pathway, including improvements in the agricultural sector. For SSP2 and
SSP5, some high fossil emissions can be observed for scenarios with high GHG price (T200), suggesting a trade-
off between agricultural and fossil CO,, but the evidence is not clear. Emissions for the default dataset (indicated
with an asterisk in the figure), which is independent of MAgPIE scenarios, are higher than for the scenarios based
on MAGPIE, in large part owing to higher demands for irrigation. In general, stronger reductions in supply chain
fossil fuel emissions over time can be expected if changes towards LCA background system were considered.

Figures 5 and 6 show LCA results broken down into main categories of contributing activitites. Results for
the default LCA dataset indicate total land occupation of 29 km?-year PJ ', of which 97% is agricultural area

1% This is based on the differences in aggregate variables approach. With specific variables we see the same behavior with overall lower land
occupancy in taxation scenarios, but with overall lower values given that the indirect effects are unaccounted (T200=17.8, T40=17.7 and
T0=18.5km?/year/PJ).
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Figure 6. Breakdowns of total GHG emissions for grassy energy crops for six scenarios (a)—(f) in 2030-2070. T200 scenarios are shown
as an example with high governance of land use-related CO, emissions. For definitions of stacked categories, see figure 5 caption.

occupied by the energy crops themselves and the remainder is attributable to seeds application and agricultural
and urban land occupation upstream in supply chains (figure 5(a)). Similarly, impacts from total GHG
emissions amount to 7.9 t CO,e TJ ! (figure 5(b)) and 5.0 t CO,e TJ " if counting fossil CO, and CH, only
(figure 5(c)). Notable sources of non-fossil emissions are N,O from crops (‘Agrochemical use emissions’ the
figures) and N, O from production of nitric acid, an input to nitrogen fertilizer production (subsumed under
category ‘Fertilizer supply’). Fertilizer supply is the strongest contributing activity to emissions, followed by
irrigation, whose emissions are predominantly due to water pumps mostly driven by electricity (and some by
diesel).

Even for the scenarios with high GHG price (T200), agricultural CO, is the major source of total GHG
emissions. Other sources combined contribute the same order of magnitude as agricultural CO, to total
emissions. Despite fixed values for CO, across years due to the fixed average approach, ‘Land-related CO, and
CH,’ vary across years in figure 6 due to varying CH,. Some negative CH, emissions values occur (22% of CO,
emissions at the most and 12% at the second most). Emissions associated with both fertilizers, irrigation and
machinery (which correlate inversely with yields) are rather constant over time (figure 6).

4, Discussion

Our analysis involves some mixing of average data and data relating to a change, which is sometimes argued as
undesirable (Heijungs 1997, Ekvall et al 2005). This mixing occurs because average data, including for
background processes, are combined with data resulting from an assumed change in bioenergy demand. Also,
the differences in aggregate variables approach implies that certain activities (e.g., food production) not linked to
bioenergy through actual flows of materials, energy or services contribute to the LCA of bioenergy, which may be
seen as inconsistent with attributional LCA (Sandén and Karlstrom 2007, Majeau-Bettez et al 2018). At the same
time, our approach allows for implicitly dealing with the fundamental underlying issues of land as a limited
global resource, competition over global land, and land systems as co-producers of biomass for different
purposes (Fujimori et al 2019). Furthermore, when the goal is to analyse future scenarios for deployment starting
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from low levels and rising to high levels, clear distinctions between average and change effects can be intrinsically
difficult to establish.

Previous estimates of land use-related CO, emissions vary widely depending on feedstocks, methodology
and region (Creutzig et al 2015, Jeswani et al 2020). Our results (fixed average approach) appear well below the
upper range of estimates in literature (Ahlgren and Di Lucia 2014, Daioglou et al 2020), but appear consistent
with results from scenarios in the [AM-based EMF-33 project (Rose et al 2020). Our T40 and T200 results appear
in the lower range of estimates in literature (Ahlgren and Di Lucia 2014, Daioglou et al 2020).

The scenarios with indirect protection of forests through CO, taxes (T40 and T200) exhibit emissions
around a half or a third of the emissions with zero tax (T0), but little differences occur between T40 and T200.
This indicates that governance of emissions from land use change, via CO, taxes in our modelling, is highly
important up to a certain level but less so when moving from moderate to high governance taxation. Further, in
T40 and T200, GHG emissions per unit bioenergy remain similar in B50 and in B100 (which has twice the
demand of B50), suggesting that GHG emissions per unit of bioenergy do not increase with bioenergy demand in
presence of an emission tax in the analyzed demand range.

The assumption in T40 and T200 that CO, emissions from all forms of land-use change are uniformly priced
reflects an idealized policy scenario. Although a clear implementation pathway for achieving such policy
coherence is not yet established in policy discussions, comprehensive CO, emission pricing in the land system is
a critical mechanism for the international community to protect carbon-rich ecosystems (Popp et al 2014).

One limitation of the analysis is that effects on soil organic carbon within cropland are excluded because
MAGgPIE’s treatment of soil carbon density currently does not distinguish different types of cropland. However,
perennial grasses can sequester soil carbon at potentially high rates owing to their deep root systems (Valin et al
2015, Jeswani et al 2020). Estimates in the literature vary substantially but generally indicate that perennial
grasses cultivated on former croplands could yield soil carbon sequestration of 0.2-2.2t Cha—"yr~' on average
over a few decades (Don et al 2012, Qin et al 2012, Qin et al 2016, McCalmont et al 2017). This is equivalent to
2.0-20tCO, TJ ! foran average yield of 20 t DM ha™! yr71 at 18 GJ t !, which is somewhat lower but same
order of magnitude as our results. On the other hand, there may be no soil carbon sequestration benefits if
perennial grasses are cultivated on former grasslands or forests (Don et al 2012, Qin et al 2016).

Opverall, this study proposes an approach and make available data and software for integrating global land use
model scenarios into LCA, facilitating systematic scenario integration of not just total land use change CO,
emissions, but also of total effects on CH, and N,O emissions and land, fertilizer and irrigation requirements
within a consistent framework. Owing to the use of a land use model with global coverage, uncertain and
artificially constructed distinctions between ‘direct’ and ‘indirect’ emissions are avoided, as all emissions become
‘total’. The approach favors consideration of direct and indirect effects associated with irrigation, machinery fuel
and fertilizer use as well as emissions. Thanks to a global spatial coverage and temporal dimension, it facilitates a
systematic and consistent inclusion of indirect effects in a global analysis framework.

The approach, data and software can be built on in future research. They are suitable for application within
the framework of climate protection scenarios of the IPCC—for example through adopting the SSPs as in the
present study—climate protection targets or climate change impact scenarios, or through integrating future
scenario changes into the LCA background system. The latter can be pursued by building on existing efforts
(Mendoza Beltran et al 2020, Sacchi et al 2022) and identified GHG mitigation strategies for agricultural
bioenergy (Kwon et al 2021), and aligns with the idea that foreground and background systems should be
consistently defined in prospective LCA (Arvesen and Hertwich 2011, Gibon et al 2015, Arvidsson et al 2018). As
an illustrative example, we may consider GHG emissions associated with machinery fossil diesel use' . These
emissions amount to 0.8 t CO,e per T] biomass in scenario SSP2-B50-T200 for the year 2050. Replacing fossil
diesel by biodiesel produced from biomass from scenario SSP2-B50-T100 could reduce the emissions by three-
fourths (from 0.8 t0 0.2 t CO,e per TJ)'*. Using cleaner energy throughout the supply chain (including in
transport) of various commodities will further reduce emissions.

Future work may test the approach for specific world regions, other bioenergy feedstocks or impact
categories, or for scenarios with even higher bioenergy deployment than in the present work. Using the
approach for other regions or feedstocks will require new land use model runs with bioenergy demand set for the
specific region and feedstock in question. We will welcome further discussion on the suitability of the approach
and methods choices.

! Reflected as ‘Machinery use’ in figure 6, with the small difference that ‘Machinery use’ in figure 6 also includes minor emissions from
machinery and lubricant production.
'2 Calculated with results for SSP2-B50-T200 and year 2050 from the current analysis, combined with assumed additional GHG emissions

of 8.3 kg CO,et ™' from industrial conversion and 3.2 kg CO,e t ! from transport from biorefinery, and a 45% Fischer—Tropsch conversion
efficiency (Gvein et al 2023).
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Appendix. Regional land occupation factors

Figure A1 shows land occupation for grassy energy crops using specific yield variables for the five most

important regions in terms of grassy bioenergy production (see figure 1) and aggregate global results (‘World").
The global results are an aggregate of twelve world regions in total.
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Figure Al. Agricultural land occupation for grassy energy crops based on specific yield variables calculated by MAgPIE. Thick solid
lines represent medians, light shaded areas 10%—-90% percentiles and dark shaded areas 25%-75% percentiles across eighteen
scenarios. Upper and lower dotted lines represent maximum and minimum, respectively, across eighteen scenarios. Results are based
on 18 MAgPIE scenarios. LAM Latin America; IND: India; USA: United States of America; CHA: China; SSA: Sub-Saharan Africa.
‘World’ is aggregate of twelve world regions in total.

15


https://git.list.lu/best/best-foreground
https://git.list.lu/best/best-foreground

10P Publishing

Environ. Res. Commun. 6 (2024) 125004 A Arvesen et al

ORCIDiDs

Anders Arvesen @ https://orcid.org/0000-0002-1378-3142

Florian Humpenoder © https: /orcid.org/0000-0003-2927-9407
Tomds Navarrete Gutierrez © https://orcid.org/0000-0003-0525-4678
Thomas Gibon ® https://orcid.org/0000-0002-2778-8825

Jan Philipp Dietrich @ https:/orcid.org/0000-0002-4309-6431
Konstantin Stadler @ https:/orcid.org/0000-0002-1548-201X
Cristina-Maria Iordan ® https://orcid.org/0000-0001-9975-2656
Gunnar Luderer @ https:/orcid.org/0000-0002-9057-6155

Alexander Popp @ https://orcid.org/0000-0001-9500-1986

Francesco Cherubini ® https://orcid.org/0000-0002-7147-4292

References

Ahlgren S and Di Lucia L 2014 Indirect land use changes of biofuel production—a review of modelling efforts and policy developments in
the European Union Biotechnol. Biofuels7 35

Arvesen A and Hertwich E G 2011 Environmental implications of large-scale adoption of wind power: a scenario-based life cycle assessment
Environ. Res. Lett. 6 045102

Arvesen A, Navarrete Gutiérrez T, Baustert P and Gibon T 2022 Best-foreground. A package with the data and utility functions to generate
scenario-based life cyle inventories from research project BEST https://git.list.lu/best/best-foreground

Arvidsson R, Tillman A-M, Sandén B A, Janssen M, Nordelof A, Kushnir D and Molander $ 2018 Environmental assessment of emerging
technologies: recommendations for prospective LCA 22 1286-94

Ashworth AJ, Taylor AM, Reed DL, Allen F L, Keyser P D and Tyler D D 2015 Environmental impact assessment of regional switchgrass
feedstock production comparing nitrogen input scenarios and legume-intercropping systems J. Clean. Prod. 87 227-34

Athanassiadis D, Lidestav G and Wisterlund I 1999 Fuel, hydraulic oil and lubricant consumption in Swedish mechanized harvesting
operations, 1996 Journal of Forest Engineering 10 59—66

Bauer N et al 2017 Shared socio-economic pathways of the energy sector—quantifying the narratives Global Environ. Change 42 316-30

Besseau R, Sacchi R, Blanc I and Pérez-Lépez P 2019 Past, present and future environmental footprint of the Danish wind turbine fleet with
LCA_WIND_DK, an online interactive platform Renew. Sustain. Energy Rev. 108 27488

Bodirsky B L ef al 2014 Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution Nat. Commun.
53858

Calvin K et al 2021 Bioenergy for climate change mitigation: scale and sustainability GCB Bioenergy 13 1346-71

Cavalett O and Cherubini F 2022 Unraveling the role of biofuels in road transport under rapid electrification Biofuel. Bioprod. Biorefin. 16
1495-510

Cox B, Mutel C L, Bauer C, Mendoza Beltran A and van Vuuren D P 2018 Uncertain environmental footprint of current and future battery
electric vehicles Environmental Science & Technology 52 4989-95

Creutzig F et al 2015 Bioenergy and climate change mitigation: an assessment GCB Bioenergy 7 916—44

Daioglou V, Woltjer G, Strengers B, Elbersen B, Barberena Ibafiez G, Sanchez Gonzalez D, Gil Barno J and van Vuuren D P 2020 Progress
and barriers in understanding and preventing indirect land-use change Biofuels, Bioprod. Biorefin. 14 92434

Dandres T, Gaudreault C, Tirado-Seco P and Samson R 2011 Assessing non-marginal variations with consequential LCA: application to
European energy sector Renew. Sustain. Energy Rev. 153121-32

Devineni N, Perveen S and Lall U 2022 Solving groundwater depletion in India while achieving food security Nat. Commun. 13 3374

Dias A C and Arroja L 2012 Environmental impacts of eucalypt and maritime pine wood production in Portugal J. Clean. Prod. 37 368-76

Dietrich J eral 2022 MAGPIE - An Open Source Land-Use Modeling Framework - Version 4.5.0. (https://github.com/magpiemodel /magpie)

Dietrich J P et al 2012 Measuring agricultural land-use intensity—a global analysis using a model-assisted approach. Ecol. Model 232 109-18

Dietrich ] P, Popp A and Lotze-Campen H 2013 Reducing the loss of information and gaining accuracy with clustering methods in a global
land-use model Ecol. Model 263 233—43

Dietrich J P, Schmitz C, Lotze-Campen H, Popp A and Miiller C 2014 Forecasting technological change in agriculture—an endogenous
implementation in a global land use model Technol. Forecast. Soc. Change 81 236—49

Dietrich J P etal 2019 MAgPIE 4 - a modular open-source framework for modeling global land systems Geoscientific Model Development 12
1299-317

Don A et al 2012 Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon GCB
Bioenergy4372-91

EASAC 2018 Negative emission technologies: What role in meeting Paris Agreement targets European Academies' Science Advisory Council
(EASAC) https://easac.eu/fileadmin/PDF_s/reports_statements/Negative_Carbon/EASAC_Report_on_Negative_Emission_
Technologies.pdf

Ecoinvent 2019 Life cycle inventory database v3.6. Swiss Centre for Life Cycle Inventories. https://ecoinvent.org/

Ekvall T, Tillman A-M and Molander S 2005 Normative ethics and methodology for life cycle assessment J. Clean. Prod. 13 1225-34

Englund O, Bérjesson P, Berndes G, Scarlat N, Dallemand J-F, Grizzetti B, Dimitriou I, Mola-Yudego B and Fahl F 2020 Beneficial land use
change: strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture Global Environ.
Change 60 101990

Escobar N and Laibach N 2021 Sustainability check for bio-based technologies: a review of process-based and life cycle approaches Renew.
Sustain. Energy Rev. 135110213

Escobar N, Ramirez-Sanz C, Chueca P, Molt6 E and Sanjudn N 2017 Multiyear life cycle assessment of switchgrass (Panicum virgatum L.)
production in the mediterranean region of spain: a comparative case study Biomass Bioenergy 107 74—85

Fajardy M and Mac Dowell N 2017 Can BECCS deliver sustainable and resource efficient negative emissions? Energy Environ. Sci. 10
1389426

16


https://orcid.org/0000-0002-1378-3142
https://orcid.org/0000-0002-1378-3142
https://orcid.org/0000-0002-1378-3142
https://orcid.org/0000-0002-1378-3142
https://orcid.org/0000-0003-2927-9407
https://orcid.org/0000-0003-2927-9407
https://orcid.org/0000-0003-2927-9407
https://orcid.org/0000-0003-2927-9407
https://orcid.org/0000-0003-0525-4678
https://orcid.org/0000-0003-0525-4678
https://orcid.org/0000-0003-0525-4678
https://orcid.org/0000-0003-0525-4678
https://orcid.org/0000-0002-2778-8825
https://orcid.org/0000-0002-2778-8825
https://orcid.org/0000-0002-2778-8825
https://orcid.org/0000-0002-2778-8825
https://orcid.org/0000-0002-4309-6431
https://orcid.org/0000-0002-4309-6431
https://orcid.org/0000-0002-4309-6431
https://orcid.org/0000-0002-4309-6431
https://orcid.org/0000-0002-1548-201X
https://orcid.org/0000-0002-1548-201X
https://orcid.org/0000-0002-1548-201X
https://orcid.org/0000-0002-1548-201X
https://orcid.org/0000-0001-9975-2656
https://orcid.org/0000-0001-9975-2656
https://orcid.org/0000-0001-9975-2656
https://orcid.org/0000-0001-9975-2656
https://orcid.org/0000-0002-9057-6155
https://orcid.org/0000-0002-9057-6155
https://orcid.org/0000-0002-9057-6155
https://orcid.org/0000-0002-9057-6155
https://orcid.org/0000-0001-9500-1986
https://orcid.org/0000-0001-9500-1986
https://orcid.org/0000-0001-9500-1986
https://orcid.org/0000-0001-9500-1986
https://orcid.org/0000-0002-7147-4292
https://orcid.org/0000-0002-7147-4292
https://orcid.org/0000-0002-7147-4292
https://orcid.org/0000-0002-7147-4292
https://doi.org/10.1186/1754-6834-7-35
https://doi.org/10.1088/1748-9326/6/4/045102
https://git.list.lu/best/best-foreground
https://doi.org/10.1111/jiec.12690
https://doi.org/10.1111/jiec.12690
https://doi.org/10.1111/jiec.12690
https://doi.org/10.1016/j.jclepro.2014.10.002
https://doi.org/10.1016/j.jclepro.2014.10.002
https://doi.org/10.1016/j.jclepro.2014.10.002
https://doi.org/10.1080/08435243.1999.10702725
https://doi.org/10.1080/08435243.1999.10702725
https://doi.org/10.1080/08435243.1999.10702725
https://doi.org/10.1016/j.gloenvcha.2016.07.006
https://doi.org/10.1016/j.gloenvcha.2016.07.006
https://doi.org/10.1016/j.gloenvcha.2016.07.006
https://doi.org/10.1016/j.rser.2019.03.030
https://doi.org/10.1016/j.rser.2019.03.030
https://doi.org/10.1016/j.rser.2019.03.030
https://doi.org/10.1038/ncomms4858
https://doi.org/10.1111/gcbb.12863
https://doi.org/10.1111/gcbb.12863
https://doi.org/10.1111/gcbb.12863
https://doi.org/10.1002/bbb.2395
https://doi.org/10.1002/bbb.2395
https://doi.org/10.1002/bbb.2395
https://doi.org/10.1002/bbb.2395
https://doi.org/10.1021/acs.est.8b00261
https://doi.org/10.1021/acs.est.8b00261
https://doi.org/10.1021/acs.est.8b00261
https://doi.org/10.1111/gcbb.12205
https://doi.org/10.1111/gcbb.12205
https://doi.org/10.1111/gcbb.12205
https://doi.org/10.1002/bbb.2124
https://doi.org/10.1002/bbb.2124
https://doi.org/10.1002/bbb.2124
https://doi.org/10.1016/j.rser.2011.04.004
https://doi.org/10.1016/j.rser.2011.04.004
https://doi.org/10.1016/j.rser.2011.04.004
https://doi.org/10.1038/s41467-022-31122-9
https://doi.org/10.1016/j.jclepro.2012.07.056
https://doi.org/10.1016/j.jclepro.2012.07.056
https://doi.org/10.1016/j.jclepro.2012.07.056
https://github.com/magpiemodel/magpie
https://doi.org/10.1016/j.ecolmodel.2012.03.002
https://doi.org/10.1016/j.ecolmodel.2012.03.002
https://doi.org/10.1016/j.ecolmodel.2012.03.002
https://doi.org/10.1016/j.ecolmodel.2013.05.009
https://doi.org/10.1016/j.ecolmodel.2013.05.009
https://doi.org/10.1016/j.ecolmodel.2013.05.009
https://doi.org/10.1016/j.techfore.2013.02.003
https://doi.org/10.1016/j.techfore.2013.02.003
https://doi.org/10.1016/j.techfore.2013.02.003
https://doi.org/10.5194/gmd-12-1299-2019
https://doi.org/10.5194/gmd-12-1299-2019
https://doi.org/10.5194/gmd-12-1299-2019
https://doi.org/10.5194/gmd-12-1299-2019
https://doi.org/10.1111/j.1757-1707.2011.01116.x
https://doi.org/10.1111/j.1757-1707.2011.01116.x
https://doi.org/10.1111/j.1757-1707.2011.01116.x
https://easac.eu/fileadmin/PDF_s/reports_statements/Negative_Carbon/EASAC_Report_on_Negative_Emission_Technologies.pdf
https://easac.eu/fileadmin/PDF_s/reports_statements/Negative_Carbon/EASAC_Report_on_Negative_Emission_Technologies.pdf
https://ecoinvent.org/
https://doi.org/10.1016/j.jclepro.2005.05.010
https://doi.org/10.1016/j.jclepro.2005.05.010
https://doi.org/10.1016/j.jclepro.2005.05.010
https://doi.org/10.1016/j.gloenvcha.2019.101990
https://doi.org/10.1016/j.rser.2020.110213
https://doi.org/10.1016/j.biombioe.2017.09.008
https://doi.org/10.1016/j.biombioe.2017.09.008
https://doi.org/10.1016/j.biombioe.2017.09.008
https://doi.org/10.1039/C7EE00465F
https://doi.org/10.1039/C7EE00465F
https://doi.org/10.1039/C7EE00465F
https://doi.org/10.1039/C7EE00465F

10P Publishing

Environ. Res. Commun. 6 (2024) 125004 A Arvesen et al

Field J L etal 2020 Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels Proc. Natl Acad. Sci. 117
21968-77

Finkbeiner M 2014 Indirect land use change—help beyond the hype? Biomass Bioenergy 62 218-21

Fujimori S efal 2019 A multi-model assessment of food security implications of climate change mitigation Nature Sustainability 2 386-96

Gibon T, Wood R, Arvesen A, Bergesen ] D, Suh S and Hertwich E G 2015 A methodology for integrated, multiregional life cycle assessment
scenarios under large-scale technological change Environmental Science & Technology 49 11218-26

Gvein M H, Hu X, Neess ] S, Watanabe M D B, Cavalett O, Malbranque M, Kindermann G and Cherubini F 2023 Potential of land-based
climate change mitigation strategies on abandoned cropland Communications Earth & Environment 4 1-16

Harfoot M, Tittensor D P, Newbold T, McInerny G, Smith M J and Scharlemann ] P W 2014 Integrated assessment models for ecologists: the
present and the future Global Ecol. Biogeogr. 23 124—43

Havlik P et al 2014 Climate change mitigation through livestock system transitions Proc. Natl Acad. Sci. 111 370914

Heck V, Gerten D, Lucht W and Popp A 2018 Biomass-based negative emissions difficult to reconcile with planetary boundaries Nat. Clim.
Change8151-5

Heijungs R 1997 Economic drama and the environmental stage: formal derivation of algorithmic tools for environmental analysis and
decision-support from a unified epistemological principle, Centrum voor Milieukunde Leiden. Leiden University Retrieved from
https://hdl.handle.net/1887,/8056 [13 April 2022]

Herzfeld T, Heinke J, Rolinski S and Miiller C 2021 Soil organic carbon dynamics from agricultural management practices under climate
change Earth Syst. Dyn. 12 1037-55

Huijbregts M A J, Steinmann Z J N, Elshout P M F, Stam G, Verones F, Vieira M, Zijp M, Hollander A and van Zelm R 2017 ReCiPe2016: a
harmonised life cycle impact assessment method at midpoint and endpoint level Int. . Life Cycle Assess. 22 138—47

Humpendoder F er al 2018 Large-scale bioenergy production: how to resolve sustainability trade-offs? Environ. Res. Lett. 13 024011

Humpendéder F, Bodirsky B L, Weindl I, Lotze-Campen H, Linder T and Popp A 2022 Projected environmental benefits of replacing beef
with microbial protein Nature 605 90—6

IPCC 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4: Agriculture, forestry and other land use. Chapter 11: N20O
emissions from managed soils, and CO2 emissions from lime and urea application Intergovernmental Panel on Climate Change (IPCC)
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N20&CO2.pdf

Jeswani HK, Chilvers A and Azapagic A 2020 Environmental sustainability of biofuels: a review Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 476 20200351

Joyce P J and Bjorklund A 2022 Futura: a new tool for transparent and shareable scenario analysis in prospective life cycle assessment Journal
of Industrial Ecology 26 134—144

Kwon H, Liu X, Xu Hand Wang M 2021 Greenhouse gas mitigation strategies and opportunities for agriculture Agron. J. 113 463947

Li W et al 2020 Mapping the yields of lignocellulosic bioenergy crops from observations at the global scale Earth Syst. Sci. Data 12 789-804

Luderer G etal 2019 Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies Nat.
Commun. 10 5229

Luderer G et al 2022 Impact of declining renewable energy costs on electrification in low-emission scenarios Nat. Energy 7 32—42

Lutz F eral 2020 The importance of management information and soil moisture representation for simulating tillage effects on N,O
emissions in LPJmL5.0-tillage Geosci. Model Dev. 13 3905-23

Majeau-Bettez G, Dandres T, Pauliuk S, Wood R, Hertwich E, Samson R and Stremman A H 2018 Choice of allocations and constructs for
attributional or consequential life cycle assessment and input-output analysis J. Ind. Ecol. 22 65670

McCalmont J P, Hastings A, McNamara N P, Richter G M, Robson P, Donnison I S and Clifton-Brown J 2017 Environmental costs and
benefits of growing Miscanthus for bioenergy in the UK GCB Bioenergy 9 489507

Mendoza Beltran A, Cox B, Mutel C, Vuuren D P, Font Vivanco D, Deetman S, Edelenbosch O Y, Guinée ] and Tukker A 2020 When the
background matters: using scenarios from integrated assessment models in prospective life cycle assessment J. Ind. Ecol. 24 64-79

Morales M, Aroca G, Rubilar R, Acufia E, Mola-Yudego B and Gonzélez-Garcia S 2015 Cradle-to-gate life cycle assessment of eucalyptus
globulus short rotation plantations in chile J. Clean. Prod. 99 23949

Mutel C 2017 Brightway: an open source framework for life cycle assessment Journal of Open Source Software 2 236

Nabuurs G-J et al 2022 Agriculture, Forestry and Other Land Use (AFOLU) IPCC, 2022: Climate Change 2022: Mitigation of Climate Change.
Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ed P R Shukla et al
(Cambridge University Press) (https://doi.org/10.1017/9781009157926.009)

Naomi E V, Clair G, Sarah M, Emma W L, Andrew W, David E HJ G and Detlef P V'V 2018 Evaluating the use of biomass energy with carbon
capture and storage in low emission scenarios Environ. Res. Lett. 13 044014

Nemecek T and Kégi T 2007 Life cycle inventories of agricultural production systems Ecoinvent report No. 15 Swiss Centre for Life Cycle
Inventories, Diibendorf, CH www.ecoinvent.ch

O’Neill B C, Kriegler E, Riahi K, Ebi K L, Hallegatte S, Carter T R, Mathur R and van Vuuren D P 2014 A new scenario framework for climate
change research: the concept of shared socioeconomic pathways Clim. Change 122 387—-400

Plevin R, Jones J, Kyle P, Levy AW, Shell M ] and Tanner D ] 2022 Choices in land representation materially affect modeled biofuel carbon
intensity estimates J. Clean. Prod. 349 131477

Popp A, Lotze-Campen H and Bodirsky B 2010 Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural
production Glob. Environ. Change 20 451-62

Popp A etal 2014 Land-use protection for climate change mitigation Nat. Clim. Change 4 1095-8

Popp A et al 2017 Land-use futures in the shared socio-economic pathways Global Environ. Change 42 331-45

Qin Z, Dunn ] B, Kwon H, Mueller S and Wander M M 2016 Soil carbon sequestration and land use change associated with biofuel
production: empirical evidence GCB Bioenergy 8 66—80

Qin Z, Zhuang Q and Chen M 2012 Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and
agricultural yield, in the conterminous United States GCB Bioenergy 4 277—88

Riahi K et al 2017 The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview
Global Environ. Change 42 153—68

Riahi K et al 2022 Mitigation pathways compatible with long-term goals Assessment Report of the Intergovernmental Panel on Climate Change
ed P R Shukla (Cambridge University Press) IPCC, 2022: Climate Change 2022: mitigation of climate change. contribution of working
group III to the Sixth (https://doi.org/10.1017/9781009157926.005)

Robertson G P, Hamilton S K, Barham B L, Dale B E, Izaurralde R C, Jackson R D, Landis D A, Swinton S M, Thelen K D and Tiedje ] M 2017
Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes Science 356 eaal2324

17


https://doi.org/10.1073/pnas.1920877117
https://doi.org/10.1073/pnas.1920877117
https://doi.org/10.1073/pnas.1920877117
https://doi.org/10.1073/pnas.1920877117
https://doi.org/10.1016/j.biombioe.2014.01.024
https://doi.org/10.1016/j.biombioe.2014.01.024
https://doi.org/10.1016/j.biombioe.2014.01.024
https://doi.org/10.1038/s41893-019-0286-2
https://doi.org/10.1038/s41893-019-0286-2
https://doi.org/10.1038/s41893-019-0286-2
https://doi.org/10.1021/acs.est.5b01558
https://doi.org/10.1021/acs.est.5b01558
https://doi.org/10.1021/acs.est.5b01558
https://doi.org/10.1038/s43247-023-00696-7
https://doi.org/10.1038/s43247-023-00696-7
https://doi.org/10.1038/s43247-023-00696-7
https://doi.org/10.1111/geb.12100
https://doi.org/10.1111/geb.12100
https://doi.org/10.1111/geb.12100
https://doi.org/10.1073/pnas.1308044111
https://doi.org/10.1073/pnas.1308044111
https://doi.org/10.1073/pnas.1308044111
https://doi.org/10.1038/s41558-017-0064-y
https://doi.org/10.1038/s41558-017-0064-y
https://doi.org/10.1038/s41558-017-0064-y
https://hdl.handle.net/1887/8056
https://doi.org/10.5194/esd-12-1037-2021
https://doi.org/10.5194/esd-12-1037-2021
https://doi.org/10.5194/esd-12-1037-2021
https://doi.org/10.1007/s11367-016-1246-y
https://doi.org/10.1007/s11367-016-1246-y
https://doi.org/10.1007/s11367-016-1246-y
https://doi.org/10.1088/1748-9326/aa9e3b
https://doi.org/10.1038/s41586-022-04629-w
https://doi.org/10.1038/s41586-022-04629-w
https://doi.org/10.1038/s41586-022-04629-w
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_11_Ch11_N2O%26CO2.pdf
https://doi.org/10.1098/rspa.2020.0351
https://doi.org/10.1111/jiec.13115
https://doi.org/10.1111/jiec.13115
https://doi.org/10.1111/jiec.13115
https://doi.org/10.1002/agj2.20844
https://doi.org/10.1002/agj2.20844
https://doi.org/10.1002/agj2.20844
https://doi.org/10.5194/essd-12-789-2020
https://doi.org/10.5194/essd-12-789-2020
https://doi.org/10.5194/essd-12-789-2020
https://doi.org/10.1038/s41467-019-13067-8
https://doi.org/10.1038/s41560-021-00937-z
https://doi.org/10.1038/s41560-021-00937-z
https://doi.org/10.1038/s41560-021-00937-z
https://doi.org/10.5194/gmd-13-3905-2020
https://doi.org/10.5194/gmd-13-3905-2020
https://doi.org/10.5194/gmd-13-3905-2020
https://doi.org/10.1111/jiec.12604
https://doi.org/10.1111/jiec.12604
https://doi.org/10.1111/jiec.12604
https://doi.org/10.1111/gcbb.12294
https://doi.org/10.1111/gcbb.12294
https://doi.org/10.1111/gcbb.12294
https://doi.org/10.1111/jiec.12825
https://doi.org/10.1111/jiec.12825
https://doi.org/10.1111/jiec.12825
https://doi.org/10.1016/j.jclepro.2015.02.085
https://doi.org/10.1016/j.jclepro.2015.02.085
https://doi.org/10.1016/j.jclepro.2015.02.085
https://doi.org/10.21105/joss.00236
https://doi.org/10.1017/9781009157926.009
https://doi.org/10.1088/1748-9326/aaaa02
http://www.ecoinvent.ch
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1007/s10584-013-0905-2
https://doi.org/10.1016/j.jclepro.2022.131477
https://doi.org/10.1016/j.gloenvcha.2010.02.001
https://doi.org/10.1016/j.gloenvcha.2010.02.001
https://doi.org/10.1016/j.gloenvcha.2010.02.001
https://doi.org/10.1038/nclimate2444
https://doi.org/10.1038/nclimate2444
https://doi.org/10.1038/nclimate2444
https://doi.org/10.1016/j.gloenvcha.2016.10.002
https://doi.org/10.1016/j.gloenvcha.2016.10.002
https://doi.org/10.1016/j.gloenvcha.2016.10.002
https://doi.org/10.1111/gcbb.12237
https://doi.org/10.1111/gcbb.12237
https://doi.org/10.1111/gcbb.12237
https://doi.org/10.1111/j.1757-1707.2011.01129.x
https://doi.org/10.1111/j.1757-1707.2011.01129.x
https://doi.org/10.1111/j.1757-1707.2011.01129.x
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1017/9781009157926.005
https://doi.org/10.1126/science.aal2324

10P Publishing

Environ. Res. Commun. 6 (2024) 125004 A Arvesen et al

Rogelj ] et al 2018 Mitigation pathways compatible with 1.5 °C in the context of sustainable development Global Warming of 1.5°C. An IPCC
Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in
the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty ed
V Masson-Delmotte et al https://ipcc.ch/site/assets /uploads/sites/2/2019/02 /SR15_Chapter2_Low_Res.pdf

Rose SK, Bauer N, Popp A, Weyant J, Fujimori S, Havlik P, Wise M and van Vuuren D P 2020 An overview of the energy modeling forum
33rd study: assessing large-scale global bioenergy deployment for managing climate change Clim. Change 163 153951

Sacchi R, Besseau R, Pérez-Lopez P and Blanc 12019 Exploring technologically, temporally and geographically-sensitive life cycle inventories
for wind turbines: A parameterized model for Denmark Renewable Energy 132 1238-50

SacchiR, Terlouw T, Siala K, Dirnaichner A, Bauer C, Cox B, Mutel C, Daioglou V and Luderer G 2022 prospective environmental impact
assement (premise): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment
models Renew. Sustain. Energy Rev. 160 112311

Sandén B A and Karlstrom M 2007 Positive and negative feedback in consequential life-cycle assessment J. Clean. Prod. 15 1469-81

Schmidt] H, Weidema B P and Brandao M 2015 A framework for modelling indirect land use changes in life cycle assessment J. Clean. Prod.
99230-8

Schaphoft'S et al 2018 LPJmL4—a dynamic global vegetation model with managed land—Part 1: Model description. Geosci. Model Dev. 11
1343-75

Searchinger T, Heimlich R, Houghton R A, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D and Yu T-H 2008 Use of U.S. croplands for
biofuels increases greenhouse gases through emissions from land-use change Science 319 1238—40

Shine K P, Fuglestvedt J S, Hailemariam K and Stuber N 2005 Alternatives to the global warming potential for comparing climate impacts of
emissions of greenhouse gases Clim. Change 68 281-302

Smith P et al 2015 Biophysical and economic limits to negative CO, emissions Nat. Clim. Change 6 42

Smith P et al 2019 Interlinkages Between Desertification, Land Degradation, Food Security and Greenhouse Gas Fluxes: Synergies, Trade-
offs and Integrated Response Options Climate Change and Land: an IPCC special report on climate change, desertification, land
degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems ed P R Shukla et al https://
www.ipcc.ch/site/assets/uploads/sites/4/2019/11/09_Chapter-6.pdf

Staples M D, Malina R and Barrett SR H 2017 The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil
fuels Nat. Energy 2 16202

Stevanovié M et al 2017 Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food
prices Environ. Sci. Technol. 51 365-74

Stehfest E et al 2019 Key determinants of global land-use projections Nat. Commun. 10 2166

Steubing B, de Koning D, Haas A and Mutel C L 2020 The activity browser—an open source LCA software building on top of the brightway
framework Software Impacts 3 100012

Tonini D, Hamelin L, Alvarado-Morales M and Astrup T F 2016 GHG emission factors for bioelectricity, biomethane, and bioethanol
quantified for 24 biomass substrates with consequential life-cycle assessment Bioresour. Technol. 208 123-33

Valin H et al 2015 The land use change impact of biofuels consumed in the EU. Quantification of area and greenhouse gas impacts International
Institute for Applied Systems Analysis (IIASA) https://pure.iiasa.ac.at/id /eprint/12310/1/Final%20Report_ GLOBIOM_
publication.pdf

von Bloh W et al 2018 Implementing the nitrogen cycle into the dynamic global vegetation, hydrology, and crop growth model LPJmL
(version 5.0) Geosci. Model Dev. 11 2789812

WangM, Han J, Dunn J B, Cai H and Elgowainy A 2012 Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn,
sugarcane and cellulosic biomass for US use Environ. Res. Lett. 7 045905

Welfle A, Thornley P and Réder M 2020 A review of the role of bioenergy modelling in renewable energy research & policy development
Biomass Bioenergy 136 105542

Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E and Weidema B 2016 The ecoinvent database version 3 (part I): overview and
methodology The International Journal of Life Cycle Assessment 21 1218-30

Wicke B, Verweij P, van Meijl H, van Vuuren D P and Faaij A P C 2012 Indirect land use change: review of existing models and strategies for
mitigation Biofuels 3 87—-100

Wise M, Calvin K, Kyle P, Luckow P and Edmonds ] 2014 Economic and physical modeling of land use in GCAM 3.0 and an application to
agricultural productivity, land, and terrestrial carbon Climate Change Economics 5 1450003

XuH, OulL, LiY, Hawkins T R and Wang M 2022 Life cycle greenhouse gas emissions of biodiesel and renewable diesel production in the
united states Environmental Science & Technology. 56 751221

Yang Y, Tilman D, Lehman C and Trost ] ] 2018 Sustainable intensification of high-diversity biomass production for optimal biofuel benefits
Nature Sustainability 1 686—92

Zilberman D 2017 Indirect land use change: much ado about (almost) nothing GCB Bioenergy 9 485-8

18


https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_Chapter2_Low_Res.pdf
https://doi.org/10.1007/s10584-020-02945-6
https://doi.org/10.1007/s10584-020-02945-6
https://doi.org/10.1007/s10584-020-02945-6
https://doi.org/10.1016/j.renene.2018.09.020
https://doi.org/10.1016/j.renene.2018.09.020
https://doi.org/10.1016/j.renene.2018.09.020
https://doi.org/10.1016/j.rser.2022.112311
https://doi.org/10.1016/j.jclepro.2006.03.005
https://doi.org/10.1016/j.jclepro.2006.03.005
https://doi.org/10.1016/j.jclepro.2006.03.005
https://doi.org/10.1016/j.jclepro.2015.03.013
https://doi.org/10.1016/j.jclepro.2015.03.013
https://doi.org/10.1016/j.jclepro.2015.03.013
https://doi.org/10.5194/gmd-11-1343-2018
https://doi.org/10.5194/gmd-11-1343-2018
https://doi.org/10.5194/gmd-11-1343-2018
https://doi.org/10.5194/gmd-11-1343-2018
https://doi.org/10.1126/science.1151861
https://doi.org/10.1126/science.1151861
https://doi.org/10.1126/science.1151861
https://doi.org/10.1007/s10584-005-1146-9
https://doi.org/10.1007/s10584-005-1146-9
https://doi.org/10.1007/s10584-005-1146-9
https://doi.org/10.1038/nclimate2870
https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/09_Chapter-6.pdf
https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/09_Chapter-6.pdf
https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/09_Chapter-6.pdf
https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/09_Chapter-6.pdf
https://doi.org/10.1038/nenergy.2016.202
https://doi.org/10.1021/acs.est.6b04291
https://doi.org/10.1021/acs.est.6b04291
https://doi.org/10.1021/acs.est.6b04291
https://doi.org/10.1038/s41467-019-09945-w
https://doi.org/10.1016/j.simpa.2019.100012
https://doi.org/10.1016/j.biortech.2016.02.052
https://doi.org/10.1016/j.biortech.2016.02.052
https://doi.org/10.1016/j.biortech.2016.02.052
https://pure.iiasa.ac.at/id/eprint/12310/1/Final%20Report_GLOBIOM_publication.pdf
https://pure.iiasa.ac.at/id/eprint/12310/1/Final%20Report_GLOBIOM_publication.pdf
https://doi.org/10.5194/gmd-11-2789-2018
https://doi.org/10.5194/gmd-11-2789-2018
https://doi.org/10.5194/gmd-11-2789-2018
https://doi.org/10.1088/1748-9326/7/4/045905
https://doi.org/10.1007/s11367-016-1087-8
https://doi.org/10.1007/s11367-016-1087-8
https://doi.org/10.1007/s11367-016-1087-8
https://doi.org/10.4155/bfs.11.154
https://doi.org/10.4155/bfs.11.154
https://doi.org/10.4155/bfs.11.154
https://doi.org/10.1142/S2010007814500031
https://doi.org/10.1021/acs.est.2c00289
https://doi.org/10.1021/acs.est.2c00289
https://doi.org/10.1021/acs.est.2c00289
https://doi.org/10.1038/s41893-018-0166-1
https://doi.org/10.1038/s41893-018-0166-1
https://doi.org/10.1038/s41893-018-0166-1
https://doi.org/10.1111/gcbb.12368
https://doi.org/10.1111/gcbb.12368
https://doi.org/10.1111/gcbb.12368

	1. Introduction
	2. Methods
	2.1. Principles for scenario integration
	2.1.1. Crop-specific variables
	2.1.2. Differences in aggregate variables

	2.2. Land use modelling
	2.3. Land use scenarios
	2.3.1. Bioenergy demand
	2.3.2. Shared socioeconomic pathway
	2.3.3. GHG price

	2.4. Time dynamics for land use CO2 emissions
	2.5. Life cycle assessment

	3. Results
	3.1. Land use model results
	3.2. Life cycle assessment results

	4. Discussion
	Acknowledgments
	Conflict of interest statement
	Data availability statement
	Appendix.
	References



