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The onset and progression of a neurological disease can often be explained

in terms of brain-network alteration. They can be formalized as the action of

an operator representing the disease, the so-called K-operator, acting on the

network. The healing process can thus be seen as the inverse of the disease

mechanism. However, perfect healing is often impossible to achieve. Here, we

formalize the ideal healing in terms of perturbative variation of the possible

partial healing. Themodeling and analytical strategy is based on techniques from

theoretical physics, with the language of matrix operators. In addition, using the

language of category theory, we also formalize the progressive abstraction from

the reality of diseased patients to the definition of a disease and the comparison

between di�erent diseases as a natural transformation between colimits. This

theoretical presentation can provide a new, interdisciplinary perspective on

neurological investigation and possibly foster new theoretical-experimental

developments.
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1 Introduction

A system of stations and highways, with signals transmitted throughout agglomerates

of stations and communicating with far-away areas: this is a way to visualize the complexity

of the brain network regulating the processes inside our minds and brains, from the

cortex to the deepest areas (Figure 1). As accidents can occur on highways and traffic

can be altered, also the brain network can suffer from anatomic or functional alterations.

Nowadays, several neurological pathologies are experimentally investigated in terms of

network alteration [1, 2], exploiting concepts and methods from network theory in

physics [3, 4]. However, a general mathematical model for the neurological disease, whose

specific pathologies can be particular cases, is missing [5]. Recently, a multi-layer network

structure of the human brain has been proposed [23] also jointly with modeling a generic

neurological disease as an operator acting on it [6]. Let us indicate with G the functional

brain network of a healthy individual, where G stands for Gehirn, German for brain, and

with Gk the brain network of a person affected by a disease. The so-called K-operator, from

Krankheit, German for disease, is defined as [6]:

KG = G
k. (1)

Knowing both G and Gk, K can be computed through a matrix inversion:

K = G
k(G)−1. (2)
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FIGURE 1

Section of the human brain. Drawing by M. Mannone.

K can be computed via an element-wise product. In this way,

its elements will be multiplicative factors that modify the elements

of the brain matrix one by one, allowing a direct interpretation

of the results [7, 8]. Alternatively, K could be computed via a

classical row-by-column product, becoming interpretable through

a diagonalization.

A formal analysis of neurological disease features can also help

distinguish the neurodegenerative processes occurring in normal

aging from the abnormalities occurring in diseases.

Here, we develop the idea of K, focusing on two crucial aspects.

First, we develop the formal relationship between a person affected

by a disease, which is real, and the concept of disease itself, which

is an abstraction. To this aim, we use the language of category

theory [9], a branch of mathematics born to model structures and

analogies between different areas of mathematics, being inspired by

and its generalization power, and its application to different areas of

science [10].

Second, we develop the idea of the healing process as the inverse

of K-operator [6]. In ideal conditions, with complete reversibility,

the matrix depiction of healing is the exact inverse of the disease

operator. In real conditions, the healing is often only partial, if

possible at all, given the general condition of irreversibility [11].

Here, we start from a “partial healing” of some brain regions, due

to medications or surgery, proposing its progressive improvement

through perturbative variations in the style of theoretical physics.

The article is organized as follows. In Section 2, we present

the methodological approach; then, we formalize the abstraction

process from patients to diseases and the comparison between

diseases (Section 3.1) and explore the “vice versa” (Section 3.2).

Section 4 summarizes open questions and lists possible further

research developments.

2 On disease and abstraction:
methods

Disease onset and development can be formalized as a

transformational process [6]. The definition of a “disease” is an

abstraction; the “reality” is given by real patients affected by

the disease. The description of a new disease after a collection

of particular cases is an inductive process; the diagnosis of a

patient’s condition is a deductive process, from the abstraction of

the disease to the reality of the specific condition. Each patient

is different and may present a unique situation and eventual

comorbidities; the common features of a group of patients provide

hints on the key elements of a disease and its interaction with

other diseases. The comparison between illnesses can be formalized

as a high-abstraction process. For all these reasons, to navigate

the different layers of abstraction, we will recur here to the

language of categories, initially developed to formalize the idea of

transformations of transformations [9]. Categories are being more

and more applied to different branches of science [10].

To start our analysis, let us first roughly schematize the

brain activity. We can start from neurons, formalize the activity

of neural masses, and then move up toward the overall brain

organization. First, one can distinguish between excitatory and

inhibitory neurons [12, 13]. The first can only produce excitatory

synapses and the second only inhibitory ones. Focusing only on one

type of population, for instance, excitatory [6], we can describe the

dendritic potential of the i-th neuron as [12]:

Fi(t) =
∑

j

wijf (xj), (3)

where f (xj) is the activation function, and wij is the weight of the

coupling with the j-th neuron. We can see neurons as nodes in a

network and the synapses between them as their links. Moving up

one level along the brain architecture, we can consider an overall

population of neurons as a node and the connections/information

exchange between populations as their links [6]. The potential of a

neural agglomerate is obtained from Equation 3 by summing up all

its excitatory neurons [12]:

E(t) =
∑

i+

Fi(t). (4)

In this research, we consider the neural masses as big as to

make them coincide with the so-called regions of interest (ROIs)

into which the human brain can be divided. Thus, the potential of

a lobe will be determined by the overall potential of the ROIs that

belong to it. Thus, according to Mannone et al. [6], the potential of

the l-th lobe is:

El =
∑

z

W
l
zE

l
z(t), (5)

where W l
z is the weight of the z-th node in the l-th lobe, and El is

the potential of the l-th lobe:

Elz(t) =
∑

i+

Fl,zi (t) =
∑

i+

∑

j

wl,z
ij f

l,z(xj). (6)

We can draw a connection between the data extracted

from functional magnetic resonance imaging (fMRI) and the

connectivity matrices containing information exchange between

pairs of ROIs. Because there are different numbers, dimensions,

and distributions of ROIs according to the medical atlas choice

(due to the different parcellation of the brain) that highlight
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FIGURE 2

Highlighted brain areas.

different aspects, connectivity matrices can also change. However,

the proposed formalism is general enough to not require a specific

choice or indication; it can be adapted to specific atlas choices in

experimental setups.

A generic element of the connectivity matrix of the l-th lobe

can be denoted as clz,z′ (i.e., a weight), indicating the connection

between the z-th and z′-th ROI in the l-th lobe. Thus, we indicate

the connectivity matrix for the l-th lobe as
{

clz,z′

}

. We can relate

the weights W l
z , W

l
z′ of nodes z, z

′ of lobe l to the link z, z′, whose

weight is an element of the connectivity matrix, that is,
{

clz,z′

}

.

Then, starting from the diagonal block-matrix characterization

of the brain areas proposed by Mannone et al. [6], to define the

whole connectivity matrix, in this study, we consider not only all

the brain areas but also their connections, thus including the non-

diagonal blocks. Then, the brain structure can be formalized by

the connectivity matrix (i.e., all n lobes) defined according to the

following block matrix:

G =























{

cl1z,z′

} {

cl1 ,l2z,z′

}

. . .

{

c
l1 ,ln
z,z′

}

{

cl2 ,l1z,z′

} {

cl2z,z′

}

. . .

{

c
l2 ,ln
z,z′

}

. . . . . .

. . . . . .

. . . . . .
{

c
ln ,l1
z,z′

} {

c
ln ,l2
z,z′

}

. . .

{

c
ln
z,z′

}























(7)

Moreover, making the name of the lobes and inter-lobe areas

explicit, the same matrix can be represented as follows:

G =























F FT FP FO FS FI FC

TF T TP TO TS TI TC

PF PT P PO PS PI PC

O OT OP O OS OI OC

SF ST SP SO S SI SC

IF IT IP IO IS I IC

CF CT CP CO CS CI C























(8)

where F indicates the frontal lobe, T the temporal lobe, P the parietal

lobe, O the occipital lobe, S the subcortical, L the limbic system, I

the insula, and C the cerebellum (see Figure 2). The double letters

indicate the inter-lobe exchanges. It is worth noting that the size

of the blocks depends upon the number of neuronal agglomerates

in each lobe that we identify with the ROIs. The number of ROIs

differs for each lobe in brain atlases such as MSDL [14], Oxford-

Harvard [15], and AAL3 [16]. A customized choice of atlas would

allow one to have the same number of ROIs in each lobe.

With a compact notation based on tensor products, G can be

written as:

G =
{

cFz,z′
}

⊗IT⊗. . .⊗Imix+IF⊗

{

cTz,z′
}

⊗IP⊗. . .⊗Imix+. . . , (9)

where ⊗ is the tensor product, I is the identity matrix, F stands

for the frontal lobe, T for the temporal lobe, and mix indicates the

inter-lobe connections.

The K-operator acts on G as a tensor Kδ , δ = 1, 2 . . ., with the

labels indicating the different diseases.

In Section 3, we will be using the language of category theory [9]

to lift up in abstraction our analysis. The advantage of categories

is mainly formal, allowing a general view of relationships and

structure in a considered phenomenon or problem. The idea

of function, which can be thought of as a mapping between

points, is generalized as a mapping between points and arrows

(morphisms) between them. Thus, a structure can be mapped into

another one. The comparison of structures is a powerful conceptual

also computational tool [17]. A detailed or tutorial discussion of

categories is out of the scope of this article. However, a basic yet

complete introduction to the topic is provided by Fong and Spivak

[10]. In our study, categories help us formalize the comparisons

between patients’ features and the process of abstraction from

patients to diseases, as well as the inverse process of disease

development, that is, healing. We will first provide some basic

categorical definitions, using them to shape our model.
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Before moving to Section 3, we show here a basic example of

categorical thinking. Let us denote as A, B two patients with similar

symptoms, which can be related to the same disease α. Let Gk,α
A (t0)

be the brain network of the first patient at the baseline and G
k,α
A (t1)

at the first follow-up. The disease progress can be described as:

G
k,α
A (t0)

KαA(t)
→ G

k,α
A (t1) (10)

The disease progress of patient B will be thus:

G
k,α
B (t0)

KαB (t)
→ G

k,α
B (t1) (11)

And the comparison between the disease progresses will be thus

an arrow betweenKαA(t) andK
α
B (t), that is, an arrow between arrows

(a natural transformation), here denoted as ζ :

G
k,α
A (t0)

KαA(t)

−−−−−−−−−−→ G
k,α
A (t1)





y
Kα,A→B(t0)

w

w

w

w

�

ζ





y
Kα,A→B(t1)

G
k,α
B (t0) −−−−−−−−−−→

KαB (t)
G
k,α
B (t1)

(12)

and the arrows Kα,A→B denote the comparison of symptoms

between the first and the second patient, at the same time point.

3 Results

3.1 A more abstract view

We can discuss the proposed idea in a more general way, using

language and structures from an abstract branch of mathematics,

that is, category theory.

A category is constituted by objects (points) and morphisms

between them (arrows), satisfying compositionality, associativity,

and the existence of the identity [9].

In our brain model, the first layer is constituted by neurons

as nodes, and synapses between them as links. However, they

do not constitute a category, as there is no proper mathematical

composition between synapses. Thus, we move to the second

layer of brain organization: the layer of neural agglomerates as

nodes, and pathways and signal transmissions/links as arrows

between them. We can think of neural agglomerates and their

weighted connections as categories. Let us consider the functor, a

categorical extension of the concept of function, acting both on

objects and morphisms, preserving their structure [9]. We can

think of the disease Kδ as a functor mapping neural agglomerates

and connections at t into neural agglomerates (and connections) at

t+1, changing the weights. Given the underlying structure of graph,

and the weight assigned to each link, we recall the structure of

Petri nets [18], simple conceptualizations of a neural network, with

nested structures. Thus, they are suitable for neural-agglomerate

modeling. Moving up along the layers, we reach the overall brain.

Let us define Kδ as acting element-wise on each element of the

connectivity matrix:

KδG = G
k,δ ⇒

{

K l,δ
z,z′c

l
z,z′

}

=

{

cl,k,δz,z′

}

. (13)

In general, supposing of having fixed δ = 1, the action of the

K-operator on a healthy brain gives the diseased brain [6]:

K :G → G
k (14)

The action of K on an already-diseased brain at the baseline

gives the follow-up, that is, provides a segment of the time

evolution:

K(t) :Gk(t) → G
k(t + 1) (15)

Using a diagrammatic representation, we can schematize the

action of the K-operator for a disease δ from a healthy brain to a

diseased brain as follows:

G
Kδ
−→G

k,δ (16)

Let δ and ǫ label be two different diseases. We can schematize

the transition δ to ǫ as a commutative diagram:

G
Kδ

−−−−−−−−→Gk,δ
∥

∥

∥

∥

∥

w

w

w

w

�

λ









y

Kδ→ǫ

G −−−−−−−−→
Kǫ "

Gk,ǫ

(17)

where, on the left, there is a vertical equal sign indicating that

the healthy, initial brain G is the same, and the double arrow

λ is a transformation of transformations, which is called natural

transformation in category theory [9]:

Kδ
λ
⇒Kǫ (18)

This would represent the passage from a matrix Kδ to another

one (Kǫ), as a “navigation” inside the K-tensor, and an ideal

transformation from a disease to another one. The transformation

Kδ→ǫ denotes the changes occurring between the functional brain

network of a brain affected by δ to a brain affected by ǫ.

In category theory, the attention is shifted from objects to

the transformations between them. In this sense, the focus on K

implies a shift from a specific, or a collection of, diseased brains

to the mechanism of the disease. The idea itself of disease is an

abstraction. Higher levels of abstraction find also an analogous in

medical applications; for instance, the arrow Kδ ⇒ Kǫ represents

the comparison between the two diseases δ and ǫ.

Diseased people are real, and diseases are abstractions. The

“disease” in a person is the embodiment of the idea of disease. Such

an idea can be thought of in terms of a categorical structure, the

colimit. A colimit is a “universal object” formalizing the intuition

of the most general way to connect elements, generalizing the

notion of direct sum or union [9]. We can sketch the categorical

structure of the colimit for a single disease, let it be α. Treating the

transformations K as points themselves, we can write:

(19)
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where:

• A and B are two patients affected by α;

• N(Kα(t))A→B is a natural transformation representing the

transition from an instance of the K-operator for the α disease

and patient A, to an instance of K for the same disease on

patient B;

• Kα
(A,B)

is the partial abstraction obtained by considering two or

more patients;

• Kα is the “absolute abstraction” defining the disease α: here, it

is the colimit;

• the dashed arrow u represents the passage from the first idea

of the disease sketched upon multiple cases (Kα
(A,B)

) and the

general idea of the disease (Kα);

• φαA and φαB are part of the inductive process from specific

features of disease process in diseased people to the first

abstraction of the disease;

• ψαA and ψαB represent the connection between the disease

process in diseased individuals and the disease as an

abstraction. For this reason, the corresponding arrows are

also dashed, to indicate the movement toward the same final

degree of abstraction reached by u. By definition of colimit,

there is one and only one transformation u such that:

ψαA = u ◦ φαA, ψ
α
B = u ◦ φαB . (20)

In Kα
(A,B)

, we focus on the common brain damage between

A and B; thus, we refer to a non-empty intersection. In general,

damage for another patient C could present also differences with

respect to patient A or another patient D affected by the same

disease. The meaning of this step is collecting the commonalities.

The meaning of ψαA and ψαB is the correct diagnosis from the set

of displayed damage and symptoms. In fact, moving up through

the diagram, we proceed in the path toward abstraction. Overlaps

between diseases are possible, and they are often cause of concerns

among physicians and patients, and errors in diagnoses. The idea of

natural transformations between diseases also includes the presence

of virtual “intermediate states” between diseases, which could

correspond to existing, yet-to-discover diseases, or situations of

co-morbidity. With this refined framework, where each disease is

a colimit, comparing diseases becomes a natural transformation

between colimits.

Let α and β be again two diseases, and C and D be two patients

affected by disease β . The diagram in Equation (19) thus becomes:

(21)

3.2 Healing and perturbative
approximation

One of the key ideas of category theory is duality of structures,

that is, the form of symmetry between some structures and other

structures obtained by reversing all arrows. For instance, reversing

the arrows of a colimit, we obtain a limit [9]. The conceptual

inversion of arrows also plays a fundamental role inmedicine. From

the point of view of neurological disease represented by the K-

operator, reversing the arrows means going from a diseased brain

Gk to a healthy brain G. Thus, the dual action of the K-operator can

be represented by the H-operator, the Healing (German Heilung)

process. For a disease δ, the healing process is represented by

reversing the arrows with respect to the action of Kδ :

HδGk,δ = G (22)

where Hδ =
(

Kδ
)−1

. In diagrammatic terms:

G
k,δ Hδ

−→G (23)

Mirroring the previous diagrams, we can go from the specific,

particular healing of single patients to the generalized healing

process for a specific disease.

(24)

As one can notice similarities between diseases, it is also

possible to notice similarities between healing processes. We

indicate the process of perfect, ideal healing as the inverse of the

K-operator. Fixed a disease δ = 1, relating global to local action,

we have:

H = (K)−1 ⇒

{

K l
z,z′

}−1
(25)

The action ofHδ can be performed due to a specific medication

or set of medications, pharmacological treatments, or surgery. The

local action, expressed on the right side in Equation 25, refers to the

elements clz,z′ . All these elements are time-dependent.

However, such a healing mechanism, as a perfect inversion

of all arrows, is ideal. In general, perfect healing may not be

possible due to the irreversibility of some disease progression

[11]. If the perfect, ideal healing process is the inverse of the

disease operator, real healing is only partial. We argue that perfect

healing can be schematized as a sequence of perturbations on

partial healing.
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Let us characterize with HP the global action (on the whole

brain network) of partial healing. The elements of HP are all zero

except those corresponding to the ROIs where the “treatment” acts.

As said,HP 6= H, the total healing we set here equalsK−1. Then,

we can approximate the complete healing H via a perturbative

approach:

H ≡ HP
0 + σ1H

P
1 + . . .+ σnH

P
n , (26)

where n stands for the number of approximating terms

σ1, . . . , σn > 0, HP
0 is the starting therapy, and HP

1 , ..., H
P
n

are all the other existing and future approaches.

Neglecting the terms of higher order, we get:

H ∼ HP
0 + σ1H

P
1 , σ > 0 (27)

where we can focus on HP
1 , the “missing therapy” for a good

approximation of the healing. Thus, we obtain:

HP
1 ≈ η

(

K−1|ROIs −HP
0

)

, η ∝
1

σ
⇒ η

(

{

K l
z,z′

}−1
−

{

Hl,P
z,z′ ,0

}

)

(28)

where, fixed a disease, we consider the restriction of the inverse

K concerning specific ROIs. Thus, the missing therapy can be

approximated as the difference between the matrix elements of the

inverse K-operator, equivalent to the perfect, ideal healing, and the

matrix elements of the starting therapy. The consequence of found

HP would allow one to find which ROIs need more attention to

improve the therapeutic strategy. This may suggest, for instance, a

joint use of medications, those belonging to the “existing” therapy

for the partial healing (HP
0 ), and other ones chosen, or developed,

for their action on the other ROIs indicated by HP. This could lead

to tests in vitro and in silico on platforms such as the brains-on-a-

chip [19].

4 Discussion and conclusion

The present study explores the potential application of concepts

and methods theoretical physics and category theory to neurology.

The recent conjecture of a mathematical operator (K) to describe

the onset and progression of a general neurological disease in terms

of brain-network alterations [6] is the starting point of our analysis.

In this article, we developed the initial insights with the connection

of patients (real) and disease (abstract) levels, the discussion of

the inverse process, and patients’ particular healing process (real)

and general healing process from a disease (abstract). Finally, we

sketched a perturbative approach to relate the perfect and ideal

healing (i.e., the inverse of the disease operator) with the possible

partial healing (i.e., existing medications or surgery). We used the

language of category theory [9] to treat our topics in a formal and

general way.

Some first applications of the K-operator concepts dealt with

Parkinson’s datasets (PPMI) and Alzheimer-Perusini’s datasets

(ADNI) and were based on the element-wise computation of

K-operator [7, 8]. An in-progress investigation is directed to

explore a row-by-column computation of K, its diagonalization,

and interpretation [21].

To validate the model, the required data can be obtained

through a long-term monitoring and regular fMRI examinations,

for instance, choosing a number of patients affected by the

same disease, and performing fMRI examination with the same

machines, for the same time of exposition (duration of the image

collection inside the MRI machine), at regular time intervals (e.g.,

A B

FIGURE 3

Example of K-operator computed from the connectivity matrices of a Parkinson’s disease female patient (atlas AAL3), with row-by-column (left) and

element-wise product (right), from Mannone et al. [7]. In (A), the elements above 12 are shown; in (B), above 0.8. The color code is the same of

Figure 2.
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each 6 months for some years). The same approach should be

adopted for healthy controls comparable to the diseased patients

(considering sex and age range). Such an experimental study could

help estimate the time evolution of the functional brain network in

healthy controls and, through a crossed comparison with diseased

brains over time, estimate the impact of the considered disease,

approximating a shape for K. Adding one layer of complexity,

the same strategy allows one to compute K for different diseases,

highlighting, through the comparison, the disease-specific features

of the operator. Specific data can be derived from the DICOM

images of fMRI. From fMRI, after a brain parcellation according

to specific brain atlases, one can extract time series for each region

and compute the connectivity matrices, to be used as G (if the brain

is healthy) or Gk (if the brain is diseased). Or, as Gk(t), Gk(t + 1)

for the diseased brain at different time points. In Figure 3, we show

an example of the K-operator for a Parkinson’s female patient [20],

showing a sparsity correspondence. An analysis of eigenvalues and

eigenvector similarities of these matrices is in progress [21] and

deserves further investigation. Next research will also focus on EEG

and recursive plots. A fine-tuning study of K may also address

the comparison between different forms of Alzheimer-Perusini’s

disease [22].

Moreover, future research will focus on the experimental

definition of HP. In particular, a novel research endeavor may

aim to investigate the anomalies observed in the substantia nigra

and the therapeutic effects of dopamine-based pharmaceutical

interventions by approximating the needed action to improve the

degree of healing, comparing pathologies with similar underlying

mechanisms, such as Parkinson’s disease and schizophrenia.

Such a double study, for one side contextualized in the

proposed formalism, and for the other side, strictly related to a

data-based approach, can help foster new insights for knowledge

and concretely help the real, suffering patients.

Abstract thinking can provide insights for scientific

development and help guide data comparison in complex

networks, not only for brain studies. K-operator can in

general describe the accidents occurring in stations and

pathways, while the healing operator represents how to

resolve them.
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