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ARTICLE INFO ABSTRACT

Keywords: Network (or graph) sparsification benefits downstream graph mining tasks. Finding a sparsified
Graph sparsification subgraph G similar to the original graph G is, however, challenging due to the requirement of
Edge sampling preserving various (or at least representative) network properties. In this paper, we propose a
Hybrid sampling general hybrid edge sampling scheme named LOGA, as the combination of the Local-filtering-
Triads based Random Edge sampling (LRE) [Hamann et al., SNAM 2016] and the Game-theoretic

Sparsification with Tolerance (GST) [Su et al., ASONAM 2022]. LOGA fully utilizes the advan-
tages of GST — in preserving complex structural properties by preserving local node properties
in expectation — and LRE — in preserving the connectivity of a given network. Specifically, we
first prove the existence of multiple equilibria in GST, based on which we propose LOGA and
its variant LOGA®¢ by refining GST. The LOGA is obtained by regarding LRE as an empirically
good initializer for GST, while LOGA®¢ is obtained by further including a constrained update
for GST. In this way, LOGA / LOGA*¢ generalize the work on GST to graphs with weights and
different densities, without increasing the asymptotic time complexity. Extensive experiments
on 26 weighted and unweighted networks with different densities demonstrate that LOGA*¢
performs best for all 26 instances, i.e., they preserve representative network properties better
than state-of-the-art sampling methods alone.

1. Introduction

Networks G = (V, E, W) (= graphs, we use both terms interchangeably) have been a prevalent data representation
form. In practice, it can be computationally demanding to analyze large networks with an average degree in the order
of hundreds or thousands. One common solution to speed up graph analyses is to use sparsification — removing a
significant proportlon of possibly redundant edges of G without the aggregation of nodes. G is therefore compressed
into a sparser graph G by sparsification. To obtain a meaningful G, sparsification requires the preservation of structural
properties of G in G in a scaled manner. When doing so, downstream graph mining tasks can benefit from sparsification,
both regarding speed and quality [1, 2, 3]. For example, by sparsification, important edges can be identified and used for
graph representation learning [4]; other relevant applications include visualization [2] and influence maximization [5].

Ideally, G should be sufficiently similar (in a scaled manner) to G, so that G can be used in place of G for various
applications as mentioned above. However, this is a non-trivial problem due to the need to preserve various structural
properties of G. A pragmatic solution is to preserve representative ones (see Fig. 1). By doing so, we can expect other
properties to be preserved to some extent, due to the correlations between different properties [6, 7, 8, 9].

When doing sparsification, time consumption is an important aspect to consider. For this, edge sampling methods
using local structural information are often preferred [10, 11, 12]. Still, preserving a set of representative properties
by edge sampling is also non-trivial, because it is hard to define an appropriate sampling objective characterizing well
the selected representative properties. A practical option is to combine different edge sampling methods.

Therefore, we propose a hybrid sampling scheme LOGA, as a combination of a well-known edge-focused sampling,

e., the local-filtering-based random edge sampling (LRE) [10], and the state-of-the-art node-focused sampling,
i.e., the game-theoretic sparsification with tolerance (GST) [13]. LRE applies a local filtering post-processing step
to random sampling, emphasizing the preservation of the largest connected component; while GST is motivated
by the fact that local structural characteristics can define the basic and global organization of a network [14, 15].
This combination is motivated by two drawbacks of GST: initialization dependency and unconstrained update. The
initialization dependency arises due to the possible existence of multiple Nash equilibria in an exact network potential
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Figure 1: A schematic view of sparse subgraphs G preserving structural properties of a given graph G. Sparse subgraphs
represented in shapes have the same number of edges. Assume that the largest connected component, community
structure, and degree distribution are representative structural properties to be preserved. Some G share a relatively
higher similarity to G in terms of community structure, while others preserve well the degree distribution. Compared
with all others, G| and G, in diamond are ideal choices for well-preserving the selected representative properties.

game [16, 17, 18]; this is also true for GST under assumptions (see Lemma 1). The unconstrained update means that
GST proceeds based solely on the optimization objective. Consequently, representative properties not characterized by
the optimization objective or not specified in the sparsification process will not be properly preserved. Mainly due to
the two drawbacks, GST has limited sparsification performance in networks with weights and different densities (see
preliminary studies in Figs. SA and 6A).

The paper is organized as follows. Section 2 reviews the related work on edge sampling and exact potential games.
The proposed hybrid edge sampling scheme is explained in Section 3. Section 4 presents the experimental evaluation,
and Section 5 concludes this paper.

1.1. Contributions
Thus, our contributions are as follows:

» We propose a hybrid edge sampling scheme LOGA and its variant LOGA®¢ for graph sparsification. Specifically,
LOGA improves the initialization of GST by providing GST with an empirically good sparse G° subgraph using
LRE. LOGA®¢ improves GST further by including a constrained update for GST, i.e., preserving the largest
connected component and the weighted average clustering coefficient based on G°.

« LOGA*¢ preserves representative properties better than the state-of-the-art sampling methods for functional
climate, real-world, and synthetic networks (on average).

+ We recommend using LOGAS', “in practice, in which subscripts ‘2’, 3, and ‘w’ represent that GST preserves
the expected degrees of nodes, the expected number of triangles (i.e., closed wedges), and the expected number
of non-closed wedges associated with nodes.

2. Related work

Edge sampling methods for graph sparsification can be classified into two categories: edge-focused and node-
focused ones. We review both of them. We also provide the necessary background on exact potential games, as it is
adapted in our sampling scheme.

Edge-focused sampling. Typical edge sampling methods (the probability-based and filtering-based ones) are edge-
focused because they use properties associated with edges for sampling.

e Probability-based sampling samples edges based on a given edge probability distribution. For example, uniform
sampling samples edges uniformly and independently at random [19]; despite simplicity, it preserves spectral
properties with high probability [20]. When sampling for graph sparsification, spectral properties such as
eigenvalue spectra are of high interest since they contain global information on both graph topology and
dynamical properties [21]. Le [11] proposed a non-uniform sampling which samples edge e = {u, v} with
probability inversely proportional to the number of common neighbors of u and v.

o Filtering-based sampling, as in Ref. [10], includes two primary steps: edge scoring and filtering. Specifically,
according to a pre-defined scoring method based on some network properties, edge scoring assigns each edge
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a value to describe its importance; filtering then removes all edges with scores below a certain threshold until
the desired sparsification ratio is satisfied. Hamann et al. [10] have compared systematically typical well-known
filtering-based sampling methods, including random edge, local Jaccard similarity [22], edge forest fire [23],
Simmelian backbones [24], and algebraic distance [25]. By including an additional local-filtering step for these
sampling methods, the preservation of properties considered in their work is improved. They also proposed the
local-degree-based sampling emphasizing the preservation of the largest connected component.

Edge-focused sampling depends heavily on an appropriate way to define properties associated with edges. To relax
such a dependency, node-focused sampling is proposed.

Node-focused sampling. It is known that local structural characteristics can define the basic and global organi-
zation of a network [14, 15], with typical applications such as random graph generation [14, 15], uncertain graph
sampling [26, 27], and degree-based edge sampling [28, 29]. Motivated by this, node-focused sampling focuses on
local properties associated with nodes, and formulates graph sparsification as an optimization problem [13, 28, 29, 30].
In particular, based on Refs. [26, 27, 28, 29], Su et al. [13, 30] has recently generalized this idea for graph sparsification
by proposing the game-theoretic sparsification with tolerance (GST, the foundation for Algorithm 1). As one of the
state-of-the-art sparsification methods, GST always converges to a Nash equilibrium. This is because GST constitutes
an exact potential game and the best-response dynamics over such a game ensures the convergence [13, 27, 31].
Still, two drawbacks of GST, i.e., initialization dependency and unconstrained update (see Section 1), largely limit its
performance of GST in networks with weights and different densities. We leverage the two drawbacks when proposing
the hybrid sampling.

Background on exact potential games. A strategic game is a triplet (P, {S,},cp, {C)(S,, S_p)},ep = R)
consisting of players P, the strategy .S, of a player p € P, and the individual cost C, of the player p. The game
proceeds in a round-robin fashion after assigning each player a strategy as the initialization. Based on the best-response
dynamics [31], in every round, each player p minimizes its cost C, based on all other players’ strategies S_,; when the
gain g(p) is positive, i.e., g(p) = C,(S,, S_,) — Cp(S[’), S_,) > 0, the current strategy .S, is updated to a new one SI’;.
If no player has an incentive to change the current strategy, then the strategic game reaches a (pure) Nash equilibrium.
The strategic game is said to be a potential game if all players’ incentives to change their strategies can be formulated
using a single global function called the potential function @. Furthermore, if the gain in the cost function is reflected
in the potential function, i.e., C,(S,.5_,))— Cp(S[’), S_,)) =®(S,, S_,)— @(S;, S_p), the potential game is called exact.
Most importantly, an exact potential game always converges to a Nash equilibrium due to the best-response dynamics,
regardless of the initialization [31].

3. Proposed Sparsification Method

Given an undirected and weighted graph G = (V, E, W), graph sparsification aims to find a subgraph G =
(V, E, W) which preserves certain representative properties. The proposed hybrid sampling LOGA' improves GST
via initialization improvement and a constrained update. We thus describe GST first by following the same assumption
— a uniform and independent sampling probability p € (0, 1] for each edge — that applies to GST in Ref. [13]. Note that
this probability p controls also the number of edges to be preserved indirectly. Section 3.2 highlights the contributions
of this paper. The most common symbols of this work are listed in Table 1.

3.1. Game-theoretic Sparsification with Tolerance (GST)
Instead of sampling edges directly based on the sampling probability p, GST uses it to derive and preserve local
node properties (in expectation) in the sparsified graph G. Specifically, for a node i in G, these local properties include

the degree miz(g) = Zy;ll A, i the number of triangles (closed wedges) m;(g) = % ZLZ'I Lzll A, inkA k- and the
number of non-closed wedges m’ (C) := %m;(g)(m;(g) -1)- m;(g) [32]. Following Refs. [13, 26, 27], their expected
values are defined based on p as: E} := pm}(Q), Ef := p’mi(G), and El, := 3p*m}(G)(m () — 1) — p>mi(G). An
example of computing these local node properties and their expectations is presented in Fig. 2. The graph sparsification

is therefore formulated as the node-focused sampling:

Definition 1. (Sparsification via scaled local node properties [13]). Given an undirected and weighted network G =
(V, E, W) and a uniform and independent sampling probability p € (0, 1], find a sparsified subgraph G = (V, E, W)

ICode available at: https://anonymous .4open.science/r/Network-Sparsification-via-Hybrid-Edge-Sampling-E663
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Symbol Definition

¢G=WV,E, W) An undirected and weighted graph with V', E, and W as vertex, edge, and weight sets, respectively

AW The unweighted and weighted adjacency matrices of G

e {2,3,w} The basic local properties associated with each node to be preserved, i.e., I € {2} for the degree, I € {3} for
triangles (closed wedges), and / € {w} for non-closed wedges; by following Ref. [13], we particularly discuss
the combinations of them, i.e., / € {2,3} and / € {2,3, w}

p The uniform and independent sampling probability p € (0, 1]

E| The expected degree (E}) of node i, the expected number of triangles ([E;), and the expected number of non-
closed wedges (E!)) associated with the node i, based on G and p

G° = (V, E°, W) The initialized sparse subgraph by LRE, based on G and p

G' = (V,E',W') The current subgraph during edge sampling with V', E’ C E, and W’ C W as vertex, edge, and weight sets,

respectively

G =(V,E,W) The desired sparse subgraph after edge sampling with V, £ C E, and W C W as vertex, edge, and weight sets,
respectively

mj(-) The degree (m;(-)) of node i, the number of triangles (mg(-)), and the number of non-closed wedges (mL ()

associated with the node i, based on a given graph; for example, m’z(Q), m;(g), and m;}(g) are for G, while
m(G"), mg(G’), and m’ (G) are for G’/

s(+),¢(+) The size of the largest connected component (s(+)) and the weighted average clustering coefficient (c(+)) of a
given graph; for example, s(G°) and ¢(G°) are for G°, while s(G’) and ¢(G’) are for G’
LOGA,;, The detailed algorithm of the proposed hybrid sampling scheme LOGA, as the combination of the Local-

filtering-based Random Edge sampling (LRE) [10] and the Game-theoretic Sparsification with Tolerance
(GST) [13], by default, preserving degrees, triangles, and non-closed wedges in expectation, i.e., for I &
{2,3, w}; the preservation of subset properties leads to LOGA, 3, i.e., for I € {2,3}

LOGA3® The detailed algorithm of the variant LOGA®*¢, by default, preserving degrees, triangles, and non-closed wedges

2.3,w
in expectation, i.e., for Il € {2,3, w}; the preservation of subset properties leads to LOGA;’}, ie., forl € {2,3}

Table 1: List of symbols.

® ®

Q—® @
‘ 0.8 0A8

@ © @ ©

Figure 2: An example of computing local node properties and their expectations associated with A. (a) The given graph
G. The degree of A, the number of triangles, and the number of non-closed wedges associated with A, are mg‘(g) =
3, m{(Q) = 1 (e, {{A,B},{A,C},(B,C}}), and mi(Q) = 2 (ie., {{A, B},{A, D}} and {{A,C},{A,D}}),
respectively. (b) The given graph G with a uniform and independent sampling probability p = 0.8. The expected
degree of A, the expected number of triangles, and the expected number of non-closed wedges associated with A, are
[E;‘ =24, [E’; =0.512, and E# = 1.408, respectively.

such that:

A . o, ;
G := argmin )’ —|mi(G') - El. (1)
G'CC ey le{;&w} m;(G)

where the normalization factor 1/ m;(g) avoids the domination of any single one of these local properties. Eq. (1)
preserves by default all three local node properties, i.e., the degree (I € 2), the number of triangles (I € 3), and the
number of non-closed wedges (I € w) a node belongs to. That is, each node in G has an incentive to make these local
properties (in the current sparse subgraph G’) as close as possible to their corresponding expectations. By following
Ref. [13], we consider the two cases where [ iterates (i) only over degrees and triangles (I € {2, 3}) and (ii) additionally
over non-closed wedges (I € {2,3,w}).

To find approximate solutions for Eq. (1), Ref. [13] proposed GST which constitutes an exact network potential
game (see lines 7-18 in Algorithm 1). The game is a triplet (E, {.S, },cg. {C,(S,, S_.)}.cg = R), where each edge
e = {u,v} € E is a player sharing binary strategies: 0 for removal and 1 for preservation (S, = {0, 1}) and each

edge minimizes its cost C, based on the strategies S_, of all other edges. Ref. [13] defines the cost function as
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Algorithm 1: Hybrid sampling scheme (LOGA / LOGA*¢), based on the game-theoretic sparsification with
tolerance (GST) [13]

Input: G = (V,E, W), p € (0, 1], and the tolerance threshold by default T = 0.01 (based on Ref. [13])

Output: G’ = (V,E',W")

/* Stage I (Precomputing expected basic properties) */
1 for i € V do in parallel
2 | Compute E, E}, E!

w’

mi (), mi(G), and m! (G), based on G and p
/* Stage II (Sparsification) */

w

G, s(G"), (G, c(Q) « Initialization(G, p)
for i € VV do in parallel
L Compute m},(G"), my(G"), and m’ (G"), based on G’
6 L' «V;Gain[|[V]|]] < 0;r <0
7 repeat
s L<L;L <@
9 foreach e = {u, v} € E incident (in G) to a node in L do

[V

10 A(e) « (uyu{vlu{zeV :{z,u} € EEA{z,v} € E'}

1 Compute g(e) based on Eq. (2)

12 G', Flag < Constrained_Update(e, G', s(G®), ¢(G°), ¢(C), g(e))
13 if Flag is True then

14 L' < L'uA(e)

15 L Update m,(G"), mi(G"), and m’ (G"), based on G’

16 r—r+1
. L _
7| Gain[r] <« X0y ¥icinsaw) o Imi(G") — E|

18 until r > 2 A Gain[r — 1] — Gain[r] £ T
19 return G’

C, = it Zic(23.0) %W;(G’)—[E;l where A(e) = {u}U{v}u{z €V : {z,u} € E'A{z,v} € E'}isthesetof

nodes affected by the strategy change of e. C, considers only .A(e) because only local subgraphs with up to 3 nodes are
considered in Eq. (1). The game proceeds in a round-robin fashion based on the gain g(e) := C,(S,, S_,)—C,(S é, S_,)
in the cost function:

gey= Y )

i€ Ae) I€{2,3,w) my(G)

Imi(G") - Ef| = |mi(G") ~ E}|
: @

where e updates its strategy, e.g., from S, = 1 to S} = 0 with the current subgraph G’ correspondingly becoming
G"=,E"Y=(V,E"\ {e}), only when g(e) > 0. The game has a (pure) Nash equilibrium when no edge has the

incentive to change its current strategy. Meanwhile, a global function ® = Y., > 1230} m |m§(G’ ) — [E;l (same
[}

as Eq. (1)) exists to ensure that GST is a potential game. The gain in the potential function is therefore:

1

D(S,, S_) = DS, S )= ) (Imi(G") — Ei| = |mi(G") — El]) .

iV 1e(23.0) ™9

In particular, C,(S,, S_,)—C,(S!, S_,) = ©(S,, S_,)—®(S’, S_,) due to ®(S,, S_,)—D(S’, S_,) =0 Vi € V\ A(e),
ensuring that GST constitutes an exact potential game. The best-response dynamics in the exact potential game
guarantees the convergence to a Nash equilibrium [31].

3.2. Hybrid Edge Sampling Scheme

Our proposed hybrid sampling scheme LOGA and its variant LOGA*¢ is based on the improvements over GST. The
improvements include initialization via edge-focused sampling (i.e., LOGA — Algorithms 1 and 2), and a constrained
update (i.e., the variant LOGA*¢ — Algorithms 1, 2, and 3)).
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Algorithm 2: Initialization
Input: = (V,E,W)and p € (0,1]
Output: G° = (V, E°, W), 5(G), &(G®)
1 Generate a sparse subgraph G° = (V, E°, W°) with E° = p| E| using LRE [33]
2 Compute 5(G°), ¢(G°), and ¢(Q)
3 return G°, 5(G°), ¢(G), ¢(G)

Algorithm 3: Constrained_Update

Input: An edge e = {u, v} currently being visited, G’ = (V, E', W), s(G°), ¢(G), ¢(G), and g(e)
Output: Whether to update G' = (V, E', W')

if e € E' then G « (V,E'\ {e})

else G < (V,E' U {e})

Compute s(G”) and ¢(G")

if 2(e) > 0 A S(G”) >= 5(G°) A [6(G°) — €(Q)| >= |¢(G") — E(C)| then return G’ < G”, True
else return G’, False

[ N

o Initialization via edge-focused sampling — Algorithms 1 and 2. The idea of improving the initialization of
GST stems from the existence of multiple equilibria in GST, which is not indicated in Ref. [13]; as a result, the
solution that GST converges to depends highly on initialization. Motivated by [26, Lemma 2], we prove the
existence of multiple equilibria for the case / € {2,3} of Eq. (1) as below.

Lemma 1. For

R . T ;
G := argmmz Z , |m}(G')—[E;|,
6’6 jev iy MG

assume a globally optimal sparse subgraph G' exists which contains at least one edge e = {u, v} with u and v
satisfying: (a){z €V : {z,u} € E'A{z,v} € E'} = @; (b) m;(G') >[5 andm;(G’) < ESwithE},E; € N; (c)
my(G) = mg(g). Then, there exists a globally optimal sparse subgraph G # G’ representing a Nash equilibrium
with m’Z(G) <E,VieV.

PROOF. Since G’ is a global optimum, it is a Nash equilibrium. We continue by first proving that G =
(V,E") = (V,E’\ {e}) is another global optimum. Condition (a) indicates the non-existence of common
neighbors between u and v in G’. Therefore, A(e) = {u, v} is the node set affected by the removal of e from G
more precisely, only the degrees of u and v, i.e., m;(G’ ) and mg(G’ ), get affected. Thus, the corresponding gain,
as in Eq. (2), is simplified as:
_ IMG) — Byl = G~ B Ig(G1) — Byl - Imy(G) ~ Y|

n(C) mi(0)
According to condition (b), m‘2‘(G’ ) — E; > 0and Ej € N; therefore, the removal of e from G’ leads to G" with
m;(G”)—[E'; = m;(G’)— 1-E > 0. Similarly, we have mg(G’)—[E; <0and m;(G”)—[Eg = m;(G’)— 1-E; <O0.
Therefore, |m(G") — E5| = |m5(G") — E5| = 1 and |m(G") — E5| — |m{(G") — E| = —1. Further by condition
©), g'e) = 1/ m5(G) = 1/m3(G) = 0; that is, both G’ and G"' are global optima representing different Nash
equilibria. According to Ref. [26], by removing all edges satisfying conditions (a), (b), and (c), one constructs a
globally optimal sparse subgraph G # G’ which satisfies m;(é) < E!, Vi € V. Thus, the proof is complete.

g'(e)

Due to the (conditional) existence of more than one global optimum, it is natural to ask how to steer an algorithm
to find a good optimum. One established strategy to increase the likelihood of convergence to a good local (or,
better yet, global) optimum is to use a good starting solution. In our context, a starting solution that already
preserves representative properties reasonably well should serve this purpose. Therefore, we propose LOGA first
by using LRE as a good initializer in improving GST (see Algorithm 2), due to the best performance of LRE in
Figs. 5A and 6A. Our conjecture of convergence to a better optimum is empirically verified in Section 4.2.
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e Constrained update — Algorithms 1, 2, and 3. For GST, initialization improvement is not sufficient to ensure
that, the representative properties preserved by the initialized sparse subgraph G° can still be preserved after
sparsification. This is because GST proceeds based only on its optimization objective (see Eq. (2)). As a result,
the representative properties not characterized by the optimization objective cannot be preserved properly.
Therefore, a constrained update is needed for the sparsification process. To this end, we pay attention to the
preservation of the largest connected component s(+) and the weighted average clustering coefficient c(+). These
two structural properties characterize the global organization of a graph, and can be used for characterizing
network resilience [34, 35]. Besides, they are easy to compute. In particular, the largest connected component
can be well-preserved by LRE [10] (also see LRE better than RE in Table 5), but not by GST. Thus, we further
include the preservation of $(GY) and ¢(G°) based on G° in Algorithm 3, leading to a variant LOGA®¢. Note that,

. . - 1 vV 1 VI V] WytW,
for a given graph like G, we compute the ¢(G) = Tl Z!zll <(Z|V| FTSIAET L=|1 }el %AikAi,Akl>
j=1 " j=1 "Vij

based on Ref. [36].

Time complexity. We assume an adjacency array as the graph data structure. Stage I (see lines 1-2 in Algorithm 1)
is dominated by the computation of the number of triangles mg (@) for each node. We use adjacency-marking-based
triangle counting [37], which can be implemented to run in O(a(Q)| E|) time [38], with a(G) being the arboricity of G
and being upper-bounded by the maximum degree d,,,,. The initialization (see Algorithm 2) takes O(log(d,,,,)| E|)
for obtaining GY by LRE [10], O(|V'| + | E|) for computing the largest connected component s(+), and O(a(G)| E|) for
computing the weighted average clustering coefficient ¢(-). For Stage II, computing the number of triangles m’3 (G") for
each node based on the current subgraph G’ dominates Lines 4-6. Lines 7-15 take O(rd,,,| E|) time, where r is the
number of iterations of the repeat-loop and O(d,,,,) is required by a linear-time intersection operation to find A(e).
Note that computing ¢(G") takes O(d,,,,,,) dominating Algorithm 3. Hence, in total, the (sequential) time complexity
of LOGA / LOGA®¢ equals that of GST with O(rd,,,, | E|), provided that the initialization step (i.e., Algorithm 2) takes
at most O(rd,,,,.| E|) time.

max

4. Experimental evaluation

In this section, we assess the performance of LOGA / LOGA®¢ by answering:

Q1: How well do LOGA / LOGA*¢ improve the state-of-the-art sampling methods in terms of preserving non-local
/ complex representative properties?

Q2: What is the empirical running time of LOGA / LOGA®, in particular in comparison to GST?

4.1. Experimental settings

Data sets. We consider 13 weighted networks from different domains in Table 2, including functional climate
networks, observed real-world networks, and LFR networks. For the same data sets, another 13 networks in Table 3
are constructed to verify the usefulness of LOGA / LOGA’¢ for unweighted and sparser networks.

o Functional climate networks. In Table 2, five functional networks are constructed based on Refs. [39, 40, 41].
By randomly choosing 50% edges from the respective networks in Table 2 and letting weights be 1, we obtain
unweighted networks with reduced density in Table 3.

o Observed real-world networks. In Table 2, five selected real-world networks, from Squirrel to HepTh, describe
social and biological relationships and are available publicly online?. We also construct unweighted networks
with reduced density in Table 3, by randomly choosing 50% edges from the respective networks in Table 2 and
letting weights be 1.

e LFR networks. In Table 2, three synthetic networks are constructed based on the Lancichinetti-Fortunato-
Radicchi (LFR) benchmark [42] implemented in NetworKit [33, 43], a tool suite for scalable network analysis.
The parameters are as follows: (i) power-law exponents for the degree distribution and the community size
distribution: 7; = —2 and 7, = —1, respectively; (ii) fraction of inter-community edges: y € {0.1,0.2,0.3}; (iii)
desired average and maximum degrees: 250 and 1000 (50 and 250 for Table 3), respectively; (iv) minimum and
maximum sizes of communities: 250 and 1000 (25 and 250 for Table 3), respectively.
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Type Network 14 |E| % Description
Glo_ERAS5SP 7,320 1,559,513 213.05 | Global surface pressure from ERAS
Functional | Glo_ERAS5ST 7,320 2,022,285 276.27 | Global surface temperature from ERAS
climate Glo_ERASGPH 7,320 1,866,977 255.05 | Global 250-hPa geopotential height from ERAS
networks Glo_ERAS5OLR 7,320 845,465 115.50 | Global outgoing long-wave radiation from ERAS
Glo_TRMM 16,080 1,753,588 109.05 | Precipitation from TRMM
Squirrel 5,201 198,353  38.14 | Wikipedia articles on squirrels
Observed SC 6,394 994,296  155.50 | Protein network of Saccharomyces cerevisiae
real-world | NIPS 13,875 746,316  53.79 | Bipartite document—word dataset of NIPS full papers
networks CE 18,387 4,481,664 243.74 | Protein network of Caenorhabditis elegans
HepTh 22,908 2,444,798 106.72 | Co-citation network of arXiv’s hep-th section
LFR LFR, ¢, 10,000 1,238,142 123.81 | Synthetic benchmark
networks LFRH:O_2 10,000 1,255,220 125.52 | Synthetic benchmark
LFR 10,000 1,250,961 125.10 | Synthetic benchmark
Table 2: Characteristics of data sets with weighted structure.
Type Network 14 |E| % Description
Glo_ERASSP 7,320 779,756  106.52
Functional | Glo_ERASST 7,320 1,011,142 138.13
climate Glo_ERAS5SGPH 7,320 933,488 127.53 | Unweighted and reduced network density
networks Glo_ERASOLR 7,320 422,732  57.75
Glo_TRMM 16,080 876,794  54.53
Squirrel 5,201 99,176 19.07
Observed SC 6,394 497,148  77.75
real-world NIPS 13,875 373,158 26.89 | Unweighted and reduced network density
networks CE 18,387 2,240,832 121.87
HepTh 22,908 1,222,399 53.36
LFR LFR,_, 10,000 252,923 2529
networks LFR,_, 10,000 248,907  24.89 | Unweighted and reduced network density
LFR o5 10,000 253,753  25.38

Baselines. We compare LOGA / LOGA*¢ with two state-of-the-art and four well-known sampling methods. Note
that we compare LOGA / LOGA®¢ and GST indirectly by comparing LOGA / LOGA*¢ vs {LD, LIS, RE, LRE, and
CN} and GST vs {LD, LJS, RE, LRE, and CN}, separately. This is because we want to compare graphs with similar
densities, but both LOGA / LOGA®¢ and GST cannot take directly a sparsification ratio as input while the other methods

Table 3: Same data sets as Table 2 but with weights 1 and reduced density.

can. Both CN and LRE are additional competitors not used by Ref. [13].

o Two state-of-the-art methods. In Ref. [13], GST takes by default the original graph G as initialization. The
necessity of preserving both degrees and the number of 3-node subgraphs in expectation for graph sparsification
has also been confirmed. Therefore, by following Ref. [13], we consider also both / € {2,3} and / € {2,3, w}.
That s, the first comparison is between LOGA, 3/ LOGA, 3 , / LOGA, / LOGAY, "and GST,3/GSTy3 .

The second competitor by Le [11] samples edges with probability in\;ersely prop\(;rtional to the number of

common neighbors (CN) between the two nodes.

o Four well-known methods. Four well-known edge-focused sampling methods are: local degree (LD) [10], local
Jaccard similarity (LJS) [22], random edge sampling (RE) [20], and the local-filtering based random edge
sampling (LRE) [10]. Their empirical effectiveness in preserving the overall connectivity (by LD), community
structure (by LJS), and eigenvalue distribution (by RE/LRE), are systematically compared in Ref. [10] and

implemented in NETWORKIT [33, 43].

2http://snap.stanford.edu/, http://konect.cc/networks/, https://string-db.org/
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Representative property Computation Similarity estimation

The weighted average clustering coefficient | Ref. [36] Deviation [10]

The size of the largest connected component | NETWORKIT [33, 43] Deviation

Community structure PLM [44] in NETWORKIT Adjusted rand index (ARI) [45]
Betweenness EstimateBetweenness [46] in NETWORKIT Spearman’s p with P < 0.05 [10]
Degree NETWORKIT Spearman’s p with P < 0.05

The weighted local clustering coefficient Ref. [36] Spearman’s p with P < 0.05

Graph spectra (eigenvalue distribution) SLAQ_NetLSD [47] using heat kernel [48] Euclidean distance [48, 47]
SLAQ_VNGE [47] using Von Neumann Graph
Entropy [49]

Graph spectra (eigenvalue distribution) Euclidean distance

Table 4: Graph similarity estimation based on selected representative properties.

Evaluation metrics and procedure. By default, p € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9} is applied. For Q1,
we use a three-step evaluation procedure, where the Mann-Whitney U test and shooting score are not used by Ref. [13]:

o Step I — similarity estimation. The similarity estimation between the original graph G and the obtained sparse
subgraph G’ considers the multi-level representative properties. The detailed methods for computing these
properties and for similarity estimation are summarized in Table 4, with an example given in Fig. 3.

o Step Il — ranking comparison. To obtain a conclusive summary, we summarize the performance of different
sampling methods by ranking distribution and Mann-Whitney U test. This is partially motivated by the evaluation
procedure of Ref. [23], where different algorithms are evaluated over different data sets and over different
evaluation criteria. Specifically, given a sampling probability p, we rank from 1 to 6 for LOGA, 5 / LOGA, 5 ,,
/ LOGA;’C3 / LOGA;”}M / GST, 5/ GST, 3 ,,, LD, LIS, RE, LRE, and CN, in the similarity comparison of each
representative property. We then summarize as a distribution all rankings, for each method over different p
and over different similarity comparisons of representative properties. The ranking distribution exhibits a large
variance since preserving well all selected representative properties is impossible. We, therefore, use the Mann-
Whitney U test to classify the six sampling methods into two groups. Group I has better performance, Group II
performs worse in comparison, and they satisfy: (1) methods in Group I share the same pair-wise cumulative
distribution functions (CDFs) in terms of ranking distributions, given the null hypothesis that two CDFs to be
compared are identical and the significance threshold of 0.1; (2) at least one method’s CDF in Group [ is larger
than the CDF of any method in Group II, given the significance threshold of 0.05.

o Step III — shooting score. This step computes the number of data sets for which each method has better rankings
in Step Il — ranking comparison. The shooting score is summarized in Table 5.

For Q2, we compare LOGA / LOGA’¢, GST, LD, LJS, RE, LRE, and CN (see Section 4.2), using an unbiased
single-threaded environment. The empirical running time is averaged (arithmetic mean) over 10 runs (sufficient due to
small variance) for each given sampling probability X 9 sampling probabilities (p € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9})
X2cases(l €2,3and!/ € 2,3, w).

4.2. Discussion

An example of the detailed graph similarity estimation is presented in Fig. 3. The results for other graphs are
similar. The proposed hybrid sampling method LOGA and its variant LOGA®¢ share the same optimization objective as
GST, and constitute also a network exact potential game. Therefore, LOGA;%'3 ., preserves well the degree distribution
(see Fig. 3(e)), just like GST. Meanwhile, LOGAES,W shares similar preservétion of the weighted average clustering
coefficient and the approximated eigenvalue distribution, as LRE. This is mainly due to the inclusion of the constrained
update in Section 3.2. Still, taking Fig. 3 as an example, comparing different graph similarity estimates one by one is
not conclusive, as different sampling methods have diverse performances. We thus summarize Fig. 3 in Fig. 5(c)(b)
by using their rankings, and apply the same summarization to all other graphs (see Step II of ‘Evaluation metrics and
procedure’ in Section 4.1).

The ranking comparisons are given in Figs. 5 and 6. We summarize the final shooting score for each sampling
method in Table 5. LRE performs well in practice compared with GST, LD, LJS, RE, and CN, in line with
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Figure 3: An example of graph similarity estimation (see Step I of ‘Evaluation metrics and procedure’ in Section 4.1), in
terms of six edge sampling methods (i.e., LOGAES’M, LD, LIS, RE, LRE, and CN) preserving representative structural
properties, for Glo_ERAS5SP in Table 2. Each sampling probability p on the x-axis is attached with the exact ratio of
preserved edges in brackets. The LOGAES,W is highlighted in red. This figure indicates that, there is no single method
well-preserving all these considered representative structural properties, as in Ref. [13].

Method GST, ;3 LD LJS RE LRE CN
Score (Figs. 5A and 6A) 8 14 0 10 25 0
Method GST,5, LD LJS RE LRE CN
Score (Figs. SA and 6A) 10 13 0 11 23 0
Method LOGA,; LD LJS RE LRE CN
Score (Figs. 5B and 6B) 21 6 0 6 20 0
Method LOGA,;, LD LJS RE LRE CN
Score (Figs. 5B and 6B) 22 6 0 5 20 0
Method LOGAS, LD LJS RE LRE CN
Score (Figs. 5C and 6C) 23 4 0 5 18 0
Method LOGAY, , LD LJS RE LRE CN
Score (Figs. 5C and 6C) 26 4 0 5 19 0

Table 5: Summary of the performance of sampling methods, i.e., LOGA / LOGA®¢ vs {GST, LD, LJS, RE, LRE, and
CN}, out of 26 networks in Tables 2 and 3. The shooting score counts the number of hatches for each method based
on Figs. 5 and 6.

the conclusion in Ref. [10] that local filtering improves the preservation of representative properties. Yet, the
sparse subgraph G’ sampled by LOGA / LOGA*¢ is even better than that by LRE, since LOGA,; ,, achieves

the highest shooting score of 2. that is, they better preserve representative properties on all network instances.

The relative improvement of LOGA / LOGA®*¢ over GST, in terms of the shooting scores, is substantial with
LOGA;3+LOGAS,~2GST, 5 N LOGAy 3, +LOGAY,  ~2GSTy3,,

4GSTy3 4G STy 3,
of 0.2 is observed over LRE. This answers Q1 and confirms that a good sparse subgraph as initialization can lead to
better Nash equilibria for GST (see ‘Initialization via edge-focused sampling’ in Section 3.2).

To answer Q2, the average running times of LOGA / LOGA*¢, GST, LD, LJS, RE, LRE, and CN are compared
in Fig. 4. LOGA / LOGA*¢ take on average similar time as GST, confirming our analysis on ‘Time complexity’ in
Section 3.2. Compared to the others, LOGA is 13, 8, 65, 12, and 24 times slower than LD, LJS, RE, LRE, and CN,

= 1.575; similarly, an (albeit smaller) relative improvement
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Figure 4: The average running times of LOGA / LOGA*¢, GST, LD, LJS, RE, LRE, and CN for networks in Tables 2
and 3. LOGA / LOGA?®¢ takes a similar empirical running time as GST.

respectively, on average. Despite taking longer than the simpler approaches, LOGA / LOGA* is scalable enough even
for large-scale graph sparsification.

5. Conclusion

In summary, we proposed a hybrid sampling scheme LOGA for network sparsification. LOGA addresses the
applicability of GST to graphs with weights and different densities, by providing GST with a good initialization and by
including a constrained update. We verify the effectiveness of LOGA in producing even better (than the previous state
of the art) sparse subgraphs G’ similar to G in terms of preserving representative properties. According to extensive
empirical studies on weighted graphs with different densities, we recommend LOGA%,W in practice.

Regarding future work, one interesting direction is to consider how to derive potentially suitable sparsification
ratios in advance. Although this is situation-dependent, there should be a balance between the sparsification ratio and
graph information loss. Furthermore, it remains to be answered whether this sparsification framework works well in
directed graphs.
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