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Abstract
The magnitude of flood impacts is regulated not only by hydrometeorological hazard and 
exposure, but also flood protection levels (primarily from structural flood defenses) and 
vulnerability (relative loss at given intensity of hazard). Here, we infer the variation of 
protection levels and vulnerability from data on historical riverine, coastal, and compound 
floods and associated impacts obtained from the HANZE database, in 42 European coun-
tries over the period 1950–2020. We contrast actual damaging floods, which imply flood 
protection was locally inadequate, with modelled potential floods, i.e. events that were 
hydrologically extreme but did not lead to significant impacts, which imply that flood pro-
tection was sufficient to prevent losses. Further, we compare the reported magnitude of 
impacts (fatalities, population affected, and economic losses) with potential impacts com-
puted with depth-damage functions. We finally derive the spatial and temporal drivers 
of both flood protection and vulnerability through a multivariate statistical analysis. We 
apply vine-copulas to derive the best predictors out of a set of candidate variables, includ-
ing hydrological parameters of floods, exposure to floods, socioeconomic development, 
and governance indicators. Our results show that riverine flood protection levels are much 
lower than assumed in previous pan-European studies. North-western Europe is shown to 
have better riverine protection than the south and east, while the divide is not so clear for 
coastal protection. By contrast, many parts of western Europe have relatively high vulner-
ability, with lowest value observed in central and northern Europe. Still, a strong decline in 
flood vulnerability over time is also observed for all three indicators of relative losses, sug-
gesting improved flood adaptation. Flood protection levels have also improved since 1950, 
particularly for coastal floods.
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1 Introduction

Floods are a major source of losses in Europe and the threat they pose constantly evolves 
(Bloeschl et al. 2019; Tarasova et al. 2023). Multiple drivers are responsible for changes 
in risk (Merz et al. 2021; Kreibich et al. 2022), not all of which are well quantified. Two 
factors are especially uncertain in flood risk assessments over large geographical areas. 
One is structural flood protection, particularly in the form of dikes, and the other is 
vulnerability, i.e. the conditions determined by physical, social, economic and environ-
mental factors which determine the susceptibility of an individual, a community, assets 
or system to floods (United Nations Office for Disaster Risk Reduction 2016). Many 
continental or global flood studies have excluded flood defences due to lack of data, 
but this has implications on estimating both present and future risk from riverine and 
coastal floods (Ward et al. 2017; Paprotny et al. 2017, 2019). Vousdoukas et al. (2018) 
has found that assumptions on flood protection levels are the largest individual source 
of uncertainty in assessing coastal flood risk in Europe, also under climate change con-
ditions. At the same time, vulnerability models are diverse and lead to very different 
results, as showcased by studies comparing various economic damage functions in the 
same study area (Carisi et al. 2018; Figueiredo et al. 2018; Paprotny et al. 2020, 2021). 
Mortality functions are similarly highly uncertain (Jonkman et al. 2008; Brussee et al. 
2021). Additionally, evidence shows that vulnerability changes over time, mostly with a 
downwards trajectory (Jongman et al. 2015; Tanoue et al. 2016; Bouwer and Jonkman 
2018; Formetta and Feyen 2019; Sauer et al. 2021). Implications for continental-scale 
assessments, particularly in Europe, which employs extensive flood adaptation measures 
(Vousdoukas et  al. 2017; Steinhausen et  al. 2022; Dottori et  al. 2023), are profound. 
Additionally, impact attribution of past and future losses in context of global change 
requires even more precise data to quantify the climatic and human drivers of those 
losses (Kreibich et al. 2019; Mengel et al. 2021; Scussolini et al. 2024).

In practice, pan-European datasets on flood protection and vulnerability are very lim-
ited. On the structural defences, a frequently used resource is FLOPROS by Scussolini 
et al. (2016). It combines information on nominal (design, or policy-defined) flood pro-
tection standards with estimates based on the level of economic development. Several 
European studies have used an alternative literature-based dataset of nominal protec-
tion levels from the PESETA IV study (Dottori et al. 2023). However, that study also 
used empirical flood impact data to improve the estimates of protection levels. A simi-
lar approach was employed by Jongman et al. (2014), who differentiated flood protec-
tion assumptions by utilizing modelled flood impacts and reported flood losses. More 
detailed information is available for some countries. The national flood risk assess-
ment for the Netherlands (Vergouwe 2015) indicates that the actual reliability of flood 
defences can be far below nominal standards prescribed by law. Data on flood protection 
levels along rivers and coasts of England (Environment Agency 2023) shows far more 
spatial variation, and usually much lower standards, than assumed in pan-European 
datasets.

At the same time, dozens of flood vulnerability models are available (Gerl et  al. 
2016). The major issue is that they are typically based on local data, or even no empiri-
cal data at all, and often not transferable across case studies. Even models based on 
large microscale damage datasets like HOWAS21 for Germany (Kellermann et al. 2020) 
do not necessarily perform well in other settings (Jongman et al. 2012; Wagenaar et al. 
2018; Paprotny et al. 2020). Consequently, pan-European studies either have to rely on 
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vulnerability models developed for a specific environment (Steinhausen et al. 2022) or 
utilize more generic depth-damage functions such as those developed by Huizinga et al. 
(2017).

In this study, we present a novel approach to estimate present and past variation in 
flood protection levels and vulnerability (fatalities, population affected, and economic 
loss relative to exposed population or assets) in Europe based on constrasting modelled 
and reported impacts of floods. We build upon recent advances in pan-European riverine 
and coastal flood modelling (Paprotny et al. 2024b; Tilloy et al. 2024), historical exposure 
estimation (Paprotny and Mengel 2023), and collection of impact data from documentary 
sources (Paprotny et al. 2024a). We utilize data spanning from 1950 to 2020 to create a 
multivariate model that is able to infer the spatial and temporal variation in flood occur-
rence and their impacts.

We apply vine copulas to model the complex dependency between the predictors (socio-
economic drivers, flood risk and experience) and changes in the level of flood protection 
and flood vulnerability. Vine copulas are graphical models that allow the construction of a 
complex multivariate probability distribution function through bivariate pieces (bivariate 
copula functions). Because of their flexibility in representing asymmetries in the joint dis-
tribution they have found wide application in different fields. For example, they have been 
applied in tunnel engineering (’t Hart et  al. 2024), reliability analysis of flood defenses 
(Torres-Alves and Morales-Napoles 2020; Pouliasis et  al. 2021), in ocean engineering 
(Jäger and Morales-Napoles 2017; Mares-Nasarre et al. 2024), hydrology (Tao et al. 2021) 
among many other fields. Additionally, theoretical developments around vine copulas are 
still being proposed, as highlighted by Pfeifer and Kovács (2024).

The paper is structured as follows. Section 2 provides details on the input data 2.1 and 
the procedure of creating vine-copula models 2.2. In section 3, the final vine-copula mod-
els 3.1 are validated and compared with other datasets 3.2. This enables generating pan-
European maps of flood protection levels and vulnerability from 1950 to 2020 3.3. As his-
torical impact data is very incomplete, we also estimate the magnitude of unreported losses 
in Europe 3.4. Limitations and uncertainties are discussed in section 4 before concluding 
in section 5.

2  Materials and methods

2.1  Data

2.1.1  Flood event data

Flood protection levels and flood vulnerability is analysed in this study using historical 
information on floods and their impacts. The necessary information was obtained from two 
flood catalogues. The first, HANZE v2.1 (Paprotny et al. 2024a) contains information on 
date, location and impacts of 2521 riverine, flash, coastal, and compound floods between 
1870 and 2020. In this study, we consider a subset of 2037 events that have occurred since 
1950. Reported impact data were extracted for three indicators: fatalities (including miss-
ing presumed dead), population affected (whose homes were flooded or who have been 
evacuated), and economic loss (damage or destruction of tangible assets). HANZE also 
includes information on the area inundated (in  km2), but was not included in the analysis 
due to much lower availability of data compared to the other indicators.
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The other catalogue from Paprotny et al. (2024b) is a model reconstruction of almost 
15,000 potential riverine, coastal, and compound floods between 1950 to 2020. Each event 
of this model catalogue is "potential" as it does not predetermine whether it led to actual 
impacts to society or economy. However, the potential events were analysed using avail-
able historical information to determine which ones caused impacts (linking them to the 
HANZE database) and which did not. The modelled flood catalogue also estimates poten-
tial flood impacts, without flood protection, for the same four indicators as HANZE: area 
inundated, fatalities, population affected (all population within the flood zone), and eco-
nomic loss (only considering direct flood damage to tangible assets). Both catalogues cover 
the majority of the European continent (42 countries, see Fig. 14). In both catalogues, due 
to large variations in availability of historical records between countries, transnational 
floods have individual entries for each country affected.

Flood protection level in this study is defined as the return period above which a 
flood will occur. A flood in this context is an inundation causing significant socioeco-
nomic impacts. The thresholds for considering a flood event "significant" are several and 
described in detail in Paprotny et al. (2024a), but generally require some level of loss to 
population and/or assets, rather than mere inundation of land. The analysis is carried out 
at the resolution of subnational regions (hereafter, "regions"). Regions in this context are 
administrative or statistical divisions of countries in the study area that are, except for 
minor exceptions, consistent with the European Union’s Nomenclature of Territorial Units 
for Statistics, level 3, version 2010 (Eurostat 2020). There are 1422 regions defined in the 
study area, described in detail in Paprotny and Mengel (2023). Both historical and mod-
elled flood impact zones are considered at this resolution, therefore the inferred protection 
levels indicate the chance of occurrence of a significant flood anywhere within the region, 
rather than in a particular stretch of the coastline or river. It should be stressed that this 
approach is very different from the typical characterization of flood protection levels, as the 
chance of overtopping a dike at a particular location. Our approach is rather similar to the 
Dutch "dike ring" concept, where the protection level is currently defined as the probability 
of impacts within a dike ring as a consequence of flood protection failure anywhere around 
the protected area (Vergouwe 2015). In this approach, the protection level strongly depends 
on the weakest link, as long as its failure would result in inundation and impacts. Also, we 
are interested in the actual reliability of flood defences, rather than the nominal, official, or 
otherwise desired level of protection, which has been the focus of previous datasets such as 
FLOPROS.

The modelled flood catalogue of Paprotny et al. (2024b) contains 5067 potential floods 
for which there is good historical information enabling confidently dividing the events into 
those that caused significant socioeconomic impacts (1444, or 29 %) and those that did 
not (3623, or 71 %). However, even impactful floods typically do not affect all regions 
where they reached hydrologically extreme levels. Non-occurrence of impacts in particular 
regions during an otherwise impactful event is also of interest. Consequently, our model-
ling approach includes two levels of impact occurrence: the event level and region level. 
At first, it is determined whether the flood will have impacts anywhere within the country, 
and if so, the chance of impacts per potentially-affected region is analysed (Table 1). Out 
of 45,578 regions within the 5067 potential flood events, 5257 (12 %) were determined 
to have been actually impacted based on documentary sources. The data include riverine, 
coastal, and compound events, where the latter denotes events during which both riverine 
and coastal drivers contributed to flooding. As such compound impact cannot be deter-
mined for non-impactful floods, only separate riverine and coastal non-impactful floods 
were included in the data.
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As our target variables of flood protection failures are binary (impact or no impact), 
they had to be converted into a continuous variable to be used in vine-copulas. Alternative 
approaches were considered, but ultimately not applied, as explained in more detail in sec-
tion 4.2. At the event level, potential impact was scaled according to potential impacts rela-
tive to maximum loss in the country from any event between 1950 and 2020. The impact 
was calculated for four indicators and then averaged: area inundated, fatalities, population 
affected, and economic loss. The index (0–100 %) was converted into 0 to 0.5 range if 
no impact occurred, and to 0.5 to 1 range if impact did occur. In this way, e.g. 0.4 will 
represent a hydrologically large flood that had no impacts, but 0.6 will represent a hydro-
logically small flood that nonetheless caused significant impacts. The impact indicator I for 
event e is follows:

where De is the damage indicator value (A for area inundated, F for fatalities, P for popula-
tion affected, and E for economic loss) during event e, and Me has a value of 0.5 if impact 
occurred during event e, and 0 otherwise.

Impact occurrence at regional level was scaled according to the relative contribution (%) 
of potential losses in the region to the whole event (average of the four impact indicators). 
This share of losses was converted into 0–0.5 range if no impact occurred, and to 0.5 to 1 
range if impact did occur. The impact indicator I in region r for event e is follows:

where Mr,e has a value of 0.5 if impact occurred in region r for event e, and 0 otherwise.
Flood vulnerability was considered for three variables: fatalities, population affected, 

and economic loss. Availability of data varies between variables (Table 1). Absolute impact 
of each was converted into relative impact using the potential modelled loss from the other 
catalogue. Only historically affected regions were considered when computing potential 
losses. Modelled loss is based on static depth-damage functions in case of mortality and 
relative economic loss, while modelled population affected is simply the total exposed pop-
ulation within flooded grid cells. The function for mortality is a S-shaped function shown 
in Jonkman et al. (2008), and the economic loss functions for five fixed asset types (dwell-
ings, agriculture, industry, services, infrastructure) are from (Huizinga et al. 2017). In total, 
it was possible to compute potential loss for 1504 (74%) of historical floods in the HANZE 
database, which represent 81 % of known fatalities in Europe since 1950, and 96 % of both 
population affected and economic loss. For more information on potential damage model-
ling, as well as an analysis of the accuracy and completeness of the flood reanalysis we 
refer to Paprotny et al. (2024b).

Mortality (fatalities relative to exposed population) was considered as two variables, 
the chance of any fatalities occurring, and then the number of fatalities if more than zero 
was indicated. This was done because in 43 % of historical floods no deaths were reported, 
resulting in a highly skewed distribution of mortality. Such a distribution would severely 
degrade the performance of any statistical model. To compute the chance of fatalities, the 
same approach as for flood protection was used. The chance of fatalities was scaled accord-
ing to potential impacts relative to maximum loss in the country from any event between 
1950 and 2020. The impact was calculated for four indicators and then averaged: area 

(1)Ie =
1

4

(

DA,e

maxDA

+
DF,e

maxDF

+
DP,e

maxDP

+
DE,e

maxDE

)

× 0.5 +Me

(2)Ir,e =
1

4
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DA,r

DA,e

+
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+
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DP,e

+
DE,r

DE,e

)

× 0.5 +Mr,e
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inundated, fatalities, population affected, and economic loss. The index (0–100 %) was 
converted into 0 to 0.5 range if no fatalities occurred, and to 0.5 to 1 range if at least one 
fatality occurred. Equation 1 is applicable here with substituting "impact" for "fatalities".

Finally, relative impact indicators for fatalities, population affected and economic loss 
were capped at 100 % to avoid a minor share of cases where flood footprint or exposure 
was strongly underestimated by the modelled flood catalogue.

2.1.2  Predictors

To infer the distribution and changes in flood protection levels and vulnerability, multi-
ple candidate variables were considered (Table 2). Most of them were considered at the 
level of regions, aggregated to event footprint, actual or potential, where appropriate for 
a particular target variable. Governance and demographic indicators are at country level, 
while potential flood impacts and hydrological intensity are based on modelled flood foot-
prints at 100-meter resolution. Each variable refers to socioeconomic situation at the time 
of the event, unless noted otherwise in Table 2. In addition, several categories of variables 
("Economic development" and all further down the table) were additionally considered in 
a ’lagged’ version, i.e. average of conditions in the 30 years preceding the flood event. The 
data was collected from several sources, which are indicated in Table 2.

2.2  Methods

2.2.1  Vine copulas

Vine copulas are graphical models that allow the specification of a multivariate probabil-
ity distribution through bivariate pieces. More specifically a vine is a sequence of trees 
(undirected acyclic graphs) {T1,… , Td−1} where T1 is a tree on d nodes and the edges of 
each tree become the nodes of next tree for T2,… , Td−1 . In particular vine copulas are con-
structed with regular vines. A regular vine is, roughly, a vine where two edges of Ti are 
joined as nodes in Ti+1 if they share a common node in Ti for i ≥ 1 . An example of a regular 
vine on 5 nodes is presented in Fig. 1.

Vine copulas use the graphical structure of a regular vine to construct a multivariate 
probability distribution. Each node in the first tree of the regular vine is associated with a 
random variable with an invertible cumulative distribution function, while the probabilis-
tic dependence between variables is approximated through bivariate (conditional) copulas 
(Nelsen 2006). A bivariate copula C is a bivariate distribution function with uniform [0, 1] 
margins. If H is the joint distribution of X and Y then H(x, y) = C(F(x),G(y)) where F and 
G are the marginal distributions of X and Y respectively.

In Fig. 1 for example, the pair of numbers in the first tree of the vine indicate the cop-
ula joining the corresponding variables. The edges in the lower trees indicate the bivariate 
copula between the variables to the left of the horizontal line conditional on the variables 
to the right of the line. For a comprehensive treatment of vine copulas see Czado (2019).

The number of vine copulas that may be fitted to a dataset is extremely large (?). For 
“lower” dimensional datasets (up to 7 variables), fitting all possible vine copulas may be 
feasible. However for 8 variables or larger this task becomes computationally challenging. 
Recently a dataset containing all regular vine structures on up to 8 nodes (more than 660 
million) has been presented in Morales-Napoles et  al. (2023). For larger dimensions the 
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algorithm proposed in Dißmann et al. (2013) and variations of it are mostly used. In this 
research because of the large number of possible models under investigation we opted for 
Dißmann’s algorithm.

2.2.2  Creating vine copula‑based models

As highlighted in Tables 1 and 2 in section 2.1, there are six target variables analysed in 
the study and numerous candidate predictors. Obtaining the optimal model configuration 
was a procedure with several steps. Firstly, six connected vine copula models were defined, 
representing one target variable each (Fig. 2). Flood protection level is represented by two 
vines, the first one estimating the impact probability at event level, and the second one at 
regional level. The event level is used to establish the chances of a significant impact of a 
potential flood event, while the regional level is used to establish a more precise location of 
those impacts. Then, the vulnerability models can be applied to the affected area. Relative 
population affected and economic loss are modelled with one model each, while mortality 
(fatalities relative to population) is split into two models, one indicating the chance of at 
least one fatality occurring, and the second estimating the magnitude of fatalities.

Fig. 1  Example of regular vine 
on 5 nodes

Fig. 2  Structure of the modelling framework. Each target variable is modelled independently with a vine
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Each vine model was tested first with 74 potential predictors, except for the impact at 
regional level, for which not all predictors were appropriate, namely variables aggregated 
at event (potential flood impact) or country level (governance and demographic indicators). 
Two aspects of each vine model needed to be optimised: the selection of predictor vari-
ables and the dependency structure within the vine. A different approach had to be applied 
for the two tasks. As the Chimera atlas is capable of working with vines with four to eight 
nodes, we built each model stepwise starting with four nodes. Within those four nodes, 
one was the target variable and one was the predictor variable with the highest uncondi-
tional rank correlation with the target variable, except for flood impact at event level, which 
was purposely chosen as return period. This is because this predictor is most relevant to 
computing the protection level, and was also the highest correlated variable for impact at 
regional level. The other two variables changed at each iteration, until all possible combi-
nations of remaining predictors were exhausted. Within each iteration, the optimal depend-
ency structure came from the algorithm of Dißmann et al. (2013). Here, the best vine struc-
ture, meaning not only the configuration of arcs but also the type of copulas representing 
each arc, was selected according to the Akaike Information Criterion (AIC). It should be 
noted that we limited the search of optimal copulas within the vine models only to one- and 
two-parameter copulas.

Every possible variable combination was then compared according to the validation 
metric. In case of flood protection models and the chance of fatality occurring, the % suc-
cess rate in inferring the "yes" or "no" state of the target variable was calculated. For con-
tinuous quantities (relative losses), several metrics were analysed, but primarily the coef-
ficient of determination and the Kling-Gupta Efficiency (KGE) score. The latter metric 
integrates correlation, bias and error and has seen wide use in hydrology (Knoben et al. 
2019). The vulnerability models were further applied to the potential losses from the flood 
catalogue in order to compare the trends in absolute observed and inferred losses. One 
variable, inclusion of which improved the model’s performance the most, was selected as 
predictor. Then, the test was repeated with five nodes: the target variable, the original pre-
dictor from the previous test, the newly selected predictor, and two predictors changing at 
each iteration. Again, all combinations of the latter two variables were tested. The experi-
ment continued with more nodes added to the vine until it reached eight nodes or addition 
of further nodes did not improve the model’s performance. The same process was done 
separately for each of the six target variables. After a series of preliminary tests, due to 
the large computational burden of the algorithm for an adequate amount of samples, the 
number of candidate predictors was reduced. We excluded predictors that were strongly 
similar to each other and were almost never better predictors than others: flood experience 
lagged by 5 years, flood risk in constant exposure, country-level demographic indicators, 
and 30-year averages of the socioeconomic variables. This has reduced the potential pre-
dictors to 35 variables (23 for flood impact per region).

Each run of the vine copula models with a given set of predictor variables was analysed 
through a 10-fold cross-validation. In case of flood protection models, the training data-
set consisted of a random 10% sample of the full dataset, and the remaining 90 % of the 
data was used for validation. In each of the 10 runs, the training sample had no overlaps 
with any other run. For vulnerability models, the amount of available data is much smaller, 
therefore a higher share of data was used for training and therefore could overlap partially 
with samples in other runs. For modelling the chance of fatalities, 1/3 of data were used for 
training, while for models inferring the relative loss, 1/2 of the data was used. Average out-
of-sample validation results were considered when choosing predictor variables. Once the 
final selection of predictor was made, the vine copula models for further application were 
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run once more using the algorithm, to define the best dependency structure using the entire 
sample, except for impact at region level, where due to large sample size, 1/2 of the data 
was used. Such structured and quantified models were used in section 3, except validation 
results in Table 4, which are the average in-sample and out-of-sample results.

In section 3.3.1, the implied return period of significant damages from floods is shown. 
The two vine models of flood protection levels provide the probability of flooding given 
the predictors, among which is the average return period among affected river sections or 
coastal segments. This return period was calculated using the peak-over-threshold approach 
with a Generalized Pareto distribution applied over detrended 1950-2020 6-hourly river 
discharge and hourly sea level. Therefore, by integrating the hydrological return period 
with dike failure probability, we could derive the recurrence interval of significant flood-
ing. We approximated the analytical solution to this problem with a numerical method 
used to compute expected annual damage from flood maps at given return periods based 
on distribution-free median plotting position (Olsen et al. 2015). This involves generating a 
series of 1000 random events defined by return period T:

where n is the length of the series of events and m is the rank of the event.

3  Results

3.1  Vine copula models

The final vine copula models for inferring flood protection levels and vulnerability have 
from five to seven nodes, i.e. they have four to six predictors of the target variables 
(Table  3). In total, 18 different predictors are used at least once among the models. All 
categories of predictors are present, except country-level demographic indicators. Vari-
ables related to economic development occurred most frequently (8 out of 28 cases), with 
GDP per capita used in four of the models. In each case, it was negatively correlated with 
flood occurrence or relative losses. Though GDP per capita was not relevant for the num-
ber of fatalities, GDP per sector (either share of agriculture or industry in the economy) 
was important and positively correlated with the chance and magnitude of fatalities. GDP 
per sector was also presented in the models on flood protection (event level) and population 
affected.

Hydrological indicators were used six times, always positively correlated with impacts, 
except for average water depth in the potential impact zone, which was negatively cor-
related with the magnitude of fatalities. Similarly, flood experience of the past 20 or 30 
years was negatively correlated with magnitude of fatalities and economic loss. However, 
the number of past floods positively correlated with chance of flooding, indicating the per-
sistence of flood protection deficiencies. Relative losses strongly scale to the magnitude of 
damage potential, as widespread floods tend to have lower individual impacts than smaller 
flash floods. Similarly, flood occurrence is positively correlated with potential flood risk 
over 1950-2020, but negatively correlated with relative population affected.

Other variables are less present in the models: degree of urbanization was important only 
for the chance of fatalities (positive correlation). Structure of fixed assets in the affected area 
was included in two models. The share of residential assets was negatively correlated with 

(3)T =
n + 0.4

m − 0.3
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Fig. 3  Vine copula model for flood impact at event level

Fig. 4  Vine copula model for 
flood impact at region level

Fig. 5  Vine copula model for 
mortality (chance of fatalities)

Fig. 6  Vine copula model for 
mortality (magnitude)

Fig. 7  Vine copula model for relative population affected
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relative population affected, while the share of agricultural assets was positively correlated 
with relative economic loss. Land use variables appear only once, with negative correlation 
between the share of land under artificial surfaces other than urban fabric (mainly industrial/
commercial zones and transport-related infrastructure) and the chance of fatalities. Finally, a 
governance indicator is used only in the vine copula for relative economic loss, with a nega-
tive correlation.

More detailed information on the vine copula models is provided in the Supplementary 
Information: joint distributions of raw, ranked, and sampled data in addition to vine tree 
sequences (S1), correlation matrices (S2) as well as types and parameters of copulas used 
(S3).

Fig. 8  Vine copula model for relative economic loss

Table 4  Validation results, average for 10-fold cross-validation. Percentages in brackets are the theoretical 
success rates of a random model. KGE = Kling-Gupta Efficiency (Knoben et al. 2019)

Variable Metric In-sample Out-of-sample

Flood impact (event level) Impact - % correct 64% [28%*] 63% [29%*]
No impact - % correct 86% [72%*] 86% [71%*]

Flood impact (region level) Impact - % correct 31% [11%*] 31% [12%*]
No impact - % correct 91% [89%*] 91% [88%*]

Mortality (chance of fatalities) Fatalities - % correct 67% [58%*] 64% [57%*]
No fatalities - % correct 53% [42%*] 54% [43%*]

Mortality (magnitude) R2 0.67 0.67
KGE 0.58 0.58

Relative population affected R2 0.32 0.29
KGE 0.37 0.37

Relative economic loss R2 0.44 0.44
KGE 0.44 0.45
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3.2  Model validation

3.2.1  Sample validation

Table 4 presents validation results averaged from 10-fold cross-validation, both in-sample 
and out-of-sample. Three out of six models were evaluated by the success rate in correctly 
classifying the events as impactful or non-impactful. In all cases, the models achieved 
higher performance than a theoretical random model, which would have reproduced the 
frequency of impacts (or fatalities). Flood protection at event level best considering the 
ratio of impacts and non-impacts, while the mortality model was the least successful.

The remaining three models reproduced relative losses and were analysed with several 
metrics (Table  4). The best performance was achieved by the mortality model, though 
some negative bias was observed (Fig. 9a). Most of the fatality rates are very low - aver-
age ratio of reported fatalities to modelled potential fatalities with a static depth-damage 
function is only 0.5 %. By contrast, the ratio of average reported population affected to 
potential population exposure is 27 %, and for economic loss − 22 % of potential loss. The 
latter models have lower performance overall, while relative population (Fig. 9b) tends to 
be overestimated and relative economic loss underestimated (Fig. 9c). In addition to com-
puting relative loss, the models were analysed in terms of how well they reproduced trends 
in absolute losses in Europe overall (section 3.2.3)

3.2.2  Comparison with other flood protection level datasets

Probability of impact from the two flood protection models were converted into the implied 
return period of an significant impactful event in each region (section 2.2.2). In Fig. 10, 
our results for riverine floods in year 2020 (section 3.3.1) are compared with nominal riv-
erine flood protection standards from FLOPROS (Scussolini et al. 2016) and PESETA IV 
project (Dottori et al. 2023). In both cases, the nominal standards are far higher than our 
calculations. Weighted by flood hazard in each region, the average protection level from 
our data was only 22 years, compared to 186 years in FLOPROS (Fig. 10a) and 209 years 
in PESETA IV (Fig. 10b). 54 % and 58%, respectively, of regions in the study area have 
100-year protection standards in those datasets, compared to only 5 % in our results. How-
ever, FLOPROS includes not only direct information on local flood protection policies, 
but also gap-fills information with a regression with GDP per capita, mostly showing less 
than 30-year protection for eastern and southern Europe, and 40–60 years for western and 
northern parts of the continent. PESETA IV, bar one exception, assumes a protection level 
of at least 50 years across Europe. The spatial comparison between the datasets is shown in 
Supplement S4.

Despite the large difference between our results and other commonly used datasets, 
more detailed local data show much better alignment with our results. For instance, the 
average flood protection standard weighted by dike length for riverine floods in England 
(Environment Agency 2023) is only 30 years, close to our weighted average of 26 years. 
Meanwhile, the other pan-European uniformly assume a 100-year protection for all of Eng-
land, except 1000 years for London. The Environment Agency data indicate such design 
standards only for 10 % of dikes in England. Weighted average coastal protection in Eng-
land according to the same source is 159 years, only marginally lower than our average of 
167 years. The other datasets do not provide estimates for coastal flood protection levels.
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3.2.3  Absolute impacts and trends

Absolute modelled flood impacts for 1504 historical floods between 1950 and 2020 
are compared with reported losses for the same events, where available (as indicated in 
Table 1). This enables comparing the performance of the model in reproducing historical 
time series of losses, even though this depends not only on the accuracy of the vulnerabil-
ity models of this study, but also the hazard and exposure reconstructions of Paprotny and 
Mengel (2023); Paprotny et al. (2024b).

Overall number of fatalities is underestimated by 10 %, primarily for major events ( 
Fig. 11). 43 % of historical fatalities occurred in only five events, all clustered in only 
three years (1953, 1962 and 1973). In the remaining 851 events, there is a positive bias 
of 49 %, with both observations and models showing slight upward trends in absolute 

Fig. 9  Comparison of modelled (vine copula-based) and reported impact, both relative to potential impact
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fatalities (without correcting for population growth or other drivers). The modelled 
trend is stronger than in reported yearly data.

Population affected and economic loss is less concentrated: the top five events were 
responsible for about 20 % of reported losses. However, data is only available for about 
half of the events. Population affected is underestimated by 23 % and economic loss 
by 22 % ( Figs. 12 and 13). Excluding the top 10 events, for which the model strongly 
under-performs, the bias is 0.2 % and 6 %, respectively, for population affected and 
economic loss. Whereas upwards trend in the model closely matches the reported one, 
the trend in economic loss is overestimated. In both cases, the upward trend should not 
be interpreted standalone, as it was not corrected for exposure growth or other drivers.

Fig. 10  Comparison between flood protection levels for riverine floods from this study for year 2020 and 
from two other public datasets, as return period in subnational regions of the study area

Fig. 11  Annual reported fatalities 
in Europe and model estimate
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3.3  Flood protection levels and vulnerability in Europe, 1950‑2020

3.3.1  Flood protection levels

Implied flood protection levels, i.e. the return period of flood with significant impacts, was 
computed for subnational regions in the study area between 1950 and 2020. We show sepa-
rate estimates for coastal and riverine events, which cover 405 and 1364 regions, respec-
tively. Separating the two types of floods was possible through three variables: economic 
risk, duration, and 20-year flood experience, which have different values depending on the 
type of event. For this analysis, we assume that duration at event or regional level equals 
duration with the same return period as assumed for discharge or sea level. To estimate the 
average protection levels across Europe in Fig. 14, we used the synthetic events with differ-
ent return periods (section 2.2.2) to create a random timeseries of events that would have 
overwhelmed flood defences in some regions in a given year. The total number of impacts 
in Europe relative to the number of applicable regions (coastal or riverine) then indicated 
the average return period of region-level impacts.

Overall, there is better protection from coastal floods than riverine, and the former 
has been improved to a slightly larger degree than the latter (Fig.  14). The average 

Fig. 12  Annual reported popula-
tion affected in Europe and 
model estimate

Fig. 13  Annual reported eco-
nomic loss in Europe and model 
estimate



Natural Hazards 

European coastal protection level improved from 61 years in 1950 to 135 years in 2004, 
before declining to 116 years in 2020. By contrast, riverine protection only increased 
from 15 years in 1950 to 22 years in 1979, when it started declining to only 18 years 
in 2020. While this is much less than nominal protection standards analysed in sec-
tion 3.2.2, it is consistent with actual flood occurrence. Riverine flooding, according 
to data collected in the HANZE dataset (Paprotny et  al. 2024a, 2024b), affected an 
average region in the study area 4.05 times from 1950 to 2020, which implies a return 
period of 17.5 years. Using a series of random events of different return periods sam-
pled over estimated regional protection, the inferred return period of floods is 19.2 
years (95 % confidence interval: 18.7−19.7 years). In case of coastal floods (including 
compound events), 405 regions where such floods are possible were affected with a 
return period of 66 years. Average protection from coastal floods over 1950-2020 is 
estimated here as 99 years (95 % confidence interval: 88-111 years). However, many 
regions affected by compound events are outside the coastal flood zone; the observed 
return period for coastal floods only is 120 years. It should be noted that the clear 
difference between riverine and coastal flood occurrence was captured by the model 
approach despite all types of floods being assembled together in the input data.

Spatially, riverine flood protection levels (Fig. 15a) follow the somewhat expected 
pattern of better developed countries exhibiting higher protection levels, but not so 
much for coastal floods (Fig.  15b). As flood experience is an important predictor of 
subsequent inundation, and we define flood protection levels in terms of occurrence 
of significant impacts, locations of major past events are often visible, e.g. North and 
Adriatic seas for coastal and compound flooding, and mountainous regions for river-
ine flooding. Many Balkan countries as well as Czechia, Italy, Spain, and Sweden are 
indicated as having no improvement or deterioration in protection from riverine floods, 
in contrast to e.g. Germany, the Netherlands, Poland and Portugal, where the opposite 
was found. The model estimates large improvements in coastal protection everywhere, 
particularly southern and eastern Europe, with the sole exception of Denmark.

Fig. 14  Changes in protection levels weighted by flood hazard area, by flood type, 1950-2020



 Natural Hazards

3.3.2  Flood vulnerability

Similarly to flood protection levels, inferred vulnerability at regional level was com-
puted for all regions. The indicators presented in this section refer to inferred impacts 
relative to modelled potential impacts of an average event that have (potentially) affected 

Fig. 15  Flood protection levels (return period in years), by region and type of flood, 1950 and 2020
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a given region between 1950 and 2020 in constant 2020 exposure level, combined for 
riverine and coastal floods. The average return period along river sections or coastal 
segments for computing the chance of fatalities is also an average of region-specific 
events. Flood experience used in two models was computed based on all types of events.

All three impact indicators - mortality, population affected and economic loss - have 
shown a considerable decline between 1950 and 2020 (Fig.  16). Relative population 
affected, weighted by flood hazard area of each region, was estimated at 34 % for the 
hypothetical average flood event in 1950, but only 17 % in 2020, though higher than 
around 2010 when it was estimated at 15 %. Economic loss started declining later, in 
the 1970 s, but still declined substantially from 34 % to 20 %. Relative fatalities had the 
fastest decline, from 9.0 % in 1950 to 3.8 % in 2015, before increasing narrowly to 4.0 
% in 2020.

At regional level, the patterns should be interpreted with the consideration that they 
are relative to potential damage represented by static depth-damage functions for fatali-
ties and economic losses. Consequently, the distribution of mortality rates (Fig. 17) is 
not expected to be similar to historical fatality distribution (i.e. strongly skewed towards 
southern Europe relative to the northern part). Decline in mortality is estimated to be 
the highest in south-eastern Europe, compared to limited decline or increase in the 
Alpine region, though it was already relatively low in 1950. By contrast, the model pre-
dicts a decline in relative population affected in all countries (Fig. 18), particularly in 
northern Europe and Germany, and a much smaller decline in the south-eastern part 
of the continent. On the other hand, the model also predicts that economic vulnerabil-
ity declined in the southern countries (particularly Portugal and Spain), with less pro-
nounced declines in the northern part of the continent (Fig.  19). For both population 
affected and economic loss regions impacted by slow-onset, large riverine floods (east-
ern and south-eastern Europe in particular) have higher vulnerability than those where 
rapid but spatially limited flash floods are dominant, especially in the Alpine zone.

Fig. 16  Inferred impacts of an average flood relative to modelled potential impact, weighted by flood hazard 
area, by impact type, 1950-2020
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3.4  Estimating unreported flood losses in Europe

Published historical flood impact datasets, such as HANZE (Paprotny et  al. 2024a), are 
not complete. Whereas fatality data was available for 99 % of events in HANZE that have 
occurred back to 1870, population affected was provided only for 43 % of events, and eco-
nomic losses for 40 %. Therefore, the full magnitude of flood losses in Europe is unknown, 
and has implications e.g. for validating pan-European flood risk assessments. Combining 
the modelled flood catalogue of Paprotny et al. (2024b) with our vulnerability models, it is 
possible to estimate the missing impact data.

Fig. 17  Inferred fatalities of an average flood relative to modelled potential impact, by region, 1950 and 
2020

Fig. 18  Inferred population affected by an average flood relative to modelled potential impact, by region, 
1950 and 2020
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HANZE contains 2037 events since 1950 where at least one impact statistic (out of 
four, including inundated area) is known ("A" list). Of these, 1504 events were cap-
tured by the model, of which 8 had unknown number of fatalities and almost half were 
missing the number of population affected and economic loss (Fig. 20). Consequently, 
the estimated number of unreported fatalities is below 100, adding less than 1 % to the 
known total. However, missing impacts for the other two categories add 35-38 % to 

Fig. 19  Inferred economic loss of an average flood relative to modelled potential impact, by region, 1950 
and 2020

Fig. 20  Estimated impacts of 
floods in Europe, distinguishing 
floods with known (dark colors) 
and unknown (bright colors) 
impacts, further indicating if 
they were captured by the model 
reconstruction in Paprotny et al. 
(2024b) (dark outline) or not 
(bright outline)
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the total, even if an average event without known impact is estimated to have had 60 % 
smaller magnitude than an event with recorded impacts.

The remaining 533 events not included in the modelled flood catalogue consist mostly 
of flash floods. Impact reporting rate for population affected and economic loss is smaller, 
covering about one-third of events, and where available, they were about six times smaller 
on average compared to events included in this study. The missing impacts cannot be 
directly reproduced with our approach, as they are not in the catalogue, but we can extrapo-
late from the previous categories of events. We assume that the ratio between an average 
event with unknown impacts and known impacts for the events not included in the model 
is the same ratio as for those events that were captured in the catalogue. This adds little 
additional damage to what was reported, namely 0.1 % more fatalities and about 3 % more 
population affected and economic loss.

Finally, the flood catalogue identified additional 237 floods ("B" list) for which there 
is no complete impact data, but descriptive sources or partial data indicate that they none-
theless caused significant socioeconomic impacts. Estimated impacts of those events are, 
on average, similar to those with unknown impacts in the "A" list, and slightly lower 
than the estimated average for all 2037 events on that list. 12 floods on the "B" lists are 
related to "A" events such as they represent an earlier or later phase of the "A" event, 
and their impacts were reported in list "A". The remaining 225 "B" events increase the 
known impacts by further 7-11 %, depending on the category of impacts. Overall, the 2274 
known flood events resulted in an estimated 11,000 fatalities, affected 14 million people 
and caused 435 billion euro losses between 1950 and 2020 (Table 5). We estimate that the 
modelled flood catalogue reproduces 83 % of fatalities and 95-96 % of other impacts. On 
the other hand, the reported impacts cover 92 % of estimated total fatalities, and only 66-67 
% of population affected and economic loss. This indicates that while fatality data are reli-
able enough for use in pan-European flood studies, reported population affected and eco-
nomic losses should be taken with a degree of caution due to their incompleteness.

4  Discussion

4.1  Uncertainties in input data

The study is based on extensive data collection and modelling effort carried out primarily 
in several preceding studies (Paprotny and Mengel 2023; Paprotny et  al. 2024a, 2024b; 
Tilloy et al. 2024). Inevitably, there are numerous sources of uncertainty involved in the 

Table 5  Estimated impacts of floods in Europe by impact category. Numbers in brackets are the 95 % con-
fidence interval

Category Estimated total % of estimated total 
captured by model

Known impacts 
as % of estimated 
total

Events 2262 76.4 x
Fatalities (thousands) 11.2 [10.8−11.9] 82.7 [82.1−83.6] 91.6 [85.6−94.9]
Population affected (millions) 13.8 [13.0−14.7] 95.8 [95.8−95.8] 66.2 [62.1−70.5]
Economic loss (billions, 2020 euros) 435 [403-472] 95.3 [95.2−95.3] 67.0 [61.7−72.3]
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input data. This relates to both the reported impacts and their reconstruction in the mod-
elled potential flood catalogue. Observed impacts were compiled from many sources with a 
varying level of reliability and completeness. The availability of information also strongly 
varies between countries, or even within countries, with a noticeable temporal bias, ana-
lysed in detail in Paprotny et al. (2018). For example, there are extensive flood databases 
and catalogues available for France, Italy, Norway, Portugal, Spain, Switzerland, and cer-
tain Balkan countries, but large scattering of information makes it difficult to collect data 
for other countries, such as Austria, Germany, and the United Kingdom. There are also 
large gaps in data resulting from Communist-era suppression of public flood impact report-
ing, even if they were clandestinely recorded in minute detail and sometimes made availa-
ble in more modern times. Apart from missing data, major errors in flood impact databases 
occur. They were corrected in HANZE only to the extent that alternative sources of infor-
mation allowed. In addition, the data on non-impacts is incomplete and not even across the 
domain, due to limitations in sources and difficulty of ruling out the possibility of impacts 
for many events. For more detailed discussion we refer to Paprotny et al. (2024a, 2024b).

The modelled flood catalogue (section 2.1.1), which enabled converting absolute losses 
into relative losses, also has limitations. Spatial and temporal resolution of the hydrological 
model, despite being the highest ever applied to model European riverine floods, is still not 
enough to capture many smaller flash floods. Also, the flood footprint was reconstructed 
using flood hazard maps made for rivers with a minimum catchment area of 100  km2. Con-
sequently, only 55 % of flash floods in HANZE were included in the model catalogue, and 
only 84 % of affected regions within that subset were included in the footprint. For slow-
onset riverine floods, the statistics are better, as the model captured 91 % of both events 
and their footprints. This nonetheless can lead to underestimation of exposure during the 
event, overestimating relative losses, and underestimate the gap-filled losses (section 3.4). 
Coastal floods, though modelled using a storm surge model of Paprotny et al. (2016) that 
is not as precise as some newer studies like Muis et al. (2020), are most complete, with 
90% of events reproduced in the model together with 98 % of their region-level footprints. 
It should be noted that the models performed well throughout the time period in question, 
with only some degraded performance in the 1950 s. For a more detailed analysis of the 
accuracy of the modelled data we refer to Paprotny et al. (2024b); Tilloy et al. (2024).

4.2  Uncertainties in the analysis and results

Limitations in the data notwithstanding, there are many choices possible to analyse it sta-
tistically. Here, we opted for the vine-copula method, which required converting some of 
the target variables to continuous by combining it with another variable (section  2.2.2). 
We tested a different approach to discrete variables (impact or fatality occurrence), such 
as discrete Bayesian Networks and Random Forests, but they did not lead to better results 
than the method used herein. We also tested whether adding flood event type in a Random 
Forest would improve results, but it was indicated as one of the least useful predictors. As 
for the vine-copulas, we tested the optimal model structures within a given set of variables 
using the algorithmic approach of Dißmann et al. (2013). A brute force approach (testing 
all possible vine configurations) would not be computationally feasible when testing con-
currently all possible variable combinations, though is an option with a fixed variable list. 
Applying the brute force approach to the final variable composition would have slightly 
improved the AIC score of the final models. The validation metrics would improve only 
slightly for all models, by less than 1 percentage point for flood protection and chance of 
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mortality (section 3.2.1). Virtually no difference for magnitude of fatalities and economic 
loss was recorded, only for population affected the brute force model would improve both 
 R2 and KGE by up to 0.02. Due to the small impact on validation and to keep the approach 
consistent, we utilized the algorithm throughout.

Estimating flood vulnerability from a large set of very diverse flood events spanning 
over 70 years was shown as feasible in this study, even if results are far from a perfect 
match with observations (section  3.2.1). Low correlations between potential predictors 
and relative losses are a persistent problem even in microscale, using building-level data 
(Merz et al. 2013; Wagenaar et al. 2018; Paprotny et al. 2020). At European scale, valida-
tion of modelled absolute losses has rarely been published. Recent studies still show a large 
difference between modelled and reported economic losses. In Steinhausen et  al. (2022) 
modelled residential riverine flood losses for 1981-2010 were 39 % below total estimated 
on HANZE in its previous, much less complete iteration of (Paprotny et  al. 2018). For 
the same period, Dottori et al. (2023) estimated total riverine economic losses in the same 
period as 75 % above those reported by the reinsurer Munich Re, and even more above 
EM-DAT or the 2018 version of HANZE. Our inference for 1981-2010 for all types of 
floods is 5 % below reported. In general, lower overall bias in estimating absolute losses 
was achievable, but at the detriment of reproducing the historical temporal trend. However, 
both total losses and trends in the past 70 years are heavily influenced by a very small num-
ber of high-magnitude events, particularly in case of fatalities (section 3.2.3). Excluding 
less than 1 % of the top events gives greater alignment in the trends and lower bias, except 
for bias in fatalities. Graphs of absolute losses excluding 10 largest events are shown in 
Supplement S5.

Flood protection levels follow a specific definition, not comparable to nominal protec-
tion levels used in other studies (section 3.2.2). The most comparable data to our approach 
is available for the Netherlands, where probability of flooding is evaluated holistically for 
entire systems of primary flood defences ("dike rings") protecting a large area. The VNK 
project data (Vergouwe 2015) indicate that dike rings have been mostly below nominal 
protection levels. Almost a quarter of Dutch population within dike rings lives in those 
with an actual protection level below 100 years. This includes the North Holland dike ring 
(population 1 million), which is routinely indicated as having 1 in 10,000 years protection. 
However, due to degraded reliability of some hydraulic structures in the area, actual pro-
tection level was shown to be below 100 years. Similarly low protection levels were found 
in many areas at risk of riverine floods, though no precise value was given. Our weighted 
average protection for the Netherlands is 59 (riverine) or 144 years (coastal), though with 
large variations between regions.

Still, they are consistent with empirical flood occurrences in Europe. This approach has 
drawbacks, however, for vulnerability estimation. We calculate relative losses as the actual 
impact divided by potential impact, the latter of which assumes no defences in affected 
regions. In reality, flood protection will not fail everywhere, even in the scale of a subna-
tional region. Further, we assume a static depth-damage relation for mortality and eco-
nomic loss, only using total exposure for the population affected. The relative loss mag-
nitudes need to be interpreted in this particular model setting. On the other hand, this is 
comparable with the approach of previous pan-European studies, where either there is no 
flooding or whole regions or countries are flooded everywhere (Jongman et al. 2014; Dot-
tori et al. 2023). Our method introduces more spatial variation in protection levels and vul-
nerability, and reduces bias in estimating impacts of floods. Still, it has to be highlighted 
that the return period was computed as geometric averages for affected river segments or 
coastal sections. The actual, impactful flooding could have occurred in locations where 
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the return period was particularly high. Using the return period of the peak would be an 
alternative, but increase the uncertainty and likely overestimate the protection level, which 
would be rather lower than the peak. Again, as pan-European flood hazard maps are cre-
ated for a uniform return period throughout the domain, the hydrological intensity over a 
broader area should be considered.

The input return periods were computed with a specific method and temporal resolu-
tion of the data (section 2.2.2). The protection levels from this study could mismatch water 
levels computed with a different approach to extreme value analysis. However, the same 
is true for any published flood protection levels dataset, and ultimately, our results were 
shown to be consistent with the empirical recurrence interval of floods in European regions 
for both coastal and riverine floods (section 3.3.1). Further, the maps of flood protection 
levels and vulnerability (section 3.3) were computed using assumptions for the values of 
certain variables, representing a more "average" flood event. By contrast, unreported flood 
losses (section  5) were calculated using information for specific, historical events. The 
models can be applied in different settings depending on the purpose, and trends shown in 
this study (Figs. 14 and 16) could be different in such cases.

5  Conclusions

In this study, we constructed the first pan-European maps of flood protection levels and 
flood vulnerability at subnational level covering a period of 70 years using advanced prob-
abilistic models such as vine-copulas. Informed by reported flood impacts combined with 
model reconstruction of past floods, our models and data have the potential to redefine how 
those aspects are parameterized in pan-European flood risk assessments. This work does 
not aim to be a substitute for local knowledge, such as microscale damage models trained 
on case studies, or detailed flood protection data, from high-resolution elevation models or 
dike reliability assessments (such as the VNK study for the Netherlands). Rather, it ena-
bles applying a consistent approach to continental-scale studies and fills gaps where more 
detailed data or methods are not available.

An important application of the study would be impact attribution. Counterfactual flood 
protection levels and flood vulnerability would enable testing the sensitivity of impacts 
from different historical floods to changes in flood management and adaptation in Europe. 
It could enable detecting, for instance, events and regions in the potential flood impact cat-
alogue that would have caused losses without improved protection. Conversely, it could 
identify floods that would not have happened without an increased return period of flood-
ing induced by climate change or human alterations in the catchment-level water cycle. 
Economic analysis of adaptation options (structural protection versus reducing vulner-
ability) could also be improved with our results. Finally, it could help create more realis-
tic baseline projections of future protection levels and vulnerability under changing (and 
uncertain) socioeconomic conditions.
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