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4 DSMN, Università Ca’ Foscari di Venezia, Venice, Italy
5 ECLT, Università Ca’ Foscari di Venezia, Venice, Italy
6 Department of Telecommunications, VSB - Technical University of Ostrava, Ostrava, Czechia
7 Institute of Geosciences Potsdam, Universität Potsdam, Potsdam, Germany

Received 29 April 2024 / Accepted 16 September 2024
© The Author(s) 2024

Abstract The complexity of our brains can be described as a multi-layer network: neurons, neural agglom-
erates, and lobes. Neurological diseases are often related to malfunctions in this network. We propose a
conceptual model of the brain, describing the disease as the result of an operator affecting and disrupting
the network organization. We adopt the formalism of operators, matrices, and tensor products adapted
from theoretical physics. This novel approach can be tested and instantiated for different diseases, bal-
ancing mathematical formalism and data-driven findings, including pathologies where aging is included
as a risk factor. We quantitatively model the K -operator from real data of Parkinson’s Disease, from the
Parkinson’s Progression Markers Initiative (PPMI) upon concession by the University of Southern Califor-
nia. The networks are reconstructed from fMRI analysis, resulting in a matrix acting on the healthy brain
and giving as output the diseased brain. We finally decompose the K -operator into the tensor product of
its submatrices and we are able to assess its action on each region of interest (ROI) characterizing the brain
for the specific considered samples. We also approximate the time-dependent K -operator from the fMRI of
the same patient at the baseline and at the first follow-up. Our results confirm the findings of the literature
on the topic. Also, these applications confirm the feasibility of the proposed analytic technique. Further
research developments can compare operators for different patients and for different diseases, looking for
commonalities and aiming to develop a comprehensive theoretical approach.

1 Introduction

Magic? No, Physics. Given a (non)magic formula, a variety of phenomena can be described, modeled, understood,
and eventually modified. In particular, tools, such as random graphs, Markov graphs, small-world models, network-
growth models, i.e., approaches to complex networks, can help model and understand the structure and organization
of living and artificial networks [1]. Networks can describe the nature outside us and inside us, including our brains,
from anatomy to functioning. For instance, the understanding of processes, such as a disease spread, can also be
pursued by means of concepts from complex systems theory, such as percolation [2]. Network theory, jointly with
graph theory and topology, is shedding new light in the field of neuroscience [3]. The anatomic and physiological
architecture of our minds can be investigated for instance through complex networks. The knowledge of their
nature may lead to technological developments, such as artificial intelligent systems (as multi-layer perceptrons),
or foster new therapeutic insights. In fact, in the brain, there are regions characterized by a high connectivity, called
hubs [4]. The pathological or surgical rescission of specific pathways can lead to macroscopic effects, dramatically
affecting the life of patients. It is the case of the disconnection syndrome [5], with effects such as apraxia or aphasia,
or even prosopagnosia, that is, the incapability of recognizing faces [6]. The alteration of weights in pathways can
lead to psychiatric effects in schizophrenia [7]. The exaggeration of physiological mechanisms of activation and
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inhibition of neurons, and their patterns of synchronization, fundamental also for healthy-brain music listening
and appreciating [8], can lead to neural-masses synchronization in epileptic seizures [9–13]. It has been found a
correspondence between the seizures’ onsets and terminations with the increase and diminution of weights in the
brain network [14]. Alterations of the network are also visible in Alzheimer–Perusini’s disease [12, 15–17], leading
to dementia. Thus, different neurological diseases present a different configuration of brain-network alteration [18].
Aging itself can be a risk factor for neurological diseases such as Alzheimer–Perusini. Focusing on brain networks
can shed light also on the mechanisms inside an aging brain.

Despite the high volume of experimental and quantitative studies on specific diseases, as pointed out in [19],
what is missing is a general theoretical description. Let us consider the brain as a multi-layer network, whose layers
are the neurons, their agglomerates, and the lobes. In a recent study, we have proposed a novel, physics-inspired,
conceptual model of neurological disease as the effect of an operator acting on the brain network and changing
the weights of the connections between neural agglomerates [20]. The modularity of this brain description allows
us to investigate diseases also in modular terms. We can build a conceptual model of neurological disease based
on a suitable form of the K -operator (from Krankheit , German for disease) acting at different levels of the brain
network. In our conceptual model, the K -operator acts differently on different brain regions, according to the
position, typology, and level of introduced damage. For this reason, K can be written as the tensor product of its
submatrices representing a different action on the different brain regions [20].

The disruption described by K can be compared with abnormal effects of communication between neural agglom-
erates. In addition, from a telecommunication point of view, a group of cells that work correctly but interrupt the
transmission of the signal is equivalent to a group of cells that stop working. Thus, we can develop a model of
network channel to describe the interaction between neural agglomerates in a general way, instantiating the effect
of a particular disease in terms of disturbances of such a communication channel [20].

However, the conceptual model proposed in [20] has never been applied yet to real data from a neurological
disease. In this article, we propose a technique to experimentally find a matrix shape of the K -operator starting from
real human data, focusing in particular on Parkinson’s Disease (PD). It is a progressive neurodegenerative disease,
with severe sensory–motor and cognitive symptoms. From the literature, it is known that the network damage
occurring in PD involves lower connectivity in corpus callosum, fornix, and cingulum, and higher connectivity
between the left caudate and left medial frontal gyrus (orbital part), as well as a higher global connectivity after
36 months, probably due to compensatory processes [21]. In this study, we also start from the dataset considered
in [21], focusing however on three selected persons: a healthy male control, a male PD patient, and a female
PD patient. We obtain and compare their connectivity matrices, computing the K -operator. We also compute
its inverse matrix form K−1. Such a strategy could in principle suggest which brain-network regions should be
addressed during therapy. In the second part of our research, we focus on the female PD patient, comparing her
brain network at the baseline and at the first follow-up to approximate a time-dependent version of the K -operator.

This work is organized as follows. In Sect. 2, we present our strategy to compute an example of the K -operator
as a data-driven matrix. Our results, with the analysis of two case studies, are presented in Sect. 3, and they are
compared, looking for their similarities, in Sect. 5. A first, tentative contrasting example is proposed in Sect. 4,
where we compare salient features of K for the passage from healthy to PD, to Alzheimer–Perusini’s disease, and
to schizophrenia. Finally, we summarize our research and its possible developments in Sect. 6.

2 Methods

Adopting the same notation as proposed in [20], we indicate here with G the block-matrix representing the weights
of the connections in a healthy brain, where G stands for Gehirn, German for brain. This corresponds to a
connectivity matrix with the information on precise weights. The letter K stands for the Krankheit (K ) operator,
whose action on G gives as output a diseased brain network: Gk = KG. From data, as it will be explained later
in detail, we can obtain the connectivity matrix for brains of patients affected by a neurological disease, and of
control people without the considered disease. If the matrix associated with G is invertible, we can experimentally
derive a shape of K through Eq. (1)

KG = Gk ⇒ K = GkG−1. (1)

In the following, we will be using the symbol Gp to indicate an instance of diseased brain affected by PD. To
obtain a precise form for the matrices G and Gp, we can start from medical measurements. The information on
network physiology can be obtained through Functional Magnetic Resonance Imaging (fMRI), a technique of
biomedical imaging detecting the variation of blood flow across the brain. The fMRI, formerly called Nuclear
Magnetic Resonance (NMR), is a non-invasive yet highly informative strategy to retrieve information on the brain
network. It provides information on functional brain activity [22]. From the physiological point of view, after
having released oxygen into tissues, the blood contains deoxyhemoglobin, the molecule of hemoglobin without the

123



Eur. Phys. J. Spec. Top.

oxygen. This molecule presents a higher paramagnetism than tissues and, thus, it produces a stronger reaction to
the magnetic resonance. Also, during the increment of activation of a neural region, the blood flow correspondingly
increases1 [22, 24].

fMRI are obtained with the same device needed for MRI. From the physics point of view, in these machines,
a strong magnetic field forces the existing magnetic fields to align along it; since the alignment is imperfect, a
precession motion starts. Then, a radio frequency pulse is applied; its energy is absorbed if it matches the resonance
frequency of the precessing protons. Finally, the radio pulse is turned off, and the energy, released at different times,
is measured, providing information on tissue organization and activity [22, 25].

The information collected via fMRI is encoded into a DICOM file, acronym for “Digital Imaging and COmmuni-
cations in Medicine.” To obtain the connectivity matrices required for our research, we need an intermediate step
of file conversion. In fact, DICOM is a rich format that has to be converted into a lighter format, shareable between
different platforms for network-analysis purposes. Thus, we need a conversion from DICOM to NIfTI, acronym for
“Neuroimaging Informatics Technology Initiative” [26]. In our research, to perform DICOM to NIfTI conversions,
we use the Python library dicom2nifti ,2 and, to analyze data, the library nilearn3 developed for applications of
computational neuroscience.

The proportion-respecting visualization of the brain network requires the choice of a medical atlas for the
anatomic distribution of the regions of interest (ROIs), the parts a brain can be divided into. This information
does also determine the precise shape and size of the connectivity matrices. We will be working with matrices
N × N , where N is the total number of ROIs. We indicate with n, such that n ∈ {0, ..., N − 1}, the index of the
n-th ROI. Visually, each nm-th pixel represents the connectivity between the n-th and m-th part of the brain. For
the Multi-Subject Dictionary Learning (MSDL) atlas [27], the brain is divided into N = 39 ROIs, listed in Table
1. The brain segmentation of the MSDL atlas is based on resting-state4 fMRI (rs-fMRI) connectivity patterns,
obtained by aggregating data from a great number of subjects [27].

Thus, the obtained connectivity matrices contain 39 × 39 = 1521 pixels, i.e., 1521 features.
The K -operator acts on the connectivity matrix. In our case studies, it will also have size 39 × 39 pixels. A

possible grouping is the distinction of brain lobes (Table 2). For this first study, we considered the statistical
information provided by MSDL atlas, as a preliminary investigation on the whole-brain information and in more
detail on the diagonal blocks of K . For an additional investigation, to gain more information on the limbic system
and its connections with other brain areas, we considered the third version of the automatic anatomic labeling
atlas, that is, AAL3 [29], including 170 ROIs. The original AAL was developed at the Montreal Neurological
Institute (MNI).5 In our analysis, we included the 162 ROIs for which we have data (case study A) and 160 (case
study B). In this way, we obtained matrices with 162 × 162 and 160 × 160 pixels, respectively. Table 3 shows the
complete list of the considered ROIs from AAL3.

We can formally relate the brain G, described by a connectivity matrix, to the groupings of submatrices. We
adapt here the formalism of operators, matrix products, and tensor products, typically used for theoretical physics,
to a problem of applied physics and neurology. Following the formalism proposed in [20], we treat the G as the
composite system defined via the tensor product of its submatrices, the groupings of ROIs corresponding to the
lobes

parietal ⊗ frontal ⊗ . . . ⊗ subcortical → brain, (2)

where ⊗ indicates the tensor product, that is, the outer product . Given two matrices a, b, indicating by bt the
transposed of the second matrix, their tensor product is defined as

a ⊗ b := abt. (3)

1The first intuition of the connection between blood-flood variation and brain activity is due to the Italian physiolo-
gist Angelo Mosso (1846–1910). His “human circulation balance,” a non-invasive measure of blood redistribution during
emotional and intellectual activity, is one of the first neuroimagining techniques [23].

2https://dicom2nifti.readthedocs.io/en/latest/.
3https://nilearn.github.io/stable/index.html.
4It indicates the resting-state functional magnetic resonance imaging (rsfMRI). This kind of data is acquired when

the participant is supine or in a resting position with the right–left (RL) orientation. The resting-state fMRI provides
information on spontaneous brain activity when the patient is not performing a specific task. The intrinsic brain networks
and connectivity patterns are measured through blood oxygen level-dependent signals.

5https://www.oxcns.org/aal3.html.
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Table 1 Regions of
interest (ROIs) of the brain
network according to the
MSDL atlas [27]

ROI Name

1 Left Auditory Cortex

2 Right Auditory Cortex

3 Striate Cortex

4 Left Default Mode Network

5 Medial Default Mode Network

6 Frontal Default Mode Network

7 Right Default Mode Network

8 Occipital Posterior

9 Motor Cortex

10 Right Dorsolateral Prefrontal Cortex

11 Right Frontopolar Cortex

12 Right Parietal Cortex

13 Right Posterior Temporal Cortex

14 Basal Ganglia

15 Left Parietal Cortex

16 Left Dorsolateral Prefrontal Cortex

17 Left Frontopolar Cortex

18 Left Intraparietal Sulcus

19 Right Intraparietal Sulcus

20 Left Lateral Occipital Complex

21 Visual Cortex

22 Right Lateral Occipital Complex

23 Dorsal Anterior Cingulate Cortex

24 Ventral Anterior Cingulate Cortex

25 Right Anterior Insula

26 Left Superior Temporal Sulcus

27 Right Superior Temporal Sulcus

28 Left Temporoparietal Junction

29 Broca’s Area

30 Superior Frontal Sulcus

31 Right Temporoparietal Junction

32 Right Pars Opercularis

33 Cerebellum

34 Dorsal Posterior Cingulate Cortex

35 Left Insula

36 Cingulate Cortex

37 Right Insula

38 Left Anterior Intraparietal Sulcus

39 Right Anterior Intraparietal Sulcus
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Table 2 Regions of
interest (ROIs) of the brain
network according to the
MSDL atlas [27], ordered
according to major brain
areas. Here, the insula
inside the “subcortical and
other structures.” However,
it is sometimes indicated as
a lobe itself [28]

Lobe ROI Name

Frontal 9 Motor (Motor Cortex)

10 R DLPFC (Right Dorsolateral Prefrontal
Cortex)

16 L DLPFC (Left Dorsolateral Prefrontal
Cortex)

11 R front pole (Right Frontal Pole)

17 L front pole (Left Frontal Pole)

30 Sup Front S (Superior Frontal Sulcus)

23 D ACC (Dorsal Anterior Cingulate
Cortex)

24 V ACC (Ventral Anterior Cingulate
Cortex)

32 R Pars Op (Right Pars Opercularis)

7 R DMN (Right Default Mode Network)

6 Front DMN (Frontal Default Mode
Network)

29 Broca (Broca’s Area)

Temporal 1 L Aud (Left Auditory Cortex)

2 R Aud (Right Auditory Cortex)

4 L DMN (Left Default Mode Network)

5 Med DMN (Medial Default Mode
Network)

26 L STS (Left Superior Temporal Sulcus)

27 R STS (Right Superior Temporal Sulcus)

13 R Post Temp (Right Posterior Temporal
Lobe)

Parietal 28 L TPJ (Left Temporoparietal Junction)

31 R TPJ (Right Temporoparietal Junction)

12 R par (Right Parietal Cortex)

15 L par (Left Parietal Cortex)

19 R IPS (Right Intraparietal Sulcus)

18 L IPS (Left Intraparietal Sulcus)

38 L Ant IPS (Left Anterior Intraparietal
Sulcus)

39 R Ant IPS (Right Anterior Intraparietal
Sulcus)

Occipital 3 Striate (Striate Cortex)

8 Occ post (Occipital Posterior)

20 L LOC (Left Lateral Occipital Complex)

21 Vis (Visual Network)

22 R LOC (Right Lateral Occipital Complex)

Subcortical and other structures 14 Basal (Basal Ganglia)
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Table 2 (continued)
Lobe ROI Name

25 R A Ins (Right Anterior Insula)

33 Cereb (Cerebellum)

34 Dors PCC (Dorsal Posterior Cingulate
Cortex)

36 Cing (Cingulate Cortex)

35 L Ins (Left Insula)

37 R Ins (Right Insula)

The action of the K -operator is similarly decomposed into its action on each lobe. Identifying G with the N × N
connectivity matrix, we write

G =G|n∈F ⊗IP , T , O, S + IF ⊗ G|n∈P ⊗IT , O, S

+ IF , P ⊗ G|n∈T ⊗IO, S + IF , P , T ⊗ G|n∈O⊗IS

+ IF , P , T , O ⊗ G|n∈S ,
(4)

where F stands for frontal, P for parietal, T for temporal, O for occipital, and S for subcortical. The brain of
patients affected by Parkinson’s Disease, indicated as Gp, can be decomposed in the same way.

With the connectivity matrices for the healthy and diseased brains, we can find the corresponding K -operator
of Eq. (1) and its decomposition into submatrices acting on each ROI, and on each grouping of ROIs (4). Mathe-
matically, the K -operator acts as a matrix product

KG = (K|n∈F ⊗IP , T , O, S)(G|n∈F ⊗IP , T , O, S)
+ . . . = (K|n∈F G|n∈F ) ⊗ IP , T , O, S + . . .

(5)

In [20], the product is defined as element-wise product, with each element of K acting as a multiplying factor to
modify the corresponding element of the brain matrix. Here, we will consider both approaches, element-wise and
usual matrix product. The tensor product symbol is adopted to formally extend the action of a submatrix of K
on the whole matrix. While considering the element-wise product, the meaning of the identity is a matrix of 1s,
that is, neutral elements as multiplicative factors. While considering the normal product, the identity is the usual
identity matrix, having 1s on the main diagonal, and 0s elsewhere.

Our overall strategy to obtain the K -operator from patients’ fMRI is summarized in the Pseudocode 1. To
approximate the time evolution of the disease in an already-diseased brain, with a little abuse of notation, consid-
ering the brain matrices at each time point as independent matrices, we write

K(t)Gp(t) = Gp(t + 1) ⇒ K(t) = Gp(t + 1)[Gp(t)]−1. (6)

More refined techniques for time-evolution operator approximation can be applied to the K computed at different
time-points, looking for a more general approximation of the time-dependent K -operator, and, through a suitable
training and test, to potentially allowing one to make predictions on disease’s progression. We will be using Eq. (1)
and (6) to obtain our results, presented in Sect. 3. To obtain our network visualizations, we adapt the first part of
a Graph Neural Network (GNN) developed at Stanford [30]. To compute the K -operator, here we can choose to
treat K as acting element-wise on each element of the connectivity matrix

KδG = Gδ ⇒ {
Kδ

z, z′cl
z, z′

}
=

{
cl, δ
z, z′

}
; (7)

thus, we will be mostly using a element-wise product to find it, obtaining a symmetric shape for K , with its
elements indicating the precise disease action on the corresponding pairs of ROIs. Further research will consider
the rows–matrix product, and exploit a subsequent diagonalization to make the elements of K interpretable. To
attempt a first comparison, we also computed K with the classic product. As it will be visible from the figures,
vertical lines of K obtained via row-by-column product approximately correspond to clusters (regions of high
variability) of K computed with the element-wise product. Thus, there seems to be a relationship in terms of
patterns of variability.

Our matrix approach requires that the submatrices have all the same size. An alternative approach consists in
the re-writing of the K -operator as a block-diagonal matrix, where each block corresponds to the action of K on
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Table 3 The considered
ROIs of the brain
parcellation according to
the AAL3 atlas [29]. The
ROI position can be

retrieved as (n− 1) the
numbering associated with
the labels

ROI label

Precentral_L 1

Precentral_R 2

Frontal_Sup_2_L 3

Frontal_Sup_2_R 4

Frontal_Mid_2_L 5

Frontal_Mid_2_R 6

Frontal_Inf_Oper_L 7

Frontal_Inf_Oper_R 8

Frontal_Inf_Tri_L 9

Frontal_Inf_Tri_R 10

Frontal_Inf_Orb_2_L 11

Frontal_Inf_Orb_2_R 12

Rolandic_Oper_L 13

Rolandic_Oper_R 14

Supp_Motor_Area_L 15

Supp_Motor_Area_R 16

Olfactory_L 17

Olfactory_R 18

Frontal_Sup_Medial_L

Frontal_Sup_Medial_R 20

Frontal_Med_Orb_L 21

Frontal_Med_Orb_R 22

Rectus_L 23

Rectus_R 24

OFCmed_L 25

OFCmed_R 26

OFCant_L 27

OFCant_R 28

OFCpost_L 29

OFCpost_R 30

OFClat_L 31

OFClat_R 32

Insula_L 33

Insula_R 34

Cingulate_Ant_L

Cingulate_Ant_R

Cingulate_Mid_L 37

Cingulate_Mid_R 38

Cingulate_Post_L 39
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Table 3 (continued)
ROI label

Cingulate_Post_R 40

Hippocampus_L 41

Hippocampus_R 42

ParaHippocampal_L 43

ParaHippocampal_R 44

Amygdala_L 45

Amygdala_R 46

Calcarine_L 47

Calcarine_R 48

Cuneus_L 49

Cuneus_R 50

Lingual_L 51

Lingual_R 52

Occipital_Sup_L 53

Occipital_Sup_R 54

Occipital_Mid_L 55

Occipital_Mid_R 56

Occipital_Inf_L 57

Occipital_Inf_R 58

Fusiform_L 59

Fusiform_R 60

Postcentral_L 61

Postcentral_R 62

Parietal_Sup_L 63

Parietal_Sup_R 64

Parietal_Inf_L 65

Parietal_Inf_R 66

SupraMarginal_L 67

SupraMarginal_R 68

Angular_L 69

Angular_R 70

Precuneus_L 71

Precuneus_R 72

Paracentral_Lobule_L 73

Paracentral_Lobule_R 74

Caudate_L 75

Caudate_R 76

Putamen_L 77

Putamen_R 78

Pallidum_L 79

Pallidum_R 80

Thalamus_L
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Table 3 (continued)
ROI label

Thalamus_R

Heschl_L 83

Heschl_R 84

Temporal_Sup_L 85

Temporal_Sup_R 86

Temporal_Pole_Sup_L 87

Temporal_Pole_Sup_R 88

Temporal_Mid_L 89

Temporal_Mid_R 90

Temporal_Pole_Mid_L 91

Temporal_Pole_Mid_R 92

Temporal_Inf_L 93

Temporal_Inf_R 94

Cerebellum_Crus1_L 95

Cerebellum_Crus1_R 96

Cerebellum_Crus2_L 97

Cerebellum_Crus2_R 98

Cerebellum_3_L 99

Cerebellum_3_R 100

Cerebellum_4_5_L 101

Cerebellum_4_5_R 102

Cerebellum_6_L 103

Cerebellum_6_R 104

Cerebellum_7b_L 105

Cerebellum_7b_R 106

Cerebellum_8_L 107

Cerebellum_8_R 108

Cerebellum_9_L 109

Cerebellum_9_R 110

Cerebellum_10_L 111

Cerebellum_10_R 112

Vermis_1_2 113

Vermis_3 114

Vermis_4_5 115

Vermis_6 116

Vermis_7 117

Vermis_8 118

Vermis_9 119

Vermis_10 120

Thal_AV_L 121

Thal_AV_R 122

Thal_LP_L 123
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Table 3 (continued)
ROI label

Thal_LP_R 124

Thal_VA_L 125

Thal_VA_R 126

Thal_VL_L 127

Thal_VL_R 128

Thal_VPL_L 129

Thal_VPL_R 130

Thal_IL_L 131

Thal_IL_R 132

Thal_Re_L 133

Thal_Re_R 134

Thal_MDm_L 135

Thal_MDm_R 136

Thal_MDl_L 137

Thal_MDl_R 138

Thal_LGN_L 139

Thal_LGN_R 140

Thal_MGN_L 141

Thal_MGN_R 142

Thal_PuI_L 143

Thal_PuI_R 144

Thal_PuM_L 145

Thal_PuM_R 146

Thal_PuA_L 147

Thal_PuA_R 148

Thal_PuL_L 149

Thal_PuL_R 150

ACC_sub_L 151

ACC_sub_R 152

ACC_pre_L 153

ACC_pre_R 154

ACC_sup_L 155

ACC_sup_R 156

N_Acc_L 157

N_Acc_R 158

VTA_L 159

VTA_R 160

SN_pc_L 161

SN_pc_R 162

SN_pr_L 163
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a lobe. The interaction elements, related to inter-lobes connectivity, disappear from this kind of visualization, in
analogy with the original, simplified approach proposed in [20].

Algorithm 1 The proposed technique to compute data-driven examples of the K -
operator

3 Results

We apply the described methods (Sect. 2) to gain insights on the effect of Parkinson’s Disease (PD) on the human
functional brain network. According to Mayo’s clinic,6 “Parkinson’s disease is a progressive disorder that affects the
nervous system and the parts of the body controlled by the nerves.” Symptoms start with a limited tremor in one
hand. Other further symptoms, appearing with the worsening of the disease, involve speech speed, handwriting size,
tremor, and rhythmic shaking, slow movement (bradykinesia), muscle stiffness, and loss of automatic movements.
These symptoms can, thus, also be related with Broca’s area for the speech [31], and parietal-frontal network
and subcortical structures for the motor-movement execution [32]. We expect that the K -operator approach may
highlight effects of the disease in these areas.

For our research, we consider the dataset Parkinson’s Progression Markers Initiative (PPMI), collected by the
Stevens Neuroimagining and Informatics Institute of the University of Southern California (USC). For our tests,
we first consider an example of fMRI from a human control brain, and an example of fMRI from a brain of a
human patient affected by PD. Then, we consider the fMRI at two different time-points, the baseline and the first
follow-up, of the same patient. In fact, in this article, we are interested in the definition of a technique to relate
the conceptual model of [20] with real data. With our choice of patients, we wanted to highlight the heterogeneity
inside the same disease, looking for those common elements that could better characterize the disease at a more
high-abstract way.

3.1 Case study A

In this first case study, we build a shape of the K -operator that transforms a healthy-brain network into a diseased
one. We start with data from two patients, a healthy control and a diseased one. The healthy control is male, 73
years old; the PD patient is also male, 67 years old. Of both patients is considered the fMRI with the rsfMRI_RL
technique.

The PD patient has been observed at the fourth visit (V04), that is, after 12 months from the baseline. We
propose a visualization of the brain network via three projections: coronal, sagittal, and axial, respectively (Fig. 1
left, where the color indicates the intensity of the connectivity). To this aim, we adapt the initial part of a code
from [30] (see the paragraph on Codes availability). Each pixel of the matrices (as heatmaps) represents a pair of
regions of interest (ROI), whose list is given in Table 1.

Thus, we visualize both the control network and the diseased network, the corresponding connectivity matrices,
and the data-derived K -operator in matrix form, with the additional visualization of its action on the brain regions.
The K -operator can be decomposed into the tensor product of its submatrices acting on specific brain areas, as
shown in Eq. (5). In particular, if we consider ROIs codified through medical atlases, the corresponding submatrix

6https://www.mayoclinic.org/diseases-conditions/parkinsons-disease/.
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Fig. 1 Connectivity matrix and brain network of a healthy control and of a Parkinson’s Disease patient, and the K -operator
ideally transforming the healthy network into the diseased one. Here, the K -operator is computed from the connectivity
matrices of a healthy control (male, 73 years old) and a PD patient (male, 67 years old). Colors indicate the intensity of
the connectivity. The ROIs of K are re-ordered. We include the K -operator computed with the element-wise product, and
with the row-by-colum (classic) product

Fig. 2 Decomposition of the K -operator into the tensor product of its submatrices acting on each region of interest in
the special case when the submatrices have dimension 1. The tensor product of each one-pixel submatrix and the identity
matrices gives matrices having all elements zero except that pixel. Their sum gives back the K -operator. The decomposition
follows the original order of the ROIs

is a number. A grouping of ROIs would lead to larger submatrices. The K -operator can be written as the sum of
the matrices acting on each region ⊗ identity matrices for the other regions (Fig. 2).

We propose a decomposition of the K -operator where we group the ROIs (MSDL atlas) according to their
belonging to the same lobe (Table 2), obtaining the representation of Fig. 3. In this case, it becomes fundamental
to adjust the size of the identity matrices, given that the blocks of the K -operator have different size according to
the number of ROIs that populate the lobes.

Let us now comment the information obtained on the K -operator action by observing Fig. 3.
In the frontal lobe, there is a high effect of decreased connectivity between the Dorsal Anterior Cingulate

Cortex and the Ventral Anterior Cingulate Cortex. A decreased connectivity is also found in the literature [33].
An increase of connectivity is shown between the right frontal pole and the frontal default mode network. A
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Fig. 3 The K -operator of Fig. 1 can be rewritten as a block-diagonal matrix, where the blocks are the submatrices
corresponding to groupings of ROIs, re-ordered according to the lobes. This representation hides the interaction terms
between different lobes, and, thus, it is related to the approach in [20]. Considering the lobes as groupings, we obtain the
K -operator above. The following decomposition highlights the action of the K -operator onto frontal lobe, parietal lobe,
temporal lobe, occipital lobe, and subcortical part of the human brain

Fig. 4 The operator K−1, corresponding to the “healing” for the considered case (left: element-wise product; right: row-
by-column product)

decreased connectivity is found between the Broca’s area and the right frontal pole. Studies on PD found that
Broca’s area is involved in speech issues related with the disease [31]. In the parietal lobe, there is a decrease in
connectivity between the right anterior intraparietal sulcus and the left parietal cortex. Interestingly, there is a a
discussion on the role of right superior parietal cortex and the intraparietal sulcus concerning letters recognition
and their damage for PD patients [34]. We also notice an increase in connectivity between the basal ganglia and
the right anterior insula, inside subcortical structures. The alteration of basal ganglia in Parkinson’s Disease
is responsible of motor dysfunction [35]. Disruptions involve the right pars opercularis, the left and right insula,
the right temporo-parietal junction, and the left anterior intraparietal sulcus. Thus, our results seem to confirm
recent studies on PD that, starting from the comparison between fMRI of healthy control and PD patients, found
variations inside insula, frontal, cingulate and temporal cortex, and temporal lobes [21].
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In addition, we also compute K−1 operator for the considered example (Fig. 4 left). The inverse of the K -
operator should correspond to the therapy , the Operation operator as described in [20]: a mixture of surgery,
therapeutical intervention, and possible new techniques to ideally lead to a complete healing of the patient. It is
particularly evident the need for an action to strengthen the connectivity of the lateral occipital cortex (L LOC),
to decrease the connectivity of the right hemisphere counterpart of the intraparietal sulcus (R IPS), for a mixed
action on the right auditory side (R Aud), and on the dorsal (or posterior) part of the posterior cingulate cortex
(Dors PCC). Computing K−1 with the classic technique, we notice in particular a vertical correspondence with
left dorsolateral prefrontal cortex, cingulate cortex, basal ganglia, intraparietal sulcus, right default mode network,
and lateral occipital cortex.

We also computed the K -operator with respect to the AAL3 atlas; see Fig. 5. For case study B, we had to
exclude substantia nigra for lack of the corresponding voxels according to the NIfTI file. For the sake of readability
of the image, we imposed an empiric threshold on the values of K to be shown, leaving only the points of major
impact of the disease. We notice a correspondence between the vertical agglomerates of row-by-column K with
the clusters of element-wise K . We choose to focus on the limbic system and substantia nigra. The latest has a
major role in PD, given the defect of dopamine release, and dopaminergic circuit, also involving striatus and ventral
tegmental area (VTA). From Fig. 5 (down), we notice a variation of connectivity between the substantia nigra pars
compacta, Thal_Pul_R (pulvinar right), and nucleus accumbens. Considering substantia nigra pars compacta, we
notice a connectivity variation with Thalamus_VA_R (ventral anterior), VL_L (ventral lateral left), VL_R (ventral
lateral right), cerebellum 10-R, and between nucleus accumbens and cerebellum crus 1R, and between VTA and
cerebellum crus 2 L. In particular, we find an increase of connectivity between VTA and nucleus accumbens
left. Cerebellar connectivity alterations with substantial nigra and VTA are confirmed in the literature, and in
particular, an increase of connectivity between VTA and right cerebellum [36, 37].

Fig. 5 K -operator
computed for case A
according to the AAL3
atlas, with more details
including parts of the
cerebellum and limbic
system. Top: K according
to the row-by-column
product (threshold 1.8);
down: K according to the
element-wise product
(threshold: 0.04)
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Fig. 6 K -operator leading the evolution of PD in the same patient, a female PD patient, from the baseline to the first
follow-up

3.2 Case study B

In this second case study, we compute a shape of the K -operator constituting the time evolution of a PD–brain
network.

We examined the fMRI of the same patient from the baseline (time t0) to the first follow-up (time t1), 1 year
later. Our second test provides insights on the time-dependency of the K -operator. The connectome at both time-
points is shown in Fig. 6. Being interested in testing the method, as well as finding disease-related key features, we
focused on two case studies that were different between them. In particular, the time evolution was investigated
in a relatively young female patient to exclude age effects, and diversifying the research with respect to case study
A (with connectomes of a healthy male and a diseased male). The selected patient is female, of 56 years old at the
baseline. We considered also in this case the rsfMRI_RL. We compute here the K operator at time t1, that is

K(t1)Gp(t0) = Gp(t1). (8)

Observing the lobe-decomposition of the K -operator (Fig. 7), we notice an agreement with former literature.
The color scale is increased for the single lobes to make the changes more evident, and decreased on the overall
K -operator to make the overall organization more evident.

In the frontal lobe, a visible damage can be observed through the right and left dorsolateral prefrontal cortex,
the motor area, and the Broca’s area, whose effects of decreased connectivity have already been discussed also for
the first case study. The dorsolateral prefrontal cortex is considered as one of the target regions where treatment,
in form of transcranial magnetic stimulation, can reveal some positive effects, improving patients’ performance in
cognitive tasks [38]. Connectivity variation on the motor cortex have already been commented also for the first case
study. We notice an increased connectivity between the dorsolateral prefrontal cortex and the frontopolar cortex
(frontal pole). The alteration (even though a disruption) of their connection is considered as one of the markers of
PD progression in the literature [39]. Concerning the temporal lobe, there is a decrease of connectivity between
the left and the right superior temporal sulcus. From the overall K , an increase of connectivity between these two
regions and the right anterior insula is visible.

In the parietal lobe, there are variations of connectivity throughout the lobe, for instance between the left
intraparietal sulcus and the left parietal cortex, the right intraparietal sulcus, and the right anterior intraparietal
sulcus. Connectivity changes also interest the temporo-parietal junction. A damage consisting in the progressive
thickening of the gray matter in the temporo-parietal junction is found in a longitudinal study on PD [40]; thus, we
can infer a connection between our functional-derived information and a time-dependent anatomic variation. An
effect of PD on action and emotion perception is related with decreased activity concerning the left parietal cortex,
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Fig. 7 Decomposition of the K -operator into submatrices acting on groupings of ROIs, neglecting the interaction terms,
and re-ordering the ROIs. Here, the K -operator shows the disease evolution from the baseline to the first follow-up in a
female patient of 56 years old. The blocks have been highlighted manually. The scale adopted to visualize the K -operator,
enhancing details, ranges from −1 to 1

Fig. 8 The operator K−1, corresponding to the “healing” for the second case study (left: with the element-wise product;
right: with the column-by-matrix product). The scale is modified to make details more evident

in particular the intraparietal sulcus [41]. Disruptions in the occipital lobe mostly interest the decreased connec-
tivity between the striate cortex, the occipital posterior, the visual network, and the right occipital complex. Visual
dysfunctions are also found in PD patients, including allucinations [42]. Visual illusions are also associated with
disruptions of the aforementioned intraparietal sulcus [43]. Also, for this second case study, we notice alterations
of the connectivity between basal ganglia and right anterior insula (however concerning decreased connectivity),
left insula, cerebellum, and cingulate. Alterations of the last one find a reference in the literature [44]. Finally, we
notice an increase of connectivity between cerebellum and left insula. The healing operator, that is, K−1, for this
second case study is presented in Fig. 8.

Considering the AAL3 atlas, we can find some information on ventral tegmental area and nucleus accumbens.
In particular, observing Fig. 9, and comparing K computed with both hybrid and classic techniques, we notice
a correspondence of vertical agglomerates and clusters, envisaging the presence of patterns for the single patient
and for the considered disease. Most highlighted areas include frontal, motor, angular, cuneus, putamen, temporal,
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Fig. 9 K -operator
computed for case B
according to the AAL3
atlas. Top: K according to
the row-by-column product
(threshold 12); down: K
according to the
element-wise product
(threshold: 0.5)

cerebellum, thalamus pulvinar, and nucleus accumbens. Focusing on the nucleus accumbens, we notice an increase
of connectivity with middle frontal gyrus, cuneus, cerebellum crus 1 left, and VTA. The increase of connectivity
between nucleus accumbens and ventral tegmental area is in line with the literature [36]. Interestingly, the authors
of [37] do not confirm this information in their latest study, probably because of an effect of the age, altering
the VTA connectivity. We also find a decrease of connectivity with the superior frontal gyrus (medial), anterior
cingulate cortex, pallidum right, cerebellum 8R, and thalamus (mediodorsal medial). A dissociation between the
midbrain connectivity (and in particular ventral tegmental area) and the right cerebellum is also found by [37]
for PD patients, while expecting a lower connectivity between substantia nigra and right cerebellum. The authors
of [37] mention a possible subsequent compensatory effect of VTA, strengthening the network, overcoming the
damaged substantia nigra, and taking over cognitive functions as well. Thus, a reorganization of the network can
act as a compensatory mechanism against cognitive decline [45, 46], happening at least in the first phases of the
disease. Information on connectivity can be considered as a marker of risk of PD [47]. In fact, it has been shown
that alterations of functional connectivity [47], and in particular of the connectivity between nucleus accumbens
and anterior cingulate cortex, can precede apathy in PD patients [48]. The nucleus accumbens is connected with
will and motivation; effects of PD on it, are related with psychiatric symptoms. The ventral tegmental area does
also play a role for reward and motivation, being part of the dopaminergic network, thanks to its strong connection
with the nucleus accumbens [36].

4 Contrasting example

Before discussing our results, we present here a preliminary comparison of the shapes that the K -operator can
assume while modeling its action for different diseases. We present a graphic comparison of K computed between
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Fig. 10 Top: from left to
right, K -operator (hybrid
technique) between healthy
controls and PD patient
(left, threshold 0.04),
schizophrenic patient
(center, 0.03), and AD
patient (right, 0.1).
Bottom: same comparison,
with K computed with the
classic technique, with the
respective thresholds equal
to 1.8, 5, and 1.7

a healthy control and a PD patient (our case A), between a healthy control and an Alzheimer–Perusini’s (AD)
patient, and between an healthy control and a schizophrenic patient. The information on PD patient is derived
from the ADNI 2 dataset,7 and information on the schizophrenic patient from the COBRE dataset.8 In Fig. 10,
in addition to the already-discussed case A, we have K showing the brain-network changes occurring:

– between the same healthy control of PPMI (male, 74), and the patient A00015518 (male, 60), classified as
schizophrenia_strict in the COBRE dataset, and

– between a 78-year-old CN female (ID: 018_S_4399), and a 73-year-old AD female (ID: 018_S_4696).

For our analysis, we consider the AAL3 atlas, for a higher focus on the limbic system. Observing the shape of
the K -operator computed with both classic and hybrid techniques, and filtered to show only the highest values,
we notice some characteristic features. For instance, in the passage from a healthy brain to a schizophrenic one,
the role of amigdala is emphasized. However, further comparison with a higher number of patients is needed to
draw more precise conclusions. For healthy→PD, K (hybrid computation) signals alterations mostly concerning
temporal, fusiform, lingual, occipital, parietal, and supra marginal areas. For healthy→schizophrenic, disruption
is mostly involving prefrontal area, thalamus, hippocampus, and Heschl gyrus, some of the areas more interested
by the disease. Concerning healthy→AD, we notice a major effect of the disease on fusiform, thalamus, nucleus
accumbens, ventral tegmental area, hippocampus, parahippocampal gyrus, orbitofrontal cortex, and occipital area.
We also notice from K (classic computation) vertical clusters for healthy→AD mostly on parahippocampal gyrus
and hippocampus, vermis, cerebellum 6R, parietal inferior, occipital, and frontal superior. Connectivity variations
concerning substantia nigra, to a different extent, are present for all the three considered diseases, given the effects
of dopamine imbalance.

7https://adni.loni.usc.edu/.
8https://www.nitrc.org/projects/schizconnect/.

123

https://adni.loni.usc.edu/
https://www.nitrc.org/projects/schizconnect/


Eur. Phys. J. Spec. Top.

5 Discussion

The two case studies, A (Sect. 3.1) and B (Sect. 3.2), cannot be straightforwardly compared, given differences in
age and sex of the involved patients. For instance, we notice that the effects of the disease over time in a younger
female patient seem to be higher than the effects found through the comparison between brain networks of a
male healthy control and a male diseased patient both of older age. This difference is probably due to the aging
effects on the brain, independently of the presence of the disease, and on functional differences due to sex. Further
comparisons can lead to a more defined shape of the K -operator over time.

From the comparison of cases A and B, however, we can also spot some similarities, which may point toward more
shared features of PD on functional brain networks. For case A, observing the frontal lobe, we notice a variation
of connectivity between the right default mode network and the right frontopolar cortex. The last one is also
involved for case B. Both A and B show some disruption, even though at different degree, of the connectivity
between the right pars opercularis and the cingulate cortex. Studies on EEG for PD patients in resting state
focus on the effects on right pars opercularis and the left insula [49], in correlation with anxiety symptoms of the
disease. Furthermore, cases A and B reveal a variation of connectivity between the dorsal anterior cingulate
cortex and the ventral anterior cingulate cortex. Concerning the anterior cingulate cortex, the dorsal part is
more related to cognition, while the ventral part is more connected to emotion. Thus, the effects of connectivity
variations in these regions for PD patients provoke neuropsychiatric symptoms and motor symptoms [50]. In the
temporal lobe, both cases A and B show a connectivity diminution between the left superior temporal sulcus
and the left auditory cortex, and an increase in connectivity between the right superior temporal sulcus and the
left default mode network. Observing the action of the K -operator on the parietal lobe, we notice for both cases
a decrease of connectivity between the left temporo-parietal junction and the left anterior intraparietal sulcus. In
the occipital lobe, both A and B present a connectivity diminution between striate and right lateral occipital
complex, and, concerning subcortical and other areas of the brain, an increase of connectivity between basal
ganglia and right insula. Hyperactivity of basal ganglia, also in clusters including cerebellum, insula, thalamus,
has been proved for Parkinson’s disease patients [51].

6 Conclusions and future research

We started our research with the conceptual model of neurological disease as the effect of a mathematical operator,
the K -operator, acting on the brain network and altering the weights of their connections. We considered data from
a medical dataset, PPMI, on Parkinson’s Disease, and we experimentally computed a numerical-matrix expression
for the K -operator.

Summarizing, we presented two case studies. We started from the fMRI of a healthy control and the fMRI of a
patient affected by PD, considering the second as the result of the action of K on the healthy brain. We also wrote
the K -operator as the tensor product of the submatrices acting on each brain lobe. Observing the values of the
submatrices, we confirmed some of the findings of [21], a statistical study on the same dataset, where the brain
networks of a number of healthy control patients were compared against PD patients. Concerning the PD patient,
in our study we considered his fMRI at a certain follow-up in the dataset. Conceptually, the patient has been
“photographied” at a certain time point of the disease progression. For this reason, we developed a second case
study, for a first approach on the time evolution of the K -operator. We focused on the same PD patient, a female
of 56 years old, analyzing her fMRI at the baseline and at the first follow-up, 1 year later. We retrieved results
from the literature, in particular concerning dorsolateral prefrontal cortex [38], dorsolateral prefrontal cortex and
frontopolar cortex [39], intraparietal sulcus [41], Broca’s area, temporo-parietal junction [40], cingulate cortex [44],
and intraparietal sulcus [43]. Both our case studies presented a variation of connectivity between the dorsal anterior
cingulate cortex and the ventral anterior cingulate cortex, and in the occipital lobe, and a hyperactivity of basal
ganglia and insula. Also, these joint results confirm findings from the medical literature. In particular, EEG-based
studies on PD patients in resting state show neuropsychiatric effects, mainly anxiety in relation to connectivity
variation on right pars opercularis and left insula [49], and cognitive alterations in relation with the dorsal cingulate
cortex [50]. Also, the pathways between ganglia and thalamus are disrupted in Parkinson’s Disease patients [51].
Considering in more detail the limbic system and its interaction with other areas of the brain, we confirmed the
increase of connectivity between the cerebellum and ventral tegmental area for PD patients, as reported in the
literature [36]. We also run a preliminary comparison between the K -operator representing the transition from a
healthy brain to a diseased brain for different diseases, highlighting the differences, especially concerning ventral
tegmental area, substantia nigra, and nucleus accumbens. As a general remark, a detailed analysis of dopaminergic
circuits, and the brain network re-wiring in the case of dopaminergic pathways dysfunctions, can shed light on
common mechanisms underlying different diseases such as PD, schizophrenia, and mood disorders (e.g., depression)
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[37], where dopamine plays a major role. In this framework, a detailed analysis with the K -operator can point
toward similarities and differences across diseases.

We also computed the K−1, as a “healing” operator reversing the effects of K . Such an approach may provide
hints about the brain-network regions toward which the therapy, being it surgical or pharmacological, could
be specifically addressed. Of course, this typology of information should be tested on a great number of brain
networks, to take into account gender-based, age-based, and individual differences of brain-network fine-graining
organization. This information should also be added to the existing physicians’ knowledge. Further research may
be focused on the refinement of a time-dependent K -operator, which may be computed on an average of multiple
patients at each time point. An ambitious perspective would also be the function approximation of the elements
of K (t). The computation of the K -operator between multiple pairs of consecutive connectivity matrices for the
same PD patient can help confirm the information on the dynamic progression of the disease, but also, from a
mathematical point of view, would allow us to approximate a time-depending version of the K -operator. Such
a study, developed for different patients with the same disease, may allow one to improve the approximation of
the K -operator for the considered disease. From the analysis of K−1, we can focus on the ROIs that have to be
targeted by therapies. Comparing the effects of existing drugs, it is possible to hypothesize a new drug combination
to extend the healing effect to those areas not addressed yet, but that should, according to K . This idea is to be
developed in further research, more physiology-based, also including perturbative variation on the action of an
existing drug, approximating a better healing.

While in this research, we focused on the first matrices of the fMRI series, in a following study, we can consider
the transition from the first to the last one for each time point of the patient, and also include in our analysis the
non-diagonal blocks of the K -operator. Future research developments can also include the analysis of experimental
data on disease induction on in vitro cells and simulation of their development through in silico techniques. Such
an approach may help us infer the characteristics of damage induction at a higher level of the network, avoiding
invasive experimental techniques. A search for commonalities in K -operators for different diseases may foster a
more general, theoretical approach (as wished in [19]). Ultimately, paradigms and methods of theoretical physics
can help understand nature, including that part of nature that we use to understand physics: our own minds.
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