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Abstract
Sub-Saharan Africa is projected to be exposed to substantial climate change hazards, especially in
its agricultural sector, so adaptation will be necessary to safeguard crop yields. Tropical and
subtropical maize production regions approach critical temperature thresholds in the growing
season already in today’s climate, and climate change might already be contributing to this. In this
study we analyse the impact of anthropogenic climate change on maize yields and the potential for
adaptation in Cameroon. We innovate by introducing a counterfactual climate as baseline to a
definition for adaptation potential proposed in the literature to assess the relative benefit
heat-tolerant crop varieties have already under current and under projected climate change.
Spatially detailed simulations of maize yields are performed using the process-based crop model
APSIM with W5E5 reanalysis data and bias-corrected and downscaled climate model data from
CMIP6/ISIMIP3b for counterfactual, historical and projected future climate scenarios SSP1-2.6
and SSP3-7.0. It is found that unadapted maize yields experience significant losses under all
climate change scenarios, with mean losses of 0.3 t ha−1 for the current period compared to the
counterfactual climate without anthropogenic climate forcings and that yields are significantly
higher for the heat-tolerant varieties across all scenarios simulated. Yield impacts of heat tolerance
are highest under projected climate change, making it effective climate change adaptation. This
result is robust to the exact value of parameterised heat tolerance. Breeding heat-tolerant varieties
as parameterised in this study can be an effective adaptation but is still not enough to mitigate
simulated losses under a high-emissions scenario.

1. Introduction

Climate change is projected to adversely affect agri-
cultural production throughout the world, threaten-
ing the required productivity gains to achieve food
security for a growing world population (Cairns et al
2013, Zhao et al 2017, Jägermeyr et al 2021). Sub-
Saharan Africa (SSA) possesses substantial exposure
to climate shocks in its agricultural sector (Müller
et al 2014, Epule 2021, Nelson et al 2022) with
already observed climate change impacts on agricul-
tural productivity (Iizumi et al 2018, Sultan et al 2019,
Ortiz-Bobea et al 2021). Cameroon specifically is a

climate-vulnerable country dependent on cereals for
its food security, of whichmaize is the dominant crop
(Manu et al 2014). Temperatures in tropical maize
growing regions during the growing season (GS) fre-
quently approach crop-limiting thresholds (Yengoh
et al 2010, Jägermeyr et al 2021), making maize farm-
ing highly sensitive to climate extremes (Epule 2021)
such as heat waves, which are likely to increase under
future climate change (Gourdji et al 2013, Zhang et al
2018, IPCC 2023).

Several studies indicate a growing biophysical
limitation to maize production in tropical rain-
fed environments, namely due to an increase of
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drought and heat stress (Cairns et al 2013, Cairns
and Prasanna 2018, Prasanna et al 2021). As con-
ditions causing heat stress are expected to become
much more likely under climate change, in particular
for the high-emissions scenarios (Lobell et al 2011b,
Wang et al 2020, Kummu et al 2021), developing heat-
tolerant maize varieties may be paramount. Their
potential can be assessed prior to investments in field
trials and varietal development using process-based
crop models such as the Agricultural Production
Systems Simulator (APSIM; Holzworth et al 2014;
extensively validated for maize and often used for cli-
mate change impact studies formaize and other crops
in SSA; see Bassu et al 2014, Falconnier et al 2020,
Rötter et al 2018).

Improvements in crop tolerance to climatic
stresses cannot be equated with measures that com-
pensate for yield loss under future climate change.
Stresses from drought and heat already are a common
stress in most maize cropping systems under present
climate (Gourdji et al 2013, Schauberger et al 2017).
This means that higher heat tolerance might lead
already to benefits in yield regardless of future climate
change. Maintaining a strict definition of climate
change adaptation as an activity reducing climate
change impacts, clearly separating it from climate
change-independent benefits of agricultural develop-
ment, i.e. intensification (Lobell 2014), can inform
decision making in climate policy and financing.

Attribution science, however, makes it clear that
climate change is happening now (Eyring et al
2021, Seneviratne et al 2021, Otto 2023), and is
already having impacts (Ortiz-Bobea et al 2021,
O’Neill et al 2022). A rigorous definition of cli-
mate change adaptation should thus include present
climate change. We therefore innovate on Lobell
(2014)’s approach by introducing a baseline that
represents a counterfactual climate that might have
occurred without increasing greenhouse gas concen-
trations and changes in other human-induced cli-
mate forcings since 1850. This allows to assess adapt-
ation potential under both current and projected cli-
mate change. As populations in both West Africa and
Cameroon are growing and strongly rely on subsist-
ence agriculture, timely adaptation to both current
and future climate change has large potential bene-
fits for food security in a region that is home to more
than 450 million people, of which more than 50 mil-
lion are considered food insecure (IPC 2024).

While multiple impact modelling studies have
already incorporated drought tolerance, heat toler-
ance, and other yield-enhancing traits into synthetic
crop varieties in order to quantify the potential of
varietal improvement under future climate change
(Singh et al 2014, Tesfaye et al 2017, Zhang and Zhao
2017, Beah et al 2021), none have used the rigorous
adaptation definition presented above that accounts
for the influence of climate change on current cli-
mate. Furthermore, studies on heat tolerance inmaize

forWest Africa and Cameroon specifically have rarely
been done (for an exception, see Parkes et al 2018)
or deal with other crops (Guan et al 2018) and do
not assess yield sensitivity to the degree of heat toler-
ance increase. The presented study fills these gaps by
modelling the effect of three degrees of crop-varietal
heat-tolerance in maize and their potential as climate
change adaptation under current and future climate
change using counterfactual, factual, and projected
future climate scenarios.

2. Data &methods

2.1. Study area
Cameroon is a tropical country in central-western
SSA with a population of 27 million, the majority of
which lives in rural areas andworks in the agricultural
sector (Epule 2021). The climate in Cameroon can be
divided into twomajor zones based on the oscillations
of the Intertropical Convergence Zone: a tropical-wet
Guinean climate with short dry seasons in the south,
mountainous west, and coastal parts with maritime
influence as well as a sub-tropical zone with a longer,
distinct dry season encompassing the rest (Tingem
et al 2008, Mboka et al 2021). These areas can be
divided into five specific agro-ecological zones (AEZs,
figure 1, Yengoh et al 2010). A detailed description
of the zones is given in the supplemental information
(S1).

2.2. Crop yield modelling
2.2.1. Crop system model: APSIM
APSIM is a process-based model that simulates crop
growth in a daily time step forced by temperature,
radiation, soil moisture, and nutrient supply. Crop
species, weather, soil, and management variables are
provided to the model to cover site-specific condi-
tions. APSIM includes management routines repres-
enting agricultural practices in tropical rainfed envir-
onments, such as intercropping, sowing based on
rainfall, and complete residue removal at harvest.

APSIM accounts for both water and temperat-
ure stresses during crop growth. Water deficits dir-
ectly limit photosynthesis as well as leaf-expansion
and can slow phenology. Temperature stress mainly
affects crop growth indirectly due to raising the atmo-
spheric evaporative demand, limiting transpiration
and subsequently radiation use efficiency. The maize
module includes a temperature-dependent grain set-
limiting factor which is of particular interest to the
simulation experiment conducted in this study. It is
calculated as an accumulated weighted average using
thermal time under heat stress during flowering as
theweightingmultiplied by a temperature-dependent
stress value, progressively reducing grain set and thus
potential grain number and creating a sink limitation
(P. de Voil, personal communication, 12 December
2022).
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Figure 1.Map of Cameroon and neighbouring countries with altitudes and agro-ecological zones. Locations of selected major
rivers (length>100 km), the capital, and selected major cities (population>200 000) are further shown. Inset map shows the
location of Cameroon on the African continent with Cameroon highlighted in red.

2.2.2. Model input data
2.2.2.1. Climate
Climate data for the impact assessment simulations
were taken from the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP) phase 3 data. The
W5E5 v2.0 reanalysis product (Lange et al 2021),
part of ISIMIP3a (Frieler et al 2024) was used as
the observationally derived dataset. Moreover, the
ISIMIP3b climate input datasets (Lange and Büchner
2021, 2022) that are bias-adjusted to the W5E5 data
and statistically downscaled were used which con-
sist of 10 global climate models (GCMs) taken from
the Climate Model Intercomparison Project Phase 6
(CMIP6; Eyring et al 2016). All climate input data had
0.5◦ (roughly 50 km2 at the equator) and daily spatial
and temporal resolution.

The climate change scenarios employed were
based on the shared socioeconomic pathways (SSP)
used in CMIP6-ScenarioMIP (O’Neill et al 2016,
Riahi et al 2017). Two contrasting scenarios and
RCPs were considered: SSP1-2.6, which implies sig-
nificant shifts in global cooperation of economies

towards mitigation, and SSP3-7.0, which repres-
ents a continuation of past trends. The counterfac-
tual climate data are sourced from the ISIMIP3b
climate input datasets as well and comprise 6
GCMs/simulations (see table A in S3 for details). The
counterfactual climates approximate climate without
anthropogenic forcings (Gillet et al 2016, as part of
CMIP6-DAMIP), i.e. a hypothetical scenario where
human-induced emissions of greenhouse gases, aer-
osols, and other short-lived climate forcers as well
as land-use changes have not influenced the climate
system.

2.2.2.2. Soil, cultivar & management
We parametrised soil profiles for each grid cell indi-
vidually except for soil inorganic N. Soil profiles were
obtained from the International Soil Reference and
InformationCentre SoilGrids 2.0 dataset (Poggio et al
2021, Miguez 2022). Layer-specific data on soil inor-
ganic N in tropical soils is scarce and no data exists for
the whole of Cameroon (Silatsa and Yemefack 2017).
As APSIM requires soil inorganic N for modelling

3
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crop growth, data from literature (Shepherd et al
2000, Tully et al 2016, Suzuki et al 2017) using
study sites with comparable climatic characteristics to
Cameroon’s AEZs were chosen, taking previous agri-
cultural use into account (see table B in S3 for details
and S5 for a discussion on uncertainties).

The baseline or unadapted maize cultivar used in
all simulation runs was Hybrid 511, a cultivar already
calibrated in APSIM using field-scale trial data.
Hybrid 511 is a Kenyan medium-maturing hybrid
with a growth period averaging 120 d suited for mid
to high altitudes (KALRO 2023). It is representative
of maize cultivars grown in tropical rainfed envir-
onments and similar to the medium maturity CMS
8704 variety, Cameroon’smost widespreadmaize cul-
tivar (Mafouasson 2020, IFATI andMINEFOP 2022).
Following methodologies to model heat tolerance by
Tesfaye et al (2017) and Zhang and Zhao (2017), the
threshold temperatures above which grain number is
reduced were shifted by +1 ◦C for the hypothetical
heat-tolerant cultivar. To assess the sensitivity of the
resulting yield impacts of heat tolerance, alternative
threshold temperature shifts of+0.5 ◦C and+1.5 ◦C
were tested as well.

Management of the maize crop in APSIM was
calibrated such that it represents growing practices
typical for Cameroon and kept static across all grid
cells except for sowing date. The sowing date var-
ied with AEZ according to the agricultural calen-
dar of Cameroon’s National Observatory on Climate
Change (ONACC 2021). Maize was rainfed and
received no fertilizer. Sowing criteria were set as a
minimum of 20 mm of rainfall over the course of five
days in order to represent the onset of the rainy sea-
son, which is typically when farmers start planting in
Cameroon. Maize was sown twice per year in AEZ
V as two maize-GSs are enabled in this zone by its
bimodal rainfall pattern.

2.2.3. Simulation setup and model evaluation
APSIM simulations were set up in APSIM Classic
7.10 using a grid-based approach on national scale
for Cameroon. As agricultural activity is present
in almost all of Cameroon (REDD-PAC 2015),
and existing crop mask products do not agree on
the extent and location of maize production in
Cameroon, spatial masking of agricultural land area
was not performed. Model evaluation was based on
simulations for the observational climate reanalysis
input dataset for the period of 1984–2014. A spin-up
period to equilibrate soil moisture contents was set
to five years before each simulation time period. This
setup resulted in a total of 1 361 050 simulation years
across all factors.

The model was evaluated by comparing the
model-simulated yields with observed yields for
Cameroon obtained from the global dataset of his-
torical yield (GDHY; Iizumi 2019) and reported
FAOSTAT national yields (FAOSTAT 2024). GDHY

uses satellite-derived crop-specific vegetation indices
and FAO-reported country yield statistics to create
grid-level yields. Only yields from themajormaizeGS
were considered. The model was evaluated by using
goodness of fit, i.e. the coefficient of determination
R2, mean absolute error, root mean square error, per-
cent bias (pBias), and Willmott’s index of agreement
d (Willmott 1982) for 20 year yield means of the ref-
erence period 1995–2015.

2.3. Adaptation potential definition
Adaptation impacts were calculated as given in
figure 2 following Lobell (2014) as the absolute yield
differences between the unadapted and the adapted
cultivar. To calculate the true potential for adapta-
tion, we take the absolute difference between adapt-
ation impacts under the counterfactual climate and
under current or future projected climate change. All
differences are calculated from20 yearmean yields for
the four time periods 1995–2015, 2020–2040, 2040–
2060 and 2080–2100. Positive values of the adapta-
tion potential indicate a greater yield advantage from
the cultivar change under climate change than under
no-climate change conditions (figure 2(a)), indicat-
ing true climate change adaptation.

3. Results

3.1. Current and projected climate change impacts
onmaize yields
The APSIM maize model is able to reproduce
observed yields satisfactorily, giving a Willmott’s
d > 0.8 and low pBias of 2.9, though individual grid
cells are not simulated well (see figure (E) in S4).
Means of factual yields match the national mean of
observational yield data at 2.3 t ha−1.

Yields in Cameroon have already been negatively
impacted by climate change (figure 3), as counter-
factual yields are significantly higher (p < 0.001, see
table C in S3) than factual yields, with the strongest
impact visible in AEZs I and IV at−25% and−13%,
respectively (see table D in S3 for details). Both cur-
rent and projected future climate change show a gen-
eral increase in GS mean temperature (figure (A) in
S2) and the number of hot days (figure (C) in S2)
during the GS, with a more mixed picture for total
precipitation and the number of dry days (figures (B)
and (D) in S2), with changes for most zones and GS
climate variables increasing in magnitude with cli-
mate change scenario and time. The simulated yield
impacts reflect this climate signal. Apart from indi-
vidual grid cells, yield impacts under projected cli-
mate change constitute losses, with all AEZs seeing
further decreases in yields in all periods and climate
change scenarios, with the highest losses towards the
end of the century. National average yield losses range
from 16% to 25% under SSP1-2.6 in the periods
2020–2040 and 2080–2100, respectively, and from
14% to 69%under SSP3-7.0 for the same periods. The
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Figure 2. Adaptation impact on crop yields and adaptation potential adapted from Lobell (2014) and extended by the authors for
(a) a scenario where adaptation potential is maximised, and (b) a scenario where adaptation potential is negligible.

Figure 3. (a) Counterfactual maize yield (Yld) averaged over 1995–2015 and relative changes compared to this baseline for
(b)–(d) SSP1-2.6 averaged over 2020–2040, 2040–2060 and 2080–2100, (e) factual simulations averaged over 1995–2015 and
(f)–(h) SSP3-7.0 averaged over 2020–2040, 2040–2060 and 2080–2100.

highest losses are simulated in the hottest AEZ, AEZ
I: Compared to the counterfactual scenario, yields are
already 25% lower, with losses almost doubling by
2030 under both climate change scenarios, reaching
57% and 87% by 2090 under SSP1-2.6 and SSP3-7.0,
respectively.

3.2. Heat-tolerance adaptation: impact on yield
and adaptation potential
Visualising the relationship between maize yield and
the number of hot days in theGS as a proxy for climate
change stress (as described in figure 2) gives insight to
the different yield responses of heat-tolerant cultivars

(figure 4). Yields of the heat-tolerant cultivars are sig-
nificantly higher (p< 0.01) than those of the baseline
cultivar in all scenarios, time periods and AEZs.
Mean yield impacts of adaptation, i.e. the difference
between baseline and heat-tolerant yields, are lowest
under the counterfactual climate but still significant
(p < 0.01), ranging from 0.05 [0.03; 0.06]1 t ha−1

in AEZ III to 0.38 [0.24; 0.58] t ha−1 in AEZ I for
the heat tolerance increase by 1 ◦C [0.5 ◦C; 1.5 ◦C],
respectively. The pattern of hotter AEZs benefitting

1 Numbers in brackets denote values for the [+0.5 ◦C; +1.5 ◦C]
cultivars, while unbracketed numbers refer to values for the+1 ◦C
cultivar.
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Figure 4.Maize yields averaged over each AEZ as a function of AEZ-mean growing season number of hot days (GSnhd) by cultivar
adaptation. Data points are individual years. Colours highlight different scenario data subsets. Point shape denotes baseline and
+1 ◦C cultivars. Fitted lines are LOESS fits of all cultivars (for visualisation only).

Figure 5.Mean yield impact of heat tolerance (t ha−1) as a function of growing season-mean temperature (GSmeanT in ◦C) by
climate scenario (colour) and cultivar for individual grid cells (data points). Fitted lines are LOESS fits (for visualisation only).

more from heat-tolerance adaptation does not hold
under projected climate change: Under SSP3-7.0, it is
the hottest AEZ I that sees the lowest yield impact in
the late period of 2080–2100. Yield gains from heat
tolerance compared to the yields of the baseline cul-
tivar in the corresponding scenario increase generally
with the degree of heat tolerance and climate change,
with a national average yield impact of 0.31 [0.18;
0.41] t ha−1 under current climate change compared
to 0.18 [0.11; 0.24] t ha−1 for the counterfactual scen-
ario. National average yield gains under projected cli-
mate change reach a maximum of 0.49 [0.26; 0.68]
t ha−1 in 2090 under SSP1-2.6, while they decrease
under SSP3-7.0 after 2050 (see figures (F)–(H) in S4).
The yield impact curve of heat tolerance seems to be
linked to a non-linear response to GS mean temper-
ature: The highest yield impact is realised under GS

mean temperatures of ~28 ◦C and increases with the
degree of heat tolerance (figure 5).

Looking at the adaptation potential of heat-
tolerance under current and projected climate
change, the following patterns emerge: Adaptation
potential is generally positive under both current and
projected climate change except in the extreme north
of Cameroon; and adaptation potential is higher
under projected climate change than under current
climate change (figure 6). National average adapta-
tion potentials range from 0.13 [0.07; 0.16] t ha−1

under current climate change and peak at 0.34 [0.17;
0.48] t ha−1 under SSP3-7.0 by 2050. Adaptation
potential decreases slightly under SSP3-7.0 after the
midterm period 2040–2060 for all heat-tolerant cul-
tivars except the +1.5 ◦C cultivar, making yields in
the late 2080–2100 period the most sensitive to the

6
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Figure 6. (a) Baseline yield impact of heat tolerance under the counterfactual climate (∆Yld) averaged over 1995–2015.
Adaptation potential (Adpt) of heat tolerance for (b)–(d) SSP1-2.6 averaged over 2020–2040, 2040–2060 and 2080–2100, (e) the
factual simulations averaged over 1995–2015, and (f)–(h) SSP3-7.0 averaged over 2020–2040, 2040–2060 and 2080–2100.
Hatching indicates less than 50% mean difference between the values derived for the+1 ◦C heat-tolerant cultivar and the
+0.5 ◦C/+1.5 ◦C cultivars.

degree of heat tolerance (figure 6). Values of absolute
and relative mean yield impacts of heat tolerance and
its adaptation potential are given in tables E and F in
S3.

4. Discussion & conclusion

This study used APSIM for spatially resolved mod-
elling of maize yields in Cameroon under climate-
model derived data for counterfactual, current, and
future climate for a baseline cultivar representing cur-
rent practice and three hypothetical heat-tolerant cul-
tivars, a switch to which is discussed as a scalable agri-
cultural adaptation measure to climate change. We
find that climate change has significantly decreased
maize yields andwill continue to do so,making effect-
ive adaptation paramount. Heat tolerance signific-
antly increases yields under all scenarios, and adapt-
ation potential is positive for both low- and high-
emission scenarios. The novelty of this paper is to
extend the adaptation impact framework from Lobell
(2014) to show that current climate already includes
attributable anthropogenic climate change and that
heat-tolerant varieties already have a positive adapta-
tion potential. This means that yield gains under cur-
rent (factual) climate also constitute climate change
adaptation. Furthermore, the adaptation potential of
heat tolerance increases under future climate change,
which is in line with results from Guan et al (2018)
and Singh et al (2014). Furthermore, yield impacts

are proportional but robust to the degree of paramet-
erised heat tolerance.

A positive adaptation potential was found for cur-
rent and projected climate change, though adapta-
tion impacts varied across time, AEZs, and climate
change scenario. The adaptation potential was neg-
ligible in AEZ I for all climate change scenarios,
implying that heat tolerance as parametrised in this
study constitutes more of an adaptation to counter-
factual conditions in this AEZ rather than to cur-
rent or future climate change. GS maximum tem-
peratures in AEZ I in the counterfactual baseline
already eclipse 34 ◦C, and yield declines for maize are
expected for temperatures above 30 ◦C (Lobell et al
2011a), in line with the premise of maize yield’s tem-
perature sensitivity and the regional production sys-
tem’s operation close to critical thresholds. Climate
change impacts and consequently adaptation poten-
tials can of course bemediated by amultitude of other
factors, such as a shortening of phenological periods,
CO2-fertilisation, and water stress (Rötter et al 2018,
Minoli et al 2019, Falconnier et al 2020). However,
our crop model forced with multivariate climate data
which represents also other stresses, identified indeed
heat stress and correspondingly, heat tolerance, as the
major factor in mediating yield impacts in Cameroon
under climate change (for a more detailed examina-
tion of the confounding factors, see S5). This shows
the relevance of focusing in this study on adaptation
to heat.

7
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The high adaptation potentials in AEZ II, IV and
V under future climate change peak in the period
2040–2060 for SSP3-7.0 and in the period 2080–2100
for SSP1-2.6 which suggests a high suitability of the
modelled heat tolerances for mitigating impacts of
low to medium amounts of warming. Nevertheless,
the low or even negative adaptation potentials in AEZ
I and under end-of-century warming for SSP3-7.0
showcase limits of the degree heat tolerance paramet-
erised in this study. As adaptation impacts increased
with the increase of threshold temperatures, higher
heat tolerances may extend these limits further. Yet,
it is unclear if modelled heat tolerance of this mag-
nitude can be achieved using real-world breeding
efforts, as genetic diversity of heat tolerance in maize
remains largely unknown (Tiwari and Yadav 2019,
Dong et al 2021) and yields may become increasingly
water- and nutrient-limited instead. Furthermore,
this study uses synthetic cultivars whose only dif-
fering trait is their heat tolerance, enabling isolation
of its yield impact—real-world cultivars may come
with different traits altogether due to the heat tol-
erance trait’s polygenic nature. Studies on heat tol-
erance in maize in other regions show a common
trend in heat tolerance being able to mitigate mod-
elled yield losses under projected climate change at
least partially (Tesfaye et al 2017, Zhang and Zhao
2017, Guan et al 2018), sometimes even completely
(Tachie-Obeng et al 2013). This is reproduced and
extended by the presented results, though compar-
isons with other studies are complicated due to the
employment of different climate change scenarios,
time periods and parameterisation of heat tolerance.
Nevertheless, any degree of heat tolerance was found
to be beneficial for yields. The simulated yield impacts
and climate change adaptation potential of heat toler-
ance in this study should thus be seen as an impetus
for refocusing breeding and research efforts on heat
tolerance, especially as varietal development can take
up to 30 years (Challinor et al 2016).

Projected future yield losses found here are higher
than those from previous studies. Other estimates
range generally between 10% and 30% by 2090
for maize yield in SSA under high emissions scen-
arios or equivalent climate conditions (⩾4 ◦C of
warming) and no adaptation (Tingem and Rivington
2009, Waha et al 2013b, Challinor et al 2014, Liman
and Maina 2018, Falconnier et al 2020, Jägermeyr
et al 2021, Carr et al 2022). Our values for the
Cameroon-average end-of-century mean yield losses
under SSP3-7.0 amount to more than double of this.
This underlines the significance of including direct
heat stress effects on heat-sensitive crops such as
maize as climate change impacts may otherwise be
severely underestimated. Our inclusion of a counter-
factual baseline further shows that yields losses under
climate change are already significant today, not only
in the future. Parkes et al (2018), who use a differ-
ent model with explicit heat stress parametrisation,

also find high maize yield losses of 38% for 4 ◦C of
warming and no adaptation. Furthermore, modelled
yields of the adapted varieties are still lower than their
baselines under SSP3-7.0, which underscores the role
of mitigation in reducing climate change impacts.

Despite these advances, we note some caveats.
Although our cropmodel evaluated with a high index
of agreement d >0.8 comparable to those in sim-
ilar studies (Tachie-Obeng et al 2013, Chemura et al
2021, Heinicke et al 2022), uncertainties in the mag-
nitude of the yield response to heat remain, as evid-
enced by the sensitivity of yields to the degree of
parameterised heat tolerance. Historical exposure to
critical temperatures for maize has been low in its
global production regions (Gourdji et al 2013), hence
there are few observed heat events to draw data from.
Moreover, model uncertainty under extreme temper-
atures remains high (Roberts et al 2017, Heinicke
et al 2022). Crop models have also not been valid-
ated under the extreme conditions expected at the end
of the century for high emissions scenarios (Jin et al
2016, Rötter et al 2018), caveating the extreme yield
declines under SSP3-7.0 in 2090 found here. This is a
common issue as the parameterisation of heat stress
effects through empirical relationships may not hold
outside current ranges of climatic variability (Schewe
et al 2019), calling for further crop model evalu-
ation and development (Rötter et al 2018, Minoli
et al 2019, Falconnier et al 2020, Couëdel et al 2023).
Using a crop model ensemble would not overcome
this issue but might increase confidence in modelled
yields otherwise; to reach performance comparable to
site-based crop model calibrations however requires
an ensemble of at least eight calibrated crop models
(Falconnier et al 2020), whichwas out of scope for this
study. The homogeneity of simulated end-of-century
yield losses is noteworthy as other studies find much
more spatially heterogeneous climate change impacts
on cereal yields in Ethiopia or Burkina Faso also using
gridded national-scale approaches (Chemura et al
2021, Arumugam et al 2023).

Laux et al (2010) found a high dependence of
maize yields on planting date in Cameroon under
climate change with yield-maximising dates differ-
ing up to two months from current dates, suggest-
ing pronounced seasonality in maize’s heat expos-
ure. Shifts in sowing date are indeed often men-
tioned as possible adaptation strategies for heat stress
(Tesfaye et al 2017, Waqas et al 2021). The adapta-
tion impact of heat tolerance as modelled here might
thus be maximised if the GS timing is concom-
itantly adapted to climate change. Eventual wide-
spread adoption of new heat-tolerant cultivars also
depends on local availability and effectiveness of
governmental and non-governmental extension ser-
vices communicating their benefit, their suitability
to local contexts and environments, including cul-
tivar parameters unrelated to yield such as taste and
texture, on farmer education level and on access to
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inputs (Kafle 2010, Acevedo et al 2020, Murken et al
2024). Given the critical role of maize as a staple
crop in Cameroon and many other regions, effect-
ive adaptation to climate change through the adop-
tion of heat-tolerant cultivars could thus significantly
enhance food security and resilience for smallholder
farmers. Even with such adaptation, however, negat-
ive climate change impacts in this respect are to be
expected, as we find that absolute yields decreased
under SSP3-7.0 even for the best-adapted cultivar
despite highest adaptation benefit. Informed agri-
cultural adaptation as contributed to by this study
will hence be paramount, whereas any definition of
‘adaptation’ needs to consider an updated frame-
work such as the one suggested here that acknow-
ledges that climate change is already having impacts
today.
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