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Abstract

With rising extreme weather events due to climate change, the impact on agricultural production
has become increasingly severe. Yet, there has been a significant gap in research that assesses the
influence of day-to-day temperature variability on agricultural productivity on a global scale. Our
study addresses this gap by exploring the effects of day-to-day temperature variability and the
change of rainfall patterns on agricultural productivity worldwide from 1961 to 2018. The results
reveal that day-to-day temperature variability not only has a direct, negative impact on agricultural
total factor productivity (TFP), but also influences it by modulating the effects of monthly average
temperatures and wet days. One unit increase of day-to-day temperature variability leads to a 2%
decrease in TFP. Day-to-day temperature variability neutralizes the impact of monthly average
temperature on TFP, while exacerbating the impact of wet days on TFP. Furthermore, extreme
rainfall events result in a consistent negative marginal effect across all countries/seasons/rainfall
intervals. This study also identifies differentiated impacts across countries with varying income
levels. Low-income regions’ TFP demonstrates markedly significant sensitivities to both monthly
average temperatures and daily temperature fluctuations, which means less resilient. Furthermore,
the impacts of general and extreme rainfall are comparatively less pronounced in high-income
countries, indicating higher resilience to climate variability in these regions and a relative
vulnerability to extreme weather events in low-income regions. Our findings illuminate the
intricate and multifaceted role that daily temperature variability plays in agricultural productivity,
providing a theoretical basis for understanding the heterogeneous impacts of climate change on
agriculture and contributing insights into the broader discourse on climate resilience and

agricultural sustainability.

1. Introduction

The ongoing climate change has led to an increased
occurrence of heat shock, intensified precipita-
tion, and extreme weather events (IPCC 2014).
Given the high sensitivity of agriculture to climatic

© 2024 The Author(s). Published by IOP Publishing Ltd

variations, the heat stress and changing rainfall pat-
terns pose significant threats to agricultural produc-
tion (Lobell et al 2011, Vogel et al 2019), the dis-
turbance of which may severely jeopardize global
food security. Therefore, investigating the impacts
of climate change on agricultural productivity is
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crucial for mitigating global hunger as well as fos-
tering sustainable food production (Alston et al 2009,
Federico 2010, Bocchiola et al 2019, Hasan et al 2020).

Agricultural total factor productivity (TFP) serves
as an economic index for measuring the ratio of agri-
cultural output (encompassing all crops and live-
stock commodities) by production inputs such as
land, labor, and capital (Fuglie 2018). In compar-
ison to other agricultural metrics such as aggreg-
ate agricultural output and crop yield, TFP reflects
the efficiency of how agricultural economic activit-
ies transform the inputs into outputs, thus provid-
ing a more comprehensive representation of the eco-
nomic efficiency of agricultural production (Ball et al
1997, Christiansen et al 2022). A higher agricultural
TFP implies higher outputs from the same set of
inputs (Fuglie 2021). Inherently, agricultural produc-
tion is susceptible to stochastic fluctuations, which
means that the agricultural TFP growth may oscillate
around a medium value. Hence, the average growth
rate of agricultural TFP measures the capacity to aug-
ment production in the long term without additional
inputs. Since temperature and moisture are crucial
external physical factors affecting crop and livestock
growth, agricultural production is naturally linked to
climate change (Gornall et al 2010). If climate change
adversely affects agricultural production, this typic-
ally results in a slowdown in agricultural TFP growth.
However, the correlation between agricultural TFP
growth and climate variability is not fully understood.
Therefore, it is important to understand the correl-
ation between the growth rate of agricultural TFP
and climate variability, which can shed light on the
adaptability of agricultural production to changing
climatic conditions (Ukhurebor and Aidonojie 2021,
Ukhurebor et al 2022, Jiang et al 2023).

Previous studies that investigate the impact of cli-
mate change on agricultural TFP mainly focus on the
variation in the annual mean value of climate vari-
ables (Liang et al 2017, Letta and Tol 2019, Ortiz-
Bobea et al 2021). However, as demonstrated in exist-
ing studies (Lobell et al 2013, Teixeira et al 2013,
Birthal and Hazrana 2019), productivity losses attrib-
uted to heat stress often occur on a daily scale, which
means that annual average temperature is incapable
of depicting the impact of daily temperature vari-
ations on agricultural TFP. Temperature variability
can affect crop yields by altering the length of the
growing season (Cabas et al 2010), such as delaying
grain-filling (Wheeler et al 2000). Additionally, it also
can reduce the maximum leaf area, thereby impact-
ing photosynthesis and biomass accumulation (Riha
etal 1996). Furthermore, increasing evidences suggest
that climate variability has a significant influence on
various agricultural outputs in terms of crop yields
(Rowhani et al 2011, Luan et al 2021) and livestock
productivity (Ortiz-Bobea et al 2018), as well as on
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agricultural inputs including labor productivity (Shi
et al 2015, Yang et al 2018, Hovdahl 2022), irriga-
tion decisions (Negri et al 2005), and energy invest-
ments (Khan et al 2021). Therefore, the cumulat-
ive impact of day-to-day temperature variability on
these agricultural production elements may signi-
ficantly influence agricultural TFP at a macroeco-
nomic level. Additionally, as demonstrated by Kotz
et al (2022), the overall agricultural output exhib-
its an evident response to variations in rainfall and
higher-order moments of its distribution. Therefore,
itis also imperative to take changes in rainfall patterns
into account when investigating the impact of climate
variations on agricultural TFP.

In this study, we took a preliminary effort to
investigate the impact of day-to-day temperature
variability on agricultural TFP. Firstly, we under-
took a temporal-spatial aggregation of gridded met-
eorological data and NDVI (normalized difference
vegetation index (NDVI) data to the national scale.
Secondly, this study examined the impacts of climate
variability on agricultural TFP, by giving considera-
tion to both the individual effects as well as the com-
bined effects resulting from the interactions between
different independent variables on agricultural pro-
ductivity. Specifically, we examined the variables
including day-to-day temperature variability, aver-
age temperature, rainfall, extreme rainfall as well as
their interactions at a national scale from 1961 to
2018. To identify the heterogeneity among countries
with varying income levels, we constructed a set of
regression models to differentiate the impact of cli-
mate change on agricultural productivity for high-
income and middle-to-low-income nations. The res-
ults of this study may help establish a robust founda-
tion for policy incentives towards safeguarding agri-
cultural productivity and food security in nations
with divergent economic levels.

2. Materials and methods

2.1. Economic data

In this study we obtained the international
Agricultural TFP dataset from the United States
Department of Agriculture (USDA) Economic
Research Service (ERS). This dataset provides
national-level TFP measures for 172 countries from
1961 to 2019 (For details see SI 1.1). However, because
some crops have growing seasons that span calendar
years, we included TFP data from 1962 to 2018 in our
regression models.

2.2. Spatial-temporal aggregation of cropland and
NDVI

To aggregate daily-scale climate variables from grid
cells to the national level, a regionally-weighted
approach is employed that spatially integrates
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Figure 1. Month with highest value of NDVI: ‘greenest month’.

grid-level data up to the national scale. The weighting
factor w, , for each grid cell is determined based on
the proportion of cropland within that cell (supple-
mentary figure 1). Here, r denotes the region, and x
represents the grid cell. The grid-level land cover data
is sourced from Ramankutty et al (2008).

The regression models are based on climate vari-
ables observed during the ‘green season, which is
defined as the three-month period centered around
each grid’s ‘greenest month’ according to the NDVI
data (Eastman et al 2013, May et al 2020, Ortiz-
Bobea et al 2021). The NDVI dataset used is the nor-
malized difference vegetation index-3rd generation:
NASA/GFSC GIMMS dataset for the years 1981-2015
(NCAR 2023). The month with the highest NDVI
value in a given year determines the ‘greenest month’
for each grid cell (see figure 1). Climate variables
are aggregated within the ‘green season’ Crop rota-
tion farming, such as the commonly observed wheat-
corn rotation in Northern China, is not taken into
account due to data unavailability. Additionally, since
the NDVI data is at a raster scale, the ‘green sea-
son’ already excludes periods of the year with limited
vegetation growth.

2.3. Climatic metrics

The meteorological data used in this study, such
as daily surface temperature and total rainfall, were
obtained from the 20CRv3-W5E5 dataset, which
originated from the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP). The 20CRv3-
WS5ES dataset is an interpolation of W5E5 v2.0 (Lange
et al 2022) and the Twentieth Century Reanalysis ver-
sion 3 (20CRv3, Slivinski et al 2021), and has a spatial
resolution of 0.5° (For details see SI 1.3).

Given that macroeconomic data are compiled at a
yearly scale, it is essential to compute climate variables
on an annual basis. Thus, day-to-day temperature
variability is averaged within the ‘green season’ of
a specific year to generate an annual measurement,
which is performed in accordance with the spatial-
temporal aggregation, as shown in equation (1):

7 1 & 1
ry T Z N,
n m Zx Wrx
N,

X E Wrx
X

s,

D,
1 ™ - 2
Doy Zd: (Teay = Temy)” (1)

where "NFW measures day-to-day temperature variabil-
ity for country r in the year y. Here T 4,, denotes the
daily average temperature for grid x on day d in the
year y, while Ty ,, , is the monthly average temperat-
ure for that grid in the given year. D, ,, indicates the
number of days in month m for year y; N, is the num-
ber of grid cells that at least partially fall within the
specified region r. The weight w, , is the proportion
of cropland according to land cover data for that grid
cell. Given that the ‘green season’ spans three months,
n is set to 3 (supplementary figure 2).

In our grid-based calculations, this study employs
multiple metrics for daily rainfall. We define
thresholds for wet days at 0.1, 1, and 90 mm d—!
according to a previous study (Kotz et al 2022). For
extreme rainfall days, the thresholds are set at the
95th, 99th, and 99.9th percentiles of the historical
(1979-2019) daily rainfall distribution at the grid
scale (Barma et al 2022). The number of wet and
extreme rainfall days, denoted as RD(Rc), , is calcu-
lated for each year y and for each specified threshold
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R, which is illustrated in equation (2):

n Dm,y

RD(Rc),, = > H(Rea—Rc) )
m d

H is the Heaviside step function, H(x)=

0,x<0
{ I, x>0~
ations for cell x, year y, denoted as RM, ,, which are
used to better account for intra-annual variability of
weather conditions by looking at monthly values and

comparing them to their long-term distribution (For
details see SI 1.4), are shown as below:

Standardized monthly rainfall devi-

n - -

Rx,m,y - Rx,m Rx,m
RM,, = Z — o (3)

m=1

where R, .., represents the total rainfall for cell x, year
¥, and month m; Rx,m denotes the historical mean
rainfall for that particular cell x and month m, and
Ox,m is the historical standard deviation of monthly
rainfall totals in that cell and RA, is the historical
mean of rainfall totals during ‘green season’ in that
cell. RM, , is calculated by aggregating monthly rain-
fall deviation for cell x in year y. Since the ‘green sea-
son’ lasts for three months, # is set to 3.

2.4. Regression model and marginal effects

We applied a mixed-effects model to explore the
effects of day-to-day temperature variability and the
change of rainfall pattern on agricultural total factor
productivity. To account for the interaction between
temperature and rainfall, we included cross-terms
involving temperature and rainfall-related variables.
i.e. temperature- and rainfall-related variables mul-
tiplied together. Based on the bayesian information
criterion (BIC) and adjusted R? (see table 1), we used
the thresholds of 1 mm d~! and the 95th percentile
of historical values to identify wet days and extreme
rainfall days. The production function, which incor-
porates the USDA’s estimation of TFP (For details
see SI 1.5), was used to examine the relationship
between total output, total input, weather, and tech-
nology. The production function is expressed as

Y., = Sy )A,,me,, which could be transformed as

Y,/ Xey = e/ (M'YY)AW. Y., represents the total agri-
cultural output in year y in region r; A, , measures
technological progress; M, , is the impact of weather,
and X, , is the total agricultural input in year y in
region r (For details see SI 1.5). Therefore, we con-
structed the regression model as below:

InTFP, , = o T, + a, Tf,y +a3T,y+ouT,+ T,
+asRry + agR?, + 07RM,, + asRD;

+ a9RD;, + a0 T,,y * RDW + Ly
+ Yr + €ry (4)
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where TFP, , represents the TFP in region r during
year y; T, is the monthly average temperature dur-
ing the ‘green season’ of each year, and Tny denotes
the day-to-day temperature variability aggregated to
that same ‘green season’. R, refers to the total rainfall
during the ‘green season’ of each year; RM,., signifies
the standardized monthly rainfall deviations; RD,A,),
stands for the number of wet days, and RD;,, denotes
the number of days with extreme rainfall.

Random effects p, and +, are introduced to
capture unobservable factors that change over time
and across regions, respectively. i, can account
for global climatic and economic shocks that affect
all regions simultaneously, such as evapotranspira-
tion or global recessions. Besides, v, captures differ-
ences between regions, such as soil moisture content,
which accounts for the impact of omitted variables.
Generally, our econometric model attempts to con-
trol for A, ,, through country and year random effects
(7 and gy, respectively) and to model the regres-
sions in different ways to represent the M., model
(Ortiz-Bobea et al 2021). To reveals the differences
between different economic level regions, we applied
the same regression model to countries with differ-
ent economic levels, and obtained different regression
results.

The partial derivative of the independent vari-
able is used to express the marginal effect of an inde-
pendent variable, which represents the percentage
change in the growth rate of agricultural TFP (For
details see SI 1.6) for an increase of one unit in the
independent variable. Specifically, the marginal effect
of T}, is denoted as MEj, = a)+2a; Try+ou Tm,.
This indicates that with a per unit increase in the
monthly average temperature, TFP will change by
100*MEy, %.

3. Results

Figure 2 depicts the temporal-spatial changes in agri-
cultural TFP. As shown in figure 2(a), the average
agricultural TFP has been increasing since 1961. The
global growth rate of agricultural TFP has remained
steady over the last fifty years (figure 2(b)). However,
there is a significant spatial heterogeneity in the TFP
growth rates, with Sub-Saharan Africa exhibiting low
growth rates, while Brazil, Kazakhstan, China, the
United States, and India show higher growth rates
(figure 2(b)).

The regression results demonstrate that agricul-
tural productivity is influenced by the higher-order
moments of temperature and rainfall as well as their
interactions. Notably, the interaction between aver-
age temperature, day-to-day temperature variabil-
ity, and the number of wet days exerts a significant
effect on crop yields. (see table 1). In the regression
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models, after incorporating various climatic meas-
ures, the influence of monthly average temperature,
day-to-day temperature variability, and their interac-
tion remains significant and consistent (see table 1,
columns (1)—(3), columns (4)—(5), and columns (6)—
(7), rows 1-4). This suggests that monthly average
temperature and day-to-day temperature variability
exert independent effects. Based on the adjusted R?
and the BIC, the model presented in column (2) of
table 1 is selected as the preferred specification. This
setting and the results are also used when plotting the
marginal effects of the various variables.

3.1. Effect of day-to-day temperature variability

Day-to-day temperature variability affects agricul-
tural TFP in both direct and moderating ways. The
direct effect of day-to-day temperature variability
on agricultural TFP is negative, which means that
higher variability tends to reduce the agricultural
productivity. One unit increase of day-to-day tem-
perature variability leads to a 2% decrease in TFP.
However, day-to-day temperature variability also acts

as amodulator. It can affect agricultural TFP by mod-
erating the impacts of the monthly average temperat-
ure and the number of wet days (see table 1, columns
(2), rows 4, 5, 16).

Day-to-day temperature variability influences
agricultural TFP through its interaction with monthly
average temperature. Our findings suggest that higher
day-to-day temperature variability can mitigate the
negative marginal effects of increasing monthly aver-
age temperature on agricultural TFP. Figure 3(a)
illustrates that an increase in monthly average tem-
perature generally leads to a decline in agricultural
productivity when the marginal impact of temperat-
ure on TFP is below zero. However, higher day-to-
day temperature variability moderates the rate of this
decline. The red line in figure 3(a) represents a scen-
ario with high day-to-day temperature variability (a
value of 5), while the black line depicts a setting with
low variability (a value of 0.5). A comparison of these
lines demonstrates that regions with greater day-to-
day temperature variability show smaller marginal
effects on agricultural TFP as monthly temperatures
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increase. In figure 4(a), we observe that areas like
Central and Southern Africa, Central Asia, Eastern
Europe, and Russia experience higher day-to-day
temperature variability during their ‘green season.
In contrast, regions such as South America, China,
and Australia have lower variability during the same
period. As shown in figures 4(b) and (c), regions with
greater day-to-day temperature variability exhibit a
lesser negative marginal impact of monthly average
temperatures on agricultural TFP, which is observed
in Central and Southern Africa and Central Asia.
Similarly, day-to-day temperature changes
exacerbate the marginal effect of wet days on agri-
cultural productivity. As depicted by the black line in
figure 3(b), the curve is below zero, indicating that
an increase in wet days results in a decrease in agri-
cultural productivity. It is important to note that this
decrease accelerates, highlighting that the negative
impact becomes more evident as the number of wet
days increases. Contrary to the moderating effect
of monthly average temperatures on agricultural

productivity, regions with higher day-to-day tem-
perature variability experience a faster decline in TFP.
Specifically, as day-to-day temperature variability
increases, it amplifies the marginal impact of wet days
on agricultural TFP. Figure 4(d) shows regions with a
deeper purple hue, indicating a significant marginal
impact of wet days on agricultural TFP. These regions
correspond to the areas in figure 4(a) with high day-
to-day temperature variability, such as central and
southern Africa, Central Asia, Eastern Europe, and
Russia.

3.2. Effect of the change of rainfall patterns

Agricultural TFP is influenced not only by temper-
ature metrics but also by rainfall metrics, such as
total rainfall and the number of extreme rainfall
days (figure 3(c)). The impact of extreme rainfall on
agricultural TFP is consistently negative. Figure 3(d)
clearly shows this with a black line indicating a decline
in TFP as the number of wet days exceeding the 95th
percentile increases. Specifically, each additional day
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Figure 4. Day-to-day temperature variability distribution and national estimates of the marginal effect on agricultural
productivity of a 1-unit shock of climatic variables. (a) Day-to-day temperature variability varies geographically. (b) The global
marginal effect of monthly mean temperature at T;,, = 5. (c) The global marginal effect of monthly mean temperature at

T;,, = 0.5. (d) The global marginal effect of wet days.

of extreme rainfall leads to a 0.88% reduction in agri-
cultural TFP. Furthermore, our comparative analysis
shows a direct correlation between extreme rainfall
intensity and its negative impact on agricultural pro-
ductivity. This correlation is particularly evident in
table 1, columns (2), (4), and (6), where an increase
in the number of wet days above the 99th percentile
results in a more significant decline in TFP. In these
circumstances, each additional day of extreme rain-
fall results in a 1.5% reduction in agricultural TFP.

3.3. Heterogeneity of the effect considering income
levels

We built two models in high-income countries
and low-income countries separately. In low- and
lower-income regions, the impacts of both average
temperature and day-to-day temperature variability
on agricultural productivity are more evident com-
pared to high-income regions (table 2 and supple-
mentary figure 3). This could be attributed to the
more frequent occurrence of high average temper-
atures and higher day-to-day temperature variabil-
ity in these regions (see supplementary figure 4).
Additionally, these regions typically are less resilient
to extreme heat and temperature variability, which
makes them more vulnerable to climate change (Dell
et al 2012). Furthermore, the modulating effect of
day-to-day temperature variability on the marginal
impact of wet days is also significant in these lower-
income regions. These regions are also affected by the
total rainfall and the number of extreme rainfall days,
with the influence being more pronounced than in
high-income regions.

Table 2 shows that in high-income regions, overall
rainfall and extreme rainfall have no significant
impact on agricultural productivity. This is likely due
to the advanced technologies and infrastructure in
these wealthier nations, which enable farmers to deal
with the effects of rainfall more efficiently (Dell et al
2012). Among rainfall-related metrics, only rainfall
deviation has a significant influence on agriculture
(table 2).

4, Discussion and conclusions

This study investigated the impact of day-to-day tem-
perature variability, rainfall, and extreme rainfall on
agricultural productivity at a national scale across the
globe for 1961-2018. We lay particular emphasis on
the role of day-to-day temperature variability on agri-
cultural productivity and highlight the heterogeneity
in its impact across countries with varying income
levels.

In contrast to previous literature on the impact
of climate change on agriculture, which primarily
focused on the effects of annual temperature variab-
ility on crop yield (Wheeler et al 2000, Bhatt et al
2019, Rafique et al 2023) or agricultural productiv-
ity (Gornall et al 2010, Rahman and Anik 2020,
Donadelli et al 2022), this study investigated the
influence of day-to-day temperature variability. We
found that this form of variability not only exerts
a direct negative impact on agricultural productiv-
ity but also modulates it through interactive effects
with other variables. This is consistent with previ-
ous results on intra-seasonal temperature variability
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Table 2. The heterogeneity of the effect of climatic variables by
income. Coefficients from two regression models are shown.
Standard errors are shown in parentheses. ***p < 0.001,

**p < 0.01, *p < 0.05, p < 0.1.

Low- and
lower-income High-income
countries countries
Intercept 6.67°"" 5.14***
(0.15) (0.25)
Try —0.25%** —0.09%**
(1.50 x 1072) (2.51 x 107%)
Ty % T, 6.28 x 107 *** 2.39 x 1077+~
(3.74 x 107%) (6.35x 1074
Ty —0.14*** —0.04’
(1.26 x 1072) (2.25x1072%)
Ty yx T, 8.34 x 1077~ 3.24x107°**
(6.41 x 107%) (1.05x 107%)
Ry 9.12 x 1074+~ —1.66 x 107
(1.35 x 107%) (2.56 x 107%)
Ry %R, —5.73x1077*** 974 x 107°
(9.35 x 1079%) (1.73 x 1077)
RM,., —7.64 x 1077 7.62 x 1072**
(1.40 x 1072) (2.72x 107%)
RD(95%), , —0.01*** —7.75x107?
(2.35 x 107%) (4.75 x 107%)
RD(1mm), , —1.26 x 107 —2.35x 107
(8.85 x 107%) (143 x107%)
T,,*RD(1mm) 2.82 x 107%* 6.52 x 107>
(133 x 107 (2.55 x 107%)
country_re yes yes
year_re yes yes
N 3844 2394
adj R? 0.54 0.56
BIC —372.69 1083.10

affecting crop yields in the southeastern United States
(Eck et al 2020). However, existing literature has not
yet explored the modulating effects of day-to-day
temperature variability on other influencing factors
to agricultural productivity. This study concluded
that day-to-day temperature variability can mitig-
ate the marginal negative impact of monthly average
temperature on TFP. High average temperatures with
fluctuations allow for cooler days that benefit crop
growth, while low average temperatures with warmer
days can also support growth (Yang et al 2017). This
offset may be due to increased farmer awareness of
climate variability, enabling adaptive strategies (Abid
etal 2019), such as improved irrigation and temperat-
ure regulation techniques (Rapholo and Diko Makia
2020). Additionally, this study also revealed that day-
to-day temperature variability exacerbates the negat-
ive marginal effects of wet days on TFP. Day-to-day
temperature variability and regional rainfall patterns
have a bi-directional effect, thus adversely affecting
crop yields. Increased temperatures can evaporate soil
moisture (Seneviratne et al 2010, Lesk et al 2021),
and increasing water vapor in the air. When there is
a drop of temperature, this water vapor condenses

Z Zou et al

into rain (Lenderink et al 2010, Ali et al 2018) and
leads to increased rainfall. This phenomenon may be
attributed to an increase in rainfall, which has led to
an elevated rate of empty shells in the crop (Potopova
et al 2017, Davis et al 2019).

Beyond temperature-related factors, rainfall
metrics, such as total rainfall and the number of
extreme rainfall days, also impact on agricultural
productivity (Amare et al 2018). This study demon-
strates a diminishing positive marginal effect of total
rainfall on agricultural productivity, which shifts to
a negative impact as rainfall levels continue to rise.
Excessive rainfall can also lead to the exposure of pol-
lutants in agricultural and pasture soils. This not only
potentially causes damage to crops but also affects
the quality of fodder, thereby dampening livestock
production (Godde et al 2021). This analysis further
substantiated that the number of extreme rainfall days
exerts a consistent negative marginal effect on agri-
cultural productivity. Similarly, this negative impact
is related to not only crop yields (Troy et al 2015)
but also livestock production (Habte et al 2022). This
study suggests that the severity of extreme rainfall
events amplifies their harmful effects, particularly
during crop germination and maturation stages. For
instance, in rice production, extreme rainfall affects
the number of filled grains and effective panicles,
with the impact closely tied to rainfall intensity (Fu
et al 2023).

The effects of temperature, rainfall, and their
interactions on agricultural productivity vary sig-
nificantly among countries with differing income
levels. This study found that in low-income regions,
both temperature and rainfall significantly impact
agricultural productivity (Di Falco et al 2012). In
contrast, in high-income countries, while temperat-
ure exerts an evident influence, the role of rainfall
is less significant, which also agrees with the finding
of a previous study (Doganlar et al 2022) that spe-
cifically focuses on the effects of climate change on
the total economic output in high-income regions.
Comparing the impact of temperature and rain-
fall on TFP between high-income and low-income
countries, we find that the regression coefficients for
most low-income countries are higher than those
for high-income countries. This discrepancy can be
attributed to several factors. High-income countries
implement climate-smart measures, such as agricul-
tural sensors, enhancing food production (Gangwal
et al 2019). In contrast, low-income countries often
lack these measures and struggle to adjust to weather
changes, making their TFP more sensitive to tem-
perature and rainfall variations. Additionally, low-
income countries commonly practice monoculture,
leading to soil nutrient depletion, degraded soil
health, increased pest infestations, and reduced insect
diversity (Maja et al 2021). Long-term monoculture
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hinders adaptation to climate change (Feliciano
2019), exacerbating TFP sensitivity in low-income
countries. Therefore, these findings emphasize the
need to adapt policy measures to region-specific
conditions and vulnerabilities when designing
and implementing climate change adaptation
strategies.

There are some limitations and directions for
future research. First, since TFP only has access to
national-scale data, the global results we get may
mask disparities between regions. This makes it
important to produce a regional-scale TFP datasets
in the future. Second, there might be some uncer-
tainties in the simulated (reanalyzed) rainfall for low-
income countries in the results of global and regional
rainfall simulations. For example, W5E5 has lower
interannual variability than ERA5 for regions such
as Timor Leste (For details see SI 1.7). This high-
lights the need for improvement in future studies.
This study provides essential support that can enable
farmers worldwide to better adapt to climate change
and extreme weather conditions.
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