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Thermodynamically inconsistent extreme
precipitation sensitivities across continents
driven by cloud-radiative effects

Sarosh Alam Ghausi 1,2,3 , Erwin Zehe 3, Subimal Ghosh4,5, Yinglin Tian6 &
Axel Kleidon 1

Extreme precipitation events are projected to intensify with global warming,
threatening ecosystems and amplifying flood risks. However, observation-
based estimates of extreme precipitation-temperature (EP-T) sensitivities
show systematic spatio-temporal variability, with predominantly negative
sensitivities across warmer regions. Here, we attribute this variability to con-
founding cloud radiative effects, which cool surfaces during rainfall, introdu-
cing covariation between rainfall and temperature beyond temperature’s
effect on atmospheric moisture-holding capacity. We remove this effect using
a thermodynamically constrained surface-energybalance, andfindpositive EP-
T sensitivities across continents, consistent with theoretical arguments.
Median EP-T sensitivities across observations shift from −4.9%/°C to 6.1%/°C in
the tropics and −0.5%/°C to 2.8%/°C in mid-latitudes. Regional variability in
estimated sensitivities is reduced by more than 40% in tropics and about 30%
in mid and high latitudes. Our findings imply that projected intensification of
extreme rainfall with temperature is consistent with observations across
continents, after confounding radiative effect of clouds is accounted for.

Extreme precipitation events can lead to catastrophic floods and are
expected to intensify with global warming following the increase in
atmospheric moisture at the rate of 7%/K (Clausius-clapeyron (CC)
rate)1,2. While the climate models have been largely able to simulate
suchan increase3–6, observational evidence to validate these changes is
challenged by diverging trends and the inhomogeneity of rainfall
records7. Alternatively, studies test this response in observations by
estimating extreme precipitation sensitivities with respect to local
near-surface air temperatures, forming an equivalent relationship to
the Clausius-Clapeyron equation8–11. These so-called “extreme
precipitation-temperature (EP-T) scaling rates” show significant
deviations from the CC rate of 7%/K with systematic zonal variations.

EP-T scaling shows a monotonic increasing relationship at high lati-
tudes, “hook” like structures in mid-latitudes, and a monotonic
decreasing EP-T relationship in the tropics12–16. Consequently, EP-T
sensitivities remain largely negative over most of the tropical regions
in contrast to positive changes projected by climate models and
observed trends7,17–19.

A number of factors have been argued to cause deviations in the
EP-T scaling, including shifts in atmospheric dynamics3, atmospheric
stability20, change in rainfall types from stratiform to convective21,
rainfall event duration22,23, cooling effect of rain24–26, availability of
moisture27 and saturation deficits at high temperatures28. Alternative
scaling variables, like atmospheric and upper tropospheric air
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temperatures29,30, and moisture indicators such as dew point tem-
perature and integratedwater vapor31–33, have been proposed but offer
onlymarginal enhancements in scaling. Using dew point temperatures
showed improvements34, but it underestimates rainfall-depth
information35, fails to fully address negative scaling and peak struc-
tures in tropical regions16,36,37, and provides limited insights on rainfall
sensitivity to increasing temperatures26,38. As a result, there remain
large uncertainties in using present-day scaling to project changes in
future precipitation extremes.

Here, we show that a large part of this uncertainty in EP-T scaling
can be explained by the confounding radiative effect of precipitating
clouds on surface temperature. Clouds associated with rainfall events
significantly alter the local surface energy budget as they reflect
shortwave radiation to space while they absorb and re-emit longwave
radiation back to the surface. Consequently, they cause changes in
surface temperatures mostly resulting in a net cooling across warmer
regions and periods. This cooling makes observed temperatures cov-
ary with precipitation and thereby affects the causal nature of
precipitation-temperature scaling relationships. As a result, scaling
rates not only show how precipitation changes with temperature but
also reflect how the synoptic conditions associated with the rainfall
event affect temperature. The primary objective of this study is to
quantify to what extent the covariation between clouds and tem-
peratures affects the regional EP-T sensitivities.

We evaluate this effect by combining observationally derived
daily gridded rainfall and temperature datasets from the Climate Pre-
diction Center (CPC) and Global Precipitation Climatology Project
(GPCP – 1.3)39 with satellite-based daily observations of cloud-area
fraction and radiative fluxes from the NASA-CERES dataset40,41. The
consistency of results was also checked with ERA-5 reanalysis data. To
remove the effect of cloudsonsurface temperatures,weused a surface
energy balance model where the vertical turbulent exchange is expli-
citly constrained by the thermodynamic limit of maximum power42,43.
By using this additional constraint together with the “all-sky” and
“clear-sky” radiative fluxes as forcings, we estimate changes in surface
temperatures associated with cloud radiative effects during rainfall

events. Subsequently, we use them to evaluate the impact of clouds on
rainfall-temperature scaling.

Results and discussion
Observed scaling of extreme precipitation with temperature
We start by estimating the extreme precipitation-temperature (EP-T)
scaling rates across the global land grids using the quantile regression
(QR) method9. It involves fitting a QR model between the logarithmic
precipitation and temperature values at the target quantile of
95%,99%, and 99.9%. The EP-T sensitivity (scaling rate) is then calcu-
lated by the exponential transformation of the slope coefficient (see
“Methods”). Figure 1A shows the map of estimated sensitivities from
the CPC observations for the 95th percentile13,36, along with their zonal
variations (Fig. 1B). Positive sensitivities were found at high latitudes,
while in the tropics, the sensitivities remained mostly negative. The
sensitivities were particularly negative in the tropical humid regions of
India, Nothern Australia, Central Africa, Western US, and Amazonia
(Fig.1A). These patterns were consistent across different rainfall
quantiles, including the 99th and 99.9th percentiles, and for the GPCP
and ERA-5 reanalysis data as well (Supplementary Figs. S1, S9, and S10).
Sensitivities estimated using ERA-5 data were generally more negative
than those derived from CPC and GPCP rainfall observations (Sup-
plementary Fig. S10).

To further look at distinct patterns in EP-T relationships, we use
LOWESS (locally weighted scatter plot smoothing regression) for the
95th percentile daily rainfall events (hereafter P95) and corresponding
near-surface air temperature at each grid cell12 and identified three
distinct scaling behaviors. This includes a monotonic decreasing (MD)
relationship, a hook-shaped (HS) relationship, and a monotonic
increasing (MI) relationship. The MD and HS characteristics were
predominant in the tropics andmid-latitudes, while theMI relationship
was mainly found over grids at high latitudes. Figure 1C–E illustrates
the EP-T scaling for all the grids (depicted by light orange lines) in the
tropics, mid-latitudes, and high-latitudes respectively. Most of the grid
cells in the tropics showed a monotonic decreasing relationship. In
mid-latitudes, most of the grid cells showed “peak structures” such

Fig. 1 | Scaling of extreme precipitation with temperature in observation.
A Global map of extreme precipitation (P95) – observed temperature (EP-T) sen-
sitivities estimated from quantile regression method, (B) zonal variation of esti-
mated EP-T sensitivities. Scaling curves betweendaily extreme rainfall intensity and

temperature for (C) tropics, (D) mid-latitudes, and (E) high-latitudes. The light
orange lines show the scaling curves for each grid while the dark orange line
indicates themean response of all the grid cells. The black dotted line indicates the
CC rate (7%/°C). Note the logarithmic y-axes in (C–E).
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that extreme precipitation increases with temperature up to a certain
threshold of around 20 °C, afterwhich the scalingbreaks down and the
EP-T relationship becomes negative. The high latitudes showed a
monotonic increasing relationship but the rate of increase remained
lower than CC rates. Note that the tropics were characterized as
regions from23S to 23N,mid-latitudes as regions from23N – 55N and
23S – 55S, and high-latitudes as regions beyond 55S and 55N.

The negative sensitivities in the warmer tropics, systematic zonal
variation in observed sensitivities and the three distinct characteristics
shown by EP-T scaling as depicted in Fig.1 are consistent with what has
already been reported by previous studies12,15,16,24,37.

Observed scaling of cloud radiative effects with temperatures
We next show that these distinct patterns in EP-T scaling can be
reproduced alone by how the radiative effect of clouds during rainfall
events affects temperatures. To illustrate this, we calculated the cloud
radiative effects (CRE), which we defined as the difference between
“clear-sky” and “all-sky” radiative fluxes. The positive values implies a
reduction in radiative heating at the surface by clouds, indicating
cooling, while the negative values indicate warming of the surface. We
estimated the CRE for both shortwave and downwelling longwave
radiation during the extreme rainfall (P95) events. The global dis-
tribution of shortwave and longwave CRE are shown in Supplementary
Fig. S2. When plotted as a function of rainfall (Supplementary Fig. S3),
we found that the shortwave CRE shows a statistically significant
increase as the rainfall intensity increases leading to a reduction of
more than 100W/m2 of energy from reaching the Earth’s surface and
thereby exerting a strong cooling effect. The strength of CRE was
proportional to the intensity of the rainfall event. The CRE of down-
welling longwave radiation had an opposite warming effect, but the
magnitude remain much lower in comparison to shortwave CRE. It
further remains largely insensitive to changes in rainfall (Supplemen-
tary Fig. S3). This insensitivity can be partly explained by the com-
pensating effects of emissivity and atmospheric heat storage in
shaping downwelling longwave radiation44. The net effect of clouds on
the surface is thendiagnosedby adding theCREofboth shortwave and
longwave radiation and is referred to as the net CRE. The global

distribution of the net CRE is shown in Fig. 2A. It shows a systematic
spatial and zonal variability across the globe such that the humid
tropical regions where the averaged extreme rainfall can exceed
40mm/day are associated with a very large CRE of more than 120W/
m2, whereas in the dry regions, the heavy rainfall is largely limited by
available moisture and show a reduced CRE of less than 40W/m2

(Supplementary Fig. S2). It also shows a systematic zonal variationwith
higher CRE in the tropics compared to higher latitudes (Fig. 2B).

We then generated the scaling curves for radiation-temperature
scaling (hereafter “CRE-T scaling”) curves equivalent to EP-T scaling
(Fig. 2C–E). We find that the tropical regions showed a monotonic
decreasing relationship for CRE-T scaling. Mid-latitudes showed a
“hook-structure” in CRE-T scaling aswell, while high latitudes showed a
monotonic increasing CRE-T scaling. These curves are similar to EP-T
scaling but have quite a different interpretation. The relationships of
CRE and temperature clearly reflect that temperatures covary with
extreme rainfall events and are lowered during the strongest events
primarily because of the reduction in radiative heating of the surface
due to clouds. As a result of this cooling, the strongest rainfall events
are shifted to lower temperature bins, causing the bin-shifting effect—
where the apparent sensitivity of precipitation to temperature gets
biased by the redistribution of extreme events into cooler bins. This
effect leads to an overestimation of precipitation sensitivity at cooler
temperatures and an underestimation at warmer temperatures,
skewing the perceived precipitation-temperature relationship24,26. This
effect is strongest in the tropics and at the higher temperature bins in
the mid-latitudes where the slope of CRE-T scaling is negative. This
shows that the three distinct EP-T scaling curves shown in Fig. 1C–E do
not only indicate how the rainfall events change with temperature but
also reflect the covariation induced by how the radiative conditions
associated with these events affect temperatures.

To quantify how much the changes in CRE affect surface tem-
peratures, we use a thermodynamically constrained surface energy
balance model, forced it with radiative fluxes for “all-sky” and “clear-
sky” conditions, and estimated “all-sky” and “clear-sky” temperatures
that include and excludes the radiative effects of clouds respectively
(see details in Ghausi et al. 26 & methods section)26. This model

Fig. 2 | Scaling of cloud-radiative effectswith temperatures. AGlobalmapof net
cloud radiative effect (CRE) defined as the difference between “clear-sky” and “all-
sky” radiative fluxes including both shortwave and longwave radiation, isolated on
the days when rainfall is greater than P95 (95th percentile). B zonal variation of

estimated CRE. Scaling curves between CRE and observed temperatures for (C)
tropics, (D) Mid-latitudes, and (E) High-latitudes. The gray lines show the scaling
curves for each grid cell while the black line indicates the mean response of all
grid cells.
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captures the observed day-to-day variation of land surface tempera-
ture derived fromNASA-CERES reasonably well with the R2 of 0.96 and
meanRMSE of 3.8K (Supplementary Fig. S4). The sensitivity of surface
temperatures to changes in cloud cover was also very well captured
with anR2 of 0.93 (Supplementary Fig. S5). The residual errors between
the model and observations were comparable and only slightly larger
than those between observations and ERA-5 reanalysis data (Supple-
mentary Figs. S4C, S5B). The cooling effect of clouds given by ΔTclouds

was then quantified as the difference between clear-sky and all-sky
temperatures. This temperature difference (ΔTclouds) varies as a func-
tion of precipitation (Supplementary Fig. S6) with the heaviest rainfall
associatedwith the strongest amount of cooling.However, at very high
rainfall levels, this effect tends to saturate, which is likely due to a
saturation in the cloud-area fraction and associated radiative effects.
The global variation of this cooling effect is shown in Supplementary
Fig. S7. We found that the humid tropical regions experience themost
significant cooling and the effect dampens as we move towards drier
regions and higher latitudes. The reduction in cooling at high latitudes
is because of an increasing compensating role of enhanced downward
longwave radiation compared to the reduction in absorbed solar
radiation, while over dry regions it is simply because of the lack of
clouds.

Extreme precipitation-temperature scaling corrected for cloud
radiative effects
We then evaluated the changes in the EP-T scaling rates and their
variations after the cloud effects on temperatures were removed. The
adjustment to temperatures was made by adding the estimated tem-
perature difference by clouds (ΔTclouds) to the observations of air
temperature during rainy days (see “Methods”). The global distribu-
tion of precipitation temperature scaling rates for the 95th percentile
rainfall events, estimated after adjusting for the cloud-cooling effects,
is shown in Fig. 3A. We found positive sensitivities over most of the
global land regions. The zonal variation showed positive values across
the latitudinal range (Fig. 3B). These results were consistent across
different rainfall quantiles, including the 99th and 99.9th percentiles,
and for the GPCP and ERA-5 reanalysis data as well (Supplementary

Figs. S8–S10). The breakdown in scaling at high temperatures also
disappeared in the scaling curves, and rainfall extremes showed a
monotonic increase closely aligning with the CC rate of 7%/°C
throughout the temperature range (Fig. 3C–E). The most significant
change in scalingwas found in the tropicswhere the radiative effects of
clouds are the strongest. Diametric change in sensitivities from nega-
tive to positive was found over the tropical humid regions of India,
SoutheastAsia, NothernAustralia, Central Africa, andAmazonia. These
positive sensitivities are consistent with the regional climate model
projections and observed trends over these regions24,45,46. Notably,
some grids in Eastern China showed positive EP-T sensitivities for both
observed and clear-sky scaling (Figs. 1A, 3A), despite experiencing a
strong cloud-radiative effect (Fig.2A). We believe that this effect is
likely related to the different regimes of how cloud-radiative effects
vary with increasing rainfall and the seasonality of monsoon-rainfall
and its effect on pre-monsoon temperatures (see Supplementary
Fig. S12 for more detail). Other studies have reported a similar spatial
pattern in observed scaling over Eastern China as well16,47. Different
scaling between the Himalaya Mountain regions and southeast Asia
can also be attributed to topographic changes that have been shown to
affect rainfall dynamics and scaling patterns48. The clear-sky scaling
also showed a variation with aridity such the scaling rates remain
lower/negative across the dry regions. This can be seen over the
regions of the Middle East Asia and Western United States that still
showed negative scaling (Fig. 3A and Supplementary Fig. S16),We note
that this pattern cannot be explained by the effect of clouds alone and
may likely relate to the moisture-availability limitations27. The mid-
latitudes exhibited weaker scaling at low temperatures but showed a
sharp increase at higher temperatures closely aligning with CC rates.
This increase in scaling between 10 °C to 20 °C is consistent with other
studies and has been argued to be a result of changing rainfall type
from stratiform rainfall at low temperatures to convective rainfall at
high temperatures21,49. The scaling over high latitudes remained posi-
tive and largely unchanged due to weak cloud radiative effects. Similar
results were obtained when the analysis was repeated with the GPCP
rainfall data (Supplementary Fig. S8). These findings suggest that the
argued intensification of extreme rainfall with temperatures is

Fig. 3 | Scaling of extreme precipitation with temperature after correcting for
cloud radiative effects. A Global map of extreme precipitation (P95) – tempera-
ture sensitivities (EP-T) without the effect of cloud cooling, (B) zonal variation of
estimated sensitivities. Scaling curves between daily extreme rainfall intensity and

temperature (cloud-adjusted) for (C) tropics, (D) Mid-latitudes, and (E) High-
latitudes. The light blue lines show the scaling curves for each grid cell, while the
solid dark blue line indicates the mean response of all the grid cells. The black
dotted line indicates the CC rate (7%/°C). Note the logarithmic y-axes in (C–E).
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consistent with observations across global land after the covariation
between clouds and temperatures is corrected.

Figure 4A then closely compares the observed andderived scaling
rates with and without the effect of clouds, respectively. Results show
that after removing the cloud-temperature covariation, the median
scaling rates in the tropics changed from – 5.1%/°C to 4.5%/°C in the
CPC data (Fig. 4A) and from – 4.7%/°C to 7.6%/°C in the GPCP data
(Fig. 4C). The change in mid-latitudes were from – 2%/°C to 2.4%/°C in
the CPC data (Fig. 4A) and 0.9%/°C to 3.1%/°C in GPCP data (Fig. 4C).
The variability in the estimates of scaling rates was also substantially
reduced. The interqauartilrange (IQR) of the estimated sensitivities
was reduced by about 40% in the tropics, while the total range was
reduced by more than 50%, where the cloud radiative effects are the
strongest (Fig. 4B). The IQRwas reduced to about 30% inmid and high
latitudes. Similar reductions were also observed using GPCP rainfall
data (Fig. 4D). The reduction in variability was statistically significant
for all three zones, as determined by an F-test (p < 0.0001), where p
represents the probability of obtaining the observed difference in
variances under the null hypothesis of equal variances. In addition, we
diagnosed the residuals between the observations and fitted quantile
regression. The residuals consistently showed lower values for esti-
mates where the cloud effects on temperatures were removed across
the latitudinal range, with the most significant reduction occurring in
the tropics (Fig. 4B) for bothCPCandGPCPdata. This then relates back
to our interpretation that the primary source of uncertainty in
observed EP-T response arises from the covariation of rainfall and
temperature through the confounding radiative effect of clouds.

There still exists regional variability and deviations from the CC
rate in the estimated “clear-sky” sensitivities over land. Studies attri-
bute these regional deviations to dynamic factors, particularly to
changes in vertical pressure velocities11,50. To assess the impact of
dynamics on regional variations in EP-T sensitivities, we analyzed
standardized anomalies of vertical pressure velocity (w) on extreme
rainfall days, using ERA-5 data at 650 hPa. The results reveal a positive
correlation such that stronger anomalies in vertical velocity lead to
positive deviations from the CC rate, particularly between 30N and
30S, wheredynamic effects have been shown to bemore pronounced11

(Supplementary Fig. S14). These changes in vertical velocities are
tightly coupled to updrafts within the clouds, where greater power

from condensation heating drives deeper convection and increased
rainfall. We further explored this by examining the difference between
cloud-base and cloud-top temperature as a proxy formoist convection
and found a clearer,monotonic increasing relationshipwith deviations
in EP-T sensitivities (Supplementary Fig. S14B, D). This highlights the
role of dynamics in regulating regional variability in EP-T sensitivities,
consistent with previous research11,50.

Most negative EP-T scaling also occurs over tropical oceans16,51. To
investigate the impact of cloud radiative cooling on these scaling
estimates, we extended our analysis to include oceans using rainfall-
temperature data from ERA-5 reanalysis and radiative fluxes from
NASA-CERES. Our energy-balance model was able to reproduce sea-
surface temperatures across oceans reasonably well (Supplementary
Fig. S12A, B). The scaling became positive across the tropical oceans
after the cloud effects were removed (Supplementary Fig. S12C, D).
These estimates were consistent with what has been reported using
dew-point temperatures as a scaling variable over oceans16. These
results confirm that the negative scaling in oceans can be explained in
parts by cloud-radiative effects as well. However, it is to be noted that
cooling over oceans may also result from factors like wind-induced
upwelling, turbulent mixing, and heat extraction by storms which
remain unaccounted for in our current approach.

We found that the number of grids exhibiting sensitivities greater
than the Clausius-Clapeyron rate (super-CC scaling) over land increa-
ses more than threefold, after removing the cloud radiative effects
from temperature (Supplementary Fig. S13). Most of this change
occurred in the tropics, with regional patterns being consistent across
observations (CPC) as well as ERA-5 reanalysis data (Supplementary
Fig. S13). The super CC scaling can not be explained by the thermo-
dynamic constraints on saturation vapor pressure alone and has been
attributed to the dynamic factors including enhanced moisture con-
vergence and increased moist updrafts within clouds8,52. These results
suggest that the presence of super-CC scaling in observed EP-T sen-
sitivities is largely underestimatedwhen cloud effects on temperatures
are not taken into account.

In the mid and high latitudes, the scaling rates were positive and
showed a monotonic increase with temperatures but remained less
than the CC rate across most grids. While the monotonic increase has
already been attributed to the predominance of thermodynamic

Fig. 4 | Comparison of extreme precipitation-temperature scaling rates with
and without cloud-cooling correction across regions and datasets. Extreme
precipitation-temperature (EP-T) scaling rates were estimated using observed
temperatures (red) and with temperatures corrected for the cloud-cooling effect

(blue) for tropics, mid-latitudes, and high-latitudes for (A) CPC data and (C) GPCP
data. B and D same as (A and C) but for the residuals between observations and
fitted quantile regression.
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factors shaping EP-T sensitivities over these regions, the negative
deviations from CC rate over these grids can be due to many other
factors that have been shown to cause discrepancies in observed EP-T
scaling and are not accounted for here. This primarily includes con-
sideration of rainfall-event duration22,23, changing rainfall types21, shifts
in atmospheric dynamics50, the role of topography48, and lack of
moisture availability27. While these factors also affect scaling, our
finding shows that the systematic zonal variationwith negative tropical
sensitivities and breakdown in scaling at high temperatures can be
largely explained by accounting for the cloud radiative effects alone. It
is crucial to clarify that the objective of this study is not to explain all
the variability in EP – T scaling but to quantify to what extent the
covariation of rainfall and temperature alone affects these estimates.
Our results revealed that after removing the cloud radiative effects, the
EP-T sensitivities yielded physically consistent estimates and showed a
significant reduction in their spatial variability.

The role of the cooling effect of rainfall in impacting the EP-T
scaling has also been argued before24,25,28,37. However, no study has
explicitly attributed this effect to the observed zonal variation in the
global scaling rates. Part of it is due to the complexities associatedwith
quantifying this cooling effect across the global scale, particularly over
regions where we lack rainfall-temperature data at high temporal
resolution. To correct this effect, atmospheric moisture measures like
dew-point temperature31 have been suggested as an alternative scaling
variable to dry bulb temperatures. Dew-point temperature showed
improved scaling, but they do not entirely account for confounding
synoptic changes within the atmosphere38. It was shown that while the
effect of clouds may not be directly visible in extreme precipitation -
dew point scaling, the breakdown occurs in how dew-point scales with
observed temperatures26,33,38. Time-lagged daily temperatures have
also been used tominimize the cooling effect24. While they show some
improvement in scaling, they do not entirely remove the negative
sensitivities. We show in Supplementary Fig. S15 that explicitly cor-
recting for cloud effects using radiation data, clearly outperforms
time-lagged temperature estimates of EP-T scaling. Other methodol-
ogies to correct for the cooling effect of rainfall on temperatures had
been largely statistical, relying on the very fine temporal resolution of
temperature and precipitation data25,37, which may not be available in
all the regions. While we agree that the use of fine-resolution data may
improve the scaling estimates53, it remains an emerging challenge,
particularly for future projections in data-scarce regions. On the con-
trary, our physics-based approach to remove the cloud cooling effect
relies only on globally available satellite observations of radiative
fluxes and provides an efficient tool to correct this effect across the
globe and provide physically consistent estimates of global and
regional EP-T sensitivities.

Our results imply that the “hook structures” andhigh-temperature
thresholds at which the scaling breakdown or negative scaling occurs
(also called “peak temperatures”), will not limit the intensification of
extreme rainfall in a future climate. This is consistentwith the reported
shift in peak temperatures towards warmer and wetter conditions
diagnosed using climate model projections51,54,55. However, the extent
to which the modeled shift in peak temperatures relates to cloud-
radiative effects in climate model projections remains a potential area
for future research.

Our findings can also be extended to address the observed
inconsistency between extreme rainfall and streamflow sensitivities to
increase in temperatures13,15,56. This inconsistency has largely been
attributed to factors such as rainfall duration and antecedent soil
moisture conditions15,57, however the role of clouds in affecting these
differences has not been explored yet. Given that the time of con-
centration can vary significantly across catchment sizes, the tem-
peratures sampled for rainfall and streamflow extremes may
correspond to different radiative conditions influenced by cloud
effects, potentially playing a key role in affecting these sensitivities.

Our approach, which removes the confounding effect of clouds on
temperatures, thus provides an efficient tool for diagnosing the sen-
sitivities of other hydrological variables beyond rainfall extremes
as well.

To conclude, our analysis demonstrates that the observations
across global land are consistent with the argued intensification of
rainfall extremes with global warming after the covariation between
clouds and temperature is accounted for. Cloud radiative effects can
explain most of the observed variability in the extreme precipitation-
temperature sensitivities including negative scaling rates in the tropics
and the breakdown in scaling at high temperatures. This resolves the
discrepancy between the apparent negative scaling rates in observa-
tions and the projected increase in precipitation extremes by climate
models. More work is still needed to understand the existing uncer-
tainties about observed changes in the rainfall dynamics with global
warming in order to reliably extrapolate observationally derived EP-T
sensitivities directly into the future3,11. Our findings further highlight
that the rising threat of increased rainfall extremes with global
warming across continents is already evident in observations,
emphasizing the urgent need for more effective strategies for climate
adaptation and disaster preparedness.

Methods
Datasets used
We used daily rainfall data from CPC – global daily precipitation
dataset58 which is available at 0.5° x 0.5° resolution. This dataset is
derived using gauge-based observations across the globe. The results
were also validated using the daily rainfall data from the Global Pre-
cipitation Climatology Project (GPCP – 1.3)39 available at 1° x 1° reso-
lution. This dataset is combined using satellite-based products and
in situ observations. Observed gridded temperature data was used
from the CPC-global daily temperature dataset available at 0.5° x 0.5°
resolution. The analysis was also repeated using rainfall-temperature
data from the ERA-5 reanalysis interpolated at 1° x 1° resolution. Sur-
face and top-of-atmosphere radiative fluxes data for “all-sky” and
“clear-sky” conditions were obtained from NASA CERES – Syn1deg
dataset40,41 available at 1° x 1° resolution. The analysis was performed
on a daily scale over the years from 2001 to 2023.

Physical model behind scaling
The scaling of extreme rainfall with temperature is widely adopted to
understand extreme precipitation-temperature sensitivities across
regions and has been extensively reviewed11,59,60. The physical equation
arises using the vertically integrated dry static energy budget (derived
in Muller et al.61) and can be expressed as:

Pe = ϵ
Z

ρw �∂qsat
∂z

� �
dz ð1Þ

Where Pe is the rate of extreme precipitation, ϵ denotes the pre-
cipitation efficiency such that ϵ= 1 indicates that all condensation
precipitates out. ρ denotes the mean density, w is the vertical velocity
and qsat is the saturation mixing ratio. Assuming small changes in
vertical velocities and precipitation efficiency with warming, the frac-
tional change in rainfall can then be written as

δPe

Pe
� δqsðTsurf aceÞ

qsðTsurf aceÞ
ð2Þ

This indicates that the changes in extreme rainfall can be
approximated to follow changes in saturation vapor pressure (qs) at
the surface which is an exponential function of surface temperatures
(Clausus-Clapeyron equation). As a result, one can isolate extreme
rainfall events and analyze their rate of change in observations using
the exponential relationship with local surface temperatures8,9,13.
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Estimation of scaling rates
EP-T sensitivities were estimated by using the quantile regression (QR)
method, which calculates the conditional quantile of the dependent
variable (in this case, precipitation) based on given values of the
independent variable (temperature). Thismethodology to estimate EP-
T sensitivities has been widely adopted by previous studies8,9,12. The
first step involved fitting a QR model between the logarithmic pre-
cipitation and temperature values at the target quantile (n) (95%,99%,
and 99.9% in our case)

LogðPiÞ=βn
o + βn

1 ðTiÞ ð3Þ

Here Pi denotes the daily rainfall intensity and Ti is the observed
daily temperature, and βn

o and βn
1 are the regression coefficients for the

nth quantile. To estimate the rate of increase, the slope coefficient βn
1 is

exponentially transformed and is referred to as the scaling rate ðα1Þ.

α1ð%=°CÞ= 100:ðeβ
n
1 � 1Þ ð4Þ

Quantifying the cloud radiative effects on surface temperatures
To remove the effect of cloud cooling from surface temperatures, we
used a thermodynamically constrained surface energy balance model.
The thermodynamic constraint arises by setting the vertical turbulent
exchange to operate at the thermodynamic limit of maximum power.
This approach has already been evaluated against observations and
showed excellent agreement in reproducing turbulent fluxes and sur-
face temperatures43,62,63. We force this model with absorbed solar
radiation, downwelling longwave radiation at the surface, and outgoing
longwave radiation at the top of the atmosphere for both “all-sky” and
“clear-sky” conditions. These fluxes are a standard product in the NASA-
CERES dataset, where ‘all-sky’ fluxes reflect the observed conditions,
including cloud radiative effects while “clear-sky” fluxes are derived by
eliminating the cloud effects from the radiative transfer. The tempera-
ture difference associated with clouds was estimated by the difference
in themodeled temperature for “clear-sky” and “all-sky” conditions. This
difference was then added to the observed temperatures during rainy
days in order to eliminate the cloud-cooling effect. A detailed descrip-
tion of this approach can be found in Ghausi et al. 26 and briefly below.

Thermodynamic constraint on turbulent flux exchange
The vertical turbulent flux exchange was conceptualized as an out-
come of a heat engine operating between the two reservoirs – the hot
surface and the cooler atmosphere. The surface is heated by absorbed
solar radiation (Rs) and downwelling longwave radiation (Rld) which
makes it warmer at temperature (Ts). This energy is released back to
the atmosphere but at a much colder temperature (Tr) described by
outgoing longwave radiation at the top of the atmosphere (Rl,toa). This
heat engine performswork to sustain the convectivemotion. Thework
done by this engine is proportional to the temperature difference
between the two reservoirs. At the same time, the more work the
engine performs, it leads tomore vertical turbulent exchange between
surface and atmosphere, which in turn depletes the driving tempera-
ture difference. This flux-gradient feedback then leads to an optimal
turbulent flux that maximizes the total work done. This limit is termed
as the maximum power limit42.

After writing the first and second law of thermodynamics for this
conceptualized heat engine (see details in ref. 26 and ref. 43), the total
power generated by this heat engine can be written as

G= Jin�
dU
dt

� � Rs +Rld�Jin
σ

� �1
4

Tr
� 1

0
B@

1
CA ð5Þ

Here, Jin is the vertical turbulent flux exchange, dU/dt denotes the
heat storage changes within the heat engine, and σ is the Stefan –

Boltzmann constant with the value of 5.67 * 10−8 Wm−2 K−4. The optimal
turbulent flux (Jopt) that maximizes the power generation (G) was
estimated by numerically maximizing Eq. (5) with respect to Jin. This
approach has already been evaluated against observations and has
shown excellent agreement in reproducing turbulent fluxes and sur-
face temperatures43,62,64,65. Additional evaluation is shown in Supple-
mentary Figs. S4, S5.

After estimating the optimal turbulent fluxes Jopt, the surface
temperatures at the maximum power limit can be calculated by using
the surface energy balance as described in Eq. (6).

Tmaxpower =
Rs +Rld � Jopt

σ

� �1
4 ð6Þ

To estimate the effect of clouds on surface temperatures, the
maximum power model is forced with the radiative fluxes for “all-sky”
and “clear-sky” conditions. We use these fluxes to estimate “all-sky”
and “clear-sky” surface temperatures using Eqs. (7) and (8).

Tall sky =
Rs,all sky +Rld,all sky � Jopt,all sky

σ

� �1
4 ð7Þ

Tclear sky =
Rs, clear sky +Rld, clear sky � Jopt, clear sky

σ

� �1
4 ð8Þ

The effect of clouds on surface temperatures was then calculated
as the difference between “all-sky” and “clear-sky” temperatures as

ΔTclouds =Tclear sky � Tall sky ð9Þ

Finally, we apply this correction to the Eq. (2) to estimate changes
in extreme precipitation as

δPe

Pe
� δqsatðTsurf ace +ΔTcloudsÞ

qsatðTsurf ace +ΔTcloudsÞ
ð10Þ

Data availability
All the datasets used in this study are freely accessible. CPC Global
Unified Precipitation data was provided by the NOAA/OAR/ESRL PSD,
Boulder, Colorado, USA, and can be accessed from their Web site at
https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html. Global
Precipitation Climatology Project (GPCP) Climate Data Record (CDR),
Version 1.3 (Daily) is freely accessible from https://doi.org/10.5065/
ZGJD-9B02. CPCGlobal Unified Temperature data was provided by the
NOAA PSL, Boulder, Colorado, USA, and can be accessed from their
website at https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.
html. Surface and TOA gridded radiative fluxes for all-sky and clear-
sky conditionswere obtained fromNASA-CERES Syn1deg data (https://
doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A, NASA
Langley Research Center, Atmospheric Science Data Center, 2021).
ERA-5 reanalysis data can be accessed from https://doi.org/10.24381/
cds.adbb2d47 and https://doi.org/10.24381/cds.bd0915c6. Raw data
files for each figure can be assessed from https://doi.org/10.5281/
zenodo.1144968564.

Code availability
The code to run themaximumpowermodel can be accessed at https://
doi.org/10.5281/zenodo.11449685. The Matlab code to apply the
quantile regression can be assessed from https://www.mathworks.
com/matlabcentral/fileexchange/32115-quantreg-x-y-tau-order-nboot.

Article https://doi.org/10.1038/s41467-024-55143-8

Nature Communications |        (2024) 15:10669 7

https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html
https://doi.org/10.5065/ZGJD-9B02
https://doi.org/10.5065/ZGJD-9B02
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
https://doi.org/10.5067/Terra+Aqua/CERES/SYN1degDay_L3.004A
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.5281/zenodo.11449685
https://doi.org/10.5281/zenodo.11449685
https://doi.org/10.5281/zenodo.11449685
https://doi.org/10.5281/zenodo.11449685
https://www.mathworks.com/matlabcentral/fileexchange/32115-quantreg-x-y-tau-order-nboot
https://www.mathworks.com/matlabcentral/fileexchange/32115-quantreg-x-y-tau-order-nboot
www.nature.com/naturecommunications


References
1. Trenberth, K. E. Conceptual framework for changes of extremes of

the hydrologic cycle with climate change. Clim. Change 42,
327–339 (1999).

2. Allen, M. & Ingram,W. Constraints on future changes in climate and
the hydrologic cycle. Nature 419, 228–232 (2002).

3. O’Gorman, P. A. & Schneider, T. The physical basis for increases in
precipitation extremes in simulations of 21st-century climate
change. Proc. Natl. Acad. Sci. USA 106, 14773–14777 (2009).

4. Fischer, E., Beyerle, U. & Knutti, R. Robust spatially aggregated
projections of climate extremes. Nat. Clim. Change 3, 1033–1038
(2013).

5. Kendon, E. J. et al. Heavier summerdownpourswith climate change
revealed by weather forecast resolution model. Nat. Clim. Change
4, 570–576 (2014).

6. Ban, N., Schmidli, J. & Schär, C. Heavy precipitation in a changing
climate: Does short-term summer precipitation increase faster?
Geophys. Res. Lett. 42, 1165–1172 (2015).

7. Westra, S., Alexander, L. V. & Zwiers, F.W.Global increasing trends in
annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

8. Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation
extremes beyond expectations from temperature changes. Nat.
Geosci. 1, 511–514 (2008).

9. Wasko,C. &Sharma, A.Quantile regression for investigating scaling
of extreme precipitation with temperature. Water Resour. Res. 50,
3608–3614 (2014).

10. Zeder, J. & Fischer, E.M.Observedextremeprecipitation trends and
scaling in Central Europe. Weather Clim. Extrem. 29,
100266 (2020).

11. Gu, L. et al. Large anomalies in future extreme precipitation sensi-
tivity driven by atmospheric dynamics. Nat. Commun. 14, 3197
(2023).

12. Utsumi, N., Seto, S., Kanae, S., Maeda, E. E. & Oki, T. Does higher
surface temperature intensify extreme precipitation.Geophys. Res.
Lett. 38, https://doi.org/10.1029/2011GL048426 (2011).

13. Yin, J. et al. Large increase inglobal storm runoff extremesdrivenby
climate and anthropogenic changes.Nat. Commun. 9, 4389 (2018).

14. Zhang, W., Villarini, G. & Wehner, M. Contrasting the responses of
extreme precipitation to changes in surface air and dew point
temperatures. Clim. Change 154, 257–271 (2019).

15. Ghausi, S. A. & Ghosh, S. Diametrically opposite scaling of extreme
precipitation and streamflow to temperature in South and Central
Asia. Geophys. Res. Lett. 47, e2020GL089386 (2020).

16. Tian, B. et al. Global scaling of precipitation extremes using near-
surface air temperature and dew point temperature. Environ. Res.
Lett. 18, 034016 (2023).

17. Emori, S. & Brown, S. J. Dynamic and thermodynamic changes in
mean and extreme precipitation under changed climate. Geophys.
Res. Lett. 32, L17706 (2005).

18. Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in
temperature and precipitation extremes in the CMIP5 ensemble.
Clim. Change 119, 345–357 (2013).

19. Abdelmoaty, H. M. & Papalexiou, S. M. Changes of extreme pre-
cipitation in CMIP6 projections: should we use stationary or non-
stationary models? J. Clim. 36, 2999–3014 (2023).

20. Loriaux, J. M., Lenderink, G., De Roode, S. R. & Siebesma, A. P.
Understanding convective extreme precipitation scaling using
observations and an entraining plume model. J. Atmos. Sci. 70,
3641–3655 (2013).

21. Molnar, P., Fatichi, S., Gaál, L., Szolgay, J. & Burlando, P. Storm type
effects on super Clausius–Clapeyron scaling of intense rainstorm
properties with air temperature,. Hydrol. Earth Syst. Sci. 19,
1753–1766 (2015).

22. Gao, X. et al. Temperature dependence of hourly, daily, and event-
based precipitation extremes over China. Sci. Rep. 8, 1–10 (2018).

23. Visser, J. B., Wasko, C., Sharma, A. & Nathan, R. Eliminating the
“hook” in precipitation–temperature scaling. J. Clim. 34,
9535–9549 (2021).

24. Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future
increases in extreme precipitation exceed observed scaling rates.
Nat. Clim. Change 7, 128–132 (2017).

25. Visser, J. B., Wasko, C., Sharma, A. & Nathan, R. Resolving incon-
sistencies in extreme precipitation‐temperature sensitivities. Geo-
phys. Res. Lett. 47, e2020GL089723 (2020).

26. Ghausi, S. A., Ghosh, S. & Kleidon, A. Breakdown in
precipitation–temperature scaling over India predominantly
explained by cloud-driven cooling. Hydrol. Earth Syst. Sci. 26,
4431–4446 (2022).

27. Hardwick Jones, R., Westra, S. & Sharma, A. Observed relationships
between extreme sub-daily precipitation, surface temperature, and
relative humidity. Geophys. Res. Lett. 37, 1–5 (2010).

28. Sun, X. & Wang, G. Causes for the negative scaling of extreme
precipitation at high temperatures. J. Clim. 35, 6119–6134 (2022).

29. Bui, A., Johnson, F. & Wasko, C. The relationship of atmospheric air
temperature and dew point temperature to extreme rainfall.
Environ. Res. Lett. 14, 074025 (2019).

30. Golroudbary, V. R., Zeng, Y., Mannaerts, C. M. & Su, Z. Response of
extreme precipitation to urbanization over the Netherlands. J. Appl.
Meteorol. Clim. 58, 645–661 (2019).

31. Barbero, R., Westra, S., Lenderink, G. & Fowler, H. J. Temperature‐
extreme precipitation scaling: A two‐way causality? Int. J. Climatol.
38, e1274–e1279 (2018).

32. Wasko, C., Lu, W. T. & Mehrotra, R. Relationship of extreme pre-
cipitation, dry-bulb temperature, anddewpoint temperatureacross
Australia. Environ. Res. Lett. 13, 074031 (2018). p.

33. Roderick, T. P., Wasko, C. & Sharma, A. Atmospheric moisture
measurements explain increases in tropical rainfall extremes.
Geophys. Res. Lett. 46, 1375–1382 (2019).

34. Ali, H., Peleg, N. & Fowler, H. J. Global scaling of rainfall with
dewpoint temperature reveals considerable ocean‐land difference.
Geophys. Res. Lett. 48, e2021GL093798 (2021).

35. Wasko, C. & Nathan, R. The local dependency of precipitation on
historical changes in temperature. Clim. Change 156, 105–120
(2019).

36. Ali, H., Fowler, H. J. & Mishra, V. Global observational evidence of
strong linkage between dew point temperature and precipitation
extremes. Geophys. Res. Lett. 45, 12 320–12 330 (2018).

37. Dash, S. & Maity, R. Unfolding unique features of precipitation-
temperature scaling across India. Atmos. Res. 284, 106601 (2023).

38. Bao, J., Sherwood, S.C., Alexander, L. V.& Evans, J. P. Comments on
“temperature‐extreme precipitation scaling: A two‐way causality?”.
Int. J. Climatol. 38, 4661–4663 (2018).

39. Adler, R. et al. NOAA CDR Program. updated monthly. Global pre-
cipitation climatology project (GPCP) climate data record (CDR),
version 1.3 (Daily). https://doi.org/10.5065/ZGJD-9B02 (2020).

40. Doelling, D. R. et al. Advances in geostationary-derived longwave
fluxes for the CERES synoptic (SYN1deg) product. J. Atmos. Ocean.
Technol. 33, 503–521 (2016).

41. Doelling,D. R. et al. Geostationary enhanced temporal interpolation
for CERES flux products. J. Atmos. Ocean. Technol. 30, 1072–1090
(2013).

42. Kleidon, A. & Renner, M. Thermodynamic limits of hydrologic
cycling within the Earth system: Concepts, estimates, and impli-
cations. Hydrol. Earth Syst. Sci. 17, 2873–2892 (2013).

43. Ghausi, S. A., Tian, Y., Zehe, E. & Kleidon, A. Radiative controls by
clouds and thermodynamics shape surface temperatures and

Article https://doi.org/10.1038/s41467-024-55143-8

Nature Communications |        (2024) 15:10669 8

https://doi.org/10.1029/2011GL048426
https://doi.org/10.5065/ZGJD-9B02
www.nature.com/naturecommunications


turbulent fluxes over land. Proc. Natl. Acad. Sci. USA 120,
e2220400120 (2023).

44. Tian, Y., Zhong, D., Ghausi, S. A., Wang, G. & Kleidon, A. Under-
standing variations in downwelling longwave radiation using Brut-
saert’s equation. Earth Syst. Dyn. 14, 1363–1374 (2023).

45. Roxy, M. K. et al. A threefold rise in widespread extreme rain events
over central India. Nat. Commun. 8, 1–11 (2017). pp.

46. Varghese, S. J. et al. Precipitation scaling in extreme rainfall events
and the implications for future Indian monsoon: Analysis of high‐
resolution global climatemodel simulations.Geophys. Res. Lett.51,
e2023GL105680 (2024).

47. Hosseini-Moghari, S. M., Sun, S., Tang, Q. & Groisman, P. Y. Scaling
of precipitation extremes with temperature in China’s mainland:
Evaluation of satellite precipitation data. J. Hydrol. 606, 127391
(2022). p.

48. Moustakis, Y., Onof, C. J. & Paschalis, A. Atmospheric convection,
dynamics and topography shape the scaling pattern of hourly
rainfall extremes with temperature globally. Commun. Earth
Environ. 1, 11 (2020).

49. Berg, P., Moseley, C. & Haerter, J. O. Strong increase in convective
precipitation in response to higher temperatures. Nat. Geosci. 6,
181–185 (2013).

50. Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the
regional pattern of projected future changes in extreme precipita-
tion. Nat. Clim. Change 7, 423–427 (2017).

51. Wang, G. et al. The peak structure and future changes of the rela-
tionships between extreme precipitation and temperature. Nat.
Clim. Change 7, 268–274 (2017).

52. Lenderink, G., Barbero, R., Loriaux, J. M. & Fowler, H. J. Super-
Clausius–Clapeyron scaling of extreme hourly convective pre-
cipitation and its relation to large-scale atmospheric conditions. J.
Clim. 30, 6037–6052 (2017).

53. Ali, H. et al. Towards quantifying the uncertainty in estimating
observed scaling rates. Geophys. Res. Lett. 49, e2022GL099138
(2022).

54. Drobinski, P. et al. Scaling precipitation extremes with temperature
in the Mediterranean: past climate assessment and projection in
anthropogenic scenarios. Clim. Dyn. 51, 1237–1257 (2018).

55. Yin, J. et al. Does the hook structure constrain future flood intensi-
fication under anthropogenic climate warming?Water Resour. Res.
57, e2020WR028491 (2021).

56. Wasko, C. & Sharma, A. Global assessment of flood and storm
extremes with increased temperatures. Sci. Rep. 7, 7945 (2017).

57. Sharma, A., Conrad, W. & Dennis, P. Lettenmaier. “If precipitation
extremes are increasing, why aren’t floods? Water Resour. Res. 54,
8545–8551 (2018).

58. Chen, M. et al. Assessing objective techniques for gauge‐based
analyses of global daily precipitation. J. Geophys. Res. Atmos. 113,
https://doi.org/10.1029/2007JD009132 (2008).

59. O’Gorman, P. A. Precipitation extremes under climate change.Curr.
Clim. Change Rep. 1, 49–59 (2015).

60. Muller, C. & Takayabu, Y. Response of precipitation extremes to
warming: what have we learned from theory and idealized cloud-
resolving simulations, and what remains to be learned? Environ.
Res. Lett. 15, 035001 (2020).

61. Muller, C. J. & O’Gorman, P. A. An energetic perspective on the
regional response of precipitation to climate change. Nat. Clim.
Change 1, 266–271 (2011).

62. Kleidon, A. & Renner, M. Diurnal land surface energy balance par-
titioning estimated from the thermodynamic limit of a cold heat
engine. Earth Syst. Dynam. 9, 1127–1140 (2018).

63. Ghausi, S. A. Code to run the maximum power model and raw data
files for figures. Zenodo. https://doi.org/10.5281/zenodo.
14211249 (2024).

64. Dhara, C., Renner, M. & Kleidon, A. Broad climatological variation of
surface energy balance partitioning across land and ocean pre-
dicted from the maximum power limit. Geophys. Res. Lett. 43,
7686–7693 (2016).

65. Conte, L. et al. Effects of tropical deforestation on surface energy
balance partitioning in southeastern Amazonia estimated from max-
imum convective power. Geophys. Res. Lett. 46, 4396–4403 (2019).

Acknowledgements
We thank the NASA-CERES team for providing open access to the data,
theCopernicusClimateChangeService for granting access to theERA-5
reanalysis data. S.A.G., E.Z., and A.K. acknowledge financial support
from the Volkswagen Stiftung through the ViTamins project. S.A.G and
A.K. acknowledge funding from the Max Planck Institute for Bio-
geochemistry, Jena-Germany.

Author contributions
S.A.G. led the conceptualization, methodology development, investi-
gation, interpretation, and writing of the original draft. A.K. contributed
to the conceptualization, methodology development, interpretation,
and review/editing. E.Z. contributed to the conceptualization, inter-
pretation, and review/editing. S.G. contributed to the conceptualization,
interpretation, and review/editing. Y.T. contributed to the interpretation
and review/editing.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-55143-8.

Correspondence and requests for materials should be addressed to
Sarosh Alam Ghausi.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-55143-8

Nature Communications |        (2024) 15:10669 9

https://doi.org/10.1029/2007JD009132
https://doi.org/10.5281/zenodo.14211249
https://doi.org/10.5281/zenodo.14211249
https://doi.org/10.1038/s41467-024-55143-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Thermodynamically inconsistent extreme precipitation sensitivities across continents driven by cloud-radiative effects
	Results and discussion
	Observed scaling of extreme precipitation with temperature
	Observed scaling of cloud radiative effects with temperatures
	Extreme precipitation-temperature scaling corrected for cloud radiative effects

	Methods
	Datasets used
	Physical model behind scaling
	Estimation of scaling rates
	Quantifying the cloud radiative effects on surface temperatures
	Thermodynamic constraint on turbulent flux exchange

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




