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Abstract
Climate change is expected to impact crop yields globally, with some regions benefiting from
favorable conditions and CO2 fertilization, while others face adverse effects from altered
precipitation and higher temperatures. Changes in crop yields can destabilize the global food
system and pose challenges to food security. Moreover, crop production is crucial, as biofuels are
becoming increasingly important contributors to climate change mitigation measures aimed at
limiting global warming. This study uses the Integrated Model to Assess the Global Environment
integrated assessment model framework to analyze different indicators related to food security and
climate change mitigation under varying climate change impacts on crop yields. Twelve spatially
explicit crop productivity projections were taken from the full archive of the Global Gridded Crop
Model Intercomparison of 120 climate-crop model combinations, forced by CMIP6-based climate
scenarios. The selection includes two average-performing climate-crop model combinations, two
pessimistic combinations that perform one standard deviation below the mean, and two optimistic
model combinations that perform one standard deviation above the mean. To single out the effect
of climate change on productivity changes, we drew samples from two representative concentration
pathways (RCP2.6 and RCP8.5). These productivity projections were applied within an otherwise
uniform scenario (SSP2) and analyzed for their effect on total calorie demand, crop prices, and
number of people at risk of undernourishment to quantify food security. Risks to climate change
mitigation targets were explored by modeling the total bioenergy supply, emissions, and global
mean temperature. The results revealed significant differences in the risk of food security and
mitigation potential between different regions and climate change scenarios. Across scenarios, the
crop area extent can vary up to 2 million km2 due to changing crop yields. The projected change in
global hunger ranges from 60 to 160 million undernourished people, indicating uncertainty
between climate and crop model combinations. Low-income regions are especially impacted
because of their high sensitivity to changes in food prices. Global climate change mitigation
ambitions can also deviate by the latter part of the 21st century, as changes in yields will impact
biofuel production as well as agriculture, forestry and other land use emissions. The quantitative
insights generated by this study highlight the need for global policy efforts to make the agricultural
system more adaptive to climate change to handle potential negative impacts.
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1. Introduction

Global crop production is likely to be impacted by
climate change due to CO2 fertilization, changes in
temperature and precipitation patterns, and extreme
weather events (Kerr et al 2022). Large uncertainties
exist in global crop yield projections across differ-
ent climate and crop models (Jägermeyr et al 2021,
Müller et al 2021). It is important to consider these
uncertainties, as they can influence the sustainable
development goals (SDGs) on hunger (SDG2), cli-
mate (SDG13), and biodiversity (SDG15). The ‘zero
hunger’ target (SDG2) aims to eradicate global hun-
ger by 2030. However, in recent years, the number
of people suffering from hunger has been increasing
as a result of increasing food prices, global conflicts,
and more frequent extreme weather events (Sachs
et al 2022). Most of these people live in low-income
regions, such as Sub-Saharan Africa and Southern
Asia (FAO et al 2024), which are also the regions pro-
jected to bemost severely impacted by climate change
(Mbow et al 2019). In addition, an increasing popu-
lation poses additional challenges to food security in
these regions (Ray et al 2022). The use of bioenergy
can play a crucial role in climate change mitigation
strategies (SDG13) to limit global warming (Rogelj
et al 2018, Hanssen et al 2020), but poses an addi-
tional demand for land resources. This means that
food security targets and climate mitigation can be
interlinked because of (1) the competition for land,
and (2) future climate impacts on yields (Hasegawa
et al 2018, Fujimori et al 2019).

Projections of crop yields play an important role
in determining the effectiveness of food security and
mitigation targets (Xu et al 2022). Global gridded
crop models (GGCMs) are widely used to study the
impacts of climate change on crop yields (Rosenzweig
et al 2013). GGCMs are typically driven by cli-
mate data from general circulation models (GCMs),
using emission trajectories from different represent-
ative concentration pathways (RCPs). A recent multi-
model intercomparison of 120 climate-crop model
ensembles by Jägermeyr et al (2021) revealed signi-
ficant uncertainties in crop yield responses for the
four major food crops, which can be primarily attrib-
uted to crop models, and to a lesser extent, cli-
mate models. This large variation between models
may arise because of the variety in model types,
structures, and inputs (Kerr et al 2022). As a result,
crop model projections can behave differently when
exposed to driving climatic variables, such as CO2,
temperature, water, and nitrogen supply (Müller et al
2024). Researchers generally use an ensemble of mul-
tiple models to obtain more robust simulation results
(Asseng et al 2015).

Most studies examining climate impacts on crops
have focused on yield impacts and compared different
model ensembles (e.g. Zhao et al (2017) or Jägermeyr

et al (2021)). These different crop yield projections
can impact food security and climate mitigation tar-
gets, yet they are often not integrated into broader
impact assessments. While Molina Bacca et al (2023)
already provide valuable insights into the costs and
effectiveness of different land-use adaptation meas-
ures, the authors do not explore the consequences of
these yield uncertainties on food security and mitiga-
tion targets. This study adds to the literature by integ-
rating spatially explicit crop yield projections under
climate change in the Integrated Model to Assess the
Global Environment (IMAGE) 3.3 framework (PBL
2023). This way we can analyze their impacts on food
security and climate change mitigation targets.

2. Data andmethodology

2.1. IMAGE integrated assessment model (IAM)
IAMs combine knowledge from different disciplines
to provide insights into long-term global change and
impacts on social and environmental systems. The
IMAGE (Stehfest et al 2014) was used in this study
to simulate the role of crop yield uncertainty in
food and energy systems. IMAGE consists of multiple
interacting models that can capture the interactions
between human and natural processes (SI figure 1)
(PBL 2023). The agricultural economy was simulated
using theModular AppliedGeNeral EquilibriumTool
(MAGNET) (Woltjer et al 2014). This model repres-
ents various food system processes, including crop
and livestock demand and production, bilateral trade,
and land rents. A decrease in agricultural productiv-
ity may lead to the conversion of new land to be taken
into agricultural production. In MAGNET, this may
result in higher land rents and, consequently, higher
crop prices (Woltjer et al 2014). The energy system
is represented by the energy system model TIMER,
which projects the supply and demand of different
energy carriers, including bioenergy from dedicated
energy crops (both with and without bioenergy with
carbon capture and storage (BECCS)) and residues
(Van Vuuren et al 2007). The IMAGE-land module
captures both regional and spatially explicit land-use
dynamics (Doelman et al 2018). Using the resulting
per capita food availability, total undernourishment
rates are calculated following (van Meijl et al 2020b).

IMAGE has been used extensively to project
greenhouse gas (GHG) emissions using different
scenarios, and to analyze climate change mitigation
pathways (see e.g. van Vuuren et al 2017, Doelman
et al 2018, van Vuuren et al 2018, Edelenbosch et al
2024.

In the latest multi-model calibration (CMIP6),
IMAGE performed best among other IAMs in repres-
enting GHG emissions, requiring only a 5.1% correc-
tion for baseline emission trajectories (Gidden et al
2019). These corrections primarily occur in sectors
with smaller emission sources. IMAGE is also the
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only IAM that includes all key GHGs across energy,
industry, land-use and waste sectors (Yan et al 2024).
Changes in crop productivity will impact how much
energy can be produced from biomass. This can hap-
pen in two ways: (1) increased energy crop pro-
duction, and (2) increased agricultural production,
which can lead to higher crop residues for certain
crops modeled in IMAGE (Daioglou et al 2016). This
will, in turn, influence emissions from the energy
and industry sectors. IMAGE also accounts for land-
use emissions. CO2 emissions are calculated from
grid-level changes in land use, such as deforestation.
Activity data from the agricultural sector are com-
bined with historically calibrated emission factors, to
calculate non-CO2 emissions (Doelman et al 2018).
Livestock CH4 emissions result from enteric fer-
mentation and manure management, depending on
the demand for animal products and production
efficiency parameters. Other important sources for
CH4 include rice cultivation and biomass burning.
N2O emissions primarily stem from the application
of synthetic fertilizers and livestock manure. The
global vegetation model Lund-Potsdam-Jena man-
aged Land (LPJmL) is coupled to the land-use system
and simulates vegetation dynamics, hydrology, and
crop productivity (Müller et al 2016). In this study,
we excluded the crop-climate feedbacks between
the IMAGE-land model and LPJmL, and instead
used productivity responses based on the process-
based climate-crop model combinations described
by Jägermeyr et al (2021). This way we can look
at the isolated impacts of crop yield impacts on
food security indicators and climate mitigation tar-
gets. The GHG emissions from land-use, energy and
industry sectors are aggregated in the climate emu-
lator Model for the Assessment of GHG Induced
Climate Change to estimate the global mean temper-
ature change (Meinshausen et al 2011).

3. Climate change impacts on crop yields

The Global Gridded Crop Model Intercomparison
(GGCMI) phase 3 ensemble (Jägermeyr et al (2021)
consists of 12 global process-based crop models
forced with five CMIP6 GCMs for different RCPs to
evaluate potential future climate change impacts on
wheat, maize, rice, and soybeans between 1980 and
2100. Under a high-mitigation scenario, the uncer-
tainty associated with climate and crop models is
fairly balanced; however, under a high-emission scen-
ario, the uncertainty is dominated by large differ-
ences across cropmodels for all four crops (Jägermeyr
et al 2021). Different crop model sensitivities cause a
wide range of crop yield responses, especially to atmo-
spheric CO2 concentrations, phenological responses
to warming, extreme temperatures, and changes in
precipitation (Jägermeyr et al 2021, Müller et al

2024). In general, adverse climate change impacts are
most severe for C4 crop maize, which can benefit
less from increases in atmospheric CO2 concentra-
tions than C3 crops, such as wheat, rice, and soybean
(Kimball 2016). Wheat, on the other hand, shows the
largest increases in most models, mainly due to its
high sensitivity to CO2 changes and moderate warm-
ing at higher latitudes (Jägermeyr et al 2021).

We used a representative subset of all possible
yield responses from the GGCMI data repository
described by Jägermeyr et al (2021) to reduce the
number of simulations.We calculated the global aver-
age yields for four crops combined between 2070
and 2100, accounting for both spatial and temporal
dimensions, across all climate-cropmodel ensembles,
then determined the mean and standard deviation
(figures S2 and S3). From this, we take two optim-
istic climate-crop model combinations, where the
crop yields are approximately one standard devi-
ation above the mean, two pessimistic model com-
binations that deviate about one standard deviation
below the mean, and two average-performing model
combinations (close to the mean). This was done
for productivity responses under a low and high cli-
mate impact scenario, represented by RCP2.6 and
RCP8.5, totaling 12 projections. The projections are
implemented in the IMAGE framework by apply-
ing the changes to crop productivity in the base
year (2020), as modeled by LPJmL. Additionally,
a baseline without climate change impact on crop
yield was evaluated. In this baseline, yields are driven
by socio-economic assumptions, such as technolo-
gical change and GDP. The resulting spatially explicit
projections show annual crop productivity changes
for wheat, maize, rice, and soybean from 2020 to
2100.

Table 1 shows the final sample of the climate-crop
model combinations. In this study, we aim to look
only at the isolated impacts of changes in crop yields;
therefore, the socio-economics for all simulations are
based on SSP2: the middle of the road scenario (Riahi
et al 2017). This approach ensures that factors like
GDP, technology, and population remain constant
across all scenarios, allowing us to focus on the effects
of crop yield changes only. It should be noted that
using only SSP2 does not fully explore the potential
impacts on more extreme societal developments. All
simulations implement the same price for GHG emis-
sions to evaluate the impact of crop yield changes
on climate change mitigation. This GHG price aligns
with the target set by the Paris Agreement to limit
global warming to well below 2 ◦C under SSP2.

IMAGE simulates 16 different crop types, whereas
the GGCMI ensemble provides only data for four
crops. To represent all the crops used in IMAGE, a
mapping procedure was applied following Janssens
et al (2020), as shown in table 2. Four main crops
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Table 1. Climate-crop model combination selection.

Scenario name
Crop productivity
deviation

Climate model
impacts Climate model (GCM) Crop model (GGCM)

OPT1-low Optimistic RCP2.6 MRI-ESM2-0 PROMET
OPT2-low Optimistic RCP2.6 IPSL-CM6A-LR PROMET
AVG1-low Average RCP2.6 GFDL-ESM4 LPJmL
AVG2-low Average RCP2.6 MRI-ESM2-0 EPIC-IIASA
PES1-low Pessimistic RCP2.6 UKESM1-0-LL CROVER
PES2-low Pessimistic RCP2.6 MRI-ESM2-0 CYGMA (1p74)
OPT1-high Optimistic RCP8.5 UKESM1-0-LL ACEA
OPT2-high Optimistic RCP8.5 MRI-ESM2-0 ACEA
AVG1-high Average RCP8.5 GFDL-ESM4 EPIC-IIASA
AVG2-high Average RCP8.5 MRI-ESM2-0 CYGMA (1p74)
PES1-high Pessimistic RCP8.5 IPSL-CM6A-LR PEPIC
PES2-high Pessimistic RCP8.5 IPSL-CM6A-LR pDSSAT
BASE Baseline No climate impacts — —

Table 2.Mapping of GGCMI crop yield projections to IMAGE crop categories.

IMAGE crop categories GGCMI crop yield data used (wheat, rice, maize, soybean)

Wheat Wheat productivity changes directly applied
Rice Rice productivity changes directly applied
Maize, grains biofuel Maize productivity changes directly applied
Tropical cereals (millet, sorghum) Modified corn yields where only half of the negative effects are

applied due to better drought tolerance
Other temperate cereals (rye, barley) Modified wheat yields where only half of the negative effects are

applied due to better drought tolerance
Soybeans, biofuel oil crops Soybean productivity changes directly applied
Pulses (field peas), temperate oil crops (rapeseed,
sunflower), tropical oil crops (groundnuts),
temperate roots & tubers, tropical roots & tubers,
sugar crops, oil & palm fruit, vegetable fruit,
other non-food, plant based fibers, sugar crops
biofuel, woody biofuel, non woody biofuel

C3 crops are represented by the regional weighted average of three
modeled C3 crops (wheat, rice and soybean)

Grass No changes in crop productivity

(wheat, rice, maize, and soybean) were directly avail-
able. Tropical cereals consist of sorghum and mil-
let and are categorized as C4 crops. For these crops,
yield changes are based on maize (also a C4 crop);
but only with half of the negative effects due to better
tolerance to drought (Müller and Robertson 2014).
Similarly, yields for other temperate cereals are based
on wheat but also have only half of the negative
effects. All remaining crop groups were C3 crops;
therefore, we used the regional average of wheat, rice,
and soybean yield. In some grid cells, the GGCMI
data had very low starting values and showed a strong
relative increase due to climate change. To avoid
unrealistic effects when applying changes to the ini-
tial yieldmaps, but at the same time to allow for future
improvements in potential yields due to technological
change, we cap the yields at twice the highest glob-
ally reported potential yield of a specific crop (van
Zeist et al 2020). From the resulting yield projection
maps, the changes over time were derived and applied
to IMAGE’s gridded crop yield using a running aver-
age over 10 yr intervals.

3.1. Indicators
In this study, cereal yield and total cropland area
were used as indicators of agricultural productiv-
ity. Additionally, we considered crop prices, cal-
oric demand, and the number of people at risk
of undernourishment as metrics for food security,
representing the food availability and accessibility
dimensions of food security (Van Meijl et al 2020a).
High food prices can impact calorie availability, espe-
cially in low-income regions. As an additional metric,
the risk of undernourishment was assessed follow-
ing FAO (Naiken 2003). This approach uses the min-
imumdietary energy requirements, calorie consump-
tion, and a variation coefficient of food distribution
within a country. Both calorie demand and risk of
undernourishment are measures of food availability.

Biomass energy is an important component in
scenario studies for limiting global warming (Rogelj
et al 2018) and was used as a mitigation indicator in
this study. In IMAGE, bioenergy is directly impacted
by changes in crop yields, but also indirectly through
residue streams from both agriculture and forestry.
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Biomass can be used to produce electricity or hydro-
gen, and can optionally be combined with BECCS
for these carriers. Biomass can only be produced on
lands that are no longer needed or suitable for agricul-
tural production or natural land that is non-forested,
such as shrubland, grassland or savannah (Daioglou
et al 2019). Food production is always prioritized
over biomass. We include three types of GHG emis-
sions (CO2, CH4, and N2O) and changes in the global
mean temperature as indicators for mitigation. CO2

emissions originate primarily from the energy sec-
tor and land-use changes such as deforestation and
agricultural burning. CH4 emissions originate from
enteric fermentation in livestock, animalmanure, and
rice production. Additionally, landfills and domestic
sewage emit CH4, which is linked through population
and GDP. N2O emissions stem from the application
of nitrogen-based fertilizers as well as from land-use
change.

4. Results

4.1. Impacts on cereal yields and crop area
Without climate impacts, dry matter cereal yields are
expected to increase (figure 1(a)). In 2020, cereal
yields are 4.1 t/ha. By 2100, cereal yield is expected
to increase to around 5 t/ha in the BASE scenario,
driven by technological advancements (Doelman et al
2018). This initial increase is lower than historical
trends, but fall in the line of studies who argue that
yields will reach a maximum (plateau), most notably
in high-income regions (Grassini et al 2013, van Zeist
et al 2020). Despite an increase in yield, crop area is
expected to grow as growth in food demand outpaces
growth in agricultural productivity. Total crop area is
projected to increase from16.2million km2 in the his-
torical reference period (2020) to 19.9 million km2 by
2100 (figure 1(b)) This increase can be attributed to
a growing population and higher per capita income,
leading to an increase in food demand. At the end
of this century with high yield impact projections,
optimistic yield estimates indicate global cereal yields
range from 4.2 t/ha (PES2-high) to 5.9 t/ha (OPT2-
high) between different scenarios (figure 1(a)). Low
impact scenarios range between 4.9 t/ha (PES2-low)
to 5.4 t/ha (OPT1-low) in 2100. At a regional level,
cereal yields show a larger range across scenarios in
medium- and high-income regions compared to low-
income regions (figure 2(a)). Driven by high yield
impact projections, crop area ranges from 17.4 mil-
lion km2 (OPT2-high) to 20.9 million km2 (PES1-
high) in 2100 (figure 1(b)). Low impact scenarios
show a range of 18.9 million km2 (OPT1-low) to
20.1million km2 (PES2-low) in 2100.Middle-income
regions show again the largest variations in crop
area across scenarios as yield impacts are greatest
(figure 2(b)).

4.2. Food security indicators
Global mean food prices are represented as an
index relative to 2020. BASE food prices depend on
demand developments for crop- and animal-based
food, driven by SSP2 assumptions on, for instance,
population growth and GDP. When excluding cli-
mate impacts, food prices increase by around 2%
in 2100 (figure 1(c)). Under high impacts, indexed
food prices range from−16% (OPT2-high) to+41%
(PES1-high) in 2100 (compared to 2020) across
climate-crop model combinations. For low impact
scenarios, prices range from −3% (OPT2-low) to
+8% (PES1-low). Figure 2(c) shows the percent-
age change in food prices in 2100 compared to the
baseline scenario without climate change impacts for
three different world regions. Regional food prices
can be different due to economic conditions rep-
resented by elasticities, tariffs or transport costs in
MAGNET (Woltjer et al 2014). Low-income food
prices respond relatively strong (up to +60%) to
productivity changes, resulting from an increased
dependency on food imports. When prices are lower
than those with no climate impacts, this might
indicate that food will become more accessible. On
the other hand, rising food prices can put pres-
sure on livelihoods and social stability in vulner-
able regions. Combined with the developments in
GDP and population, food prices influence caloric
demand. Baseline global average calorie demand is
3288 kcal cap d−1. The caloric demand changes
between high yield impact estimates, ranging from
3133 kcal cap d−1 (PES1-high) to 3430 kcal cap d−1

(OPT2-high) in 2100 (figure 1(d)). Low yield impact
scenarios show less variability, with caloric demand
between 3262 (PES1-low) and 3333 kcal cap d−1

(OPT2-low). Food availability is most sensitive to
yield impacts in high-income regions (figure 2(d)),
mainly driven by changes in livestock-based food
consumption.

Alongside food prices and per capita food
demand, the number of undernourished people is
another key indicator of food security. Low food
prices and increased supply can reduce undernour-
ishment and global hunger. Baseline projections
show a decrease in the number of people suffering
from hunger, from 668 million in 2020 to 88 mil-
lion in 2100. This initial decrease under SSP2 can be
explained by a higher GDP and more equitable dis-
tribution of food (Hasegawa et al 2015). In the high
impact yield projections, it is estimated that the num-
ber of undernourished people range from 55 million
in the optimistic (OPT2-high) climate-crop model
combinations, to 166 million (PES1-high) in 2100
(figure 1(e)). Low impact yield projections show less
variability across climate-crop models, ranging from
82 million (OPT2-low) to 98 million (PES1-low).
High foodprices place a greater burden on the poorest
regions, where low GDP per capita constrains their
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Figure 1. Global cereal yield (a), crop area (b), food security indicators (c)–(e), land use (f)–(g), and climate change mitigation
(h)–(l) indicators for the optimistic, average and pessimistic climate-crop model combinations in 2100. The grey boxes represent
the range of the indicator across scenarios for low and high crop productivity impacts, while the dashed line represents the
indicator value for the BASE scenario.

Figure 2. Regional changes (in 2100) in food security (a)–(e), land-use (f)–(g), and climate change mitigation (h)–(k) indicators
compared to the baseline with no climate change impacts on crop yields for high-, middle- and low income countries under SSP2
assumptions. The grey boxes represent the range of the indicator across scenarios, for both high and low crop productivity
impacts. All scenarios are compared to the baseline, where a value of 0 indicates no change compared to the baseline.
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ability to afford food compared to wealthier regions
(figure 2(e)).

4.3. Land use change
Global changes in pasture area (figure 1(f)) are
minor, especially compared to changes in crop area
(figure 1(a)). Regionally, pasture area changes differ-
ently in medium-income regions compared to high-
income regions (figure 2(f)). Forest area shows higher
changes (figure 1(g)). Without climate impacts forest
area is projected to be 35.8 million km2 (BASE) in
2100. Under high climate impact scenarios, forest
area ranges from 36.7 million km2 (OPT2-high) to
34.9 million km2 (PES2-high). Low climate impact
scenarios range from 36.1 million km2 (OPT1-low)
to 35.3 (AVG1-low). Forest area in middle-income
regions are more directly tied to agricultural expan-
sion and are most sensitive to changes in crop yields
(figure 2(g)). Forest area in high-income regions does
not increase compared to BASE, even under optim-
istic yield projections. In these regions, agricultural
land is converted to pasture areas instead.

4.4. Mitigation indicators
IMAGE captures climate change impacts on crop pro-
ductivity in the energy system via biofuels, influ-
encing climate change mitigation targets. Biomass
energy comprises crop residues and energy crops.
Crop residues depend on the total agricultural pro-
duction, and energy crop production is constrained
by the availability of natural non-forested and agri-
cultural land that is no longer in use (Daioglou
et al 2019). In the baseline, primary energy from
biomass is projected to be 172 EJ yr−1 in 2100.
Under high climate impacted crop yields, with the
same climate policies compared to the baseline, bio-
mass energy production ranges from 192 EJ yr−1

(AVG1-high) to 144 EJ yr−1 (PES1-high) due to yield
impacts (figure 1(h)). Under low impact scenarios,
energy from biomass is projected to range between
189 EJ yr−1 (AVG1-low) and 159 EJ yr−1 (PES1-low)
across optimistic and pessimistic climate-crop model
combinations. In both high and low impact AVG1
scenarios, high biomass energy can be attributed to
relatively high soybean yields, which are mapped to
biofuel oil crops in this study.

Impacts on biofuel production can increase
fossil fuel dependency, raising GHG emissions. Yield
changes also impact land-use and CO2 emissions via,
for example, de- or reforestation. Due to the uni-
form carbon price (across all scenarios), global pro-
jected CO2 emissions decrease sharply to 928 Mt
CO2 in 2100 (from 40 582 Mt CO2 in 2020) in the
baseline (figure 1(i)). The carbon price drives this ini-
tial reduction by incentivizing lower-carbon practices
and discouraging deforestation for the expansion of
agricultural land. High yield impact scenarios range
from 3063 Mt CO2 (PES2-high) to −1564 Mt CO2

(OPT1-high). Low impact scenarios range from to

1179 Mt CO2 (PES1-low) to −707 Mt CO2 (AVG1-
low).

Small changes in CH4 emissions are linked
to direct effects on rice cultivation and indirect
impacts through livestock. Without climate impacts,
global CH4 emissions are 6071 Mt CO2-eq in 2100
(figure 1(j)). Under high yield impacts, emissions
range from 6142Mt CO2-eq (AVG1-high) to 5999Mt
CO2-eq (OPT1-high), while low yield impact scen-
arios are ranging between 6037 Mt CO2-eq (OPT1-
low) and 6098 Mt CO2-eq (OPT2-low). Similarly,
minor changes occur inN2Oemissions. BaselineN2O
emissions are 2612 Mt CO2-eq by 2100 (figure 1(k)).
High yield impact scenarios range from 2808 Mt
CO2-eq (OPT2-high) to 2542 Mt CO2-eq (PES1-
high) and low yield impact scenarios from 2690 Mt
CO2-eq (OPT1-low) to 2616Mt CO2-eq (PES1-low).
Interestingly, more optimistic yield projections lead
to higher N2O emissions compared to pessimistic
projections. In IMAGE, fertilizer use is linked to crop
production, leading to increased N2O emissions in
optimistic climate-crop model combinations.

With IMAGE, we can explore the impacts of the
different yield impacts under a 2.6 Wm−2 long-term
climate mitigation target, corresponding to limiting
global warming to well below 2 ◦C (Van Vuuren et al
2011). This mitigation target is applied in all scen-
arios. In the BASE scenario, we assume no direct
climate impacts on crop yields despite global tem-
peratures being projected to increase by 1.82 ◦C in
2100 compared to the pre-industrial historic refer-
ence period (1850). This assumption allows us to use
the BASE scenario as a reference point to isolate and
compare the effects of climate change on yields in the
other scenarios. This BASE temperature increase is
in line with the Paris Agreement, which limits global
warming to well below 2 ◦C. Figure 1(l) shows the
globalmean temperatures when exposed to the differ-
ent productivity projections. Land-use patterns can
change dynamically due to changes in crop yields.
This includes adjusting the land required to grow
crops and potentially abandoning excess agricultural
land. This land can potentially be used for bioen-
ergy crops and impact global temperatures directly,
as well as through re- or deforestation (figure 2(g)).
Temperatures deviate from the BASE by 0.07 and 0.04
under high and low impact scenarios, respectively.
AVG2-high shows the largest temperature increase
across scenarios, driven by higher CO2 emissions
earlier in the century, resulting in larger cumulative
emissions by 2100. While the scenarios were selec-
ted based on average yield impacts between 2070 and
2100, earlier-century impacts and regional differences
lead to different expected temperature projections.

5. Discussion and conclusion

Uncertainty in crop productivity projections from
the GGCMI archive can affect global assessments
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of food and energy systems. Large changes in both
yields and crop area were observed under an RCP8.5
climate towards the end of the century, consistent
with similar studies, such as Molina Bacca et al
(2023). This large spread can substantially impact
developments in food security and affect mitigation
efforts linked to SDG2 and SDG13. In particular,
low-income regions show high sensitivity to food
security indicators such as prices and undernourish-
ment. Other studies follow a similar pattern, where
a decrease in global crop yields leads to high crop
prices in low-income regions, such as SSA, India, and
Southeast Asia (Nelson et al 2014). Molina Bacca et al
(2023) use the self-sufficiency ratio (SSR): an indic-
ator to measure a region’s ability to meet its food
needs through domestic production. They show that
some low-income regions, such as India, are very
sensitive to changes in yields. A low SSR, coupledwith
a sharp increase in food prices, may put a large num-
ber of people at risk of undernourishment. Thismod-
eling study focused on two main dimensions of food
security: food accessibility (prices) and food availab-
ility (calorie demand and risk of undernourishment).
There are also other dimensions of food security, such
as the utilization (i.e. quality) and stability of food
production over time (VanMeijl et al 2020a). IMAGE
captures only the caloric content of the crops. Food
nutrition and quality, including lowered protein con-
centrations or micronutrients, can also be impacted
by climatic variables, such as elevated levels of CO2,
posing additional challenges in reaching food security
targets (Taub et al 2008, Semba et al 2022). Indicators
representing food stability over time are also not well
captured in long-term models such as IAMs (yet)
(Van Meijl et al 2020a).

Crop yields impact bioenergy directly via energy
crop land-use and indirectly through forestry and
agricultural residues, with the latter influenced by
total agricultural production. Net-zero technologies
linked to crop production, such as BECCS, can
play a vital role in climate change mitigation scen-
arios (Hanssen et al 2020). Declining crop yields
can threaten the effectiveness of these technologies
(Xu et al 2022). Across climate-crop model com-
binations, global bioenergy production ranges from
−10% to +10% in 2100. This aligns with another
study showing an 8% increase under RCP6.0 (Zapata
et al 2022). There still remains a lot of uncertainty on
the impacts of climate change on yields and bioen-
ergy production, mainly caused by the strength of
the CO2 fertilization effect (Gernaat et al 2021). This
is also reflected by Zapata et al (2022), who show
that modeled regional bioenergy production projec-
tions are almost always positive when CO2 fertiliza-
tion is included. Across climate-crop model combin-
ations, temperature impacts from changes in GHG
emissions are minimal. Adjusting carbon prices to
account for changes in yields is likely tomitigate these
effects.

The scope of this research was on two SDGs, but
the changes in crop yields can potentially spill over to
other SDG targets (Fujimori et al 2020). For instance,
an increase in agricultural area and reduced forest
lands can be harmful to biodiversity, especially in
low-income regions where the sensitivity to crop vari-
ability is high (Betts et al 2017,Marques et al 2019). In
addition to crop yields, there are many other factors
that are impacted by climate change that can influ-
ence the agricultural sector. For instance, increased
and extreme temperatures can induce heat stress in
livestock (Thornton et al 2021) or the agricultural
workforce (De Lima et al 2021). In addition, irriga-
tion water shortages can pose risks to crop produc-
tion (Elliott et al 2014). Renewable energy sources,
such as hydropower or wind energy, may also be dir-
ectly impacted by climate change, especially at the
regional level (Gernaat et al 2021). Furthermore, this
study used only IMAGE. Using different models can
lead to different effects on food security and mitiga-
tion indicators (Bauer et al 2020). Cropmodels them-
selves also have limitations and do not always cap-
ture weather extremes such as floods or decreased
yields as a result of pests and diseases (Rötter et al
2018). A study by Müller et al (2024) showed that
crop models can have high sensitivities to different
driving variables and suggested the need for better
model testing and evaluation to reduce the uncertain-
ties betweenmodels. Wang et al (2017) also suggested
updating model response functions to reduce uncer-
tainties between different crop models.

Food security and climate mitigation indicat-
ors, as estimated using state-of-the-art climate-crop
model projections, show substantial uncertainty.
There are large impacts on global food security, espe-
cially under high-emission scenarios. Low-income
regions are the most vulnerable, as crop prices,
undernutrition, and deforestation respond strongly
to changes in crop yields. Although smaller, the
impacts of climate mitigation are non-negligible.
Different adaptation strategies could partially elevate
the impacts on both food security and climate change
mitigation indicators (Janssens et al 2020, Molina
Bacca et al 2023). Global policy efforts are needed to
make agricultural systems adaptive to climate change
and make food systems robust to potential impacts.
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