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Declining precipitation frequency may drive
earlier leaf senescence by intensifying
drought stress and enhancing drought
acclimation

Xinyi Zhang1,2,3, Xiaoyue Wang 1,2 , Constantin M. Zohner 4,
Josep Peñuelas 5,6, Yang Li 7, XiuchenWu 8, Yao Zhang 9, Huiying Liu 10,
Pengju Shen 1,2, Xiaoxu Jia1,2, Wenbin Liu 1,2, Dashuan Tian 2,6,
Prajal Pradhan 11,12, Adandé Belarmain Fandohan 13, Dailiang Peng 14 &
Chaoyang Wu 1,2

Precipitation is an important factor influencing the date of foliar senescence,
which in turn affects carbon uptake of terrestrial ecosystems. However, the
temporal patterns of precipitation frequency and its impact on foliar senes-
cence date remain largely unknown. Using both long-term carbon flux data
and satellite observations across theNorthernHemisphere,we show that, after
excluding impacts from of temperature, radiation and total precipitation by
partial correlation analysis, declining precipitation frequencymay drive earlier
foliar senescence date from 1982 to 2022. A decrease in precipitation fre-
quency intensifies drought stress by reducing root-zone soil moisture and
increasing atmospheric dryness, and limit the photosynthesis necessary for
sustained growth. The enhanced drought acclimation, showing a more rapid
response to drought, also explains the positive relationship between pre-
cipitation frequency and foliar senescence date. Finally, we find 30 current
state-of-art Earth systemmodels largely fail to capture the sensitivity of DFS to
changes in precipitation frequency and incorrectly predict the direction of
correlations for approximately half of the northern global lands, in both his-
torical simulations and future predictions. Our results therefore highlight the
critical need to include precipitation frequency, rather than just total pre-
cipitation, into models to accurately forecast plant phenology under future
climate change.

Plant phenology is greatly affected by ongoing changing climate1–3.
While spring leaf-out is typically driven by temperature, where warm-
ing leads to earlier spring leaf-out4, predicting temporal changes in the
dates of autumn foliar senescence (DFS) is more complex due to the
multitude of influencing factors. Across northern terrestrial

ecosystems, observations and model predictions of DFS are mixed,
with both earlier and later senescence reported under different
conditions5,6. For example, rising temperatures late in the season can
delay DFS given sufficient water availability7. Conversely, warmer
conditions can also speed up seasonal development, resulting in
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earlier DFS8. Moreover, water availability plays a crucial role in autumn
phenology, with severe droughts causing earlier DFS9. Thus, under-
standing the impact of water availability on DFS changes is becoming
increasingly vital in the context of climate change10, especially with the
expectation of more frequent and severe droughts in the future11,12.

Precipitation is essential for plant growth, particularly through the
replenishment of soil moisture13. However, its impact on DFS varies
widely, with both positive and negative effects reported. This incon-
sistency is likely due to local environmental factors, such as the
amount of annual precipitation, and geophysical conditions like
topography14. The complexity of these patterns and the lack of a clear
understanding of the underlying processes make it challenging to
accurately model the effects of precipitation on DFS. Previous
researches have primarily focused on the total amount of precipita-
tion, but recent studies suggest that it is also essential to consider the
temporal patterns of precipitation, such as frequency and intensity,
which may have a more pronounced impact on plant phenology15–17.
For instance, changes in the frequency of rainfall events, especially
prolonged dry periods between events, have been shown to shorten
the growth period of various plant species18. In arid and semi-arid
ecosystems, shifts in rainfall frequency have been found to sig-
nificantly alter plant physiological response, such as water uptake
efficiency and photosynthesis rates, which could ultimately affect
DFS19. A previous study found that leaf onset date is impactedmore by
precipitation frequency than by its total amount16. This finding is also
crucial for understanding DFS, as vegetation tends to be more sensi-
tive to water availability in autumn than in spring20, whichwould affect
ecosystem carbon balance, productivity, and climate feedbacks dif-
ferently than leaf onset. Therefore, the focus should not be limited to
the total precipitation amount but should also encompass its temporal
distribution, such as frequency, to better understand its effects
on DFS.

Northern hemisphere includes a diverse range of climate zones,
vegetation types, and precipitation regimes, making it an ideal region
to examine how different precipitation patterns affect DFS. Further-
more, the Northern Hemisphere contains most of the world’s terres-
trial vegetation, and phenological changes here significantly impact
global biogeochemical cycles and climate systems21. In addition, dif-
ferent plant functional types may respond in diverse ways to changes
in precipitation patterns due to their varying physiological traits and
adaptations22. Therefore, we aimed to explore the responses and the
underlying reasons of DFS to changes in precipitation frequency
across the Northern Hemisphere.

In this work, we used DFS derived from long-term flux measure-
ments and satellite observations (Supplementary Fig. 1, Supplemen-
tary Data 1–2), combined with precipitation frequency data from
gridded meteorological datasets (both ERA5 and CRU) (Supplemen-
tary Fig. 2). Additionally, we evaluated the capability of current state-
of-the-art Earth system models to reproduce the observed relation-
ships between DFS and precipitation frequency (Supplementary Fig. 3,
Supplementary Data 3–4). We show that declining precipitation fre-
quency (Pfreq) is associated with earlier DFS from 1982 to 2022.
Reduced Pfreq may exacerbate drought stress and potentially enhance
the drought acclimation of plants. Moreover, 30 current state-of-the-
art Earth system models fail to accurately represent the sensitivity of
DFS to changes in Pfreq, with nearly half of thenorthern global land area
showing incorrect correlation directions in both historical simulations
and futureprojections across various shared socioeconomicpathways.

Results
We observed a widespread decline in Pfreq across the Northern Hemi-
sphere between 1982 and 2022 from both the ERA5 and CRU data
(Supplementary Fig. 4). By controlling preseason temperature and
radiation through partial correlation analysis, we observed negative
correlations between DFS and total precipitation at higher latitudes

(>50 degrees), whereas positive correlations between DFS and pre-
cipitation were more common at lower latitudes (Fig. 1A). Overall, the
proportions of significantly negative and positive DFS-precipitation
correlations were 15.6% and 9.5%, respectively. These proportions
slightly changed to 17.4% vs. 8.8% when accounting for the effects of
precipitation frequency using partial correlation (Fig. 1B). In compar-
ison, Pfreq was mostly positively correlated with DFS, with 57.7% of
correlations being positive and 14.9% being significantly positive,
about double the proportion of significant negative correlations (7.8%)
(Fig. 1C). Further analysis, illustrated in a Sankey diagram, showed that
considering the impact of Pfreq significantly reduced the strength of
negative DFS-precipitation relationships (Supplementary Fig. 5). This
trend remained consistent across different plant functional types
(Fig. 1D–F).We also plotted the distributions of the total precipitation-
DFS and Pfreq-DFS correlations in the total precipitation and frequency
space (Supplementary Fig. 6). We found earlier DFS with increased
total precipitation often occurred when precipitation frequency
exceeded an empirical threshold of 15. In comparison, the positive
correlations between precipitation frequency and DFS were overall
broadly consistent, and earlier DFS with increased frequency was
observed only for low precipitation frequency but with extreme total
precipitation. Flux measurements showed similar patterns (Fig. 1G–I):
The correlation between Pfreq and DFS was predominantly positive
(23.1% positive vs. 5.7% negative), whereas the correlation between
total precipitation and DFS was equally positive and negative (15.8%
positive vs. 15.3% negative).

We used a structural equation model (SEM) to explore the
underlying mechanisms that may explain the predominantly positive
correlation between Pfreq and DFS (Fig. 2A). We found that both total
precipitation and Pfreq significantly decreased radiation (path effect of
–0.42, –0.43, respectively). In comparison, while both Pfreq and total
precipitation positively impacted root zone soil moisture, the influ-
ence of Pfreq was stronger (path coefficients of 0.50, P <0.01, and 0.44,
P <0.01, respectively). In particular, atmospheric dryness, represented
by vapor pressure deficit, increased significantly with declined Pfreq
than with total precipitation, with path effects of –0.51 (P < 0.01) and
–0.35 (P <0.05), respectively. This suggests that declines in precipita-
tion frequency have amore severe impact on plant drought stress than
changes in total precipitation, which in turn causes earlier leaf senes-
cence in many regions.

We also found a significantly positive relationship between Pfreq
and the drought response lag (R2 = 0.40, p <0.05), indicating that
plants acclimate to drought more quickly with decreased Pfreq,
necessitating longer recovery times from drought (R2 = 0.82, p <0.05,
Fig. 2B, C). Using a moving window approach, we observed an
increasing importance of Pfreq in regulating DFS changes over the past
four decades, indicated by increases in the slope values (Fig. 2D). We
further found that decreased Pfreq was often associated with a smaller
size of a single rain event (11.7% and 0.9% for positive and negative
correlations, respectively), reducing soil moisture accumulation
(Fig. 2E) and thereby contributing to the increased soil moisture
variability and earlier DFS consequently (R2 = 0.64, P <0.01, Fig. 2F).

We further tested if the positive impacts of Pfreq on DFS could be
reproduced by current state-of-the-art Earth system models. This
included both Trendy models for historical simulations and CMIP6
models for future projections under various shared socioeconomic
pathways (SSPs), including SSP126, SSP245, SSP370, and SSP585. We
found that Trendy models overall captured the relationship between
DFS and precipitation frequency, with larger proportions of significant
positive correlations (Fig. 3A). Similarly, among the 14 CMIP6 models,
only three failed to reproduce the observed patterns (ACCESS-ESM1-5,
BCC-CSM2-MR and TaiESM1). However, when assessing the sensitivity
of DFS to changes in Pfreq (i.e., how DFS changes per unit variation in
Pfreq), we observed substantial differences among models (Fig. 3B).
Only seven out of 16 Trendy models demonstrated positive
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sensitivities, and even fewer CMIP6 models showed positive sensitiv-
ities. Additionally, we assessed the accuracy of these models in pre-
dicting the sign of the DFS-Pfreq relationship at each pixel level,
comparing these predictions with observations (Fig. 3C). About half of
all pixels showed mismatches, highlighting the models’ limited accu-
racy in capturing the DFS-Pfreq correlations.

Discussion
Previous study has demonstrated the importance of Pfreq on leaf onset
timing in spring, supplementing the well-known dominant role of
temperature on springphenology16. However, the internal and external
signals that trigger tree dormancy release remain unclear23,24. In this
study, we reveal the effect of Pfreq on autumn leaf senescence, a factor

that has been largely overlooked. We find a positive correlation
between DFS and Pfreq. Accordingly, the widespread declines in the
Pfreq over the past four decades have led to earlier DFS in northern
ecosystems. The impact of these changes varies among plant func-
tional types, reflecting the diversity of strategies plants use to adapt to
local environments and respond to climate change factors25. Limited
soil moisture due to reduced Pfreq can cause drought stress, negatively
affecting soil organic carbon (SOC) levels and soil respiration26,27.
Conversely, excessive moisture can also hinder respiration by redu-
cing oxygen availability, whichmay explain observations of earlier DFS
in regions with increased precipitation28. The interaction between soil
moisture, heat, SOC, soil microorganisms, as well as soil geochemical
characteristics defines the optimal conditions for plant growth29,30.
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Fig. 1 | Relationships between the dates of leaf senescence (DFS) and pre-
cipitation changes. Scheme 1 (A, D, G) conducts partial correlations analysis
between DFS and total precipitation, controlling only temperature and radiation,
and Scheme 2 (B, E,H) by additionally controlling precipitation frequency. Scheme
3 (C, F, I) is partial correlations between DFS and precipitation frequency, con-
trolling temperature, radiation and total precipitation. A–C Represent the results
from satellite observations. Panels (D–F) are the results classified by plant func-
tional type, including temperate broadleaf forests (TBF), temperate coniferous

forests (TCF), boreal forests (BF), temperature grasslands (TG), montane grass-
lands (MG), tundra (TD), and xeric shrublands (XS). Panels (G–I) show the same
analysis using flux measurements. The solid lines and shaded areas represent the
mean value and standard derivations for each latitude region, respectively. Dotted
regions indicated the partial correlations were significant at p <0.05. A two-sided t
test was used to assess the significance of the partial correlation analysis. Source
data are provided as a Source Data file.
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Fig. 2 | Mechanisms for the correlation between precipitation frequency and
the dates of leaf senescence (DFS). Panel (A) shows the structural equationmodel
(SEM) analysis. Panels (B, C) represent the changes of drought response lag and
drought recovery time with precipitation frequency. Panel (D) shows the moving
window approach with respect of positive and negative sensitivities of DFS to
precipitation frequency over 1982–2022 (see “Methods”). Panel (E) shows the
relationship between precipitation frequency and themaximumdaily precipitation
size (N and P represent negative and positive correlations). Panel (F) represents the

correlation between DFS and root zone soil moisture variability using coefficients
of variation (%). Boxplots displaymeans (solid dots),medians (horizontal lines), the
25th and 75th percentiles (box edges), and minimum and maximum values (whis-
kers). The shaded background represents the standard deviation. The numbers in
parentheses represent the number of pixels in the corresponding region. * and **
represent p <0.05 and p <0.01, respectively. The significance level was evaluated
using a two-sided t test. Source data are provided as a Source Data file.
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These conditions are the result of long-term adaptation strategies
developed by plants. Changes in Pfreq alter these soil properties and
this may prompt plants to adjust their DFS to enhance survival in
changing environments. This adjustment may also reflect the
increased demand for soil resources, particularly soil moisture, to
sustain photosynthetic activity in a warming climate. Overall, our
findings underscore the importance of considering seasonal pre-
cipitation patterns, rather than just total amounts, in understanding
leaf senescence timing. This insight is crucial for incorporating tem-
poral changes in precipitation into future ecosystemmodels to better
understand the impacts of climate change on plant phenology and
growth.

In our study, we aimed to elucidate the mechanisms behind the
observed trend of earlier DFS with decreased Pfreq, a task compli-
cated by the interactive effects of precipitation amount and varia-
bility on terrestrial ecosystem processes31. Using partial correlation
and SEM techniques, we identified that the earlier DFS under
reduced Pfreq is likely associated with intensified water constraints
on photosynthesis, potentially driven by significant reductions in
root-zone moisture and increases in VPD. A lower frequency of
rainfall events implies longer drought periods. Consequently, soil
moisture gradually declines, particularly in the surface layers where
the majority of a plant’s roots are concentrated. This poses a chal-
lenge for plants to access adequate water supply, especially after
prolonged drought periods. Experimental studies have indicated
that plant photosynthesis and primary productivity are significantly
impacted by changes in Pfreq

15. Reduced Pfreq, often coupled with
smaller precipitation events, adversely affects soil moisture
recharge and increases soil moisture variability, which potentially
contributes earlier leaf senescence. The increase in atmospheric
dryness further accelerates the cessation of photosynthesis.

Our results showed that there could be a trade-off effect on DFS
between precipitation frequency and the total precipitation, by
affecting radiation and soil moisture. In particular, themost important
finding is that the significant decreasing trend of precipitation fre-
quency, and its impact on the interannual variability of DFS trend.
These results could be useful for the prediction of future ecosystem
functions in responding to climate change by including the frequency
of precipitation, rather the total for its unclear trends globally. In
addition, the earlier DFS with declining Pfreq may be explained by the
“sink limitation” effect6. Our study demonstrates that a widespread
decline in Pfreq leads to soil moisture shortages, which, in turn, reduces
the growth capacity related to water availability and ultimately results
in earlier DFS. This “sink limitation” effect is indirectly supported by
thefindingof earlierDFS associatedwith a largerCV in soilmoisture, as
large changes in soil moisture CV indicate a harsher environment for
plant growth15.

A pivotal finding of our research is the identification of a sig-
nificantly shortened drought response lag associated with decreased
Pfreq, a process representing drought acclimation. In particular, we
found a significant negative correlation between drought response lag
and evapotranspiration (ET) (Supplementary Fig. 7A). Such results
imply an enhanced water-use strategy of plants that further supports
plant adaptation and acclimation, probably by strengthening the
growth of root systems to extend downstream for deeper water
sources under droughts32. This reason has been supported by our
results showing increased root depth with lower drought response lag
(Supplementary Fig. 7 B). The enhanced drought acclimation is likely
linked to the adaptive strategy of plants that have been exposed to
prolonged periods of drought, including more effective water man-
agement and utilization. Plants can rapidly reduce water loss or
increase water uptake when water availability is scarce through

Fig. 3 | The test of Earth system models in reproducing the observed rela-
tionship between the dates of leaf senescence (DFS) and precipitation fre-
quency. Panel (A) shows the overall proportions of significant positive and
negative correlations. Panel (B) represents the sensitivity of DFS to precipitation
frequency changes. Panel (C) is the comparison on the signs of correlation for each
pixel. Four shared socioeconomic pathways (SSPs) were included for CMIP6

models, including SSP126, SSP245, SSP370, and SSP585, respectively. The solid
symbols represent mean values and error bars indicate standard derivations. The
numbers in parentheses indicate the number of pixels in the observation and each
model. -- and ++ represent consistent negative and positive observations. Sig-
nificance was set with p <0.05 (two-sided t test). Source data are provided as a
Source Data file.
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morphologically deeper roots and an enhanced tolerance to drought
physiologically by accumulating osmoprotectants and other reg-
ulatory substances33. Our observations, encompassing a wide range of
species with varied plant functional types and local climatic back-
grounds, therefore confirm and extend the critical role of Pfreq on
vegetation growth beyond site-level experiments.

We show that while current Earth system models were able to
reproduce the overall trend in the correlation between DFS and Pfreq,
they inaccurately represent the sensitivity of DFS to changes in Pfreq. A
pixel-by-pixel analysis showed that these models incorrectly predict
the sign of the DFS- Pfreq correlation for half of the regions examined.
This discrepancy may be primarily due to the models’ reliance on the
link between total precipitation and soil moisture, overlooking the
significant effects of Pfreq on ecosystem functions. However, the tim-
ing, frequency and duration of precipitation events are determinants
of ecosystem processes during autumn20,34,35 and therefore important
for leaf senescence, as shown by our observations. Therefore, current
Earth system models, driven by basic conceptual frameworks that
ignore the effects of Pfreq on plant hydraulics, fall short in reproducing
the temporal effects of Pfreq onDFS36. Including Pfreq—a keymeasureof
precipitation variability—into ecosystem models therefore has large
potential to improve future predictions of drought impacts on eco-
systems, especially given the expectation that future droughts will
intensify in several dimensions, includingmagnitude, duration, timing,
and frequency11,37.

Methods
Study area
The Northern Hemisphere represents a particularly compelling focus
for this study due to its vast and diverse biomes, which range from
boreal forests to temperate woodlands and grasslands. This region
contains a significant proportion of the world’s terrestrial vegetation
and carbon stocks, making it a critical area for studying phenological
responses to climate variability. Additionally, the Northern Hemi-
sphere is where some of the most pronounced climate changes,
including alterations in precipitation patterns, have been observed in
recent decades38. Monitoring the dynamics of vegetation in the
Northern Hemisphere is crucial for understanding and mitigating cli-
mate. In this study, we focused onmiddle and high latitude regions of
Northern Hemisphere (>30°N), where vegetation dynamic has an evi-
dent seasonality. We divided the study area into seven plant functional
types according to the biome classification from the terrestrial ecor-
egions map39, including temperate broadleaf forests (TBF), temperate
coniferous forests (TCF), boreal forests (BF), temperature grasslands
(TG),montanegrasslands (MG), tundra (TD), andxeric shrublands (XS)
(Supplementary Fig. 1).

Site-level DFS from flux data
The site-level phenology observations were derived from daily gross
primary productivity (GPP) based on the eddy-covariance flux mea-
surements. We removed sites with insufficient observations (<8 yr). As
a result, 52 flux sites with a total of 662 year-site records of daily GPP
from the FLUXNET database were selected (Supplementary Data 2).
The use of GPP to extract phenological stages is a valid approach for
observing vegetation phenology, as changes in GPP throughout the
year can effectively indicate key phenological events. In this study, we
used the end of growing season, derived from GPP time series, to
represent the DFS observed at ground level. To obtain smoothed daily
GPP curves,weemployed anegative exponential approach thatutilizes
polynomial regression, where weights were assigned based on a
Gaussian density function. This method effectively reduces noise in
the GPP time series, providing a more accurate representation of the
seasonal variations in photosynthetic activity. Subsequently, we
defined DFS as the date when daily GPP declined to 10% of the annual
maximum GPP40 (Supplementary Fig. 8A).

Satellite derived DFS
The long time series of continuous NDVI dataset from the GIMMS-3G+
product was used to derive large-scale DFS across the Northern
Hemisphere (>30°N). This dataset was based on corrected and cali-
brated measurements from Advanced Very High Resolution Radio-
meter (AVHRR) data41 with a spatial resolution of 0.0833 degree and a
half-month interval for 1982 to 2022.

To better capture the seasonal signals of vegetation while elim-
inating the interference of atmospheric effects and snow cover, the
NDVI time series was fist reconstructed by weighted Whittaker
algorithm42. Then a seven-parameter double logistic function43 was
used to fit the NDVI time series and DFS was determined based on
inflection method44.

f tð Þ=m1 + m2 �m7 � t
� � 1

1 + eðm3�tÞ=m4
� 1

1 + eðm5�tÞ=m6

� �
ð1Þ

where,m1 is background NDVI;m2 is the difference between summer-
time NDVI and background value; m3 andm5 are the midpoints in the
days of the year of the transitions of spring green-up and autumn
senescence, respectively;m4 andm6 are normalized slope coefficients
for these transitions; m7 is summer green-down parameter. DFS was
defined as the time when the curvature changing rate reached its last
local maximum value (Supplementary Fig. 8 B).

Simulated DFS from Trendy and CMIP6
We simulated DFS based on output GPP from 16 Trendy models
during 1983–2021 (Supplementary Data 3) and 14 CMIP6 models
under different shared socioeconomic pathways (SSPs) during
2016–2100 (Supplementary Data 4). SSPs refer to a set of standar-
dized scenarios developed to facilitate the analysis of climate
impacts, adaptation, and mitigation. These pathways describe dif-
ferent trajectories for future global development based on varying
assumptions about population growth, economic development,
technological advancements, and policy decisions45. For each
CMIP6 model, we used the modeled GPP data from four SSPs (SSP-
126, SSP-245, SSP-370, and SSP-585) to represent scenarios with low,
moderate, high, and very high challenges to mitigation and adap-
tation, respectively. GPP is closely related to key factors like vege-
tation coverage, leaf area index, temperature and precipitation,
which are crucial in shaping vegetation phenology. Consequently,
the annual variation in GPP effectively reflects the phenological
stages of vegetation. Based on this theoretical foundation, we first
applied cubic spline interpolation to improve data continuity, given
that most GPP datasets are available at a monthly temporal reso-
lution. We then fitted the GPP time series using the seven-parameter
double logistic function (Eq. 1), defining DFS as the date when the
rate of curvature change reached its last local maximum value
(Supplementary Fig. 8C).

Climate data
We derived monthly total amount (Ptotal) and frequency (Pfreq) of
precipitation from two independent datasets: (1) theClimatic Research
Unit Time-Series (CRU TS 4.07) and (2) the fifth generation European
Center for Medium-Range Weather Forecasts reanalysis of the global
climate (ERA5). The CRUdataset is produced by the interpolation from
extensive networks of climatic station observations and provides
several climate variables on a 0.5° × 0.5° spatial resolution and a
monthly temporal resolution46. We used wet day frequency, which
defined as days with ≥0.1mm precipitation, as Pfreq. The ERA5 product
provides hourly estimates of various climate variables with a spatial
resolution of 0.1° based on vast amounts of historical observations47.
We obtained total precipitation from themonthly aggregated datasets
and calculated the number of rainy days per month based on the daily
precipitation (≥0.1mm). We used the mean value of Ptotal and Pfreq
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fromCRU and ERA5 as final Pfreq and Ptotal for 1982–2022 to reduce the
uncertainty from a single dataset. Monthly mean temperature was
obtained from CRU and surface net solar radiation was accessed from
ERA5. Vapor pressure deficit (VPD) and evapotranspiration (ET) data
for 1982–2022 were obtained from TerraClimate with a monthly tem-
poral resolution and a 1/24 degree spatial resolution. The monthly
root-zone soil moisture from 1982 to 2022 was obtained from Global
Land Evaporation Amsterdam Model (GLEAM) with a spatial resolu-
tion of 0.25°.

Identification of drought events, drought recovery and drought
response lag
Extreme drought events were identified by examiningmonthly SPEI-
3 (Standardized Precipitation-Evapotranspiration Index at a
3-month scale) values below the threshold of -2. Drought recovery is
defined as the duration (months) starting from the month with the
deepest suppression of NDVI to the month when NDVI returns to
within 95% of the long-term average baseline in each pixel. The
monthly SPEI3 and NDVI time series were first smoothed by a
3-month forward moving window, they were then sequentially
deseasonalized and linearly detrended. To avoid lengthening the
drought recovery duration due to algorithm design, if vegetation
recovery extending through the dormant season and into sub-
sequent year, the drought recovery was calculated as the total
length of the recovery period minus the length of the dormant
season. We measured response lag in months, which is the time
between the lowest SPEI3 value and the most significant drop in
NDVI caused by drought. We calculated both drought response lag
and recovery time for each pixel individually.

Analysis
Precipitation, along with temperature and radiation, collectively
regulate DFS48. In addition, covariate effects exist among these cli-
matic variables as well. Therefore, we applied partial correlation
analysis to explore the impacts of Ptotal and Pfreq on DFS. Given that
the potential biases between flux-based and satellite-based mea-
surements of DFS, we did not combine these two data in the sub-
sequent analyses. Instead, we conducted separate analyses for each
measure of DFS to ensure the validity of the results. In the analysis
of satellite-based DFS, we used gridded climate data that were
resampled using the bilinear interpolation method to match the
spatial resolution of the satellite-based DFS. For the flux-based DFS,
we directly extracted the corresponding climate data from these
gridded datasets based on the coordinates of each flux site. We
performed partial correlation analysis under three schemes: (1)
partial correlation between DFS and Ptotal, removing the effects of
temperature and radiation (scheme 1); (2) partial correlation
between DFS and Ptotal, removing the effects of temperature,
radiation, and Pfreq (scheme 2); (3) partial correlation between DFS
and Pfreq, removing the effects of temperature, radiation, and Ptotal
(scheme 3). Preseason forcings have a better predictive strength on
phenology than fixed seasonal climate forcing alone4,49. We thus
used the preseason mean values of each climatic variable in the
partial correlation analysis. For example, the preseason length of
Pfreq was defined as the period when the absolute value of partial
correlation coefficient between Pfreq and DFS was at its maximum.
For each pixel, the preseason periods of 0 to 6 months prior to the
multi-year mean DFS were examined (Supplementary Fig. 9).

To investigate the temporal changes in the sensitivity of DFS to
Pfreq, we used a moving window method. We conducted tests on a
variety of window sizes, ranging from 10 to 20 years. For each
window size, we calculated the sensitivity of DFS to Pfreq based on
multilinear regression within each moving window. Then we cal-
culated the percentages of significant sensitivity (P < 0.05) and fit-
ted these values to obtain the optimal window size with the largest

R2. As a result, the optimal window size was set as 19 years to per-
form subsequent analyses (Supplementary Fig. 10).

DFS =a � Pfreq + b � Ptotal + c � Temperature +d � Radiation + ε ð2Þ

where, a, b, c and d are regression coefficients and represent the
sensitivity of DFS to Pfreq, Ptotal, temperature, and radiation, respec-
tively. ε is the residual error. All the climate variables used in the
regression were the mean values during preseason.

To explore the potential mechanisms by which precipitation
affects DFS, we performed structural equation modeling (SEM), a
statistical technique used to test and estimate causal relationships
using both direct and indirect paths. We hypothesized that the effect
of precipitation patterns on DFS is mediated by their impact on solar
radiation and drought conditions. To test this hypothesis, we con-
structed an SEM that included three mediating variables: radiation,
VPD, which indicates atmospheric dryness, and root-zone soil moist-
ure. Path coefficients were estimated using maximum likelihood esti-
mation. Additionally, we assessed the model’s applicability and
effectiveness by calculating various statistics and fit indices, such as
the chi-square test, the goodness-of-fit index (GFI), and the root mean
square error of approximation (RMSEA). The SEM was initially applied
to each pixel across the entire study area, and we subsequently
selected pixels with a significance level of p < 0.05. Themean values of
their corresponding coefficients were calculated to determine the final
path coefficients.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study can be obtained from open-access data-
bases. The NDVI data is from Global Inventory Modeling and Mapping
Studies-3rd Generation V1.2 (GIMMS-3G + ) and can be accessed from
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2187. The ERA5 data
can be accessed from https://cds.climate.copernicus.eu/cdsapp#
!/dataset/reanalysis-era5-land-monthly-means?tab=overview. The
CRU data can be accessed from https://crudata.uea.ac.uk/cru/data//
hrg/. The TerraClimate data can be accessed from https://climate.
northwestknowledge.net/TERRACLIMATE/index_animations.php/.
The Root-Zone Soil Moisture data can be accessed from https://www.
gleam.eu/. The root depth data can be accessed from https://wci.
earth2observe.eu/thredds/catalog/usc/root-depth/catalog.html.
Source data are provided with this paper. The complete and derived
data are also stored in a publicly available Zenodo repository (https://
doi.org/10.5281/zenodo.14359346). Source data are provided with
this paper.

Code availability
All data analyses and modeling were performed using MATLAB
R2023b and R 4.3.1. The code is stored in a publicly available Zenodo
repository (https://doi.org/10.5281/zenodo.14359346).
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