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Abstract Climate risk assessments must account for a wide range of possible futures, so scientists often use
simulations made by numerous global climate models to explore potential changes in regional climates and their
impacts. Some of the latest‐generation models have high effective climate sensitivities (EffCS). It has been
argued these “hot” models are unrealistic and should therefore be excluded from analyses of climate change
impacts. Whether this would improve regional impact assessments, or make them worse, is unclear. Here we
show there is no universal relationship between EffCS and projected changes in a number of important climatic
drivers of regional impacts. Analyzing heavy rainfall events, meteorological drought, and fire weather in
different regions, we find little or no significant correlation with EffCS for most regions and climatic drivers.
Even when a correlation is found, internal variability and processes unrelated to EffCS have similar effects on
projected changes in the climatic drivers as EffCS. Model selection based solely on EffCS appears to be
unjustified and may neglect realistic impacts, leading to an underestimation of climate risks.

Plain Language Summary Climate impact researchers often must decide which of the many
available global climate models to use for their analyses. It has been suggested models with very high climate
sensitivities should be excluded from impact analyses, because their global mean temperature projections are
unrealistic. However, we show that projected future changes in climatic drivers of floods, droughts, and
wildfires, across many regions of the world, are not correlated with model climate sensitivity. Regional impacts
depend on numerous processes and phenomena many of which are unrelated to climate sensitivity. Excluding
models solely on the basis of their climate sensitivity is thus not justified, and can lead to important impacts
being ignored by policymakers, with serious consequences for society.

1. Introduction
The use of climate projections for impact assessment often exploits numerous climate and Earth system models
(ESMs). The Coupled Model Intercomparison Project (Veronika Eyring et al., 2016) (CMIP) provides under-
pinning simulations to the Intergovernmental Panel on Climate Change (IPCC) analysis of climate projections
(Lee et al., 2021), changes in climate impact drivers (Ranasinghe et al., 2021), and assessment of impacts and
vulnerability (IPCC, 2022). Using a diverse set of ESMs, the CMIP ensemble aims to span the uncertainty range
of future projections, including potential high impact, low‐likelihood events (Wood et al., 2023). It is important
that CMIP models represent plausible future evolutions of the climate system and thus perform well against
observations (Eyring et al., 2019). A range of studies have shown improvement over generations of models,
including from CMIP5 to CMIP6 (Eyring et al., 2021). For instance, compared to CMIP5, biases in temperature,
water vapor, and precipitation are significantly reduced in CMIP6 (Bock et al., 2020); and the simulation of
wildfires is improved with respect to both total fire activity as well as spatial and temporal patterns (Li
et al., 2024). We therefore expect CMIP6 to represent an advance for use in impact studies.

One widely discussed change from CMIP5 to CMIP6 is an increased range in model effective climate sensitivity
(effective climate sensitivities (EffCS)) — the near‐equilibrium increase in global mean surface temperature due
to a doubling in atmospheric CO2 — with several CMIP6 models having EffCS above the assessed likely and very
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likely ranges in the IPCC's sixth assessment report (AR6) (Forster et al., 2021). A recent study (Hausfather
et al., 2022) suggested such “hot models” warm faster than is realistic, leading to concern that impact studies
which draw from the full CMIP6 ensemble could overestimate the impacts of climate change. The IPCC tackled
this by constraining projections of global mean temperature based on multiple lines of evidence (Lee et al., 2021).
This approach is not yet available for other quantities. Hausfather et al. (2022) recommend filtering out models
with EffCS outside the assessed likely range when performing impact assessment over a particular period (as
opposed to global warming levels, which may not always be appropriate). While this may be reasonable for global
mean surface air temperature, it is less clear what it means for assessments of regional change, and for quantities
other than surface temperature. Projections of regional climate change, especially related to hydrological pro-
cesses, often have a greater range than projections of global mean temperature. While this range is partly related to
spread in the magnitude of the warming response to CO2, changes in circulation patterns and heterogeneous
forcings, such as aerosols (Samset et al., 2016) and land‐use change (Boysen et al., 2020), also contribute.
Furthermore, some studies find high‐EffCS models actually perform better than other models when evaluated for
certain regions and applications (Palmer et al., 2023; Ribes et al., 2021, 2022).

We explore CMIP6‐projected changes in regional climate impact drivers of fire, drought, and monsoon flooding,
across a number of important regions, to assess the extent to which projected changes in these drivers are
correlated with model EffCS. A regional climate impact driver (Ruane et al., 2022) is a measure of climate known
to drive an important societal/environmental impact in the same region; the driver (e.g., extreme monsoon
rainfall) can be directly diagnosed from an ESM, while the impact (e.g., flooding) typically cannot. Calculating
changes at the end of the century relative to the recent past, following three different Shared Socio–economic
Pathway scenarios (Riahi et al., 2017) (see Materials and methods), we find only very few examples of a sig-
nificant correlation between projected changes in an impact driver and model EffCS. Even for the limited number
of cases where a correlation with EffCS is identified, the spread of future change in a given impact driver across a
single model ensemble (i.e., solely due to different model initial conditions), or between models with similar
EffCS values, is comparable in magnitude to the spread across the full ensemble. This means that internal
variability, as well as processes unrelated to EffCS, play at least as large a role as EffCS in determining future
changes in our three climate impact drivers. Given the absence of any clear correlation between projected changes
in our regional impact drivers and EffCS, we argue it is not justified to filter out ESMs for impact studies solely
based on EffCS.

2. Materials and Methods
2.1. Climate Impact Drivers

We use drivers representing three different climate impacts: floods, drought and fire. All three impacts are clearly
associated with climate change and expected to worsen under future conditions (Caretta et al., 2022; Parmesan
et al., 2022). For each climate impact driver, we identify a measure whose magnitude is expected to be a strong
driver of the magnitude of the associated impact, and analyze the change in this measure between a historical
period (1995–2014) and a future period (2081–2100). Our main analysis (presented in the main Results section of
the paper) is based on SSP3‐7.0, a high warming scenario from Tier 1 of the Scenario Model Intercomparison
Project (ScenarioMIP) (O’Neill et al., 2016) that can be expected to inform many climate impact studies in the
near future; it is part of the current simulation round of the Inter‐Sectoral Impact Model Intercomparison Project
(ISIMIP, www.isimip.org). To test the robustness of our findings to different assumptions regarding CO2

emissions, aerosol forcing, and land use change, we repeat our analysis for SSP2‐4.5 and SSP5‐8.5. These results
are shown in detail in Supporting Information S1 and confirm the findings based on the SSP3‐7.0 ensemble.

2.1.1. Floods

As a proxy for pluvial flood risk associated with heavy monsoon rainfall, we calculate the area averaged
cumulative 5‐day rainfall amounts for a given region for the historical and future periods. The difference
between the total rainfall amounts of the top 20 such rain events from each period is then calculated as our
flood metric.
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2.1.2. Drought

Drought is defined as an anomalous condition with respect to local and seasonal characteristics, rather than an
absolute threshold. We use the Standardized Precipitation Evapotranspiration Index (SPEI) (Beguería et al., 2014;
Vicente‐Serrano et al., 2010), with the Hargreaves approximation for potential evapotranspiration (Hargreaves &
Samani, 1985) (PE) to investigate future change in extreme drought occurrence. SPEI is a widely used metric to
characterize atmospheric drought and integrates not only precipitation but also evapotranspiration, meaning that it
accounts for the role of temperature in determining the amount of water the atmosphere holds, which is important
for our study given that we look at the role of climate sensitivity expressed by temperature.

We follow (Martin, 2018) in the calculation of the number of drought events per year based on SPEI. For each
ensemble member we calculate the difference in average number of drought events for each region between the
future and historical periods. We use v1.8 of the SPEI.R library (Beguería et al., 2023) to calculate SPEI.
Selecting an accumulation period of 6 months, we use a threshold of months with SPEI <− 2 to identify extreme
droughts. SPEI is calculated by fitting a log‐logistic distribution to the difference between precipitation and PE for
monthly data. The average SPEI value is 0, which corresponds to a cumulative probability of 50% for this dif-
ference, whilst the standard deviation is 1. Following a normal distribution, a threshold of <− 2 (two standard
deviations lower than the average) will find extreme droughts in 2.3% of all months.

2.1.3. Fire

Wildfires are key drivers of ecosystem dynamics and carbon cycling (Lasslop et al., 2019) and, while overall
global burned area is decreasing (Andela et al., 2017), climate change driven increases in frequency and intensity
of wildfires have strong effects on human health (Johnston et al., 2021; Pullabhotla et al., 2023) and economic
value of land (Wang & Lewis, 2024). We calculate the number of fire‐risk days for each period, using the Ca-
nadian Fire Weather Index (FWI). The FWI integrates effects of local weather conditions and fuel moisture on fire
behavior. It can be calculated from climatic variables alone (temperature, precipitation, relative humidity and
wind speed) and, because the different sub‐indices can be regionally calibrated, has been widely used across
different forest types in the world. Established by (van Wagner, 1987) the FWI has seen some development
(Lawson & Armitage, 2008) and is widely used to gauge fire risk. FWI is calculated via a multistep process taking
many factors of forest fire risk into account and culminating in a daily index with arbitrary units. These numbers
are then typically classified according to chosen thresholds into several classes of risk, such as low, medium, and
high; resulting in a risk class for every day at a given point (Lawson & Armitage, 2008). For our purposes of
evaluating the impact of climate change as predicted by different climate models, we employ a simplified scheme
with a single threshold. We classify all days at a given point with a FWI above that threshold as high fire risk days
and count the number of such days in a 20 year period for a given region. By comparing this number for the future
period with the historical period, we obtain a measure for the change in fire risk induced by climate‐driven
changes in weather.

2.2. Choice of Regions

The three climate impact drivers are each evaluated over a set of three (four for flood) regions where the cor-
responding impact is known to be large and to affect large numbers of people. Regions are further selected to
cover different continents and both the tropics and temperate mid‐latitudes. For flood, we look at four different
regions: Core Indian Monsoon (CIM), Central West African Monsoon (CWAF), North and South Central
American Monsoons (NCA and SCA). The CIM region was defined as the area between 18–27 N and 74–88 E;
the CWAF to be 7.5–15 N and 10 W–10 E as defined in (Wu et al., 2020) and the NCA and SCA regions as
defined in the AR6 WGI Reference Set of Land and Ocean Regions (Iturbide et al., 2020; Speizer et al., 2022).
The regions selected for drought are also defined in the AR6 WGI, which are the Mediterranean (MED),
considered a climate change hotspot, and East Asia (EAS) and Central North America (CNA), which are agri-
culturally important regions affected by severe droughts in recent years. For fire, we choose three different re-
gions that are known to suffer from forest fires and that are at high risk from a future increase in this impact,
namely Western North America (WNA) as given by the IPCC AR6 regions, the Amazon basin (AMZ), here
defined as the combination of two AR6 regions (South‐American‐Monsoon and Northern South‐America), as
well as a region of Australia (AUS), again defined by the combination of two AR6 regions (Eastern Australia and
Southern Australia).
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2.3. Statistical Methods

The measure used to define Earth System Model (ESM) sensitivity in our analysis is the Effective Climate
Sensitivity (EffCS) and not the equilibrium climate sensitivity. The true equilibrium climate sensitivity is rarely
assessed for ESMs as this requires very long model integrations. EffCS is diagnosed from 150‐year abrupt‐
4xCO2 experiments following the method of Gregory e al. (2004). It is generally somewhat smaller than the
true equilibrium climate sensitivity diagnosed from 2xCO2 experiments run to equilibrium, mainly due to
increasingly positive, temperature‐dependent feedbacks activating on very long timescales (Bloch‐Johnson
et al., 2021). Note that in some studies, “ECS” is used to denote effective climate sensitivity. Here we use EffCS
throughout. We use the same EffCS values as (Hausfather et al., 2022), calculated as described by (Zelinka
et al., 2020) and consistent with what is reported in Chapter 7 of the Sixth IPCC Assessment Report (Forster
et al., 2021).

We establish the relationship between our choice of metric for changes in different regional impacts, such as
potential short term flooding events, fire occurrence days or drought indices, and the EffCS of ESMs by
calculating a linear fit between the two quantities. In this, we assume that a linear relationship exists between the
two quantities. We then determine the statistical significance of this relationship using null hypothesis testing
based on the Student's t‐test for significance at the 95% confidence interval. When considering metrics of
ensemble projections from a single model, we use the minimum and maximum ensemble member metric values
from models with ensemble sizes larger than one or just the single ensemble member available and calculate lines
for all possible combinations of these metric values across models (see Figures 2–4). We then calculate the
number of statistically significant lines using null hypothesis testing as before and report results. Hence, we
sample the full range of possible metric values.

3. Data
Our study uses a selection of 18 different ESMs from the Sixth CMIP6. Our selection criteria were based on
maximizing diversity across models and EffCS values of models. For each model that had the requisite variables
for calculating a given metric, we used the first 10 or all available ensemble members (if fewer than 10 were
available) to represent the spread due to internal variability. All data was downloaded from Earth System Grid
Federation (ESGF) nodes (https://esgf.llnl.gov/) and preprocessed using the open source software ESMValTool
(https://esmvaltool.org/) (Righi et al., 2020). The list of models and ensemble members used in our work is
provided in Table 1. The r1 member is always included; this is also the ensemble member that is used in many
impact studies relying on single‐member multi‐model ensembles (Frieler et al., 2017). Not all models had the
necessary variables for every climate impact driver, therefore the set of models differs slightly between
Figures 2–4.

4. Results
To demonstrate the effect of filtering out “hot models”, we separate the CMIP6 ensemble into two sets: one with
EffCS above 4.5K (referred to as high‐EffCS hereafter), and another with EffCS below 4.5K (low‐med‐EffCS
hereafter) and plot frequency distributions of the simulated change in each climate impact driver (referred to as
metric hereafter), for the two model subsets, for each region of study. We choose this notation because this set
includes both low and medium EffCS values, according to the IPCC AR6 assessed range placing the best estimate
of EffCS at 3K. Applying such a distinction does not separate the frequency distributions of projected change in
our three metrics, with the two distributions largely overlapping for the majority of metrics and regions (Figure 1).
In a few cases, the high‐EffCS set includes values not projected by any of the low‐med‐EffCS models, for
instance, large increases in high fire weather days in the Amazon region (AMZ), or in total rainfall in Central West
Africa (CWAF). Even for these metrics and regions, the overlap between the two distributions is large, suggesting
the projected change is not solely decided by EffCS. Moreover, high‐EffCS models do not always project larger
changes in our metrics; in Western North America (WNA), the high‐EffCS set includes more simulations pro-
jecting a smaller increase in fire weather than the low‐med‐EffCS set. Similar conclusions emerge when just
looking at the five CMIP6 models selected as core models for the Inter‐Sectoral Impact Model Intercomparison
project, ISIMIP (Lange & Büchner, 2021) (see stars in Figure 1).

Should the hottest models be filtered out to remove the most extreme projected changes? This would need a solid
justification because filtering out particular models can result in vast ranges of potential impacts being excluded.
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For instance, in the five‐member ISIMIP ensemble, removing the hottest model would ignore the upper half of the
low‐med CMIP6 spread of the flood metric in the core Indian monsoon (CIM) region, as well as the fire metric in
AMZ (cf. red stars in Figure 1). A necessary, though not sufficient, condition for constraining a model ensemble
based on EffCS would be a statistically significant, ideally explainable, correlation between the metric (the
projected change in the regional climate impact driver) and EffCS. In the following, we investigate whether such a
correlation exists for our three metrics. We further assess how the spread in our three metrics, expressed as a
function of EffCS, compares with the spread of the same metric for individual model ensembles, independent of
EffCS, and across the full CMIP6 ensemble.

Table 2 shows, for each metric, the difference between the median value for the high‐EffCS set and the median
value for the low‐med‐EffCS set. It further shows the median and largest spread in each metric across only low‐
med‐EffCS models. In all cases, except AMZ fire, the largest spread in the metric across low‐med‐EffCS models
is bigger than the difference in the median of the metric between high‐ and low‐med‐EffCS sets. This is largely
still the case when only the median spread in low‐med‐EffCS models is considered, although for CIM and
CWAF, differences between the high‐ and low‐med‐EffCS ensembles are comparable to the spread in the low‐
med‐EffCS set. This suggests that internal variability across an individual model or group of models clustered by
EffCS, has a larger (or equivalent) influence on the metric than does EffCS. EffCS therefore appears to not be the
sole cause of changes in our three selected metrics and thus also in the resultant impacts. We investigate these
potential additional controls in the following subsections.

4.1. Flood

We consider projected changes in the 20 most intense, area‐average, 5‐day precipitation accumulations; a metric
indicative of the change in short‐term flood risk. Most ensemble members show an increase in this metric over
both CIM and CWAF regions, and either little change or a slight reduction over North (NCA) and South Central
America (SCA) (Figure 2). This agrees with previous studies (Wang et al., 2020), with an increase in the South
Asian and West African monsoons attributed to the northern hemisphere land mass warming more rapidly than
adjacent oceans, and more rapidly than the southern hemisphere due to the different land mass distributions

Table 1
List of Sixth Coupled Model Intercomparison Project Models and Ensemble Members Used for the Three Climate Impact Drivers Under SSP3‐7.0, Along With Their
Effective Climate Sensitivities Values as Given in (Hausfather et al., 2022)

Model EffCS Ensemble members for monsoon impacts Ensemble members for drought impacts Ensemble members for fire impacts

ACCESS‐ESM1‐5 3.88 r1–10 (10 variants) r1, r2, r4–10 (9 variants) r1, r2, r4–10 (9 variants)

AWI‐CM‐1‐1MR 3.16 r1

CESM2‐WACCM 4.68 r1

CMCC‐ESM2 3.58 r1 r1 r1

CNRM‐ESM2‐1 4.79 r1 r1

CanESM5 5.64 r1–10 (10 variants) r1–10 (10 variants) r1–10 (10 variants)

EC‐Earth3‐AerChem 3.87 r1, r3 (2 variants) r1, r3 (2 variants)

FGOALS‐g3 2.87 r1, r3–5 (4 variants) r1, r3–5 (4 variants) r1, r3–5 (4 variants)

GFDL‐ESM4 2.65 r1 r1 r1

INM‐CM5‐0 1.92 r1–5 (5 variants) r1–5 (5 variants) r1–5 (5 variants)

IPSL‐CM6A‐LR 4.70 r(1–9) (9 variants) r(1–9) (9 variants) r(1–9) (9 variants)

KACE‐1‐0‐G 4.75 r1–3 (3 variants) r1, r2 (2 variants) r1–3 (3 variants)

MIROC‐ES2L 2.66 r1–10 (10 variants) r1–10 (10 variants) r1–10 (10 variants)

MPI‐ESM1‐2‐HR 2.98 r(1–10) (10 variants) r(1–10) (10 variants) r(1–10) (10 variants)

MRI‐ESM2‐0 3.13 r1–5 (5 variants) r1–5 (5 variants) r1–5 (5 variants)

NorESM2‐MM 2.49 r1 r1

TaiESM1 4.36 r1 r1

UKESM1‐0‐LL 5.36 r(1–4, 8–10) (7 variants) r(1–4, 8–10) (7 variants) r(1–4, 8–10) (7 variants)
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(Byrne & O’Gorman, 2018). In addition, atmospheric water vapor increases strongly with warming temperatures
(Held & Soden, 2006), increasing the availability of water in northern hemisphere monsoon circulations.

To test the relationship between our monsoon metric and EffCS across the full CMIP6 ensemble, we calculate a
linear fit between the two quantities for every possible combination of one member from each model. For CIM,
the relationship is positive and statistically significant at the 95% level for the majority (∼78%) of combinations,
while CWAF shows only∼4% of combinations with a significant correlation (Table 3). Both NCA and SCA show
no significant correlation. In other words, the monsoon metric is correlated with EffCS in CIM, weakly correlated
in CWAF, and not correlated at all in the other two regions. Even for CIM, some high‐EffCS members project a
smaller metric change than some of the low‐med‐EffCS members (Figure 2). Moreover, the spread across
members of an individual model (with the same EffCS value) is comparable to the median difference between
low‐med‐ and high‐EffCS models, even for the CIM region (Figure 2 and Table 2). These findings hold across
different SSPs (Figures S2 and S5 and Tables S1–S4 in Supporting Information S1). In particular, even fewer
significant correlations for CIM (∼58%) are found in SSP5‐8.5 than in SSP3‐7.0, while in SSP2‐4.5 no more than
∼30% significant correlations are found for any region.

Figure 1. Frequency distribution of projected change in our three regional climate drivers (metrics). Top left: number of model simulations with a given effective climate
sensitivities (EffCS) value below (blue) or above (red) 4.5K. Other panels show the distribution of projected change in the metrics for—drought, left; fire, bottom;
monsoon flood, right – for each of the two model subsets (vertical axis shows normalized occurrence, i.e. the area under each curve is equal to 1). The value of 4.5K is
between the upper bounds of the AR6 assessed likely (4K) and very likely (5K) ranges for EffCS, and provides for a sufficient number of simulations in each of the
subsets. Stars indicate the metric values for five model simulations that are used as input to many impact models (Lange & Büchner, 2021), and are color–coded by
EffCS (cf. legend of Figure 2). The map shows the regions over which the impact drivers are analyzed. See Materials and methods section for more detail on how the
projected change in each driver was calculated, model simulations, and statistical methods.
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A study (Jin et al., 2020) evaluating the quality of simulated present‐day monsoons (1979–2014) in 24 CMIP6
models found the 10 best performing models to have EffCS values between 2.5 and 5.5K; the five best models are
UKESM1‐0‐LL (EffCS 5.36K), CESM2 (5.16K), CESM2‐WACCM (4.68K), MIROC6 (2.6K) and NorESM2‐
MM (2.49K). The spread in EffCS across the five models suggests little relationship between the quality of
present‐day simulated monsoon and model EffCS. The similarity of performance for CESM2 and NorESM2‐
MM is particularly interesting as these models share largely the same atmosphere and land models, but have
very different ocean models. Their EffCS values, derived from the CMIP6 Abrupt‐4xCO2 experiment, are
radically different because of differences in ocean heat uptake in the Southern Ocean (Gjermundsen et al., 2021).
A comparably accurate simulation of the present‐day monsoon in these two models suggests their common at-
mosphere and land models are likely most important, while processes responsible for the radically different EffCS
in the two models are of secondary importance with respect to representing the present‐day monsoon.

Our results suggest the relationship between the monsoon metric and EffCS is weakened by other drivers.
Aerosols are the primary non‐EffCS controls on monsoon precipitation (Wilcox et al., 2020). Increased aerosol
loading, particularly of non‐absorbing aerosols such as sulphate, increases atmospheric solar reflectivity close
to the emission source (Ramanathan et al., 2001), cooling the land surface more than the adjacent ocean,
weakening the land‐ocean thermal gradient that drives the monsoon. Cooling, from increased solar reflection,
also decreases atmospheric water vapor. Both changes act to decrease monsoon precipitation. In addition,
absorbing aerosols such as black carbon, increase solar heating of the lower atmosphere, predominantly over
land. This will increase atmospheric stability and reduce convective activity (Ramanathan et al., 2001), This
heating will also tend to strengthen the monsoon surface pressure gradient, potentially enhancing circulation
strength (Fang et al., 2023), highlighting the complex and competing role aerosols play in forcing the South
Asian monsoon. Modeling studies (Ayantika et al., 2021; Bollasina et al., 2011) suggest past observed
(decreasing) trends in mean South Asian monsoon precipitation arise from the impact of anthropogenic aerosol
emissions (decreasing precipitation) outweighing the impact of CO2‐forced warming (increasing precipitation).
One study (Zhao et al., 2019) shows that variations in regional aerosols are up to 4 times more efficient in

Table 2
Difference in Median Impact Metric Values Between High‐EffCS and Low‐Med‐EffCS Models, Compared With the Spread Across Members for Individual
Low‐Med‐EffCS Models

Region
Difference between high‐ and low‐med‐EffCS

medians (absolute value)
Average spread in low‐med‐EffCS

models (absolute value)
Largest spread in low‐med‐EffCS

models (absolute value)

Flood

Core West African
Monsoon (CWAF)

126.01 mm 161.10 mm 219.68 mm

Core Indian
Monsoon (CIM)

340.63 mm 229.21 mm 550.95 mm

North Central
America (NCA)

25.00 mm 132.45 mm 275.63 mm

South Central
America (SCA)

297.12 mm 230.05 mm 805.25 mm

Drought

East Asia (EAS) 0.044692 0.079403 0.118613

Central North
America (CNA)

0.0056226 0.071512 0.127481

Mediterranean (MED) 0.0074561 0.075394 0.118434

Fire

Amazon (AMZ) 485 days 134 days 247 days

Australia (AUS) 101 days 256 days 485 days

Western North
America (WNA)

122 days 145 days 230 days
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Figure 2.
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impacting South Asian monsoon rainfall than equivalent variations in atmospheric CO2, with extreme pre-
cipitation intensities particularly impacted by aerosols.

Aerosols also play an important role in the West African monsoon (Hirasawa et al., 2020, 2022) During the
1950s–1970s, increasing North American (NA) aerosols induced a drying effect on Sahel rainfall. This effect was
mediated by slower sea surface temperature (SST) responses to regional aerosol emission trends across the globe,
with cooling of the tropical west Pacific driving a remote wetting signal over the Sahel and cooling of the tropical
Atlantic inducing a drying signal. The combination of these three drivers saw Sahel rainfall decline over the
1950s–1970s. During the 1970s–2000s increasing African aerosol emissions drove a direct drying over the Sahel.
This local effect was balanced by a wetting signal associated with Atlantic warming (due to decreasing NA
aerosols), amplified by a continued remote wetting signal from the west Pacific. The net result was an increase in
precipitation over this period.

For both the South Asian and West African monsoon, trends in regional aerosols have significant and competing
impacts on precipitation. These impacts are not considered in the calculation of EffCS, which results solely from
an increase in atmospheric CO2 within a constant pre‐industrial aerosol state. Any relationship between model
EffCS and projected changes in monsoon precipitation, derived from more realistic future emission scenarios that
include time‐varying CO2, aerosol, and aerosol precursor emissions, will therefore be significantly weakened
because of the confounding influence of aerosols.

Monsoons are also influenced by remote atmospheric teleconnections. The South Asian monsoon is influenced by
the El Niño‐Southern Oscillation (ENSO) SST variability (Webster et al., 1998). The West African monsoon is
influenced by multi‐decadal Atlantic SST variability (Biasutti, 2013) and by atmospheric subsidence induced
over the Sahara as a remote response to the South Asian monsoon (Rodwell & Hoskins, 1996). In addition, the
NCA and SCA monsoons are heavily impacted by ENSO variability and by anomalous subsidence forced by the
West African and South Asian monsoons (He et al., 2020). These impacts are sufficiently large that neither the
NCA nor SCA monsoon metric show any relationship with EffCS across the CMIP6 ensemble.

In addition to regional aerosols and atmospheric teleconnections, monsoon precipitation also depends on local
convection and atmospheric water availability, which themselves are sensitive to model representation of local
land‐vegetation‐atmosphere interactions (Chakraborty et al., 2023), the Himalayan snowpack (for CIM), and
meso‐convective‐scale processes generally not resolved in ESMs (Fitzpatrick et al., 2020). The extent to which
ESMs capture these mechanisms has little relation with EffCS. For reliable estimates of future monsoon rainfall,
in addition to simulating the impact of increasing CO2 (and other greenhouse gases), models also need to
accurately simulate the impact of regional aerosol emissions, remote drivers of monsoon variability and small‐
scale, local processes and process interactions. All of these demands significantly weaken any link between
model EffCS and projected changes in monsoon precipitation when realistic emission and land‐use scenarios are
used.

4.2. Drought

Figure 3 shows the projected change in the number of drought events per year as a function of EffCS. In almost all
projections, the number of droughts increases in the future, consistent with earlier studies using CMIP5
(Dai, 2013) and CMIP6 data (Balting et al., 2021; Cook et al., 2020), However, for all regions we fail to find a
significant correlation between the drought change metric and EffCS for the first variant, and for all but one region
for the highest ensemble member of the low‐EffCS models (Table 3). More precisely, only ∼4% of all possible
ensemble member combinations exhibit a statistically significant correlation across all models. Furthermore, the
difference in the median metric between high‐ and low‐med‐EffCS models is always considerably smaller than

Figure 2. Change in area‐averaged, total cumulative 5‐day rainfall of the 20 most intense rainfall events per 20‐year period, versus model effective climate sensitivities
(EffCS) value. Change is calculated as 2081–2100 (under SSP3‐7.0) minus 1995–2014. (a) Core West African monsoon region (CWAF), (b) Core Indian monsoon
region (CIM), (c) North Central America (NCA), (d) South Central America (SCA). For each model, individual ensemble members are denoted by stars, and the
ensemble mean value by a circle. Models with a single ensemble member include error bars indicating the largest (in black) and smallest (in gray, may be hidden behind
model symbol) standard deviations as derived from all models with multiple ensemble members. The yellow line shows the best fit for the first (in some cases, only)
ensemble member for each model. The gray area is formed from numerous individual lines each showing the best fit to a possible combination of one ensemble member
from each model. The model EffCS value is mapped to color and the five model simulations that are used as input to many impact models (Lange & Büchner, 2021) are
highlighted in bold (see legend).
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the mean of the spread across only low‐med‐EffCS members (Table 2). These results are confirmed by the
analysis of different SSPs; the largest fraction of significant correlations, ∼20%, is found under SSP5‐8.5 for East
Asia (Figures S3 and S6 and Tables S1–S4 in Supporting Information S1).

This is likely because changes in drought are forced by several climate drivers, with only one of these drivers
being the magnitude of global warming. Local land warming, linked but not directly proportional to global mean
warming, leads to increased evapotranspiration and vegetation water use, increasing drought risk, while higher
atmospheric CO2 counters this through increased plant water‐use efficiency (Dai et al., 2018), making drought
sensitive to local land‐vegetation‐atmosphere feedbacks. Many drought‐prone regions today are located at the
poleward edge of the subtropics, under the descending branch of the Hadley Cell, which induces persistent an-
ticyclonic descending air, with dry conditions and high solar radiation. Future changes in regional drought will be
highly sensitive to any systematic changes in the Hadley Cell. While observations indicate the Hadley cell has
expanded poleward over recent decades (Staten et al., 2020) and models suggest a continued expansion in the
future (Grise & Davis, 2020), zonal asymmetries in ocean warming, as well as differential responses between the
ocean and land, lead to regional variations in projected Hadley cell expansion (Ma et al., 2018) and its impact on
drought.

Table 3
Significance of Correlation (at 95% Significance Level) Between Change in Impact Drivers and Effective Climate Sensitivities

Region

Number of low‐med‐EffCS members
exceeding high‐EffCS median (models

contributing those members)

Percentage of statistically
significant correlations in low‐

med‐EffCS models

Percentage of
significant

correlations in all
models

r1 ensemble
member

correlation

Highest ensemble member
of low‐med‐EffCS models

correlation

Flood

Core West
African
Monsoon
(CWAF)

13 (5) 0 3.90 Not significant Not significant

Core Indian
Monsoon
(CIM)

2 (2) 4.69 77.78 Significant Not Significant

North Central
America
(NCA)

18 (9) 0 0.15 Not significant Not significant

South Central
America
(SCA)

39 (11) 0 0 Not significant Not significant

Drought

East
Asia (EAS)

9 (4) 21.09 3.857 Not significant Significant

Central North
America
(CNA)

21 (7) 0 4.248 Not significant Not significant

Mediterranean
(MED)

20 (8) 0 4.346 Not significant Not significant

Fire

Amazon
(AMZ)

4 (2) 0 100 Significant Not Significant

Australia
(AUS)

12 (2) 6.25 32.71 Significant Not significant

Western North
America
(WNA)

38 (8) 0 0 Not significant Not significant
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In addition, drought prone regions in the mid‐latitudes are influenced by
transient weather systems that propagate along the jet stream. Periodically,
these systems are “blocked” by long‐lived meanders in the jet (Woollings
et al., 2018). Such blocking events are important drivers of drought (Liu
et al., 2020; Perry, 1976). The frequency and duration of such blocking de-
pends on the strength of the jet, with a weaker jet allowing more and longer
meanders (blocking events (Nakamura & Huang, 2018). The jet strength is
controlled by the tropical to pole tropospheric temperature gradient, with a
stronger gradient resulting in a stronger and more zonal jet and fewer blocking
events. The zonal mean response to increasing GHGs is warming of the
tropical mid to upper troposphere and warming constrained close to the
surface in polar regions, particularly in the Northern Hemisphere. As a result,
it is thought that the jet stream will both strengthen and move poleward in the
future (Shaw, 2019). Such a response would decrease the number and in-
tensity of blocking meanders and change their preferred location: poleward
and, over the Eurasian sector, eastward (Kennedy et al., 2016), with important
consequences for future regional drought. While models have improved in
simulating blocking, significant biases remain, even in the latest CMIP6
models (Davini & D’Andrea, 2020). Nevertheless, models show a consistent
reduction in future blocking events, with a poleward and eastward shift of the
main centers of action, potentially countering the impact of Hadley Cell
poleward expansion. In addition to these dynamical/circulation controls on
regional drought, trends in regional aerosol emissions can also impact at-
mospheric circulation and drought (Chiang et al., 2021).

The competing impacts of increasing CO2, trends in aerosol emissions,
changes in regional circulation features, such as atmospheric blocking and
regional land‐atmosphere interactions, all mean accurately simulating past
and future drought is a challenge. CMIP6 models reproduce historical drought
with reasonable accuracy (Balting et al., 2021; Yu et al., 2023), although no
single model stands out as best (Papalexiou et al., 2021). Additionally, while
thermodynamic factors are responsible for average changes in the hydro-
logical cycle, variability across models is governed by the dynamical (cir-
culation) response to warming (Elbaum et al., 2022). Based on our results,
filtering models solely on EffCS is not justified for drought assessment.

4.3. Fire

Figure 4 shows that for almost all ensemble members, fire weather days are
projected to increase in the future compared to today as a function of EffCS.
However, in Figure 1, fire metric frequency distributions for high‐ and low‐
med‐EffCS models show a high degree of overlap, particularly for AUS. Over
AMZ there is a clear tendency for high‐EffCS models to simulate a larger
increase in the number of fire weather days, while over WNA the opposite is
the case.

Considering the full CMIP6 ensemble, a statistically significant relationship between EffCS and our fire metric
can be seen for AMZ (Figures 4a and Table 3). However, this relationship is heavily influenced by the very lowest
and highest EffCS models that simulate the smallest and largest change in fire metric respectively, while models
between these two extremes have a more nuanced and flatter relationship. For AUS, the relationship with EffCS is
only partly significant (Table 2), and the largest increase in fire weather is simulated by the ACCESS model,
which has an intermediate EffCS value (Figure 4b). We also find that the spread within and across the high‐EffCS
models is within the range of the low‐med‐EffCS set (Figures 1 and 4b), and therefore excluding them brings no
clear benefit while reducing the sample size, or biasing the subsample, for impact studies. Similarly, the dif-
ference in behavior between high‐ and low‐med‐EffCS median values is smaller than the average spread across
low‐med‐EffCS models in AUS (Table 2). For WNA, there is no significant correlation with EffCS (Figure 4c and

Figure 3. As Figure 2 but for change in the number of extreme drought events
per year. (a) East Asia (EAS), (b) Central North America (CNA),
(c) Mediterranean (MED).
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Table 3). Here, models with an EffCS around 3K project the largest increase,
and the model with the highest EffCS (CanESM) projects the smallest
change. Results from SSP2‐4.5 and SSP5‐8.5 confirm those from SSP3‐7.0
(Figures S4 and S7 in Supporting Information S1): A statistically significant
relationship between EffCS and our fire metric is found for AMZ and
partially for AUS, but not for WNA (Tables S2 and S4 in Supporting In-
formation S1); and the difference between the median values of high‐ and
low‐med‐EffCS sets is smaller than the average spread across low‐med‐
EffCS models except for AMZ (Tables S1 and S3 in Supporting Informa-
tion S1). As for SSP3‐7.0, the relationship in AMZ is strongly influenced by
the very highest EffCS model.

Wildfires pose a significant threat to communities and ecosystems. Climate
influences fire through several mechanisms, such as fuel load, dryness of fuel
from water deficit, heat, and spreading by winds. These factors make fire
potentially sensitive to climate change, where higher temperatures or longer
dry spells (Jain et al., 2021) can contribute to increased fire activity. Increased
warming leads to higher evapotranspiration, which dries out fuels including
vegetation, soils and litter, and fires are often linked with periods of drought.
A strong relationship might be expected between projected changes in fire
and EffCS, given that temperature is a key driver of fire weather. Yet our
results for three fire‐prone regions suggest EffCS is not the leading deter-
minant of future change in fire. The results show a stronger relationship be-
tween EffCS and our fire metric in AMZ, where historic changes in fire
regimes have been attributed to anthropogenic activity (Aragão et al., 2014;
Silveira et al., 2022). Yet we find no relationship in WNA, despite already
observed increases in present‐day fire weather which have been attributed to
climate change (Abatzoglou & Williams, 2016; Zhuang et al., 2021). In
Australia, there has been some observed increase in fire weather (Jones
et al., 2022) and fires may be becoming larger and more intense (Abram
et al., 2021), although whether this is anthropogenically forced is less clear
due to natural variability from the Indian Ocean Dipole and ENSO (Hope
et al., 2018; Lewis et al., 2019). These results indicate that changes in regional
fire weather are generally not directly related to EffCS. In reality, multiple
interacting factors influence fire occurrence, not limited to temperature, but
also fuel availability, dryness, natural fire ignition (e.g., by lightning), and
ignition and suppression by humans (Forkel et al., 2017, 2019). Large scale
modes of variability such as ENSO also influence fire weather from year‐to‐
year, and warming of the Tropical North Atlantic Ocean has been associated
with increased drought and fires in Amazonia (Marengo et al., 2018). As with
floods and drought, an approach that is more nuanced than only focusing on
EffCS is required before models can be excluded.

5. Discussion and Conclusions
For 10 regions and three climate impact drivers of extreme monsoon rainfall, drought, and fire we find no uni-
versal correlation between projected changes in these drivers and EffCS. For some regions and drivers, a cor-
relation does exist (e.g., AMZ fire or CIM monsoon rainfall), while for most there is no clear relationship. Where
a correlation is identified, it is not straightforward to attribute future changes in our regional metric solely to
EffCS, with many other factors also contributing. For all three drivers, even the sign of the correlation depends on
the region. Furthermore, for all drought regions, the majority of monsoon flood, and fire regions, the spread in
projected changes across the full CMIP6 ensemble, or often across a single model ensemble, is larger than, or of
similar magnitude to, the difference in the median value of the metric between high‐ and low‐med‐EffCS models.
Considering the variety of regions and drivers, this should not be a surprise. All three drivers are influenced by
multiple factors. For a few regions and drivers EffCS may be the most important (though not the only) controlling

Figure 4. As Figure 2 but for change in the number of fire risk days per
20 year period. (a) Amazon (AMZ), (b) Australia (AUS), (c) Western North
America (WNA).
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factor, but for most drivers and regions it is just one of many controls. While our results are contingent on the
choice of region and driver studied, all regions are known hotspots for their respective impact. WNA, AMZ and
AUS have experienced extreme recent wildfire years; CNA, MED and EAS strong droughts; and the South Asian
monsoon major flood events in 2022 and 2023 (“Centre for Research on the Epidemiology of Disasters” 2021).
Moreover, here we study the climatic drivers of regional impacts. Impact models themselves (as well as real‐
world societal impacts) are more complex, involving numerous interactions between climatic drivers, bio-
geophysical and human responses and subsequent societal impact. We therefore believe the results from impact
models will be even less clearly related to EffCS than the climate impact drivers studied here.

Societal impacts of climate change often occur at small spatial scales. As scales decrease, uncertainty in the forced
climate change signal increases, partly because natural climate variability also increases. It is therefore even more
important that information sampling this uncertainty is not thrown awaywithout good reason. Thresholdsmay exist
that trigger societal impacts, considering a broad range of possible regional climate changes is therefore important
for understanding the true risk to society. Rejecting ESM projections for regional impact assessment, based solely
on EffCS, should therefore be avoided in the absence of additional motivation, especially because it risks ignoring
large parts of the range of potential impacts (Cannon, 2024). It is important to check if there is a statistically
significant relationship between the criterion used for model selection (e.g., EffCS) and the climate drivers of the
impacts in question. If this is not the case, or only partially true, then other factors should be considered before
rejecting, or weighting models (Lorenz et al., 2018; Massoud et al., 2023), as both strategies may end up under-
estimating uncertainty (Knutti, 2010). For three impact drivers, over several regions, other factors such as aerosol
forcing, atmospheric circulation and teleconnection changes, as well as local atmosphere‐land‐vegetation in-
teractions are often as important as EffCS for determining the projected change in a regional impact driver. For each
driver, it is important to identify the main processes inducing significant change in the driver and carefully evaluate
each model's representation of these processes. It is not sufficient to assume such regional responses simply scale
withmodel EffCS, as they generally do not.As an example not covered in our study, variability in future streamflow
ensemble projections has been found to variously increase, decrease, or remain unchanged when high‐EffCS
models are removed, depending on the region studied (Asenjan et al., 2023).

Our results emphasize the important role of internal (or natural) variability plays in changes in regional climate
drivers and their resultant impacts. For most drivers we studied, the spread across a single model ensemble is often
larger than the difference in the driver between high‐EffCS and low‐med‐EffCS models. This is also true when a
smaller subset of models is considered, for example, those selected for the ISIMIP3 activity (Figure S1 in Sup-
porting Information S1). Sampling a sufficient range of plausible impacts, including possible extreme outcomes,
requires impactmodel experiments sample the full range of plausible changes in regional climate drivers.When it is
not practical to run an entire CMIP ensemble (including all model members) through an impact model, analysis of
relevant climate impact drivers across the full multi‐model ensemble can help inform the selection of ESMs, and
model members, that both spans the range of plausible future change, and emphasizes the most likely outcomes.

Selecting ESMs for regional impact studies based solely on EffCS has little (often zero) justification. Without
more careful consideration, any such reduced ensemble used for impact studies will be unnecessarily biased. In
the worst case, this will lead to the exclusion of models with plausible estimates of regional impact drivers, and the
impacts themselves, with negative consequences for the robustness of scientific support for decision‐making.

Data Availability Statement
All data is available through the Earth System Grid Federation (ESGF) (Cinquini et al., 2014) and was down-
loaded and preprocessed using the open source software ESMValCore (Andela et al., 2023a) and ESMValTool
(Andela et al., 2023b). Software developed to calculate the three impact metrics, perform statistical analyses and
preprocessed data used to create the figures in this paper is in the process of being archived with the open source
zenodo repository as (Swaminathan et al., 2024).
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