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A B S T R A C T
Network (or graph) sparsification benefits downstream graph mining tasks. Finding a spar
subgraph 𝐺̂ similar to the original graph  is, however, challenging due to the requirem
preserving various (or at least representative) network properties. In this paper, we prop
general hybrid edge sampling scheme named LOGA, as the combination of the Local-filt
based Random Edge sampling (LRE) [Hamann et al., SNAM 2016] and the Game-the
Sparsification with Tolerance (GST) [Su et al., ASONAM 2022]. LOGA fully utilizes the a
tages of GST – in preserving complex structural properties by preserving local node prop
in expectation – and LRE – in preserving the connectivity of a given network. Specifical
first prove the existence of multiple equilibria in GST, based on which we propose LOG
its variant LOGA𝑠𝑐 by refining GST. The LOGA is obtained by regarding LRE as an empir
good initializer for GST, while LOGA𝑠𝑐 is obtained by further including a constrained u
for GST. In this way, LOGA / LOGA𝑠𝑐 generalize the work on GST to graphs with weigh
different densities, without increasing the asymptotic time complexity. Extensive experi
on 26 weighted and unweighted networks with different densities demonstrate that LO
performs best for all 26 instances, i.e., they preserve representative network properties
than state-of-the-art sampling methods alone.

troduction
etworks  = (𝑉 ,𝐸,𝑊 ) (= graphs, we use both terms interchangeably) have been a prevalent data represent
In practice, it can be computationally demanding to analyze large networks with an average degree in the o

ndreds or thousands. One common solution to speed up graph analyses is to use sparsification – removi
cant proportion of possibly redundant edges of  without the aggregation of nodes.  is therefore compre
sparser graph 𝐺̂ by sparsification. To obtain a meaningful 𝐺̂, sparsification requires the preservation of struc
rties of  in 𝐺̂ in a scaled manner. When doing so, downstream graph mining tasks can benefit from sparsifica
egarding speed and quality [1, 2, 3]. For example, by sparsification, important edges can be identified and use
representation learning [4]; other relevant applications include visualization [2] and influence maximization
eally, 𝐺̂ should be sufficiently similar (in a scaled manner) to , so that 𝐺̂ can be used in place of  for var
ations as mentioned above. However, this is a non-trivial problem due to the need to preserve various struc
rties of . A pragmatic solution is to preserve representative ones (see Fig. 1). By doing so, we can expect o
rties to be preserved to some extent, due to the correlations between different properties [6, 7, 8, 9].
hen doing sparsification, time consumption is an important aspect to consider. For this, edge sampling met
local structural information are often preferred [10, 11, 12]. Still, preserving a set of representative prope

ge sampling is also non-trivial, because it is hard to define an appropriate sampling objective characterizing
lected representative properties. A practical option is to combine different edge sampling methods.
herefore, we propose a hybrid sampling scheme LOGA, as a combination of a well-known edge-focused samp
he local-filtering-based random edge sampling (LRE) [10], and the state-of-the-art node-focused samp
he game-theoretic sparsification with tolerance (GST) [13]. LRE applies a local filtering post-processing
dom sampling, emphasizing the preservation of the largest connected component; while GST is motiv

e fact that local structural characteristics can define the basic and global organization of a network [14,
combination is motivated by two drawbacks of GST: initialization dependency and unconstrained update.
lization dependency arises due to the possible existence of multiple Nash equilibria in an exact network pote
orresponding author.
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Degree distribution

Community structure

The largest
connected component

Sparse subgraph 𝐺𝐺2′Sparse subgraph 𝐺𝐺1′

Degree distribution

Community structure

The largest
connected component

Sparse subgraph �𝐺𝐺2Sparse subgraph �𝐺𝐺1

e 1: A schematic view of sparse subgraphs 𝐺̂ preserving structural properties of a given graph . Sparse subgr
sented in shapes have the same number of edges. Assume that the largest connected component, commu
ure, and degree distribution are representative structural properties to be preserved. Some 𝐺̂ share a relat
r similarity to  in terms of community structure, while others preserve well the degree distribution. Comp
all others, 𝐺̂1 and 𝐺̂2 in diamond are ideal choices for well-preserving the selected representative properties

[16, 17, 18]; this is also true for GST under assumptions (see Lemma 1). The unconstrained update means
proceeds based solely on the optimization objective. Consequently, representative properties not characterize
timization objective or not specified in the sparsification process will not be properly preserved. Mainly d
o drawbacks, GST has limited sparsification performance in networks with weights and different densities
inary studies in Figs. 5A and 6A).

he paper is organized as follows. Section 2 reviews the related work on edge sampling and exact potential ga
roposed hybrid edge sampling scheme is explained in Section 3. Section 4 presents the experimental evalua
ection 5 concludes this paper.
Contributions
hus, our contributions are as follows:
We propose a hybrid edge sampling scheme LOGA and its variant LOGA𝑠𝑐 for graph sparsification. Specific
LOGA improves the initialization of GST by providing GST with an empirically good sparse 𝐺0 subgraph u
LRE. LOGA𝑠𝑐 improves GST further by including a constrained update for GST, i.e., preserving the la
connected component and the weighted average clustering coefficient based on 𝐺0.
LOGA𝑠𝑐 preserves representative properties better than the state-of-the-art sampling methods for funct
climate, real-world, and synthetic networks (on average).
We recommend using LOGA𝑠𝑐

2,3,𝑤 in practice, in which subscripts ‘2’, ‘3’, and ‘𝑤’ represent that GST prese
the expected degrees of nodes, the expected number of triangles (i.e., closed wedges), and the expected num
of non-closed wedges associated with nodes.

elated work
dge sampling methods for graph sparsification can be classified into two categories: edge-focused and n
ed ones. We review both of them. We also provide the necessary background on exact potential games, as
ed in our sampling scheme.
dge-focused sampling. Typical edge sampling methods (the probability-based and filtering-based ones) are e
ed because they use properties associated with edges for sampling.
Probability-based sampling samples edges based on a given edge probability distribution. For example, uni
sampling samples edges uniformly and independently at random [19]; despite simplicity, it preserves spe
properties with high probability [20]. When sampling for graph sparsification, spectral properties suc
eigenvalue spectra are of high interest since they contain global information on both graph topology
dynamical properties [21]. Le [11] proposed a non-uniform sampling which samples edge 𝑒 = {𝑢, 𝑣}
probability inversely proportional to the number of common neighbors of 𝑢 and 𝑣.
Filtering-based sampling, as in Ref. [10], includes two primary steps: edge scoring and filtering. Specific
according to a pre-defined scoring method based on some network properties, edge scoring assigns each

Su et al.: Preprint submitted to Elsevier Page 2 of 14
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a value to describe its importance; filtering then removes all edges with scores below a certain threshold
the desired sparsification ratio is satisfied. Hamann et al. [10] have compared systematically typical well-kn
filtering-based sampling methods, including random edge, local Jaccard similarity [22], edge forest fire
Simmelian backbones [24], and algebraic distance [25]. By including an additional local-filtering step for t
sampling methods, the preservation of properties considered in their work is improved. They also propose
local-degree-based sampling emphasizing the preservation of the largest connected component.

dge-focused sampling depends heavily on an appropriate way to define properties associated with edges. To
a dependency, node-focused sampling is proposed.
ode-focused sampling. It is known that local structural characteristics can define the basic and global org

of a network [14, 15], with typical applications such as random graph generation [14, 15], uncertain g
ling [26, 27], and degree-based edge sampling [28, 29]. Motivated by this, node-focused sampling focuse
properties associated with nodes, and formulates graph sparsification as an optimization problem [13, 28, 29,
ticular, based on Refs. [26, 27, 28, 29], Su et al. [13, 30] has recently generalized this idea for graph sparsific
oposing the game-theoretic sparsification with tolerance (GST, the foundation for Algorithm 1). As one o
of-the-art sparsification methods, GST always converges to a Nash equilibrium. This is because GST consti
act potential game and the best-response dynamics over such a game ensures the convergence [13, 27,
two drawbacks of GST, i.e., initialization dependency and unconstrained update (see Section 1), largely lim
rmance of GST in networks with weights and different densities. We leverage the two drawbacks when propo
brid sampling.

ackground on exact potential games. A strategic game is a triplet ⟨𝑃 , {𝑆𝑝}𝑝∈𝑃 , {𝐶𝑝(𝑆𝑝, 𝑆−𝑝)}𝑝∈𝑃 →
sting of players 𝑃 , the strategy 𝑆𝑝 of a player 𝑝 ∈ 𝑃 , and the individual cost 𝐶𝑝 of the player 𝑝. The g
eds in a round-robin fashion after assigning each player a strategy as the initialization. Based on the best-resp
ics [31], in every round, each player 𝑝 minimizes its cost 𝐶𝑝 based on all other players’ strategies 𝑆−𝑝; whe
(𝑝) is positive, i.e., 𝑔(𝑝) = 𝐶𝑝(𝑆𝑝, 𝑆−𝑝) − 𝐶𝑝(𝑆′

𝑝, 𝑆−𝑝) > 0, the current strategy 𝑆𝑝 is updated to a new one
player has an incentive to change the current strategy, then the strategic game reaches a (pure) Nash equilibr
trategic game is said to be a potential game if all players’ incentives to change their strategies can be formu
a single global function called the potential function Φ. Furthermore, if the gain in the cost function is refle
potential function, i.e., 𝐶𝑝(𝑆𝑝, 𝑆−𝑝)−𝐶𝑝(𝑆′

𝑝, 𝑆−𝑝) = Φ(𝑆𝑝, 𝑆−𝑝)−Φ(𝑆′
𝑝, 𝑆−𝑝), the potential game is called e

importantly, an exact potential game always converges to a Nash equilibrium due to the best-response dynam
dless of the initialization [31].

roposed Sparsification Method
iven an undirected and weighted graph  = (𝑉 ,𝐸,𝑊 ), graph sparsification aims to find a subgraph 𝐺
, 𝑊̂ ) which preserves certain representative properties. The proposed hybrid sampling LOGA1 improves
itialization improvement and a constrained update. We thus describe GST first by following the same assump
iform and independent sampling probability 𝑝 ∈ (0, 1] for each edge – that applies to GST in Ref. [13]. Note
robability 𝑝 controls also the number of edges to be preserved indirectly. Section 3.2 highlights the contribu
s paper. The most common symbols of this work are listed in Table 1.
Game-theoretic Sparsification with Tolerance (GST)
stead of sampling edges directly based on the sampling probability 𝑝, GST uses it to derive and preserve
properties (in expectation) in the sparsified graph 𝐺̂. Specifically, for a node 𝑖 in , these local properties inc
egree 𝑚𝑖

2() ∶= ∑|𝑉 |
𝑗=1 A𝑖𝑗 , the number of triangles (closed wedges) 𝑚𝑖

3() ∶= 1
2
∑|𝑉 |

𝑗=1
∑|𝑉 |

𝑘=1 A𝑖𝑗A𝑖𝑘A𝑗𝑘, and
er of non-closed wedges 𝑚𝑖

𝑤() ∶= 1
2𝑚

𝑖
2()(𝑚𝑖

2()−1)−𝑚𝑖
3() [32]. Following Refs. [13, 26, 27], their expe

s are defined based on 𝑝 as: 𝔼𝑖
2 ∶= 𝑝𝑚𝑖

2(), 𝔼𝑖
3 ∶= 𝑝3𝑚𝑖

3(), and 𝔼𝑖
𝑤 ∶= 1

2𝑝
2𝑚𝑖

2()(𝑚𝑖
2() − 1) − 𝑝3𝑚𝑖

3()ple of computing these local node properties and their expectations is presented in Fig. 2. The graph sparsific
refore formulated as the node-focused sampling:
ition 1. (Sparsification via scaled local node properties [13]). Given an undirected and weighted network
,𝑊 ) and a uniform and independent sampling probability 𝑝 ∈ (0, 1], find a sparsified subgraph 𝐺̂ = (𝑉 , 𝐸̂

ode available at: https://anonymous.4open.science/r/Network-Sparsification-via-Hybrid-Edge-Sampling-E663
Su et al.: Preprint submitted to Elsevier Page 3 of 14
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ol Definition
𝑉 ,𝐸,𝑊 ) An undirected and weighted graph with 𝑉 , 𝐸, and 𝑊 as vertex, edge, and weight sets, respectively

The unweighted and weighted adjacency matrices of 
, 3, 𝑤} The basic local properties associated with each node to be preserved, i.e., 𝑙 ∈ {2} for the degree, 𝑙 ∈ {3

triangles (closed wedges), and 𝑙 ∈ {𝑤} for non-closed wedges; by following Ref. [13], we particularly di
the combinations of them, i.e., 𝑙 ∈ {2, 3} and 𝑙 ∈ {2, 3, 𝑤}
The uniform and independent sampling probability 𝑝 ∈ (0, 1]
The expected degree (𝔼𝑖

2) of node 𝑖, the expected number of triangles (𝔼𝑖
3), and the expected number of

closed wedges (𝔼𝑖
𝑤) associated with the node 𝑖, based on  and 𝑝

(𝑉 ,𝐸0,𝑊 0) The initialized sparse subgraph by LRE, based on  and 𝑝
(𝑉 ,𝐸′,𝑊 ′) The current subgraph during edge sampling with 𝑉 , 𝐸′ ⊆ 𝐸, and 𝑊 ′ ⊆ 𝑊 as vertex, edge, and weight

respectively
𝑉 , 𝐸̂, 𝑊̂ ) The desired sparse subgraph after edge sampling with 𝑉 , 𝐸̂ ⊆ 𝐸, and 𝑊̂ ⊆ 𝑊 as vertex, edge, and weight

respectively
The degree (𝑚𝑖

2(⋅)) of node 𝑖, the number of triangles (𝑚𝑖
3(⋅)), and the number of non-closed wedges (𝑚

associated with the node 𝑖, based on a given graph; for example, 𝑚𝑖
2(), 𝑚𝑖

3(), and 𝑚𝑖
𝑤() are for , w

𝑚𝑖
2(𝐺

′), 𝑚𝑖
3(𝐺

′), and 𝑚𝑖
𝑤(𝐺

′) are for 𝐺′

(⋅) The size of the largest connected component (𝑠(⋅)) and the weighted average clustering coefficient (𝑐(⋅))
given graph; for example, 𝑠(𝐺0) and 𝑐(𝐺0) are for 𝐺0, while 𝑠(𝐺′) and 𝑐(𝐺′) are for 𝐺′

2,3,𝑤 The detailed algorithm of the proposed hybrid sampling scheme LOGA, as the combination of the L
filtering-based Random Edge sampling (LRE) [10] and the Game-theoretic Sparsification with Toler
(GST) [13], by default, preserving degrees, triangles, and non-closed wedges in expectation, i.e., for
{2, 3, 𝑤}; the preservation of subset properties leads to LOGA2,3, i.e., for 𝑙 ∈ {2, 3}

𝑠𝑐
2,3,𝑤 The detailed algorithm of the variant LOGA𝑠𝑐 , by default, preserving degrees, triangles, and non-closed we

in expectation, i.e., for 𝑙 ∈ {2, 3, 𝑤}; the preservation of subset properties leads to LOGA𝑠𝑐
2,3, i.e., for 𝑙 ∈ {

Table 1: List of symbols.

A B

CD

A B

CD

0.8

0.8

0.8

(a) (b)

0.8

e 2: An example of computing local node properties and their expectations associated with 𝐴. (a) The given g
e degree of 𝐴, the number of triangles, and the number of non-closed wedges associated with 𝐴, are 𝑚𝐴

2 (
() = 1 (i.e., {{𝐴,𝐵}, {𝐴,𝐶}, {𝐵,𝐶}}), and 𝑚𝐴

𝑤() = 2 (i.e., {{𝐴,𝐵}, {𝐴,𝐷}} and {{𝐴,𝐶}, {𝐴,𝐷
ctively. (b) The given graph  with a uniform and independent sampling probability 𝑝 = 0.8. The expe
e of 𝐴, the expected number of triangles, and the expected number of non-closed wedges associated with 𝐴
2.4, 𝔼𝐴

3 = 0.512, and 𝔼𝐴
𝑤 = 1.408, respectively.

that:

𝐺̂ ∶= argmin
𝐺′⊆

∑
𝑖∈𝑉

∑
𝑙∈{2,3,𝑤}

1
𝑚𝑖
𝑙() |𝑚

𝑖
𝑙(𝐺

′) − 𝔼𝑖
𝑙|.

the normalization factor 1∕𝑚𝑖
𝑙() avoids the domination of any single one of these local properties. Eq

rves by default all three local node properties, i.e., the degree (𝑙 ∈ 2), the number of triangles (𝑙 ∈ 3), and
er of non-closed wedges (𝑙 ∈ 𝑤) a node belongs to. That is, each node in 𝐺̂ has an incentive to make these
rties (in the current sparse subgraph 𝐺′) as close as possible to their corresponding expectations. By follo
13], we consider the two cases where 𝑙 iterates (i) only over degrees and triangles (𝑙 ∈ {2, 3}) and (ii) additio
on-closed wedges (𝑙 ∈ {2, 3, 𝑤}).

o find approximate solutions for Eq. (1), Ref. [13] proposed GST which constitutes an exact network pote
(see lines 7-18 in Algorithm 1). The game is a triplet ⟨𝐸, {𝑆𝑒}𝑒∈𝐸 , {𝐶𝑒(𝑆𝑒, 𝑆−𝑒)}𝑒∈𝐸 → ℝ⟩, where each
{𝑢, 𝑣} ∈ 𝐸 is a player sharing binary strategies: 0 for removal and 1 for preservation (𝑆𝑒 = {0, 1}) and
minimizes its cost 𝐶𝑒 based on the strategies 𝑆−𝑒 of all other edges. Ref. [13] defines the cost functio

Su et al.: Preprint submitted to Elsevier Page 4 of 14
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orithm 1: Hybrid sampling scheme (LOGA / LOGA𝑠𝑐), based on the game-theoretic sparsification with
rance (GST) [13]
put:  = (𝑉 ,𝐸,𝑊 ), 𝑝 ∈ (0, 1], and the tolerance threshold by default 𝑇 = 0.01 (based on Ref. [13])
utput: 𝐺′ = (𝑉 ,𝐸′,𝑊 ′)

/* Stage I (Precomputing expected basic properties) *
r 𝑖 ∈ 𝑉 do in parallel

Compute 𝔼𝑖
2, 𝔼𝑖

3, 𝔼𝑖
𝑤, 𝑚𝑖

2(), 𝑚𝑖
3(), and 𝑚𝑖

𝑤(), based on  and 𝑝

/* Stage II (Sparsification) *
′, 𝑠(𝐺0), 𝑐(𝐺0), 𝑐() ← Initialization(, 𝑝)
r 𝑖 ∈ 𝑉 do in parallel

Compute 𝑚𝑖
2(𝐺

′), 𝑚𝑖
3(𝐺

′), and 𝑚𝑖
𝑤(𝐺

′), based on 𝐺′

′ ← 𝑉 ; 𝐺𝑎𝑖𝑛[|𝑉 |] ← 0; 𝑟 ← 0
peat
𝐿 ← 𝐿′; 𝐿′ ← ∅
foreach 𝑒 = {𝑢, 𝑣} ∈ 𝐸 incident (in ) to a node in 𝐿 do(𝑒) ← {𝑢} ∪ {𝑣} ∪ {𝑧 ∈ 𝑉 ∶ {𝑧, 𝑢} ∈ 𝐸′ ∧ {𝑧, 𝑣} ∈ 𝐸′}

Compute 𝑔(𝑒) based on Eq. (2)
𝐺′, 𝐹 𝑙𝑎𝑔 ← Constrained_Update(𝑒, 𝐺′, 𝑠(𝐺0), 𝑐(𝐺0), 𝑐(), 𝑔(𝑒))
if Flag is True then

𝐿′ ← 𝐿′ ∪(𝑒)
Update 𝑚𝑖

2(𝐺
′), 𝑚𝑖

3(𝐺
′), and 𝑚𝑖

𝑤(𝐺
′), based on 𝐺′

𝑟 ← 𝑟 + 1
𝐺𝑎𝑖𝑛[𝑟] ←

∑
𝑖∈𝑉

∑
𝑙∈{2,3,𝑤}

1
𝑚𝑖
𝑙 () |𝑚

𝑖
𝑙(𝐺

′) − 𝔼𝑖
𝑙|

ntil 𝑟 ≥ 2 ∧ 𝐺𝑎𝑖𝑛[𝑟 − 1] − 𝐺𝑎𝑖𝑛[𝑟] ≤ 𝑇
turn 𝐺′

∑
𝑖∈(𝑒)

∑
𝑙∈{2,3,𝑤}

1
𝑚𝑖
𝑙() |𝑚

𝑖
𝑙(𝐺

′)−𝔼𝑖
𝑙|where(𝑒) = {𝑢}∪{𝑣}∪{𝑧 ∈ 𝑉 ∶ {𝑧, 𝑢} ∈ 𝐸′∧{𝑧, 𝑣} ∈ 𝐸′} is the s

affected by the strategy change of 𝑒. 𝐶𝑒 considers only (𝑒) because only local subgraphs with up to 3 node
dered in Eq. (1). The game proceeds in a round-robin fashion based on the gain 𝑔(𝑒) ∶= 𝐶𝑒(𝑆𝑒, 𝑆−𝑒)−𝐶𝑒(𝑆′

𝑒,cost function:

𝑔(𝑒) =
∑

𝑖∈(𝑒)

∑
𝑙∈{2,3,𝑤}

|𝑚𝑖
𝑙(𝐺

′) − 𝔼𝑖
𝑙| − |𝑚𝑖

𝑙(𝐺
′′) − 𝔼𝑖

𝑙|
𝑚𝑖
𝑙() ,

𝑒 updates its strategy, e.g., from 𝑆𝑒 = 1 to 𝑆′
𝑒 = 0 with the current subgraph 𝐺′ correspondingly becom

(𝑉 ,𝐸′′) = (𝑉 ,𝐸′ ⧵ {𝑒}), only when 𝑔(𝑒) > 0. The game has a (pure) Nash equilibrium when no edge ha
tive to change its current strategy. Meanwhile, a global function Φ =

∑
𝑖∈𝑉

∑
𝑙∈{2,3,𝑤}

1
𝑚𝑖
𝑙() |𝑚

𝑖
𝑙(𝐺

′) − 𝔼𝑖
𝑙| (s

. (1)) exists to ensure that GST is a potential game. The gain in the potential function is therefore:

Φ(𝑆𝑒, 𝑆−𝑒) − Φ(𝑆′
𝑒, 𝑆−𝑒) ∶=

∑
𝑖∈𝑉

∑
𝑙∈{2,3,𝑤}

1
𝑚𝑖
𝑙()

(|𝑚𝑖
𝑙(𝐺

′) − 𝔼𝑖
𝑙| − |𝑚𝑖

𝑙(𝐺
′′) − 𝔼𝑖

𝑙|
)
.

ticular, 𝐶𝑒(𝑆𝑒, 𝑆−𝑒)−𝐶𝑒(𝑆′
𝑒, 𝑆−𝑒) = Φ(𝑆𝑒, 𝑆−𝑒)−Φ(𝑆′

𝑒, 𝑆−𝑒) due to Φ(𝑆𝑒, 𝑆−𝑒)−Φ(𝑆′
𝑒, 𝑆−𝑒) = 0 ∀𝑖 ∈ 𝑉 ⧵

ing that GST constitutes an exact potential game. The best-response dynamics in the exact potential g
ntees the convergence to a Nash equilibrium [31].
Hybrid Edge Sampling Scheme
ur proposed hybrid sampling scheme LOGA and its variant LOGA𝑠𝑐 is based on the improvements over GST
vements include initialization via edge-focused sampling (i.e., LOGA – Algorithms 1 and 2), and a constra
e (i.e., the variant LOGA𝑠𝑐 – Algorithms 1, 2, and 3)).
Su et al.: Preprint submitted to Elsevier Page 5 of 14
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orithm 2: Initialization
put:  = (𝑉 ,𝐸,𝑊 ) and 𝑝 ∈ (0, 1]
utput: 𝐺0 = (𝑉 ,𝐸0,𝑊 0), 𝑠(𝐺0), 𝑐(𝐺0)
enerate a sparse subgraph 𝐺0 = (𝑉 ,𝐸0,𝑊 0) with 𝐸0 = 𝑝|𝐸| using LRE [33]
ompute 𝑠(𝐺0), 𝑐(𝐺0), and 𝑐()
turn 𝐺0, 𝑠(𝐺0), 𝑐(𝐺0), 𝑐()

orithm 3: Constrained_Update
put: An edge 𝑒 = {𝑢, 𝑣} currently being visited, 𝐺′ = (𝑉 ,𝐸′,𝑊 ′), 𝑠(𝐺0), 𝑐(𝐺0), 𝑐(), and 𝑔(𝑒)
utput: Whether to update 𝐺′ = (𝑉 ,𝐸′,𝑊 ′)
𝑒 ∈ 𝐸′ then 𝐺′′ ← (𝑉 ,𝐸′ ⧵ {𝑒})
se 𝐺′′ ← (𝑉 ,𝐸′ ∪ {𝑒})
ompute 𝑠(𝐺′′) and 𝑐(𝐺′′)
𝑔(𝑒) > 0 ∧ 𝑠(𝐺′′) >= 𝑠(𝐺0) ∧ |𝑐(𝐺0) − 𝑐()| >= |𝑐(𝐺′′) − 𝑐()| then return 𝐺′ ← 𝐺′′, True
se return 𝐺′, False

Initialization via edge-focused sampling – Algorithms 1 and 2. The idea of improving the initializatio
GST stems from the existence of multiple equilibria in GST, which is not indicated in Ref. [13]; as a result
solution that GST converges to depends highly on initialization. Motivated by [26, Lemma 2], we prov
existence of multiple equilibria for the case 𝑙 ∈ {2, 3} of Eq. (1) as below.
Lemma 1. For

𝐺̂ ∶= argmin
𝐺′⊆

∑
𝑖∈𝑉

∑
𝑙∈{2,3}

1
𝑚𝑖
𝑙() |𝑚

𝑖
𝑙(𝐺

′) − 𝔼𝑖
𝑙|,

assume a globally optimal sparse subgraph 𝐺′ exists which contains at least one edge 𝑒 = {𝑢, 𝑣} with 𝑢 a
satisfying: (a) {𝑧 ∈ 𝑉 ∶ {𝑧, 𝑢} ∈ 𝐸′∧{𝑧, 𝑣} ∈ 𝐸′} = ∅; (b)𝑚𝑢

2(𝐺
′) > 𝔼𝑢

2 and𝑚𝑣
2(𝐺

′) ≤ 𝔼𝑣
2 with𝔼𝑢

2,𝔼
𝑣
2 ∈ ℕ

𝑚𝑢
2() = 𝑚𝑣

2(). Then, there exists a globally optimal sparse subgraph 𝐺̃ ≠ 𝐺′ representing a Nash equilib
with 𝑚𝑖

2(𝐺̃) ≤ 𝔼𝑖
2, ∀𝑖 ∈ 𝑉 .

PROOF. Since 𝐺′ is a global optimum, it is a Nash equilibrium. We continue by first proving that 𝐺
(𝑉 ,𝐸′′) = (𝑉 ,𝐸′ ⧵ {𝑒}) is another global optimum. Condition (a) indicates the non-existence of com
neighbors between 𝑢 and 𝑣 in 𝐺′. Therefore, (𝑒) = {𝑢, 𝑣} is the node set affected by the removal of 𝑒 from
more precisely, only the degrees of 𝑢 and 𝑣, i.e., 𝑚𝑢

2(𝐺
′) and 𝑚𝑣

2(𝐺
′), get affected. Thus, the corresponding

as in Eq. (2), is simplified as:

𝑔′(𝑒) =
|𝑚𝑢

2(𝐺
′) − 𝔼𝑢

2| − |𝑚𝑢
2(𝐺

′′) − 𝔼𝑢
2|

𝑚𝑢
2() +

|𝑚𝑣
2(𝐺

′) − 𝔼𝑣
2| − |𝑚𝑣

2(𝐺
′′) − 𝔼𝑣

2|
𝑚𝑣
2() .

According to condition (b), 𝑚𝑢
2(𝐺

′) − 𝔼𝑢
2 > 0 and 𝔼𝑢

2 ∈ ℕ; therefore, the removal of 𝑒 from 𝐺′ leads to 𝐺′′

𝑚𝑢
2(𝐺

′′)−𝔼𝑢
2 = 𝑚𝑢

2(𝐺
′)−1−𝔼𝑢

2 ≥ 0. Similarly, we have 𝑚𝑣
2(𝐺

′)−𝔼𝑣
2 ≤ 0 and 𝑚𝑣

2(𝐺
′′)−𝔼𝑣

2 = 𝑚𝑣
2(𝐺

′)−1−𝔼𝑢
2Therefore, |𝑚𝑢

2(𝐺
′) − 𝔼𝑢

2|− |𝑚𝑢
2(𝐺

′′) − 𝔼𝑢
2| = 1 and |𝑚𝑣

2(𝐺
′) − 𝔼𝑣

2|− |𝑚𝑣
2(𝐺

′′) − 𝔼𝑣
2| = −1. Further by cond

(c), 𝑔′(𝑒) = 1∕𝑚𝑢
2() − 1∕𝑚𝑣

2() = 0; that is, both 𝐺′ and 𝐺′′ are global optima representing different N
equilibria. According to Ref. [26], by removing all edges satisfying conditions (a), (b), and (c), one constru
globally optimal sparse subgraph 𝐺̃ ≠ 𝐺′ which satisfies 𝑚𝑖

2(𝐺̃) ≤ 𝔼𝑖
2, ∀𝑖 ∈ 𝑉 . Thus, the proof is complete

Due to the (conditional) existence of more than one global optimum, it is natural to ask how to steer an algor
to find a good optimum. One established strategy to increase the likelihood of convergence to a good loca
better yet, global) optimum is to use a good starting solution. In our context, a starting solution that alr
preserves representative properties reasonably well should serve this purpose. Therefore, we propose LOGA
by using LRE as a good initializer in improving GST (see Algorithm 2), due to the best performance of LR
Figs. 5A and 6A. Our conjecture of convergence to a better optimum is empirically verified in Section 4.2.

Su et al.: Preprint submitted to Elsevier Page 6 of 14
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Constrained update – Algorithms 1, 2, and 3. For GST, initialization improvement is not sufficient to en
that, the representative properties preserved by the initialized sparse subgraph 𝐺0 can still be preserved
sparsification. This is because GST proceeds based only on its optimization objective (see Eq. (2)). As a re
the representative properties not characterized by the optimization objective cannot be preserved prop
Therefore, a constrained update is needed for the sparsification process. To this end, we pay attention to
preservation of the largest connected component 𝑠(⋅) and the weighted average clustering coefficient 𝑐(⋅). T
two structural properties characterize the global organization of a graph, and can be used for character
network resilience [34, 35]. Besides, they are easy to compute. In particular, the largest connected compo
can be well-preserved by LRE [10] (also see LRE better than RE in Table 5), but not by GST. Thus, we fu
include the preservation of 𝑠(𝐺0) and 𝑐(𝐺0) based on 𝐺0 in Algorithm 3, leading to a variant LOGA𝑠𝑐 . Note
for a given graph like , we compute the 𝑐() = 1

|𝑉 |
∑|𝑉 |

𝑖=1

(
1

(
∑|𝑉 |

𝑗=1 A𝑖𝑗−1)
∑|𝑉 |

𝑗=1 W𝑖𝑗

∑|𝑉 |
𝑘=1

∑|𝑉 |
𝑙∈1

W𝑖𝑘+W𝑖𝑙
2 A𝑖𝑘A𝑖𝑙A

based on Ref. [36].
ime complexity. We assume an adjacency array as the graph data structure. Stage I (see lines 1-2 in Algorith

inated by the computation of the number of triangles 𝑚𝑖
3() for each node. We use adjacency-marking-b

le counting [37], which can be implemented to run in (𝑎()|𝐸|) time [38], with 𝑎() being the arboricity
eing upper-bounded by the maximum degree 𝑑𝑚𝑎𝑥. The initialization (see Algorithm 2) takes (log(𝑑𝑚𝑎𝑥)taining 𝐺0 by LRE [10], (|𝑉 | + |𝐸|) for computing the largest connected component 𝑠(⋅), and (𝑎()|𝐸|
uting the weighted average clustering coefficient 𝑐(⋅). For Stage II, computing the number of triangles 𝑚𝑖

3(𝐺node based on the current subgraph 𝐺′ dominates Lines 4-6. Lines 7-15 take (𝑟𝑑𝑚𝑎𝑥|𝐸|) time, where 𝑟 i
er of iterations of the repeat-loop and (𝑑𝑚𝑎𝑥) is required by a linear-time intersection operation to find 
that computing 𝑐(𝐺′′) takes (𝑑𝑚𝑎𝑥) dominating Algorithm 3. Hence, in total, the (sequential) time compl
GA / LOGA𝑠𝑐 equals that of GST with (𝑟𝑑𝑚𝑎𝑥|𝐸|), provided that the initialization step (i.e., Algorithm 2) t
st (𝑟𝑑𝑚𝑎𝑥|𝐸|) time.

xperimental evaluation
this section, we assess the performance of LOGA / LOGA𝑠𝑐 by answering:
How well do LOGA / LOGA𝑠𝑐 improve the state-of-the-art sampling methods in terms of preserving non-
/ complex representative properties?
What is the empirical running time of LOGA / LOGA𝑠𝑐 , in particular in comparison to GST?

Experimental settings
ata sets. We consider 13 weighted networks from different domains in Table 2, including functional cli
rks, observed real-world networks, and LFR networks. For the same data sets, another 13 networks in Tab
nstructed to verify the usefulness of LOGA / LOGA𝑠𝑐 for unweighted and sparser networks.
Functional climate networks. In Table 2, five functional networks are constructed based on Refs. [39, 40,
By randomly choosing 50% edges from the respective networks in Table 2 and letting weights be 1, we ob
unweighted networks with reduced density in Table 3.
Observed real-world networks. In Table 2, five selected real-world networks, from Squirrel to HepTh, desc
social and biological relationships and are available publicly online2. We also construct unweighted netw
with reduced density in Table 3, by randomly choosing 50% edges from the respective networks in Table 2
letting weights be 1.
LFR networks. In Table 2, three synthetic networks are constructed based on the Lancichinetti-Fortun
Radicchi (LFR) benchmark [42] implemented in NetworKit [33, 43], a tool suite for scalable network anal
The parameters are as follows: (i) power-law exponents for the degree distribution and the community
distribution: 𝜏1 = −2 and 𝜏2 = −1, respectively; (ii) fraction of inter-community edges: 𝜇 ∈ {0.1, 0.2, 0.3};
desired average and maximum degrees: 250 and 1000 (50 and 250 for Table 3), respectively; (iv) minimum
maximum sizes of communities: 250 and 1000 (25 and 250 for Table 3), respectively.
Su et al.: Preprint submitted to Elsevier Page 7 of 14
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Network |𝑉 | |𝐸| |𝐸|
|𝑉 | Description

tional
te

orks

Glo_ERA5SP 7,320 1,559,513 213.05 Global surface pressure from ERA5
Glo_ERA5ST 7,320 2,022,285 276.27 Global surface temperature from ERA5
Glo_ERA5GPH 7,320 1,866,977 255.05 Global 250-hPa geopotential height from ERA5
Glo_ERA5OLR 7,320 845,465 115.50 Global outgoing long-wave radiation from ERA5
Glo_TRMM 16,080 1,753,588 109.05 Precipitation from TRMM

rved
world
orks

Squirrel 5,201 198,353 38.14 Wikipedia articles on squirrels
SC 6,394 994,296 155.50 Protein network of Saccharomyces cerevisiae
NIPS 13,875 746,316 53.79 Bipartite document–word dataset of NIPS full papers
CE 18,387 4,481,664 243.74 Protein network of Caenorhabditis elegans
HepTh 22,908 2,444,798 106.72 Co-citation network of arXiv’s hep-th section

orks
LFR𝜇=0.1 10,000 1,238,142 123.81 Synthetic benchmark
LFR𝜇=0.2 10,000 1,255,220 125.52 Synthetic benchmark
LFR𝜇=0.3 10,000 1,250,961 125.10 Synthetic benchmark

Table 2: Characteristics of data sets with weighted structure.

Network |𝑉 | |𝐸| |𝐸|
|𝑉 | Description

tional
te

orks

Glo_ERA5SP 7,320 779,756 106.52
Unweighted and reduced network density

Glo_ERA5ST 7,320 1,011,142 138.13
Glo_ERA5GPH 7,320 933,488 127.53
Glo_ERA5OLR 7,320 422,732 57.75
Glo_TRMM 16,080 876,794 54.53

rved
world
orks

Squirrel 5,201 99,176 19.07
Unweighted and reduced network density

SC 6,394 497,148 77.75
NIPS 13,875 373,158 26.89
CE 18,387 2,240,832 121.87
HepTh 22,908 1,222,399 53.36

orks
LFR𝜇=0.1 10,000 252,923 25.29

Unweighted and reduced network densityLFR𝜇=0.2 10,000 248,907 24.89
LFR𝜇=0.3 10,000 253,753 25.38

Table 3: Same data sets as Table 2 but with weights 1 and reduced density.

aselines. We compare LOGA / LOGA𝑠𝑐 with two state-of-the-art and four well-known sampling methods.
e compare LOGA / LOGA𝑠𝑐 and GST indirectly by comparing LOGA / LOGA𝑠𝑐 vs {LD, LJS, RE, LRE

and GST vs {LD, LJS, RE, LRE, and CN}, separately. This is because we want to compare graphs with sim
ties, but both LOGA / LOGA𝑠𝑐 and GST cannot take directly a sparsification ratio as input while the other met
oth CN and LRE are additional competitors not used by Ref. [13].
Two state-of-the-art methods. In Ref. [13], GST takes by default the original graph  as initialization.
necessity of preserving both degrees and the number of 3-node subgraphs in expectation for graph sparsific
has also been confirmed. Therefore, by following Ref. [13], we consider also both 𝑙 ∈ {2, 3} and 𝑙 ∈ {2, 3
That is, the first comparison is between LOGA2,3 / LOGA2,3,𝑤 / LOGA𝑠𝑐

2,3 / LOGA𝑠𝑐
2,3,𝑤 and GST2,3 / GST2

The second competitor by Le [11] samples edges with probability inversely proportional to the numbe
common neighbors (CN) between the two nodes.
Four well-known methods. Four well-known edge-focused sampling methods are: local degree (LD) [10],
Jaccard similarity (LJS) [22], random edge sampling (RE) [20], and the local-filtering based random
sampling (LRE) [10]. Their empirical effectiveness in preserving the overall connectivity (by LD), commu
structure (by LJS), and eigenvalue distribution (by RE/LRE), are systematically compared in Ref. [10]
implemented in NETWORKIT [33, 43].
ttp://snap.stanford.edu/, http://konect.cc/networks/, https://string-db.org/
Su et al.: Preprint submitted to Elsevier Page 8 of 14
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esentative property Computation Similarity estimation
eighted average clustering coefficient Ref. [36] Deviation [10]

ize of the largest connected component NETWORKIT [33, 43] Deviation
munity structure PLM [44] in NETWORKIT Adjusted rand index (ARI) [4
eenness EstimateBetweenness [46] in NETWORKIT Spearman’s 𝜌 with 𝑃 < 0.05
ee NETWORKIT Spearman’s 𝜌 with 𝑃 < 0.05

eighted local clustering coefficient Ref. [36] Spearman’s 𝜌 with 𝑃 < 0.05
h spectra (eigenvalue distribution) SLAQ_NetLSD [47] using heat kernel [48] Euclidean distance [48, 47]
h spectra (eigenvalue distribution) SLAQ_VNGE [47] using Von Neumann Graph

Entropy [49] Euclidean distance

Table 4: Graph similarity estimation based on selected representative properties.

valuation metrics and procedure. By default, 𝑝 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} is applied. For
e a three-step evaluation procedure, where the Mann-Whitney U test and shooting score are not used by Ref.
Step I – similarity estimation. The similarity estimation between the original graph  and the obtained sp
subgraph 𝐺′ considers the multi-level representative properties. The detailed methods for computing t
properties and for similarity estimation are summarized in Table 4, with an example given in Fig. 3.
Step II – ranking comparison. To obtain a conclusive summary, we summarize the performance of diff
sampling methods by ranking distribution and Mann-Whitney U test. This is partially motivated by the evalu
procedure of Ref. [23], where different algorithms are evaluated over different data sets and over diff
evaluation criteria. Specifically, given a sampling probability 𝑝, we rank from 1 to 6 for LOGA2,3 / LOGA
/ LOGA𝑠𝑐

2,3 / LOGA𝑠𝑐
2,3,𝑤 / GST2,3 / GST2,3,𝑤, LD, LJS, RE, LRE, and CN, in the similarity comparison of

representative property. We then summarize as a distribution all rankings, for each method over differe
and over different similarity comparisons of representative properties. The ranking distribution exhibits a
variance since preserving well all selected representative properties is impossible. We, therefore, use the M
Whitney U test to classify the six sampling methods into two groups. Group I has better performance, Gro
performs worse in comparison, and they satisfy: (1) methods in Group I share the same pair-wise cumul
distribution functions (CDFs) in terms of ranking distributions, given the null hypothesis that two CDFs t
compared are identical and the significance threshold of 0.1; (2) at least one method’s CDF in Group I is la
than the CDF of any method in Group II, given the significance threshold of 0.05.
Step III – shooting score. This step computes the number of data sets for which each method has better rank
in Step II – ranking comparison. The shooting score is summarized in Table 5.

or Q2, we compare LOGA / LOGA𝑠𝑐 , GST, LD, LJS, RE, LRE, and CN (see Section 4.2), using an unbi
-threaded environment. The empirical running time is averaged (arithmetic mean) over 10 runs (sufficient d
variance) for each given sampling probability× 9 sampling probabilities (𝑝 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

ases (𝑙 ∈ 2, 3 and 𝑙 ∈ 2, 3, 𝑤).
Discussion
n example of the detailed graph similarity estimation is presented in Fig. 3. The results for other graph
ar. The proposed hybrid sampling method LOGA and its variant LOGA𝑠𝑐 share the same optimization objecti
and constitute also a network exact potential game. Therefore, LOGA𝑠𝑐

2,3,𝑤 preserves well the degree distribu
ig. 3(e)), just like GST. Meanwhile, LOGA𝑠𝑐

2,3,𝑤 shares similar preservation of the weighted average cluste
cient and the approximated eigenvalue distribution, as LRE. This is mainly due to the inclusion of the constra
e in Section 3.2. Still, taking Fig. 3 as an example, comparing different graph similarity estimates one by o
onclusive, as different sampling methods have diverse performances. We thus summarize Fig. 3 in Fig. 5(
ing their rankings, and apply the same summarization to all other graphs (see Step II of ‘Evaluation metrics
dure’ in Section 4.1).
he ranking comparisons are given in Figs. 5 and 6. We summarize the final shooting score for each samp
d in Table 5. LRE performs well in practice compared with GST, LD, LJS, RE, and CN, in line
Su et al.: Preprint submitted to Elsevier Page 9 of 14
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e 3: An example of graph similarity estimation (see Step I of ‘Evaluation metrics and procedure’ in Section 4.1
of six edge sampling methods (i.e., LOGA𝑠𝑐

2,3,𝑤, LD, LJS, RE, LRE, and CN) preserving representative struc
rties, for Glo_ERA5SP in Table 2. Each sampling probability 𝑝 on the x-axis is attached with the exact rat
rved edges in brackets. The LOGA𝑠𝑐

2,3,𝑤 is highlighted in red. This figure indicates that, there is no single me
preserving all these considered representative structural properties, as in Ref. [13].

Method GST2,3 LD LJS RE LRE CN
Score (Figs. 5A and 6A) 8 14 0 10 25 0
Method GST2,3,𝑤 LD LJS RE LRE CN
Score (Figs. 5A and 6A) 10 13 0 11 23 0
Method LOGA2,3 LD LJS RE LRE CN
Score (Figs. 5B and 6B) 21 6 0 6 20 0
Method LOGA2,3,𝑤 LD LJS RE LRE CN
Score (Figs. 5B and 6B) 22 6 0 5 20 0
Method LOGA𝑠𝑐

2,3 LD LJS RE LRE CN
Score (Figs. 5C and 6C) 23 4 0 5 18 0
Method LOGA𝑠𝑐

2,3,𝑤 LD LJS RE LRE CN
Score (Figs. 5C and 6C) 26 4 0 5 19 0

5: Summary of the performance of sampling methods, i.e., LOGA / LOGA𝑠𝑐 vs {GST, LD, LJS, RE, LRE
out of 26 networks in Tables 2 and 3. The shooting score counts the number of hatches for each method b

gs. 5 and 6.

onclusion in Ref. [10] that local filtering improves the preservation of representative properties. Yet
e subgraph 𝐺′ sampled by LOGA / LOGA𝑠𝑐 is even better than that by LRE, since LOGA2,3,𝑤 achi
ighest shooting score of 26

26 ; that is, they better preserve representative properties on all network instan
relative improvement of LOGA / LOGA𝑠𝑐 over GST, in terms of the shooting scores, is substantial
2,3+𝐿𝑂𝐺𝐴𝑠𝑐

2,3−2𝐺𝑆𝑇2,3
4𝐺𝑆𝑇2,3

+
𝐿𝑂𝐺𝐴2,3,𝑤+𝐿𝑂𝐺𝐴𝑠𝑐

2,3,𝑤−2𝐺𝑆𝑇2,3,𝑤
4𝐺𝑆𝑇2,3,𝑤

= 1.575; similarly, an (albeit smaller) relative improve
is observed over LRE. This answers Q1 and confirms that a good sparse subgraph as initialization can le
Nash equilibria for GST (see ‘Initialization via edge-focused sampling’ in Section 3.2).

o answer Q2, the average running times of LOGA / LOGA𝑠𝑐 , GST, LD, LJS, RE, LRE, and CN are comp
. 4. LOGA / LOGA𝑠𝑐 take on average similar time as GST, confirming our analysis on ‘Time complexit
n 3.2. Compared to the others, LOGA is 13, 8, 65, 12, and 24 times slower than LD, LJS, RE, LRE, and
Su et al.: Preprint submitted to Elsevier Page 10 of 14
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e 4: The average running times of LOGA / LOGA𝑠𝑐 , GST, LD, LJS, RE, LRE, and CN for networks in Tab
. LOGA / LOGA𝑠𝑐 takes a similar empirical running time as GST.

ctively, on average. Despite taking longer than the simpler approaches, LOGA / LOGA𝑠𝑐 is scalable enough
rge-scale graph sparsification.

onclusion
summary, we proposed a hybrid sampling scheme LOGA for network sparsification. LOGA addresses

ability of GST to graphs with weights and different densities, by providing GST with a good initialization an
ing a constrained update. We verify the effectiveness of LOGA in producing even better (than the previous
art) sparse subgraphs 𝐺′ similar to  in terms of preserving representative properties. According to exten

ical studies on weighted graphs with different densities, we recommend LOGA𝑠𝑐
2,3,𝑤 in practice.

egarding future work, one interesting direction is to consider how to derive potentially suitable sparsific
in advance. Although this is situation-dependent, there should be a balance between the sparsification ratio
information loss. Furthermore, it remains to be answered whether this sparsification framework works we

ed graphs.
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Figure 6: Same as Fig. 5, but for 13 networks in Table 3.
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