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A B S T R A C T

Network (or graph) sparsification benefits downstream graph mining tasks. Finding a sparsified
subgraph �̂� similar to the original graph  is, however, challenging due to the requirement of
preserving various (or at least representative) network properties. In this paper, we propose
a general hybrid edge sampling scheme named LOGA, as the combination of the Local-
filtering-based Random Edge sampling (LRE) (Hamann et al., 2016) and the Game-theoretic
Sparsification with Tolerance (GST) (Su et al., 2022). LOGA fully utilizes the advantages of GST
— in preserving complex structural properties by preserving local node properties in expectation
– and LRE – in preserving the connectivity of a given network. Specifically, we first prove the
existence of multiple equilibria in GST. This insight leads us to propose LOGA and its variant
LOGA𝑠𝑐 by refining GST. LOGA is obtained by regarding LRE as an empirically good initializer
for GST, while LOGA𝑠𝑐 is obtained by further including a constrained update for GST. In this
way, LOGA/LOGA𝑠𝑐 generalize the work on GST to graphs with weights and different densities,
without increasing the asymptotic time complexity. Extensive experiments on 26 weighted and
unweighted networks with different densities demonstrate that LOGA𝑠𝑐 performs best for all
26 instances, i.e., they preserve representative network properties better than state-of-the-art
sampling methods alone.

1. Introduction

Networks  = (𝑉 , 𝐸 , 𝑊 ) (= graphs, we use both terms interchangeably) have been a prevalent data representation form. In
practice, it can be computationally demanding to analyze large networks with an average degree in the order of hundreds or
thousands. One common solution to speed up graph analyses is to use sparsification — removing a significant proportion of
possibly redundant edges of  without the aggregation of nodes.  is therefore compressed into a sparser graph �̂� by sparsification.
To obtain a meaningful �̂�, sparsification requires the preservation of structural properties of  in �̂� in a scaled manner. When
doing so, downstream graph mining tasks can benefit from sparsification, both regarding speed and quality [1–3]. For example, by
sparsification, important edges can be identified and used for graph representation learning [4]; other relevant applications include
visualization [2] and influence maximization [5].

Ideally, �̂� should be sufficiently similar (in a scaled manner) to , so that �̂� can be used in place of  for various applications as
mentioned above. However, this is a non-trivial problem due to the need to preserve various structural properties of . A pragmatic
solution is to preserve representative ones (see Fig. 1). By doing so, we can expect other properties to be preserved to some extent,
due to the correlations between different properties [6–9].
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Fig. 1. A schematic view of sparse subgraphs �̂� preserving structural properties of a given graph . Sparse subgraphs represented in shapes have the same number
of edges. Assume that the largest connected component, community structure, and degree distribution are representative structural properties to be preserved.
Some �̂� share a relatively higher similarity to  in terms of community structure, while others preserve well the degree distribution. Compared with all others,
�̂�1 and �̂�2 in diamond are ideal choices for well-preserving the selected representative properties.

When doing sparsification, time consumption is an important aspect to consider. For this, edge sampling methods using local
structural information are often preferred [10–12]. Still, preserving a set of representative properties by edge sampling is also non-
trivial, because it is hard to define an appropriate sampling objective characterizing well the selected representative properties. A
practical option is to combine different edge sampling methods.

Therefore, we propose a hybrid sampling scheme called LOGA, as a combination of a well-known edge-focused sampling,
i.e., the local-filtering-based random edge sampling (LRE) [10], and the state-of-the-art node-focused sampling, i.e., the game-
theoretic sparsification with tolerance (GST) [13]. LRE applies a local filtering post-processing step to random sampling, emphasizing
he preservation of the largest connected component; GST, in turn, is motivated by the fact that local structural characteristics
nable defining the basic and global organization of a network [14,15]. This combination is motivated by two drawbacks of GST:

initialization dependency and unconstrained update. The initialization dependency arises due to the possible existence of multiple
ash equilibria in an exact network potential game [16–18]; this is also true for GST under assumptions (see Lemma 1). The
nconstrained update means that GST proceeds based solely on the optimization objective. Consequently, representative properties

not characterized by the optimization objective or not specified in the sparsification process will not be properly preserved. Mainly
due to the two drawbacks, GST has limited sparsification performance in networks with weights and different densities (see
reliminary studies in Figs. 5(a) and 6(a)).

The paper is organized as follows. Section 2 reviews the related work on edge sampling and exact potential games. The proposed
hybrid edge sampling scheme is explained in Section 3. Section 4 presents the experimental evaluation, and Section 5 concludes
this paper.

1.1. Contributions

Thus, our contributions are as follows:

∙ We propose a hybrid edge sampling scheme LOGA and its variant LOGA𝑠𝑐 for graph sparsification. Specifically, LOGA improves
the initialization of GST by providing GST with an empirically good sparse 𝐺0 subgraph using LRE. LOGA𝑠𝑐 improves GST
further by including a constrained update for GST, i.e., preserving the largest connected component and the weighted average
clustering coefficient based on 𝐺0.

∙ LOGA𝑠𝑐 preserves representative properties better than the state-of-the-art sampling methods for functional climate, real-world,
and synthetic networks (on average).

∙ We recommend using LOGA𝑠𝑐
2,3,𝑤 in practice, in which subscripts ‘2’, ‘3’, and ‘𝑤’ represent that GST preserves the expected

degrees of nodes, the expected number of triangles (i.e., closed wedges), and the expected number of non-closed wedges
associated with nodes.

2. Related work

Edge sampling methods for graph sparsification can be classified into two categories: edge-focused and node-focused ones. We
review both of them. We also provide the necessary background on exact potential games, as our sampling scheme is based on GST
which adapts a game-theoretic sampling [19].

Edge-focused sampling. Typical edge sampling methods (the probability-based and filtering-based ones) are edge-focused
ecause they use properties associated with edges for sampling.

• Probability-based sampling samples edges based on a given edge probability distribution. For example, uniform sampling
samples edges uniformly and independently at random [20]; despite simplicity, it preserves spectral properties with high
probability [21]. When sampling for graph sparsification, spectral properties such as eigenvalue spectra are of high interest
since they contain global information on both graph topology and dynamical properties [22]. Le [11] proposed a non-uniform
sampling which samples edge 𝑒 = {𝑢, 𝑣} with probability inversely proportional to the number of common neighbors of 𝑢 and
𝑣.
2 
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Table 1
List of symbols.

Symbol Definition

 = (𝑉 , 𝐸 , 𝑊 ) An undirected and weighted graph with 𝑉 , 𝐸, and 𝑊 as vertex, edge, and weight sets, respectively
A,W The unweighted and weighted adjacency matrices of 
𝑙 ∈ {2, 3, 𝑤} The basic local properties associated with each node to be preserved, i.e., 𝑙 ∈ {2} for the degree, 𝑙 ∈ {3} for triangles (closed

wedges), and 𝑙 ∈ {𝑤} for non-closed wedges; by following Ref. [13], we particularly discuss the combinations of them, i.e.,
𝑙 ∈ {2, 3} and 𝑙 ∈ {2, 3, 𝑤}

𝑝 The uniform and independent sampling probability 𝑝 ∈ (0, 1]
E𝑖
𝑙 The expected degree (E𝑖

2) of node 𝑖, the expected number of triangles (E𝑖
3), and the expected number of non-closed wedges (E𝑖

𝑤)
associated with the node 𝑖, based on  and 𝑝

𝐺0 = (𝑉 , 𝐸0 , 𝑊 0) The initialized sparse subgraph by LRE, based on  and 𝑝
𝐺′ = (𝑉 , 𝐸′ , 𝑊 ′) The current subgraph during edge sampling with 𝑉 , 𝐸′ ⊆ 𝐸, and 𝑊 ′ ⊆ 𝑊 as vertex, edge, and weight sets, respectively
�̂� = (𝑉 , �̂� , �̂� ) The desired sparse subgraph after edge sampling with 𝑉 , �̂� ⊆ 𝐸, and �̂� ⊆ 𝑊 as vertex, edge, and weight sets, respectively
𝑚𝑖

𝑙(⋅) The degree (𝑚𝑖
2(⋅)) of node 𝑖, the number of triangles (𝑚𝑖

3(⋅)), and the number of non-closed wedges (𝑚𝑖
𝑤(⋅)) associated with the

node 𝑖, based on a given graph; for example, 𝑚𝑖
2(), 𝑚

𝑖
3(), and 𝑚𝑖

𝑤() are for , while 𝑚𝑖
2(𝐺

′), 𝑚𝑖
3(𝐺

′), and 𝑚𝑖
𝑤(𝐺

′) are for 𝐺′

𝑠(⋅), 𝑐(⋅) The size of the largest connected component (𝑠(⋅)) and the weighted average clustering coefficient (𝑐(⋅)) of a given graph; for
example, 𝑠(𝐺0) and 𝑐(𝐺0) are for 𝐺0, while 𝑠(𝐺′) and 𝑐(𝐺′) are for 𝐺′

LOGA2,3,𝑤 The detailed algorithm of the proposed hybrid sampling scheme LOGA, as the combination of the Local-filtering-based Random
Edge sampling (LRE) [10] and the Game-theoretic Sparsification with Tolerance (GST) [13]. By default, it preserves degrees,
triangles, and non-closed wedges in expectation, i.e., 𝑙 ∈ {2, 3, 𝑤}; the preservation of subset properties leads to LOGA2,3, i.e.,
𝑙 ∈ {2, 3}

LOGA𝑠𝑐
2,3,𝑤 The detailed algorithm of the variant LOGA𝑠𝑐 . By default, it preserves degrees, triangles, and non-closed wedges in expectation,

i.e., 𝑙 ∈ {2, 3, 𝑤}; the preservation of subset properties leads to LOGA𝑠𝑐
2,3, i.e., 𝑙 ∈ {2, 3}

• Filtering-based sampling, as in Ref. [10], includes two primary steps: edge scoring and filtering. Specifically, according to
a pre-defined scoring method based on some network properties, edge scoring assigns each edge a value to describe its
importance; filtering then removes all edges with scores below a certain threshold until the desired sparsification ratio is
satisfied. Hamann et al. [10] have compared systematically typical well-known filtering-based sampling methods, including
random edge, local Jaccard similarity [23], edge forest fire [24], Simmelian backbones [25], and algebraic distance [26].
By including an additional local-filtering step for these sampling methods, the preservation of properties considered in their
work is improved. They also proposed the local-degree-based sampling emphasizing the preservation of the largest connected
component.

Edge-focused sampling depends heavily on an appropriate way to define properties associated with edges. To relax such a
dependency, a node-focused sampling is proposed.

Node-focused sampling. It is known that local structural characteristics can define the basic and global organization of
a network [14,15]. Specifically, one can reproduce important properties in real-world networks, by constraining the averaged
degree, degree distribution, degree correlations, and clustering in random graphs to values observed in those real-world networks.
Motivated by this, node-focused sampling focuses on local properties associated with nodes, and formulates graph sparsification as
an optimization problem [13,27–29]. In particular, based on Refs. [19,27,28,30], Su et al. [13,29] have recently generalized this
idea for graph sparsification by proposing the game-theoretic sparsification with tolerance (GST, the foundation for Algorithm 1).
As one of the state-of-the-art sparsification methods, GST always converges to a Nash equilibrium. This is because GST constitutes
an exact potential game and the best-response dynamics over such a game ensures the convergence [13,19,31]. Still, two drawbacks
of GST, i.e., initialization dependency and unconstrained update (see Section 1), to a large extent limit its performance of GST in
networks with weights and different densities. We remedy the two drawbacks when proposing the hybrid sampling.

Background on exact potential games. A strategic game is a triplet ⟨𝑃 , {𝑆𝑝}𝑝∈𝑃 , {𝐶𝑝(𝑆𝑝, 𝑆−𝑝)}𝑝∈𝑃 → R⟩ consisting of players
, the strategy 𝑆𝑝 of a player 𝑝 ∈ 𝑃 , and the individual cost 𝐶𝑝 of the player 𝑝. The game proceeds in a round-robin fashion
fter assigning each player a strategy as the initialization. Based on the best-response dynamics [31], in every round, each player 𝑝

minimizes its cost 𝐶𝑝 based on all other players’ strategies 𝑆−𝑝; when the gain 𝑔(𝑝) is positive, i.e., 𝑔(𝑝) = 𝐶𝑝(𝑆𝑝, 𝑆−𝑝) −𝐶𝑝(𝑆′
𝑝, 𝑆−𝑝) > 0,

he current strategy 𝑆𝑝 is updated to a new one 𝑆′
𝑝. If no player has an incentive to change the current strategy, then the strategic

ame reaches a (pure) Nash equilibrium. The strategic game is said to be a potential game if all players’ incentives to change their
trategies can be formulated using a single global function called the potential function 𝛷. Furthermore, if the gain in the cost
unction is reflected in the potential function, i.e., 𝐶𝑝(𝑆𝑝, 𝑆−𝑝) − 𝐶𝑝(𝑆′

𝑝, 𝑆−𝑝) = 𝛷(𝑆𝑝, 𝑆−𝑝) − 𝛷(𝑆′
𝑝, 𝑆−𝑝), the potential game is called

xact. Most importantly, an exact potential game always converges to a Nash equilibrium due to the best-response dynamics,
egardless of the initialization [31].

3. Proposed sparsification method

Given an undirected and weighted graph  = (𝑉 , 𝐸 , 𝑊 ), graph sparsification aims to find a subgraph �̂� = (𝑉 , �̂� , �̂� ) which
preserves certain representative properties. The proposed hybrid sampling LOGA1 improves GST via initialization improvement

1 Code available at: https://github.com/Zsstarry/Network-Sparsification-via-Hybrid-Edge-Sampling.
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Fig. 2. An example of computing local node properties and their expectations associated with 𝐴. (a) The given graph . The degree of 𝐴, the number of
riangles, and the number of non-closed wedges associated with 𝐴, are 𝑚𝐴

2 () = 3, 𝑚𝐴
3 () = 1 (i.e., {{𝐴, 𝐵}, {𝐴, 𝐶}, {𝐵 , 𝐶}}), and 𝑚𝐴

𝑤() = 2 (i.e., {{𝐴, 𝐵}, {𝐴, 𝐷}}
nd {{𝐴, 𝐶}, {𝐴, 𝐷}}), respectively. (b) The given graph  with a uniform and independent sampling probability 𝑝 = 0.8. The expected degree of 𝐴, the expected
umber of triangles, and the expected number of non-closed wedges associated with 𝐴, are E𝐴

2 = 2.4, E𝐴
3 = 0.512, and E𝐴

𝑤 = 1.408, respectively.

and a constrained update. We thus describe GST first by following the same assumption – a uniform and independent sampling
probability 𝑝 ∈ (0, 1] for each edge – that applies to GST in Ref. [13]. Note that this probability 𝑝 controls also the number of edges
to be preserved indirectly. Section 3.2 highlights the contributions of this paper. The most common symbols of this work are listed
n Table 1.

3.1. Game-theoretic Sparsification with Tolerance (GST)

Instead of sampling edges directly based on the sampling probability 𝑝, GST uses it to derive and preserve local node properties (in
expectation) in the sparsified graph �̂�. Specifically, for a node 𝑖 in , these local properties include the degree 𝑚𝑖

2() ∶=
∑

|𝑉 |

𝑗=1 𝐀𝑖𝑗 , the
umber of triangles (closed wedges) 𝑚𝑖

3() ∶=
1
2
∑

|𝑉 |

𝑗=1
∑

|𝑉 |

𝑘=1 𝐀𝑖𝑗𝐀𝑖𝑘𝐀𝑗 𝑘, and the number of non-closed wedges 𝑚𝑖
𝑤() ∶= 1

2𝑚
𝑖
2()(𝑚

𝑖
2() −

1) − 𝑚𝑖
3() [32]. Following Refs. [13,19,30], their expected values are defined based on 𝑝 as: E𝑖

2 ∶= 𝑝𝑚𝑖
2(), E

𝑖
3 ∶= 𝑝3𝑚𝑖

3(), and
𝑖
𝑤 ∶= 1

2 𝑝
2𝑚𝑖

2()(𝑚
𝑖
2() − 1) − 𝑝3𝑚𝑖

3(). An example of computing these local node properties and their expectations is presented in
Fig. 2. The graph sparsification is therefore formulated as the node-focused sampling:

Definition 1 (Sparsification Via Scaled Local Node Properties [13]). Given an undirected and weighted network  = (𝑉 , 𝐸 , 𝑊 ) and a
uniform and independent sampling probability 𝑝 ∈ (0, 1], find a sparsified subgraph �̂� = (𝑉 , �̂� , �̂� ) such that:

�̂� ∶= argmin
𝐺′⊆

∑

𝑖∈𝑉

∑

𝑙∈{2,3,𝑤}

1
𝑚𝑖
𝑙()

|𝑚𝑖
𝑙(𝐺

′) − E𝑖
𝑙|. (1)

where the normalization factor 1∕𝑚𝑖
𝑙() avoids the domination of any single one of these local properties. Eq. (1) preserves by default

all three local node properties, i.e., the degree (𝑙 ∈ 2), the number of triangles (𝑙 ∈ 3), and the number of non-closed wedges (𝑙 ∈ 𝑤)
a node belongs to. That is, each node in �̂� has an incentive to make these local properties (in the current sparse subgraph 𝐺′) as
close as possible to their corresponding expectations. By following Ref. [13], we consider the two cases where 𝑙 iterates (i) only
over degrees and triangles (𝑙 ∈ {2, 3}) and (ii) additionally over non-closed wedges (𝑙 ∈ {2, 3, 𝑤}).

To find approximate solutions for Eq. (1), Ref. [13] proposed GST which constitutes an exact network potential game (see
lines 7-18 in Algorithm 1). The game is a triplet ⟨𝐸 , {𝑆𝑒}𝑒∈𝐸 , {𝐶𝑒(𝑆𝑒, 𝑆−𝑒)}𝑒∈𝐸 → R⟩, where each edge 𝑒 = {𝑢, 𝑣} ∈ 𝐸 is a
layer sharing binary strategies: 0 for removal and 1 for preservation (𝑆𝑒 = {0, 1}) and each edge minimizes its cost 𝐶𝑒 based
n the strategies 𝑆−𝑒 of all other edges. Ref. [13] defines the cost function as 𝐶𝑒 ∶=

∑

𝑖∈(𝑒)
∑

𝑙∈{2,3,𝑤}
1

𝑚𝑖
𝑙 ()

|𝑚𝑖
𝑙(𝐺

′) − E𝑖
𝑙| where

(𝑒) = {𝑢} ∪ {𝑣} ∪ {𝑧 ∈ 𝑉 ∶ {𝑧, 𝑢} ∈ 𝐸′ ∧ {𝑧, 𝑣} ∈ 𝐸′} is the set of nodes affected by the strategy change of 𝑒. 𝐶𝑒 considers only (𝑒)
ecause only local subgraphs with up to 3 nodes are considered in Eq. (1). The game proceeds in a round-robin fashion based on

the gain 𝑔(𝑒) ∶= 𝐶𝑒(𝑆𝑒, 𝑆−𝑒) − 𝐶𝑒(𝑆′
𝑒, 𝑆−𝑒) in the cost function:

𝑔(𝑒) =
∑

𝑖∈(𝑒)

∑

𝑙∈{2,3,𝑤}

|𝑚𝑖
𝑙(𝐺

′) − E𝑖
𝑙| − |𝑚𝑖

𝑙(𝐺
′′) − E𝑖

𝑙|

𝑚𝑖
𝑙()

, (2)

where 𝑒 updates its strategy, e.g., from 𝑆𝑒 = 1 to 𝑆′
𝑒 = 0 with the current subgraph 𝐺′ correspondingly becoming 𝐺′′ = (𝑉 , 𝐸′′) =

𝑉 , 𝐸′ ⧵ {𝑒}), only when 𝑔(𝑒) > 0. The game has a (pure) Nash equilibrium when no edge has the incentive to change its current
trategy. Meanwhile, a global function Φ = ∑

𝑖∈𝑉
∑

𝑙∈{2,3,𝑤}
1

𝑚𝑖
𝑙 ()

|𝑚𝑖
𝑙(𝐺

′) − E𝑖
𝑙| (same as Eq. (1)) exists to ensure that GST is a potential

game. The gain in the potential function is therefore:

Φ(𝑆𝑒, 𝑆−𝑒) − Φ(𝑆′
𝑒, 𝑆−𝑒) ∶=

∑

𝑖∈𝑉

∑

𝑙∈{2,3,𝑤}

1
𝑚𝑖
𝑙()

(

|𝑚𝑖
𝑙(𝐺

′) − E𝑖
𝑙| − |𝑚𝑖

𝑙(𝐺
′′) − E𝑖

𝑙|
)

.

In particular, 𝐶𝑒(𝑆𝑒, 𝑆−𝑒) − 𝐶𝑒(𝑆′
𝑒, 𝑆−𝑒) = Φ(𝑆𝑒, 𝑆−𝑒) − Φ(𝑆′

𝑒, 𝑆−𝑒) due to Φ(𝑆𝑒, 𝑆−𝑒) − Φ(𝑆′
𝑒, 𝑆−𝑒) = 0 ∀𝑖 ∈ 𝑉 ⧵(𝑒), ensuring that GST

onstitutes an exact potential game. The best-response dynamics in the exact potential game guarantees the convergence to a Nash
quilibrium [31].

3.2. Hybrid edge sampling scheme

Our proposed hybrid sampling scheme LOGA and its variant LOGA𝑠𝑐 is based on the improvements over GST. The improvements
include initialization via edge-focused sampling (i.e., LOGA – Algorithms 1 and 2), and a constrained update (i.e., the variant LOGA𝑠𝑐

– Algorithms 1, 2, and 3).
4 
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Algorithm 1: Hybrid sampling scheme (LOGA / LOGA𝑠𝑐), based on the game-theoretic sparsification with tolerance
(GST) [13]

Input:  = (𝑉 , 𝐸 , 𝑊 ), 𝑝 ∈ (0, 1], and the tolerance threshold by default 𝑇 = 0.01 (based on Ref. [13])
Output: 𝐺′ = (𝑉 , 𝐸′, 𝑊 ′)

/* Stage I (Precomputing expected basic properties) */
1 for 𝑖 ∈ 𝑉 do in parallel
2 Compute E𝑖

2, E
𝑖
3, E

𝑖
𝑤, 𝑚𝑖

2(), 𝑚
𝑖
3(), and 𝑚𝑖

𝑤(), based on  and 𝑝

/* Stage II (Sparsification) */
3 𝐺′, 𝑠(𝐺0), 𝑐(𝐺0), 𝑐() ← Initialization(, 𝑝)
4 for 𝑖 ∈ 𝑉 do in parallel
5 Compute 𝑚𝑖

2(𝐺
′), 𝑚𝑖

3(𝐺
′), and 𝑚𝑖

𝑤(𝐺
′), based on 𝐺′

6 𝐿′ ← 𝑉 ; 𝐺 𝑎𝑖𝑛[|𝑉 |] ← 0; 𝑟 ← 0
7 repeat
8 𝐿 ← 𝐿′; 𝐿′ ← ∅
9 foreach 𝑒 = {𝑢, 𝑣} ∈ 𝐸 incident (in ) to a node in 𝐿 do

10 (𝑒) ← {𝑢} ∪ {𝑣} ∪ {𝑧 ∈ 𝑉 ∶ {𝑧, 𝑢} ∈ 𝐸′ ∧ {𝑧, 𝑣} ∈ 𝐸′}
11 Compute 𝑔(𝑒) based on Eq. Eq. (2)
12 𝐺′, 𝐹 𝑙 𝑎𝑔 ← Constrained_Update(𝑒, 𝐺′, 𝑠(𝐺0), 𝑐(𝐺0), 𝑐(), 𝑔(𝑒))
13 if Flag is True then
14 𝐿′ ← 𝐿′ ∪(𝑒)
15 Update 𝑚𝑖

2(𝐺
′), 𝑚𝑖

3(𝐺
′), and 𝑚𝑖

𝑤(𝐺
′), based on 𝐺′

16 𝑟 ← 𝑟 + 1
17 𝐺 𝑎𝑖𝑛[𝑟] ← ∑

𝑖∈𝑉
∑

𝑙∈{2,3,𝑤}
1

𝑚𝑖
𝑙 ()

|𝑚𝑖
𝑙(𝐺

′) − E𝑖
𝑙|

18 until 𝑟 ≥ 2 ∧ 𝐺 𝑎𝑖𝑛[𝑟 − 1] − 𝐺 𝑎𝑖𝑛[𝑟] ≤ 𝑇
19 return 𝐺′

Algorithm 2: Initialization
Input:  = (𝑉 , 𝐸 , 𝑊 ) and 𝑝 ∈ (0, 1]
Output: 𝐺0 = (𝑉 , 𝐸0, 𝑊 0), 𝑠(𝐺0), 𝑐(𝐺0)

1 Generate a sparse subgraph 𝐺0 = (𝑉 , 𝐸0, 𝑊 0) with 𝐸0 = 𝑝|𝐸| using LRE [33]
2 Compute 𝑠(𝐺0), 𝑐(𝐺0), and 𝑐()
3 return 𝐺0, 𝑠(𝐺0), 𝑐(𝐺0), 𝑐()

Algorithm 3: Constrained_Update
Input: An edge 𝑒 = {𝑢, 𝑣} currently being visited, 𝐺′ = (𝑉 , 𝐸′, 𝑊 ′), 𝑠(𝐺0), 𝑐(𝐺0), 𝑐(), and 𝑔(𝑒)
Output: Whether to update 𝐺′ = (𝑉 , 𝐸′, 𝑊 ′)

1 if 𝑒 ∈ 𝐸′ then 𝐺′′ ← (𝑉 , 𝐸′ ⧵ {𝑒})
2 else 𝐺′′ ← (𝑉 , 𝐸′ ∪ {𝑒})
3 Compute 𝑠(𝐺′′) and 𝑐(𝐺′′)
4 if 𝑔(𝑒) > 0 ∧ 𝑠(𝐺′′) >= 𝑠(𝐺0) ∧ |𝑐(𝐺0) − 𝑐()| >= |𝑐(𝐺′′) − 𝑐()| then return 𝐺′ ← 𝐺′′, True
5 else return 𝐺′, False

• Initialization via edge-focused sampling — Algorithms 1 and 2. The idea of improving the initialization of GST stems from
the existence of multiple equilibria in GST, which is not indicated in Ref. [13]; as a result, the solution that GST converges
to depends highly on initialization. Motivated by [30, Lemma 2], we prove the existence of multiple equilibria for the case
𝑙 ∈ {2, 3} of Eq. (1) as below.

Lemma 1. For

�̂� ∶= argmin
𝐺′⊆

∑

𝑖∈𝑉

∑

𝑙∈{2,3}

1
𝑚𝑖
𝑙()

|𝑚𝑖
𝑙(𝐺

′) − E𝑖
𝑙|,

assume a globally optimal sparse subgraph 𝐺′ exists which contains at least one edge 𝑒 = {𝑢, 𝑣} with 𝑢 and 𝑣 satisfying: (a) {𝑧 ∈ 𝑉 ∶
𝑧, 𝑢} ∈ 𝐸′ ∧ {𝑧, 𝑣} ∈ 𝐸′} = ∅; (b) 𝑚𝑢

2(𝐺
′) > E𝑢

2 and 𝑚𝑣
2(𝐺

′) ≤ E𝑣
2 with E𝑢

2,E
𝑣
2 ∈ N; (c) 𝑚𝑢

2() = 𝑚𝑣
2(). Then, there exists a globally optimal

parse subgraph �̃� ≠ 𝐺′ representing a Nash equilibrium with 𝑚𝑖
2(�̃�) ≤ E𝑖

2, ∀𝑖 ∈ 𝑉 .

Proof. Since 𝐺′ is a global optimum, it is a Nash equilibrium. We continue by first proving that 𝐺′′ = (𝑉 , 𝐸′′) = (𝑉 , 𝐸′⧵{𝑒}) is another
global optimum. Condition (a) indicates the non-existence of common neighbors between 𝑢 and 𝑣 in 𝐺′. Therefore, (𝑒) = {𝑢, 𝑣} is
5 
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the node set affected by the removal of 𝑒 from 𝐺′; more precisely, only the degrees of 𝑢 and 𝑣, i.e., 𝑚𝑢
2(𝐺

′) and 𝑚𝑣
2(𝐺

′), get affected.
hus, the corresponding gain, as in Eq. (2), is simplified as:

𝑔′(𝑒) =
|𝑚𝑢

2(𝐺
′) − E𝑢

2| − |𝑚𝑢
2(𝐺

′′) − E𝑢
2|

𝑚𝑢
2()

+
|𝑚𝑣

2(𝐺
′) − E𝑣

2| − |𝑚𝑣
2(𝐺

′′) − E𝑣
2|

𝑚𝑣
2()

.

According to condition (b), 𝑚𝑢
2(𝐺

′) − E𝑢
2 > 0 and E𝑢

2 ∈ N; therefore, the removal of 𝑒 from 𝐺′ leads to 𝐺′′ with 𝑚𝑢
2(𝐺

′′) − E𝑢
2 =

𝑢
2(𝐺

′) − 1 −E𝑢
2 ≥ 0. Similarly, we have 𝑚𝑣

2(𝐺
′) −E𝑣

2 ≤ 0 and 𝑚𝑣
2(𝐺

′′) −E𝑣
2 = 𝑚𝑣

2(𝐺
′) − 1 −E𝑢

2 < 0. Therefore, |𝑚𝑢
2(𝐺

′) − E𝑢
2|−|𝑚

𝑢
2(𝐺

′′) − E𝑢
2| = 1

nd |𝑚𝑣
2(𝐺

′) − E𝑣
2| − |𝑚𝑣

2(𝐺
′′) − E𝑣

2| = −1. Further by condition (c), 𝑔′(𝑒) = 1∕𝑚𝑢
2() − 1∕𝑚𝑣

2() = 0; that is, both 𝐺′ and 𝐺′′ are global
ptima representing different Nash equilibria. According to Ref. [30], by removing all edges satisfying conditions (a), (b), and (c),
ne constructs a globally optimal sparse subgraph �̃� ≠ 𝐺′ which satisfies 𝑚𝑖

2(�̃�) ≤ E𝑖
2, ∀𝑖 ∈ 𝑉 . Thus, the proof is complete.

Due to the (conditional) existence of more than one global optimum, it is natural to ask how to steer an algorithm to find a
good optimum. One established strategy to increase the likelihood of convergence to a good local (or, better yet, global) optimum
is to use a good starting solution. In our context, a starting solution that already preserves representative properties reasonably well
should serve this purpose. Therefore, we propose LOGA first by using LRE as a good initializer in improving GST (see Algorithm
2), due to the best performance of LRE in Figs. 5(a) and 6(a). Our conjecture of convergence to a better optimum is empirically
verified in Section 4.2.

• Constrained update — Algorithms 1, 2, and 3. For GST, initialization improvement is not sufficient to ensure that, the
representative properties preserved by the initialized sparse subgraph 𝐺0 can still be preserved after sparsification. This is
because GST proceeds based only on its optimization objective (see Eq. (2)). As a result, the representative properties not
characterized by the optimization objective cannot be preserved properly. Therefore, a constrained update is needed for the
sparsification process. To this end, we pay attention to the preservation of the largest connected component 𝑠(⋅) and the weighted
average clustering coefficient 𝑐(⋅). These two structural properties characterize the global organization of a graph, and can be
used for characterizing network resilience [34,35]. Besides, they are easy to compute. In particular, the largest connected
component can be well-preserved by LRE [10] (also see LRE better than RE in Table 5), but not by GST. Thus, we further
include the preservation of 𝑠(𝐺0) and 𝑐(𝐺0) based on 𝐺0 in Algorithm 3, leading to a variant LOGA𝑠𝑐 . Note that, for a given

graph like , we compute the 𝑐() = 1
|𝑉 |

∑

|𝑉 |

𝑖=1

(

1
(
∑

|𝑉 |

𝑗=1 𝐀𝑖𝑗−1)
∑

|𝑉 |

𝑗=1 𝐖𝑖𝑗

∑

|𝑉 |

𝑘=1
∑

|𝑉 |

𝑙∈1
𝐖𝑖𝑘+𝐖𝑖𝑙

2 𝐀𝑖𝑘𝐀𝑖𝑙𝐀𝑘𝑙

)

based on Ref. [36].

Time complexity. We assume an adjacency array as the graph data structure. Stage I (see lines 1–2 in Algorithm 1) is dominated
y the computation of the number of triangles 𝑚𝑖

3() for each node. We use adjacency-marking-based triangle counting [37], which
can be implemented to run in (𝑎()|𝐸|) time [38], with 𝑎() being the arboricity of  and being upper-bounded by the maximum
degree 𝑑𝑚𝑎𝑥. The initialization (see Algorithm 2) takes (log(𝑑𝑚𝑎𝑥)|𝐸|) for obtaining 𝐺0 by LRE [10], (|𝑉 | + |𝐸|) for computing
the largest connected component 𝑠(⋅), and (𝑎()|𝐸|) for computing the weighted average clustering coefficient 𝑐(⋅). For Stage II,
omputing the number of triangles 𝑚𝑖

3(𝐺
′) for each node based on the current subgraph 𝐺′ dominates Lines 4–6. Lines 7–15 take

(𝑟𝑑𝑚𝑎𝑥|𝐸|) time, where 𝑟 is the number of iterations of the repeat-loop and (𝑑𝑚𝑎𝑥) is required by a linear-time intersection operation
o find (𝑒). Note that computing 𝑐(𝐺′′) takes (𝑑𝑚𝑎𝑥) dominating Algorithm 3. Hence, in total, the (sequential) time complexity of
OGA/LOGA𝑠𝑐 equals that of GST with (𝑟𝑑𝑚𝑎𝑥|𝐸|), provided that the initialization step (i.e., Algorithm 2) takes at most (𝑟𝑑𝑚𝑎𝑥|𝐸|)
ime.

4. Experimental evaluation

In this section, we assess the performance of LOGA/LOGA𝑠𝑐 by answering:

Q1: How well do LOGA/LOGA𝑠𝑐 improve the state-of-the-art sampling methods in terms of preserving non-local/complex repre-
sentative properties?

Q2: What is the empirical running time of LOGA/LOGA𝑠𝑐 , in particular in comparison to GST?

4.1. Experimental settings

Data sets. We consider 13 weighted networks from different domains in Table 2, including functional climate networks, observed
eal-world networks, and LFR networks. For the same data sets, another 13 networks in Table 3 are constructed to verify the

usefulness of LOGA/LOGA𝑠𝑐 for unweighted and sparser networks.

∙ Functional climate networks. In Table 2, five functional networks are constructed based on Refs. [39–41]. By randomly choosing
50% edges from the respective networks in Table 2 and letting weights be 1, we obtain unweighted networks with reduced
density in Table 3.

∙ Observed real-world networks. In Table 2, five selected real-world networks, from Squirrel to HepTh, describe social and
biological relationships and are available publicly online.2 We also construct unweighted networks with reduced density in
Table 3, by randomly choosing 50% edges from the respective networks in Table 2 and letting weights be 1.

2 http://snap.stanford.edu/ http://konect.cc/networks/, https://string-db.org/.
6 
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Table 2
Characteristics of data sets with weighted structure.

Type Network |𝑉 | |𝐸|

|𝐸|

|𝑉 |

Description

Functional climate networks

Glo_ERA5SP 7320 1,559,513 213.05 Global surface pressure from ERA5
Glo_ERA5ST 7320 2,022,285 276.27 Global surface temperature from ERA5
Glo_ERA5GPH 7320 1,866,977 255.05 Global 250-hPa geopotential height from ERA5
Glo_ERA5OLR 7320 845,465 115.50 Global outgoing long-wave radiation from ERA5
Glo_TRMM 16,080 1,753,588 109.05 Precipitation from TRMM

Observed real-world networks

Squirrel 5201 198,353 38.14 Wikipedia articles on squirrels
SC 6394 994,296 155.50 Protein network of Saccharomyces cerevisiae
NIPS 13,875 746,316 53.79 Bipartite document–word dataset of NIPS full papers
CE 18,387 4,481,664 243.74 Protein network of Caenorhabditis elegans
HepTh 22,908 2,444,798 106.72 Co-citation network of arXiv’s hep-th section

LFR networks
LFR𝜇=0.1 10,000 1,238,142 123.81 Synthetic benchmark
LFR𝜇=0.2 10,000 1,255,220 125.52 Synthetic benchmark
LFR𝜇=0.3 10,000 1,250,961 125.10 Synthetic benchmark

Table 3
Same data sets as Table 2 but with weights 1 and reduced density.

Type Network |𝑉 | |𝐸|

|𝐸|

|𝑉 |

Description

Functional climate networks

Glo_ERA5SP 7320 779,756 106.52

Unweighted and reduced network density
Glo_ERA5ST 7320 1,011,142 138.13
Glo_ERA5GPH 7320 933,488 127.53
Glo_ERA5OLR 7320 422,732 57.75
Glo_TRMM 16,080 876,794 54.53

Observed real-world networks

Squirrel 5201 99,176 19.07

Unweighted and reduced network density
SC 6394 497,148 77.75
NIPS 13,875 373,158 26.89
CE 18,387 2,240,832 121.87
HepTh 22,908 1,222,399 53.36

LFR networks
LFR𝜇=0.1 10,000 252,923 25.29

Unweighted and reduced network densityLFR𝜇=0.2 10,000 248,907 24.89
LFR𝜇=0.3 10,000 253,753 25.38

∙ LFR networks. In Table 2, three synthetic networks are constructed based on the Lancichinetti–Fortunato–Radicchi (LFR)
benchmark [42] implemented in NetworKit [33,43], a tool suite for scalable network analysis. The parameters are as follows:
(i) power-law exponents for the degree distribution and the community size distribution: 𝜏1 = −2 and 𝜏2 = −1, respectively;
(ii) fraction of inter-community edges: 𝜇 ∈ {0.1, 0.2, 0.3}; (iii) desired average and maximum degrees: 250 and 1000 (50 and
250 for Table 3), respectively; (iv) minimum and maximum sizes of communities: 250 and 1000 (25 and 250 for Table 3),
respectively.

Baselines. We compare LOGA/LOGA𝑠𝑐 with two state-of-the-art and four well-known sampling methods. Note that we compare
LOGA/LOGA𝑠𝑐 and GST indirectly by comparing LOGA/LOGA𝑠𝑐 vs {LD, LJS, RE, LRE, and CN} and GST vs {LD, LJS, RE, LRE,
and CN}, separately. This is because we want to compare graphs with similar densities, but both LOGA/LOGA𝑠𝑐 and GST cannot
take directly a sparsification ratio as input while the other methods can. Both CN and LRE are additional competitors not used by
Ref. [13].

• Two state-of-the-art methods. In Ref. [13], GST takes by default the original graph  as initialization. The necessity of preserving
both degrees and the number of 3-node subgraphs in expectation for graph sparsification has also been confirmed. Therefore,
by following Ref. [13], we consider also both 𝑙 ∈ {2, 3} and 𝑙 ∈ {2, 3, 𝑤}. That is, the first comparison is between LOGA2,3 /
LOGA2,3,𝑤 / LOGA𝑠𝑐

2,3 / LOGA𝑠𝑐
2,3,𝑤 and GST2,3 / GST2,3,𝑤. The second competitor by Le [11] samples edges with probability

inversely proportional to the number of common neighbors (CN) between the two nodes.
• Four well-known methods. Four well-known edge-focused sampling methods are: local degree (LD) [10], local Jaccard similarity

(LJS) [23], random edge sampling (RE) [21], and the local-filtering based random edge sampling (LRE) [10]. Their empirical
effectiveness in preserving the overall connectivity (by LD), community structure (by LJS), and eigenvalue distribution (by
RE/LRE), are systematically compared in Ref. [10] and implemented in NetworKit [33,43].

Evaluation metrics and procedure. By default, 𝑝 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} is applied. For Q1, we use a three-step
valuation procedure, where the Mann–Whitney U test and shooting score are not used by Ref. [13]:

∙ Step I — similarity estimation. The similarity estimation between the original graph  and the obtained sparse subgraph 𝐺′

considers the multi-level representative properties. The detailed methods for computing these properties and for similarity
estimation are summarized in Table 4, with an example given in Fig. 3.
7 
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Table 4
Graph similarity estimation based on selected representative properties.

Representative property Computation Similarity estimation

The weighted average clustering coefficient Ref. [36] Deviation [10]
The size of the largest connected component NetworKit [33,43] Deviation
Community structure PLM [44] in NetworKit Adjusted rand index (ARI) [45]
Betweenness EstimateBetweenness [46] in NetworKit Spearman’s 𝜌 with 𝑃 < 0.05 [10]
Degree NetworKit Spearman’s 𝜌 with 𝑃 < 0.05
The weighted local clustering coefficient Ref. [36] Spearman’s 𝜌 with 𝑃 < 0.05
Graph spectra (eigenvalue distribution) SLAQ_NetLSD [47] using heat kernel [48] Euclidean distance [47,48]
Graph spectra (eigenvalue distribution) SLAQ_VNGE [47] using Von Neumann Graph Entropy [49] Euclidean distance

Fig. 3. An example of graph similarity estimation (see Step I of ‘Evaluation metrics and procedure’ in Section 4.1), in terms of six edge sampling methods
(i.e., LOGA𝑠𝑐

2,3,𝑤, LD, LJS, RE, LRE, and CN) preserving representative structural properties, for Glo_ERA5SP in Table 2. Each sampling probability 𝑝 on the
𝑥-axis is attached with the exact ratio of preserved edges in brackets. The LOGA𝑠𝑐

2,3,𝑤 is highlighted in red. This figure indicates that, there is no single method
well-preserving all these considered representative structural properties, as in Ref. [13].

∙ Step II — ranking comparison. To obtain a conclusive summary, we summarize the performance of different sampling methods
by ranking distribution and Mann–Whitney U test. This is partially motivated by the evaluation procedure of Ref. [24], where
different algorithms are evaluated over different data sets and over different evaluation criteria. Specifically, given a sampling
probability 𝑝, we rank from 1 to 6 for LOGA2,3 / LOGA2,3,𝑤 / LOGA𝑠𝑐

2,3 / LOGA𝑠𝑐
2,3,𝑤 / GST2,3 / GST2,3,𝑤, LD, LJS, RE, LRE, and CN,

in the similarity comparison of each representative property. We then summarize as a distribution all rankings, for each method
over different 𝑝 and over different similarity comparisons of representative properties. The ranking distribution exhibits a large
variance since preserving well all selected representative properties is impossible. We, therefore, use the Mann–Whitney U test
to classify the six sampling methods into two groups. Group I has better performance, Group II performs worse in comparison,
and they satisfy: (1) methods in Group I share the same pair-wise cumulative distribution functions (CDFs) in terms of ranking
distributions, given the null hypothesis that two CDFs to be compared are identical and the significance threshold of 0.1; (2)
at least one method’s CDF in Group I is larger than the CDF of any method in Group II, given the significance threshold of
0.05.

∙ Step III — shooting score. This step computes the number of data sets for which each method has better rankings in Step II —
ranking comparison. The shooting score is summarized in Table 5.

For Q2, we compare LOGA/LOGA𝑠𝑐 , GST, LD, LJS, RE, LRE, and CN (see Section 4.2), using an unbiased single-threaded
nvironment. The empirical running time is averaged (arithmetic mean) over 10 runs (sufficient due to small variance) for each

given sampling probability × 9 sampling probabilities (𝑝 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}) × 2 cases (𝑙 ∈ 2, 3 and 𝑙 ∈ 2, 3, 𝑤).

4.2. Discussion

An example of the detailed graph similarity estimation is presented in Fig. 3. The results for other graphs are similar. The
proposed hybrid sampling method LOGA and its variant LOGA𝑠𝑐 share the same optimization objective as GST, and constitute also a
network exact potential game. Therefore, LOGA𝑠𝑐

2,3,𝑤 preserves well the degree distribution (see Fig. 3(e)), just like GST. Meanwhile,
LOGA𝑠𝑐 shares similar preservation of the weighted average clustering coefficient and the approximated eigenvalue distribution,
2,3,𝑤

8 
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Table 5
Summary of the performance of sampling methods, i.e., LOGA/LOGA𝑠𝑐 vs. {GST, LD, LJS, RE, LRE, and CN}, out of 26 networks
in Tables 2 and 3. The shooting score counts the number of hatches for each method based on Figs. 5 and 6.

Method GST2,3 LD LJS RE LRE CN
Score (Figs. 5(a) and 6(a)) 8 14 0 10 25 0
Method GST2,3,𝑤 LD LJS RE LRE CN
Score (Figs. 5(a) and 6(a)) 10 13 0 11 23 0

Method LOGA2,3 LD LJS RE LRE CN
Score (Figs. 5(b) and 6(b)) 21 6 0 6 20 0
Method LOGA2,3,𝑤 LD LJS RE LRE CN
Score (Figs. 5(b) and 6(b)) 22 6 0 5 20 0
Method LOGA𝑠𝑐

2,3 LD LJS RE LRE CN
Score (Figs. 5(c) and 6(c)) 23 4 0 5 18 0
Method LOGA𝑠𝑐

2,3,𝑤 LD LJS RE LRE CN
Score (Figs. 5(c) and 6(c)) 26 4 0 5 19 0

Fig. 4. The average running times of LOGA/LOGA𝑠𝑐 , GST, LD, LJS, RE, LRE, and CN for networks in Tables 2 and 3. LOGA/LOGA𝑠𝑐 takes a similar empirical
running time as GST.

as LRE. This is mainly due to the inclusion of the constrained update in Section 3.2. Still, taking Fig. 3 as an example, comparing
different graph similarity estimates one by one is not conclusive, as different sampling methods have diverse performances. We
hus summarize Fig. 3 in Fig. 5(c)(b) by using their rankings, and apply the same summarization to all other graphs (see Step II of

‘Evaluation metrics and procedure’ in Section 4.1).
The ranking comparisons are given in Figs. 5 and 6. We summarize the final shooting score for each sampling method in Table 5.

LRE performs well in practice compared with GST, LD, LJS, RE, and CN, in line with the conclusion in Ref. [10] that local filtering
improves the preservation of representative properties. Yet, the sparse subgraph 𝐺′ sampled by LOGA/LOGA𝑠𝑐 is even better than
that by LRE, since LOGA2,3,𝑤 achieves the highest shooting score of 26

26 ; that is, they better preserve representative properties on
all network instances. The relative improvement of LOGA/LOGA𝑠𝑐 over GST, in terms of the shooting scores, is substantial with
𝐿𝑂 𝐺 𝐴2,3+𝐿𝑂 𝐺 𝐴𝑠𝑐

2,3−2𝐺 𝑆 𝑇2,3
4𝐺 𝑆 𝑇2,3 +

𝐿𝑂 𝐺 𝐴2,3,𝑤+𝐿𝑂 𝐺 𝐴𝑠𝑐
2,3,𝑤−2𝐺 𝑆 𝑇2,3,𝑤

4𝐺 𝑆 𝑇2,3,𝑤 = 1.575; similarly, an (albeit smaller) relative improvement of 0.2 is observed

ver LRE. This answers Q1 and confirms that a good sparse subgraph as initialization can lead to better Nash equilibria for GST
see ‘Initialization via edge-focused sampling’ in Section 3.2).

To answer Q2, the average running times of LOGA/LOGA𝑠𝑐 , GST, LD, LJS, RE, LRE, and CN are compared in Fig. 4. LOGA/LOGA𝑠𝑐

ake on average similar time as GST, confirming our analysis on ‘Time complexity’ in Section 3.2. Compared to the others, LOGA is
3, 8, 65, 12, and 24 times slower than LD, LJS, RE, LRE, and CN, respectively, on average. Despite taking longer than the simpler
pproaches, LOGA/LOGA𝑠𝑐 is scalable enough even for large-scale graph sparsification.

5. Conclusion

In summary, we proposed a hybrid sampling scheme LOGA for network sparsification. LOGA addresses the applicability of GST
to graphs with weights and different densities, by providing GST with a good initialization and by including a constrained update.
We verify the effectiveness of LOGA in producing even better (than the previous state of the art) sparse subgraphs 𝐺′ similar to  in
terms of preserving representative properties. According to extensive empirical studies on weighted graphs with different densities,
we recommend LOGA𝑠𝑐

2,3,𝑤 in practice.
Regarding future work, one promising direction is to consider how to derive potentially suitable sparsification ratios in advance.

Although this is situation-dependent, there should be a balance between the sparsification ratio and graph information loss.
Furthermore, it remains to be answered whether this sparsification framework works well in directed graphs.
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Fig. 5. Ranking comparison among LOGA/LOGA𝑠𝑐 , GST, LD, LJS, RE, LRE, and CN for 13 networks in Table 2. Methods with better rankings are hatched based
on the Mann–Whitney U test (see Step II of ‘Evaluation metrics and procedure’ in Section 4).
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