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Abstract

The Fréchet mean (or barycenter) generalizes the expectation of a random variable
to metric spaces by minimizing the expected squared distance to the random vari-
able. Similarly, the median can be generalized by its property of minimizing the
expected absolute distance. We consider the class of transformed Fréchet means with
nondecreasing, convex transformations that have a concave derivative. This class
includes the Fréchet median, the Fréchet mean, the Huber loss-induced Fréchet mean,
and other statistics related to robust statistics in metric spaces. We study variance
inequalities for these transformed Fréchet means. These inequalities describe how
the expected transformed distance grows when moving away from a minimizer, i.e.,
from a transformed Fréchet mean. Variance inequalities are useful in the theory of
estimation and numerical approximation of transformed Fréchet means. Our focus is
on variance inequalities in Hadamard spaces – metric spaces with globally nonpositive
curvature. Notably, some results are new also for Euclidean spaces. Additionally, we
are able to characterize uniqueness of transformed Fréchet means, in particular of
the Fréchet median.
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1 Introduction

1.1 Transformed Fréchet means

Let (Q, d) be a metric space and use the short hand notation qp := d(q, p). When
studying a Q-valued random variable Y , a basic property to be considered is a mean
value. A Fréchet mean [17] (also called barycenter or center of mass) of Y is a point

in argminq∈QE[Y q
2
]. If Q is a Euclidean space, the Fréchet mean is the expectation,
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m = E[Y ]. Alternatively, one may consider a generalization of the median, which
minimizes the absolute distance instead of the squared distance: A Fréchet median of Y
is any element of argminq∈QE[Y q].

We treat both, Fréchet mean and median (and more), in a common framework: Fix
an arbitrary reference point o ∈ Q. For a function τ : [0,∞) → R, a point m ∈ Q is a
transformed Fréchet mean or τ -Fréchet mean of Y , if

m ∈ argmin
q∈Q

E
[
τ(Y q)− τ(Y o)

]
. (1.1)

Subtracting τ(Y o) does not change the set of minimizers if E[τ(Y q)] < ∞, but it allows
a meaningful definition in some instances, where this expectation is infinite, e.g., in
the case τ = (x 7→ x2), it is enough to have E[Y q] < ∞ (for one and hence for all
q ∈ Q), and for τ = (x 7→ x), no moment condition is needed. We will restrict ourselves
to τ ∈ S, where S is the set of nondecreasing, convex functions τ : [0,∞) → R with
concave derivative τ ′. This allows for clean results and encompasses the most interesting
transformation functions. Aside from x 7→ x2 (Fréchet mean) and x 7→ x (Fréchet median),
S contains a wealth of functions (see Figure 1) such as x 7→ xα for α ∈ [1, 2] and the
Huber loss τh,δ [20] for δ ∈ (0,∞),

τh,δ(x) :=

{
1
2x

2 for x ≤ δ ,

δ(x− 1
2δ) for x > δ .

(1.2)

The Huber loss is of great importance in robust statistics, as it allows to estimate a
mean value in the presence of outliers. It is continuously differentiable, but not twice
differentiable at x = δ. If more smoothness is required, one may use the pseudo-Huber
loss τph,δ ∈ S [12],

τph,δ(x) := δ2

(√
1 +

x2

δ2
− 1

)
. (1.3)

Another smooth element of S used in previous works is x 7→ log(cosh(x)) [19], where log

is the natural logarithm, and cosh is the hyperbolic cosine.
This function and the two Huber-losses have a similar form: They look like x 7→ x2

close to 0, which allows for an L2-like theory locally, and like an increasing affine function
for large x, which entails that we do not require finite moments to define the respective
transformed Fréchet mean. All functions in S are in some way between linear and
quadratic and enjoy properties that are between those of the mean and the median.
Thus, they form a suitable framework for robust statistics in metric spaces.

1.2 Variance functional and variance inequalities

Our main goal is to investigate properties of the variance functional (or Fréchet
functional) q 7→ E[τ(Y q)− τ(Y p)], p ∈ Q, τ ∈ S, in certain classes of metric spaces. In
particular, we will show variance inequalities, i.e., inequalities of the form

E[τ(Y q)− τ(Y m)] ≥ f(qm) (1.4)

for q ∈ Q, where m is the τ -Fréchet mean of Y and f : [0,∞) → R is some function.
Let us first illustrate the meaning of variance inequalities in a Euclidean space (Q, ‖·‖)

for τ(x) = x2. In this case, the variance inequality is an equality: We have m = E[Y ] and

E
[
‖Y − q‖2 − ‖Y −m‖2

]
= ‖q −m‖2 (1.5)

for all q ∈ Q. By noting that m minimizes the variance functional v(q) := E[‖Y − q‖2 −
‖Y ‖2], we gain following insight from (1.5): If q minimizes the objective v(q) up to at
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Figure 1: Different transformation functions τ ∈ S and their derivatives. The functions
shown are τα(x) = α−1xα for α ∈ {1, 3/2, 2} as well as the Huber and pseudo-Huber loss
functions with threshold δ = 1, see (1.2) and (1.3), respectively.

most δ for a δ ≥ 0, in the sense that v(q) ≤ δ + v(m), then q can be at most a distance√
δ away from the (unique) minimizer m of v. For this statement to hold, it is enough to

have (1.5) as an inequality, i.e., using the metric notation,

E
[
Y q

2 − Y m
2
]
≥ qm2 . (1.6)

Variance inequalities are an essential ingredient in the theory of estimating the
(transformed) Fréchet mean from observations. They typically appear as an assumption,
e.g., [36, assumptions (P2), (U2), (L2), (L3)], [27, condition B.5], [1, assumption (A3)],
[40, assumption Growth], [24, Theorem 8], [18, condition (M)]. In contrast, we prove
variance inequalities and provide them in a clean, ready-to-use form.

The study of variance inequalities also yields uniqueness results for the transformed
Fréchet mean, including the Fréchet median.

1.2.1 Transformed Fréchet mean in general metric spaces

In general metric spaces, we show (Theorem 3.5) that the variance functional behaves
like the transformation function for far away points, i.e., E[τ(Y q) − τ(Y p)] ≈ τ(qp) for
τ ∈ S and qp large, and it grows at most linearly for close points, i.e., E[τ(Y q)− τ(Y p)] .
qpE[τ ′(Y p)] for qp small. Most relevant for statistical results is a lower bound on the
variance functional for q close to the transformed Fréchet mean p = m, i.e., a variance
inequality. This is not covered by these results, but can be established by restricting the
geometry of Q, as we show below.

1.2.2 Fréchet means in Hadamard spaces

In a general metric space, it is difficult to obtain variance inequalities. But after
restriction to so-called Hadamard spaces, it is well-known that (1.6) is true.

Definition 1.1. A metric space (Q, d) is called Hadamard space, if and only if it is
complete and for all y0, y1 ∈ Q, there exists m ∈ Q such that

1

2
y0q

2 +
1

2
y1q

2 − 1

4
y0y1

2 ≥ qm2 (1.7)
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for all q ∈ Q.

Hadamard spaces are geodesic metric spaces (each pair of points is connected by a
geodesic) of nonpositive curvature (triangles are “thinner” than Euclidean ones). They
are also called global NPC spaces or complete CAT (0) spaces. Inequality (1.7) is the
variance inequality (1.6) for a random variable with P(Y = y0) = P(Y = y1) =

1
2 .

Proposition 1.2 ([43, Proposition 4.4]). A complete metric space (Q, d) is Hadamard if
and only if, for all Q-valued random variables Y with E[Y o] < ∞ for one (and hence all)

o ∈ Q, we have E[Y q
2 − Y m

2
] ≥ qm2 for all q ∈ Q, where m is the Fréchet mean of Y .

Proposition 1.2 implies that the Fréchet mean is unique in Hadamard spaces, which
is not guaranteed in general metric spaces.

1.2.3 Transformed Fréchet means in Hadamard spaces

Here, we generalize (1.6) in Hadamard spaces Q from the square function to all non-
decresing, convex functions with concave derivative τ ∈ S: For a transformed Fréchet
mean m ∈ argminq∈QE

[
τ(Y q)− τ(Y o)

]
, we have

E
[
τ(Y q)− τ(Y m)

]
≥ 1

2
qm2E

[
τ ′′(max(Y m, Y q))

]
(1.8)

for all q ∈ Q, assuming E[τ ′(Y o)] < ∞, see Theorem 5.4. This yields an at least quadratic
growth of the variance functional close to m for strictly convex transformations. As the
second derivative τ ′′ vanishes for linear τ , we treat the Fréchet median separately and
obtain a result of the form

E
[
Y q − Y m

]
≥ 1

2
η2 qm2E

[
max

(
Y m, Y q

)−1
1A(m,q,η)(Y )

]
, (1.9)

where η ∈ (0, 1) and A(m, q, η) restricts the expectation to points Y that have geodesics
to m and q hitting the geodesic between m and q at a steep enough angle (depending on
η), see Theorem 6.15.

1.3 Related work

The article [1] provides a condition using extendable geodesics to obtain variance
inequalities. This idea is generalized in [24] using what the authors call a hugging
function. For these results, it still may be difficult to verify the condition that yields the
variance inequality.

1.3.1 Hadamard spaces

Examples of Hadamard spaces include

• the Euclidean spaces and – more general – Hilbert spaces [43, Proposition 3.5],

• Cartan–Hadamard manifolds, i.e., complete simply connected Riemannian mani-
folds of nonpositive sectional curvature [43, Proposition 3.1],

• R-trees (also called metric trees), i.e., geodesic metric spaces that contain no
subset homeomorphic to a circle [14],

• the space of phylogenetic trees when endowed with the Billera–Holmes–Vogtmann
metric [8],

• the set of symmetric positive definite matrices with a metric that yields a geometric
mean of such matrices as its induced Fréchet mean [6].
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New Hadamard spaces can be created from given Hadamard spaces by taking closed
convex subsets, as images of isometries, as product spaces, as L2-spaces of functions
with values in a Hadamard space, or by gluing together Hadamard spaces [43, section
3]. A reverse of the variance inequality has been studied in [44] for Hadamard spaces
and in [35] for Alexandrov space with curvature bounded below.

1.3.2 Quadratic growth

One often encounters variance inequalities (1.4), where f is quadratic as in Proposition
1.2 or under mild assumptions in (1.8). This can be explained in view of a Taylor
expansion of the variance functional: For simplicity, we calculate on the real line. Let
Y be an R-valued random variable and τ : [0,∞) → R. Denote the variance functional
as v(q) := E[τ(|Y − q|)− τ(|Y |)] and assume the necessary integrability and smoothness
conditions. Let m ∈ R denote a τ -Fréchet mean of Y . The Taylor expansion yields

v(q) = v(m) + (q −m)v′(m) +
1

2
(q −m)2v′′(m) +O(|q −m|3) , (1.10)

where v′(m) = 0 as m is a minimizer of v. If v′′(m) 6= 0 and q is close enough to m, the
quadratic term dominates. On Riemannian manifolds, this strategy yields central limit
theorems for the Fréchet mean [7, Theorem 2.3]. In [13, Assumption 2.6], the condition
of a non-vanishing second order term in the Taylor approximation is weakened to a more
general power series expansion. The higher order polynomial then yields a slower than
parametric rate in the central limit theorem for generalized Fréchet means, which is
termed smeariness.

1.3.3 Median and Huber loss

The Fréchet median, τ = (x 7→ x), generalizes the geometric median: If Q is a Banach
space with norm ‖·‖, a geometric median (also called spatial median or Fermat–Weber
point) is any

m ∈ argmin
q∈Q

E[‖Y − q‖ − ‖Y ‖] . (1.11)

There is a large body of literature on the geometric median. We mention only a few
and refer the reader to the references therein. For statistical properties of the geometric
median in Euclidean spaces, see [31]. Its application to robust statistics in Banach
spaces is studied in [29]. In [11], the authors consider properties of an algorithm for
computing geometric medians in Hilbert spaces. Recent results on the statistical and
numerical properties of the geometric median can be found in [30].

The Fréchet median has been studied on Riemannian manifolds, e.g., [2]. For
computational aspects of the Fréchet median in Hadamard spaces, see [3]. In [5], the
Fréchet median is applied in the context of information geometry. The Fréchet median
has certain robustness properties and can be used to improve the robustness of the
Fréchet mean via a median-of-means approach [49]. The Fréchet median or Fermat
Weber point is also studied in metric spaces of phylogenetic trees [26].

In a very recent preprint [25], the authors discuss the transformed Fréchet means
induced by the (pseudo) Huber-loss function on Riemannian manifolds.

1.3.4 Other generalizations of the Fréchet mean

To capture Fréchet mean and Fréchet median in one definition, one may consider power
Fréchet means, which are also called α-Fréchet means. These are the elements of

argmin
q∈Q

E[Y q
α − Y o

α
] , (1.12)
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where α ∈ (0,∞). Strong laws of large numbers are known for (sets of) α-Fréchet means
[46, 41, 15, 9]. If α ∈ [1, 2], the α-Fréchet mean is a transformed Fréchet mean with
transformation in S, which we consider in this article. For such α-Fréchet means, [49,
Proposition 2] presents a sufficient condition for a variance inequality that may still be
hard to check.

In a recent and parallel work [39], the authors consider transformed Fréchet means
with convex transformation functions in R-trees (also called metric trees) with finite
diameter and a finite number of vertices. These are a special kind of Hadamard spaces.
Our results are more general in that we discuss general Hadamard spaces and more
restricted in that we assume concavity of the derivative of the transformation function.
Furthermore, our focus is on variance inequalities, theirs on a phenomenon called
stickiness [23], where a plug-in estimator is identical to the transformed Fréchet mean
with positive probability. An intersection is the discussion of the Fréchet median set, [39,
Proposition 2.18 (applied to linear losses), Proposition 4.3], where our result, Theorem
6.6, is more general and precise.

One can generalize the idea of minimizing some loss or cost quite far and replace dα

by a generic function c : Y ×Q → R, where Y is allowed to be a different space than Q.
Then m ∈ Q is a generalized Fréchet mean of the Y-valued random variable Y if

m ∈ argmin
q∈Q

E[c(Y, q)] . (1.13)

This can be viewed as the definition of a generic M-estimator, e.g., [47, section 3.2]. In
the context of Fréchet means, it was introduced in [21]. Strong laws of large numbers
are available in [41] and rates of convergence of empirical generalized Fréchet means
are treated in [40].

1.3.5 Nondecreasing, convex functions with concave derivatives

The class S of nondecreasing, convex functions with concave derivatives has been
studied in the context of Hadamard spaces in [42], where a relationship between the
transformations of the six distances between any four points in the metric space is shown.
In [32], this class of functions is studied in Banach spaces and connected to higher order
convexity. Strong laws of large numbers for most instances of the respective class of
τ -Fréchet means, τ ∈ S, have been derived in [41, Section 4].

1.4 Contribution

(I) We introduce the setting of τ -Fréchet means with τ ∈ S in Hadamard spaces,
which is an elegant framework for robust statistics: We only require a minimal
moment assumption and make no further topological restrictions (such as the
common Heine-Borel assumption). Moreover, the framework covers many different
transformations, including the prominent Huber loss, and at the same time yields
results that do not require elusive conditions.

(II) First, we provide asymptotic properties of the variance functional for τ -Fréchet
means in general metric spaces in Theorem 3.5. The result is useful to show that
the set of τ -Fréchet means is bounded (Proposition 5.2).

(III) To obtain variance inequalities, we restrict ourselves to Hadamard spaces. In these
spaces, the distances between a point and a geodesic have a well-known convexity
property, which we here call G-convexity. In Theorem 4.17, we present second
order lower bounds for G-convex functions and transformed G-convex functions
with transformation τ ∈ S. This bound is related to the idea presented in (1.10).
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But it uses a second order remainder term instead of a third order one and also
takes care of non-Euclidean geometry.

(IV) Theorem 4.17 allows us to derive a ready-to-use variance inequality for τ -Fréchet
means in Hadamard spaces (Theorem 5.4 or (1.8)). It directly implies uniqueness
of the τ -Fréchet mean for most of the transformations τ ∈ S, see Corollary 5.7
and Corollary 5.8. Corollary 5.9 shows quadratic (and faster) growth for strictly
convex τ . A variance inequality for the special case where we have positive mass
at the location of the τ -Fréchet mean is shown in Theorem 5.10.

(V) As Theorem 5.4 requires the second derivative of the transformation to be positive
somewhere, we separately present a variance inequality for the Fréchet median
in Theorem 6.15, which yields quadratic (and potentially faster) growth under
some mild conditions, e.g., Corollary 6.18. It improves upon the recent work
[30, Theorem 2.3] in Euclidean spaces and shows a general result in Hadamard
spaces. Theorem 6.15 can also be applied to eventually affine transformations
under certain circumstances as shown in Theorem 6.1.

(VI) The Fréchet median may be non-unique. This case is characterized in Theorem
6.6. On Riemannian manifolds, [48] shows that the Fréchet median is unique if
it is not concentrated on a geodesic. A similar result is known in Hilbert and
Banach spaces [22]. This criterion (the distribution not being concentrated on a
geodesic) is not enough in Hadamard spaces in general. Instead, we require that
the random variable is not concentrated on a union of geodesics that all intersect
in a common geodesic segment of positive length. Only in non-branching spaces
is no concentration on geodesics sufficient for uniqueness of the Fréchet median.
These criteria are shown in Corollary 6.13. An alternative sufficient condition for
uniqueness is the convexity of the support of the distribution, see Corollary 6.14.

(VII) Finally, Theorem 6.21 presents a variance inequality for the Fréchet median when
concentrated on a geodesic, a case that is not covered by Theorem 6.15.

1.5 Outline

We describe our basic setup and the set of transformations S in section 2. Then we
consider properties of the variance functional in general metric spaces in section 3. In
section 4, we discuss a property called G-convexity, which allows us to derive lower
bounds on distance functions in Hadamard spaces. With these technical tools, we derive
variance inequalities for τ -Fréchet means and medians in Hadamard spaces in sections 5
and 6, respectively. In these last sections, we also discuss uniqueness properties.

2 Preliminaries

2.1 Basic setup

Throughout the entire article, we will assume following setup (in particular, the
meaning of the symbols Q, d,P,E, Y, o) without further mentioning it: Let (Q, d) be a
nonempty metric space. For q, p ∈ Q, we denote qp := d(q, p). This metric space is
equipped with its Borel-σ-algebra. Let (Ω,ΣΩ,P) be a probability space. The expectation
of measurable functions X : Ω → R is denoted as E[X] if it exists. Let Y be a measurable
function Y : Ω → Q, i.e., a Q-valued random variable. Furthermore, we fix an arbitrary
reference point o ∈ Q.
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2.2 Nondecreasing, convex functions with concave derivative

We study τ -Fréchet means, which minimize the variance functional q 7→ E[τ(Y q)−
τ(Y o)] in Q, where τ : [0,∞) → R is a nondecreasing convex function with concave
derivative, i.e., τ ∈ S according to following definition.

Definition 2.1. Let S be the set of nondecreasing convex functions τ : [0,∞) → R

that are differentiable on (0,∞) with concave derivative τ ′. We extend the domain
of τ ′ to [0,∞) by setting τ ′(0) := limx↘0 τ

′(x), which exists as τ ′ is nonnegative and
nondecreasing.

Requiring differentiability of τ is not restrictive, as this is implied by convexity for
Lebesgue almost all x ∈ (0,∞). For technical reasons it is often more convenient to work
with S+

0 ⊆ S, the subset of strictly increasing functions τ ∈ S with τ(0) = 0,

S+
0 := {τ ∈ S | τ(0) = 0 and ∀x ∈ (0,∞) : τ ′(x) > 0} (2.1)

= {x 7→ τ(x)− τ(0) | τ ∈ S} \ {x 7→ 0} . (2.2)

This is not restrictive, as we essentially only exclude constant functions, for which most
results are trivial anyway. To be able to talk about derivatives of τ ∈ S at 0 and second
derivatives, let us recall the definition of the one-sided derivatives.

Notation 2.2. Let A ⊆ R and f : A → R. Let x0 ∈ A such that there is ε > 0 such
that (x0 − ε, x0] ⊆ A. Then denote the left derivative of f at x0 as ∂−f(x0) := f	(x0) :=

limx↗x0

f(x)−f(x0)
x−x0

if the limit exists. Similarly, for x0 ∈ A with ε > 0 such that [x0, x0+ε) ⊆
A, we denote the right derivative of f at x0 as ∂+f(x0) := f⊕(x0) := limx↘x0

f(x)−f(x0)
x−x0

if
the limit exists.

First we show some basic continuity properties of functions in S and existence of
one-sided derivatives. Proofs omitted from this section can be found in the appendix C.1.

Lemma 2.3. Let τ ∈ S. Then

(i) τ and τ ′ are continuous on [0,∞),

(ii) the left and right derivatives of τ ′ exist on (0,∞), they are nonincreasing, and
τ ′	(x) ≥ τ ′⊕(x) for all x ∈ (0,∞),

(iii) τ⊕(0) exists and τ⊕(0) = τ ′(0).

Using a Taylor approximation and the convexity and concavity properties of τ ∈ S,
we can see that these functions are, in some sense, between affine and quadratic: If
τ ∈ S is three times continuously differentiable, we have

τ(x0) + xτ ′(x0) ≤ τ(x0 + x) ≤ τ(x0) + xτ ′(x0) +
1

2
x2τ ′′(x0) (2.3)

for x0 ∈ (0,∞), x ∈ [0,∞). Fixing x0 in (2.3) shows a linear lower bound and quadratic
upper bound on x 7→ τ(x0 + x).

For α > 0, let τα := (x 7→ xα). Then τα ∈ S if and only if α ∈ [1, 2]. Further members
of S include the Huber loss τh,δ (1.2), the Pseudo-Huber loss τph,δ (1.3), as well as
x 7→ log(cosh(x)). The set S is a real convex cone in the following sense: If τ, τ̃ ∈ S,
b, b̃ ∈ [0,∞), then (x 7→ bτ(x) + b̃τ̃(x)) ∈ S.

The next two lemmas show bounds on the difference of a function in S evaluated at
different points. These will be useful in the proofs of the main results.

Lemma 2.4. Let τ ∈ S. Let x, y ∈ [0,∞), x 6= y. Then

τ ′(x) + τ ′(y)

2
≤ |τ(x)− τ(y)|

|x− y|
≤ τ ′

(
x+ y

2

)
. (2.4)
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Lemma 2.5. Let τ ∈ S+
0 . Let x, y ∈ [0,∞). Then

τ(x) + τ(y) ≤ τ(|x− y|) + 2yτ ′(x) . (2.5)

Remark 2.6. In the proofs of Lemma 2.4 and Lemma 2.5 as well as upcoming proofs, we
make extensive use of the properties of τ ∈ S. In particular, the facts that τ , τ ′ are non-
decreasing and τ ′ is subadditive (follows from nonnegativity and concavity, see Lemma
B.6) are applied again and again. This is a technical reason for not considering a larger
class of transformations than S.

3 The variance functional in general metric spaces

In this section, we show asymptotic bounds for the variance functional q 7→ E[τ(Y q)−
τ(Y p)] in general metric spaces (Theorem 3.5). The results are stated for an arbitrary
reference point p ∈ Q. But the case p = m where m is a τ -Fréchet mean of the Q-valued
random variable Y is most illustrating for the purpose of this article. In this general
setting, we are not able to derive variance inequalities for q close to m. Only after
restriction to Hadamard spaces in section 5 will we be able to find fully satisfying results.
Nonetheless, the results here give us a first bound on the variance functional and will be
used for showing that the set of τ -Fréchet means of Y is bounded (Proposition 5.2).

We start here with a trivial statement, which is useful to show that the main re-
sult, Theorem 3.5, is optimal in some sense.

Proposition 3.1. Let q, p ∈ Q.

(i) Let τ ∈ S+
0 . Assume Y = p almost surely. Then

E
[
τ(Y q)− τ(Y p)

]
= τ(qp) . (3.1)

(ii) We have
E
[
Y q − Y p

]
≥ qp (P(Y = p)− P(Y 6= p)) . (3.2)

Proof. We have
E
[(
Y q − Y p

)
1{Y=p}

]
= qpP(Y = p) (3.3)

and the triangle inequality implies∣∣E[(Y q − Y p
)
1{Y 6=p}

]∣∣ ≤ qpP(Y 6= p) . (3.4)

In the following, we will typically make the assumption that E[τ ′(Y o)] is finite. Recall
that o ∈ Q is a fixed arbitrary element of the metric space. This assumption ensures that
the variance functional is well-defined and finite:

Proposition 3.2. Let τ ∈ S.

(i) We have E[τ ′(Y o)] < ∞ if and only if E[τ ′(Y q)] < ∞ for all q ∈ Q.

(ii) Assume E[τ ′(Y o)] < ∞. For q, p ∈ Q, define

D(q, p) := E
[∣∣τ(Y q)− τ(Y p)

∣∣] . (3.5)

Then, (Q, D) is a pseudometric space, i.e.,

(a) D(q, p) ∈ [0,∞),

(b) D(q, q) = 0,
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(c) D(q, p) = D(p, q),

(d) D(q, p) ≤ D(q, z) +D(z, p),

for all q, p, z ∈ Q.

(iii) Assume E[τ ′(Y o)] < ∞. Let r ∈ (0,∞). Then there is a constant C ∈ (0,∞) such
that, for all q, p ∈ Br(o),

D(q, p) ≤ C qp (3.6)

with D as in (3.5). Moreover, we can set C := E[τ ′(Y o)] + τ ′(r) in (3.6).

Proof.

(i) Let q ∈ Q. By Lemma B.6, τ ′ is subadditive. Together with the triangle inequality,
we obtain

τ ′(Y q) ≤ τ ′(Y o) + τ ′(qo) . (3.7)

Taking expectations and exchanging the arbitrary points shows the first claim.

(ii) Combining the subadditivity of τ ′ with the triangle inequality and Lemma 2.4 yields

∣∣τ(Y q)− τ(Y p)
∣∣ ≤ ∣∣Y q − Y p

∣∣ τ ′(Y q + Y p

2

)
≤ qp

(
τ ′(Y o) + τ ′

(
qo+ po

2

))
. (3.8)

After taking expectations, we obtain

D(q, p) ≤ qp

(
E[τ ′(Y o)] + τ ′

(
qo+ po

2

))
< ∞ . (3.9)

Clearly, D(q, p) ≥ 0, D(q, q) = 0, and D(q, p) = D(p, q). The triangle inequality
follows from ∣∣τ(Y q)− τ(Y p)

∣∣ ≤ ∣∣τ(Y q)− τ(Y z)
∣∣+ ∣∣τ(Y z)− τ(Y p)

∣∣ .1 (3.10)

(iii) Follows directly from (3.9).

The somewhat technical inequalities derived in the next lemma allow us to prove
the main result of this section, Theorem 3.5, which provides bounds of the variance
functional for points q close to the reference point p and q far away from p.

Lemma 3.3. Let τ ∈ S+
0 . Assume E[τ ′(Y o)] < ∞. Let q, p ∈ Q. Let s ∈ [0,∞).

(i) Then

E
[
τ(Y q)− τ(Y p)

]
≤ qpE

[
τ ′
(
qp

2
+ Y p

)
1[s,∞)

(
Y p
)]

(3.11)

+ τ(pq + s)P
(
Y p < s

)
. (3.12)

(ii) Assume qp ≤ s and s > 0. Then

E
[
τ(Y q)− τ(Y p)

]
≤ P(Y = p)τ(qp) (3.13)

+
3

2
qp τ ′(s)P

(
Y p ∈ (0, s)

)
(3.14)

+ qp

(
qp

2s
+ 1

)
E
[
τ ′
(
Y p
)
1[s,∞)

(
Y p
)]

. (3.15)

EJP 30 (2025), paper 15.
Page 10/48

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1273
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variance inequalities for transformed Fréchet means in Hadamard spaces

(iii) Assume s ≤ qp. Then

E
[
τ(Y q)− τ(Y p)

]
≥ E

[(
τ(qp)− 2 qp τ ′(Y p)

)
1[s,∞)

(
Y p
)]

(3.16)

+ (τ(qp− s)− τ(s))P
(
Y p < s

)
. (3.17)

Proof. First note that E[τ ′(Y p)] is finite because of E[τ ′(Y o)] < ∞, see Proposition 3.2).

(i) One on hand, Lemma 2.4, the triangle inequality, and τ ′ being nondecreasing imply

τ(Y q)− τ(Y p) ≤ qp τ ′
(
Y q + Y p

2

)
(3.18)

≤ qp τ ′
(
qp

2
+ Y p

)
. (3.19)

On the other hand, if Y p < s, then the triangle inequality and τ being nondecreasing
imply

τ(Y q)− τ(Y p) ≤ τ(Y p+ pq) (3.20)

≤ τ(s+ pq) . (3.21)

Taking expectations of these two inequalities on Y p ≥ s and Y p < s, respectively,
we obtain the desired result.

(ii) We split E[τ(Y q) − τ(Y p)] into the three expectations on the events Y = p, Y p ∈
(0, s), and Y p ≥ s. If Y = p, then τ(Y q)− τ(Y p) = τ(qp). In general, as before

τ(Y q)− τ(Y p) ≤ qp τ ′
(
qp

2
+ Y p

)
. (3.22)

If 0 < Y p < s and qp ≤ s, then, with Lemma B.6 (ii),

τ ′
(
qp

2
+ Y p

)
= τ ′

(
3

2
s

)
(3.23)

≤ 3

2
τ ′(s) . (3.24)

If Y p ≥ s, then, again using Lemma B.6 (ii),

τ ′
(
qp

2
+ Y p

)
= τ ′

((
qp

2Y p
+ 1

)
Y p

)
(3.25)

≤ τ ′
((

qp

2s
+ 1

)
Y p

)
(3.26)

≤
(
qp

2s
+ 1

)
τ ′
(
Y p
)
. (3.27)

(iii) By the triangle inequality and τ being nondecreasing, we have τ(Y q) ≥ τ(|Y p−qp|).
From this, on one hand, we obtain by Lemma 2.5,

τ(Y q)− τ(Y p) ≥ τ(qp)− 2 qp τ ′(Y p) . (3.28)

On the other hand, if Y p < s ≤ qp, then, by the triangle inequality,

τ(Y q)− τ(Y p) ≥ τ(qp− s)− τ(s) . (3.29)
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Taking expectations of these two inequalities on Y p ≥ s and Y p < s, respectively,
we obtain the desired result.

Notation 3.4. For p ∈ Q and r ∈ (0,∞), we denote the open ball with center p and radius
r as Br(p) := {q ∈ Q | qp < r}. The diameter of a set A ⊆ Q is diam(A) := supq,p∈A qp.

Theorem 3.5. Let τ ∈ S+
0 . Assume E[τ ′(Y o)] < ∞. Fix p ∈ Q.

(i) Assume diam(Q) = ∞. Then

lim inf
r→∞

inf
q∈Q\Br(o)

E
[
τ(Y q)− τ(Y p)

]
τ(qp)

= lim sup
r→∞

sup
q∈Q\Br(o)

E
[
τ(Y q)− τ(Y p)

]
τ(qp)

= 1 .

(3.30)

(ii) Assume p is an accumulation point of Q. Then

lim sup
r→0

sup
q∈Br(p)\{p}

E
[
τ(Y q)− τ(Y p)

]
qp

≤ E[τ ′(Y p)] . (3.31)

Proof.

(i) First assume that T := supx∈[0,∞) τ
′(x) < ∞. Then, for s ∈ [0,∞), Lemma 3.3 (i)

yields
E
[
τ(Y q)− τ(Y p)

]
≤ qp TP

(
Y p ≥ s

)
+ τ(pq + s)P

(
Y p < s

)
. (3.32)

For ε ∈ (0,∞), there is s = sε ∈ (0,∞), such that max(1, T )P
(
Y p ≥ s

)
≤ ε. Let

r = rs,ε be large enough so that q ∈ Q \ Br(o) fulfills s ≤ ε qp. Then

qp TP
(
Y p ≥ s

)
+ τ(pq + s)P

(
Y p < s

)
≤ ε qp+ τ((1 + ε)qp) (3.33)

for all q ∈ Q \Br(o). Dividing by τ(qp) and using Lemma B.8 with 0 < T < ∞ yields

lim sup
r→∞

sup
q∈Q\Br(o)

ε qp+ τ((1 + ε)qp)

τ(qp)
=

ε

T
+ 1 + ε . (3.34)

As ε ∈ (0,∞) can be chosen arbitrarily, we obtain

lim sup
r→∞

sup
q∈Q\Br(o)

E
[
τ(Y q)− τ(Y p)

]
τ(qp)

≤ 1 . (3.35)

To show a corresponding lower bound, we use Lemma 3.3 (iii) to obtain

E
[
τ(Y q)− τ(Y p)

]
≥ (τ(qp)− 2 qp T )P

(
Y p ≥ s

)
+ (τ(qp− s)− τ(s))P

(
Y p < s

)
.

(3.36)
For ε ∈ (0,∞), we can choose s = sε large enough so that P(Y p ≥ s) < ε, and then
choose r = rs,ε large enough so that s ≤ ε qp for all q ∈ Q \ Br(o). Hence, (3.36)
yields

E
[
τ(Y q)− τ(Y p)

]
≥ (1− ε) τ((1− ε) qp)− 2Tε qp− τ(ε qp) . (3.37)

Dividing by τ(qp) and using Lemma B.8 with 0 < T < ∞ yields

lim inf
r→∞

inf
q∈Q\Br(o)

(1− ε) τ((1− ε) qp)− 2Tε qp− τ(ε qp)

τ(qp)
= (1− ε)2 − 2ε− ε . (3.38)

With ε ∈ (0,∞) being arbitrary, we obtain the asymptotic lower bound

lim inf
r→∞

inf
q∈Q\Br(o)

E
[
τ(Y q)− τ(Y p)

]
τ(qp)

≥ 1 . (3.39)
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Now assume that T = ∞. Then the lower bound (3.39) follows immediately
from Lemma 3.3 (iii) with s = 0 as x/τ(x)

x→∞−−−−→ 0 (as T = ∞). For the upper
bound, Lemma 3.3 (i) yields

E
[
τ(Y q)− τ(Y p)

]
(3.40)

≤ qp τ ′
(
qp

2

)
P
(
Y p ≥ s

)
+ qpE

[
τ ′
(
Y p
)]

+ τ(pq + s)P
(
Y p < s

)
, (3.41)

where we used that τ ′ is subadditive (Lemma B.6). As xτ ′(x) ≤ 2τ(x) (Lemma B.4),
and τ(x)/x

x→∞−−−−→ ∞ (as T = ∞), the expression is dominated by τ(pq+s)P(Y p < s)

for large s and larger qp. Thus, as τ(x+ s)/τ(x)
x→∞−−−−→ 1 (see Lemma B.7), we have

lim sup
r→∞

sup
q∈Q\Br(o)

E
[
τ(Y q)− τ(Y p)

]
τ(qp)

≤ 1 . (3.42)

(ii) Fix ε > 0. Choose s = sε ∈ (0, 1] small enough so that P
(
Y p ∈ (0, s)

)
< ε. For q ∈ Q

with qp ≤ 2εs, we have, by Lemma 3.3 (ii),

E
[
τ(Y q)− τ(Y p)

]
(3.43)

≤ P(Y = p)τ(qp) +
3

2
ε qp τ ′(1) + qp (1 + ε)E

[
τ ′
(
Y p
)
1Y 6=p

]
. (3.44)

Thus,

lim sup
r→0

sup
q∈Br(p)\{p}

E
[
τ(Y q)− τ(Y p)

]
qp

(3.45)

≤ P(Y = p)

(
lim sup

r→0
sup

q∈Br(p)\{p}

τ(qp)

qp

)
+ E

[
τ ′
(
Y p
)
1Y 6=p

]
. (3.46)

As τ(0) = 0, limx→0
τ(x)
x = τ ′(0). Thus, we have shown the desired result.

Theorem 3.5 shows that, for q far enough away from a reference point, the variance
functional q 7→ E[τ(Y q)− τ(Y p)] looks like q 7→ τ(qp). For q very close to the reference
point p, the variance functional grows at most linearly, and can grow linearly, see Propo-
sition 3.1. Particular interest is in a lower bound for q near the reference point p, which
is not described by the theorem. Note that, for arbitrary p, the variance functional can
be negative for some q close to p. By restricting p to be a τ -Fréchet mean of Y and the
geometry of the metric space to have nonpositive curvature, we will be able to paint an
almost complete picture of the growth behavior of the variance functional in section 5.
In the next section, we develop the tools we need for this task.

4 Quadratic lower bound of distance functions in Hadamard spaces

[10, Section 4.4] discusses distance functions in Hadamard spaces (and others) and a
concept called E-convexity. We modify and extend their treatment slightly in section 4.1
and 4.2, and show its connection to strong convexity in section 4.3. With the concepts
described there, we are able to obtain quadratic lower bounds of distance functions in
Hadamard spaces in sections 4.4 (Theorem 4.17), which are the major tool for deriving
variance inequalities in Hadamard spaces in sections 5 and 6. Proofs omitted from this
section can be found in appendix C.2.
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4.1 G-convexity
Definition 4.1. Let I ⊆ R. Let G be a set of functions I → R. A function f : I → R

is called G-convex if and only if for every t0 ∈ I there is a function g ∈ G such that
g(t0) = f(t0) and g(t) ≤ f(t) for all t ∈ I. In this case, the function g is called G-tangent
of g at t0.

If G is the set of affine functions, then a function is G-convex if and only if it is convex.
For the rest of the article, we fix G to be

G :=
{
t 7→

√
(t− t0)2 + h2

∣∣∣ t0 ∈ R, h ≥ 0
}
. (4.1)

The next proposition helps us to better understand this set G.
Proposition 4.2 (On the set G).

(i) The set G is the set of square roots of nonnegative quadratic polynomials with 1 as
quadratic coefficient, i.e.,

G =

{
t 7→

√
f(t)

∣∣∣∣ f(t) = t2 + at+ b , a ∈ R, b ∈
[
a2

4
,∞
)}

. (4.2)

(ii) Let (Q, d) be a Hilbert space of at least dimension 2. Then G is the set of distance
functions between a point and a line, i.e.,

G =
{
t 7→ yγ(t)

∣∣∣ y ∈ Q and γ(t) = u+ vt , u, v ∈ Q , ‖v‖ = 1
}
. (4.3)

When generalizing from Hilbert or Euclidean spaces to Hadamard spaces, the dis-
tance functions can look different from the functions in G. But they retain some essential
properties of the Euclidean distance functions: As stated below in Lemma 4.12, distance
functions in Hadamard spaces are G-convex. The study of G-convex functions is cen-
tral for proving our main results. The next two propositions provide properties of the
functions in G and of G-convex functions.

We say a function is 1-Lipschitz if it is Lipschitz-continuous with Lipschitz constant 1.
The term nonexpanding is also used in the literature for this property.

Proposition 4.3 (On functions in G).

(i) Every g ∈ G is G-convex.

(ii) Let g1, g2 ∈ G. If there are s, t ∈ R, s 6= t such that g1(s) = g2(s) and g1(t) = g2(t),
then g1 = g2.

(iii) Let g1, g2 ∈ G. If there are r, s, t ∈ R, r < s < t such that g1(r) ≤ g2(r), g1(s) ≥ g2(s),
and g1(t) ≤ g2(t), then g1 = g2.

(iv) Let t1, t2 ∈ R. If f : R → [0,∞) is 1-Lipschitz with f(t1) + f(t2) ≥ |t1 − t2|, then
there is a function g ∈ G such that g(t1) = f(t1) and g(t2) = f(t2).

Proposition 4.4 (On G-convex functions). Let I ⊆ R be convex. Let f : I → R be
G-convex. Then

(i) f is nonnegative,

(ii) f is 1-Lipschitz,

(iii) f is convex,

(iv) for all t1, t2 ∈ I, we have f(t1) + f(t2) ≥ |t1 − t2|,
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(v) if there is t0 ∈ I such that f(t0) = 0, then f(t) = |t− t0| for all t ∈ I.

Notation 4.5. For I ⊆ R convex, denote I	 := I \ {inf I} and I⊕ := I \ {sup I}.
For a function f : I → R, denote ∂±f(t) = [min(f	(t), f⊕(t)),max(f	(t), f⊕(t))] for t ∈
I	 ∩ I⊕. If inf I > −∞, set ∂±f(inf I) = {f⊕(inf I)}, and, if sup I < ∞, set ∂±f(sup I) =

{f	(sup I)}, assuming the left and right derivatives exist on I	 and I⊕, respectively.

Proposition 4.6 (Characterization of G-convex functions). Let I ⊆ R be convex.

(i) Let f : I → R be G-convex. Let g ∈ G and t1, t2 ∈ I, t1 < t2 such that g(ti) = f(ti),
i = 1, 2. Then g(t) ≥ f(t) for all t ∈ [t1, t2] and g(t) ≤ f(t) for all t ∈ I \ [t1, t2].

(ii) Let f : I → R. Assume for every t1, t2 ∈ I, t1 < t2, there is g ∈ G such that
g(ti) = f(ti), i = 1, 2 and g(t) ≥ f(t) for all t ∈ [t1, t2]. Then the right derivative of f
exists on I⊕ and the left derivative on I	. Let t0 ∈ I and v0 ∈ ∂±f(t0). Then

s 7→
√
(s− t0 + f(t0)v0)

2
+ (1− v20) f(t0)

2 (4.4)

=
√
f(t0)2 + 2(s− t0)f(t0)v0 + (s− t0)2 (4.5)

is a G-tangent of f at t0. In particular, f is G-convex.

Proof.

(i) Assume there would be t ∈ (t1, t2) with g(t) < f(t). Let g̃ be the G-tangent of f at
t. Then g̃(t) = f(t) > g(t) and g̃(ti) ≤ f(ti) = g(ti), i = 1, 2. By Proposition 4.3 (iii),
that is not possible.

Assume there would be t ∈ I \ [t1, t2] with g(t) > f(t). Without loss of generality,
t < t1. Then, by Proposition 4.4 (i), (ii), (iv) and Proposition 4.3 (iv), there is g̃ ∈ G
with g̃(t) = f(t) < g(t), g̃(t2) = f(t2) = g(t2). Then, according to the first part of
this item, which we just proved, g̃(t1) ≥ f(t1) = g(t1). By Proposition 4.3 (iii) that
is not possible.

(ii) For t1, t2 ∈ I, t1 < t2 denote gt1,t2 ∈ G a function with gt1,t2(ti) = f(ti), i = 1, 2

and gt1,t2(t) ≥ f(t) for all t ∈ [t1, t2]. Assume there would be t ∈ R \ [t1, t2] with
gt1,t2(t) > f(t). Without loss of generality, t < t1. Then we have gt,t2 ∈ G with
gt,t2(t) = f(t) < gt1,t2(t), gt,t2(t2) = f(t2) = gt1,t2(t2) and gt,t2(t1) ≥ f(t1) = gt1,t2(t1)

as t1 ∈ [t, t2]. By Proposition 4.3 (iii) that is not possible. We will use this property
later.

Before, we state two further properties of f : The function f is 1-Lipschitz as
|f(t1)− f(t2)| = |gt1,t2(t1)− gt1,t2(t2)| ≤ |t1 − t2|. Moreover, f is convex because
f(t) ≤ gt1,t2(t) for all t ∈ [t1, t2] and gt1,t2 is convex.

Let t0 ∈ I. As f is convex and Lipschitz, ∂±f(t0) exists. For all v0 ∈ ∂±f(t0), there
are (t+n )n∈N, (t

−
n )n∈N ⊆ I with t+n > t−n and t0 ∈ [t−n , t

+
n ] such that both sequences

converge to t0, and

lim
n→∞

f(t+n )− f(t−n )

t+n − t−n
= v0 , (4.6)

see Lemma B.1. Let gn ∈ G, such that gn(t
+
n ) = f(t+n ), gn(t

−
n ) = f(t−n ). Then

gn(t) ≥ f(t) for all t ∈ [t−n , t
+
n ] by assumption and gn(t) ≤ f(t) for all t ∈ I \ [t−n , t+n ]

as we have shown in the first paragraph of this proof. Let sn ∈ R, hn ∈ [0,∞) be
the parameters of gn, i.e.,

gn(x) =
√
(x− sn)2 + h2

n . (4.7)
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Using Lemma B.2, we can explicitly calculate sn and hn and their limits s∞ :=

limn→∞ sn and h∞ := limn→∞ hn: As f is convex, its one-sided derivatives exits.
Thus, using continuity of f , we obtain

sn =
(t+n )

2 − (t−n )
2
+ f(t−n )

2 − f(t+n )
2

2(t+n − t−n )
(4.8)

=
t+n + t−n

2
− f(t+n ) + f(t−n )

2
· f(t

+
n )− f(t−n )

t+n − t−n
(4.9)

n→∞−−−−→ t0 − f(t0)v0 . (4.10)

For the other parameter, we obtain

h2
n =

1

4

(
2
(
f(t+n )

2 + f(t−n )
2
)
− (t+n − t−n )

2 −
(
f(t−n )

2 − f(t+n )
2

t+n − t−n

)2
)

(4.11)

=
f(t+n )

2 + f(t−n )
2

2
−
(
t+n − t−n

2

)2

−
(
f(t+n ) + f(t−n )

2
· f(t

+
n )− f(t−n )

t+n − t−n

)2

(4.12)

n→∞−−−−→
(
1− v20

)
f(t0)

2 . (4.13)

Define the function
g∞(x) =

√
(x− s∞)2 + h2

∞ . (4.14)

Obviously, g∞ ∈ G. Let x ∈ R. As (s, h) 7→
√

(x− s)2 − h2 is continuous, g∞(x) =

limn→∞ gn(x). Furthermore, if x 6= t0, there is n0 ∈ N such that gn(x) ≤ f(x) for all
n ≥ n0. Thus, g∞(x) ≤ f(x). Lastly, g∞(t0) = limn→∞ gn(t0) ≥ f(t0). Thus, g∞ ∈ G
is a G-tangent of f at t0.

A central property of G-convex functions for the proof of the main result of this
section, Theorem 4.17, is the following lower bound on the second derivative.

Notation 4.7. For a convex set I ⊆ R, let I̊ be the interior interval, I̊ := I⊕ ∩ I	.

Lemma 4.8. Let I ⊆ R be convex. Assume f : I → R is G-convex. Let s ∈ I̊ such that f
is twice differentiable at s. Then f(s) > 0 and

f ′′(s) ≥ 1− f ′(s)2

f(s)
. (4.15)

Proof. If f(s) = 0, then f is not differentiable at s by Proposition 4.4 (v). Thus, f(s) > 0.
Let g be the G-tangent of f at s. Define h(t) := f(t)− g(t). As g(s) = f(s) > 0, g is twice
differentiable at s. Thus, h is twice differentiable at s. As g is a G-tangent of f at s, we
have h(s) = 0 and h(t) ≥ 0 for all t ∈ I. Thus, as s ∈ I̊, h′(s) = 0 and h′′(s) ≥ 0. Thus,
f ′(s) = g′(s) and f ′′(s) ≥ g′′(s). By Lemma B.3, g′′(s)g(s) = 1− g′(s)2. Thus,

f ′′(s) ≥ g′′(s) =
1− g′(s)2

g(s)
=

1− f ′(s)2

f(s)
. (4.16)

4.2 Distance functions in Hadamard spaces

We first recall the definition of a geodesic in Hadamard spaces and state some basic
properties. In some context, one may want to distinguish between shortest paths that
are globally minimizing the length of a curve and geodesics that are only required to
minimize length locally. As our main focus is on Hadamard spaces, where these two
terms are identical [10, Theorem 9.2.2], we only use the term geodesic here. For a full
treatment see, e.g., [10].
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Definition 4.9. Let I ⊆ R be convex.

(i) A function γ : I → Q is called geodesic if and only if

γ(r)γ(t) = γ(r)γ(s) + γ(s)γ(t) (4.17)

for all r, s, t ∈ I with r < s < t.

(ii) Let γ : I → Q be a geodesic. If there is L ∈ [0,∞) such that γ(s)γ(t) = L |s− t| for
all s, t ∈ I, then the geodesic is said to have constant speed. If L = 1, we call γ a
unit-speed geodesic. Denote by Γ1 the set of unit-speed geodesics in Q.

(iii) The metric space (Q, d) is called geodesic space, if and only if each pair of points
in Q is connected by a geodesic.

Proposition 4.10. Assume (Q, d) is Hadamard. Let q, p ∈ Q.

(i) There is a unique constant speed geodesic γq,p : [0, 1] → Q with γq,p(0) = q and
γq,p(1) = p.

(ii) Let t ∈ [0, 1], then (q, p) 7→ γq,p(t) is continuous.

(iii) Let y ∈ Q and t ∈ [0, 1]. Then

yγq,p(t)
2
≤ (1− t) yq2 + t yp2 − t(t− 1) qp2 . (4.18)

See, e.g., [43, Proposition 2.3] for a proof.

Notation 4.11.

(i) For q, p ∈ Q, denote γq→p ∈ Γ1 the unit speed geodesic γq→p : [0, qp] → Q from
γq→p(0) = q to γq→p(qp) = p.

(ii) If γ is a geodesic, we denote its domain by Iγ , i.e., γ : Iγ → Q.

(iii) For a geodesic γ, we abuse notation and sometimes treat γ as its image, i.e., as the
set γ(Iγ) = {γ(t) | t ∈ Iγ}, and write q ∈ γ for q ∈ γ(Iγ) and γ ⊆ A for A ⊆ Q with
γ(Iγ) ⊆ A.

Lemma 4.12. Assume (Q, d) is Hadamard. Let γ ∈ Γ1. Let y ∈ Q. Define the function

yγ : Iγ → R, t 7→ yγ(t) . (4.19)

Then yγ is G-convex.

Proof. Let t1, t2 ∈ Iγ with t1 < t2. By Proposition 4.10, there is a constant speed geodesic
γ̃ : [0, 1] → Q with γ̃(0) = γ(t1) and γ̃(1) = γ(t2), with

yγ̃(t)
2
≤ (1− t) yγ̃(0)

2
+ t yγ̃(1)

2
− t(1− t) γ̃(0)γ̃(1)

2
. (4.20)

As such a geodesic is unique, we have γ̃(t) = γ(t1 + t(t2 − t1)). Set s = t1 + t(t2 − t1).
Then t = (s− t1)/(t2 − t1) and

yγ(s)2 = yγ(s)
2

(4.21)

≤
(
1− s− t1

t2 − t1

)
yγ(t1)

2
+

s− t1
t2 − t1

yγ(t2)
2
− (s− t1) (1− (s− t1)) (4.22)

=: f(s) (4.23)

for s ∈ [t1, t2] with equality at the boundaries. The function f is a nonnegative, quadratic
polynomial with 1 as coefficient of the squared term. Thus,

√
f ∈ G by Proposition

4.2 (i). Proposition 4.6 (ii) implies that s 7→ yγ(s) is G-convex.
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4.3 Strong convexity

The notion of G-convexity is related to strong convexity, a term possibly more common
in the literature [37, 28, 34, 50]. Although we will not use strong convexity later, we
want to make the connection clear. In the following ‖·‖ denotes the Euclidean norm in
Rk, k ∈ N.
Definition 4.13. Let k ∈ N, D ⊆ Rk be convex, f : D → R, and a ∈ (0,∞). The function
f is strongly convex with modulus a if and only if, for all x, y ∈ D and t ∈ [0, 1], we have

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− at(1− t)‖x− y‖2 . (4.24)

Let k ∈ N, D ⊆ Rk be convex, f : D → R. A subgradient of f at x0 ∈ D is a vector
v ∈ Rk such that f(x)− f(x0) ≥ v>(x− x0) for all x ∈ Rk. The set of subgradients at x0 is
called subdifferential and denoted as ∂f(x0). It is a convex set.

Proposition 4.14 (Characterization of strong convexity). Let k ∈ N, D ⊆ Rk be convex,
f : D → R, and a ∈ (0,∞). Then, the following statements are equivalent:

(i) f is strongly convex with modulus a.

(ii) x 7→ f(x)− a‖x‖2 is convex.

(iii) f(x) ≥ f(x0) + v>(x− x0) + a‖x− x0‖2 for all x, x0 ∈ D and v ∈ ∂f(x0).

(iv) (u− v)>(x− z) ≥ 2a‖x− z‖2 for all x, z ∈ D and u ∈ ∂f(x), v ∈ ∂f(z).

See, e.g., [50] for a proof.

Proposition 4.15 (G-convexity vs strong convexity). Let I ⊆ R be convex.

(i) Let f : I → R. Assume f is G-convex. Then f2 is strongly convex with modulus 1.

(ii) Let f : I → R. Assume f is nonnegative and strongly convex with modulus 1, and√
f is 1-Lipschitz. Then

√
f is G-convex.

See appendix C.2 for a proof. According to [10, Theorem 9.2.19] the property that
squared distance functions yγ2 for y ∈ Q, γ ∈ Γ1 are strongly convex with modulus 1

characterizes Hadamard spaces among complete metric spaces with so-called strictly
intrinsic metric [10, Definition 2.1.10].

4.4 Quadratic lower bound

For G-convex functions f , we derive a quadratic lower bound of f and of τ ◦ f for
τ ∈ S in Theorem 4.17 below. The inequality for τ ◦ f depends on a second derivative,
which is bounded in the next lemma.

Lemma 4.16. Let τ ∈ S. Let I ⊆ R be convex. Let f : I → R be G-convex. Let t ∈ I̊.
Assume that f is twice differentiable at t. Then

(i) (τ ◦ f)′	(t) ≥ τ ′⊕(f(t)) and

(ii) (τ ◦ f)′⊕(t) ≥ τ ′⊕(f(t)).

Proof. If τ is constant, the result is trivial. Assume τ is not constant. Then τ ′(x) > 0 for
all x ∈ (0,∞) as τ ′ is concave, nondecreasing, and nonnegative.

If f(t) = 0, then f(s) = |s− t|, which is not differentiable at t. As we assume that f
is twice differentiable at t, we have f(t) 6= 0. The product rule applies for the left (and
right) derivative, so that we obtain

(τ ◦ f)′	(t) = ((τ ′ ◦ f) · f ′)
	
(t) (4.25)

= (τ ′ ◦ f)	(t)f ′(t) + τ ′(f(t))f ′′(t) . (4.26)
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If f is nondecreasing in [t, t + ε] for some ε > 0, we can apply the chain rule to obtain
(τ ′ ◦ f)	(t) = τ ′	(f(t))f ′(t). If f is nonincreasing in [t, t+ ε], the left derivative becomes
a right derivative in the chain rule, i.e., we have (τ ′ ◦ f)	(t) = τ ′⊕(f(t))f ′(t). We
can choose ε small enough so that one of the two cases is true. As we always have
τ ′	(f(t)) ≥ τ ′⊕(f(t)), we obtain in both cases

(τ ◦ f)′	(t) ≥ τ ′⊕(f(t))f ′(t)2 + τ ′(f(t))f ′′(t) . (4.27)

Note that τ ′(f(t)) > 0 as f(t) > 0. We use Lemma 4.8 to get

τ ′(f(t))f ′′(t) ≥ τ ′(f(t))
1− f ′(t)2

f(t)
. (4.28)

Thus,

(τ ◦ f)′	(t) ≥
(
τ ′⊕(f(t))f(t)

τ ′(f(t))
f ′(t)2 +

(
1− f ′(t)2

)) τ ′(f(t))

f(t)
(4.29)

=

(
1−

(
1− f(t)τ ′⊕(f(t))

τ ′(f(t))

)
f ′(t)2

)
τ ′(f(t))

f(t)
. (4.30)

With τ ′ is nondecreasing, τ ′⊕ nonincreasing (τ ′ is concave), and Lemma A.1, we obtain

τ ′(x)− τ ′(0) ≥
∫ x

0

τ ′⊕(z)dz ≥ xτ ′⊕(x) (4.31)

for all x ∈ [0,∞). Thus, with τ ′(0) ≥ 0, we get

1− xτ ′⊕(x)

τ ′(x)
≥ 0 . (4.32)

Furthermore, f ′(t)2 ≤ 1 as f is 1-Lipschitz. Thus,

1−
(
1− f(t)τ ′⊕(f(t))

τ ′(f(t))

)
f ′(t)2 ≥ f(t)τ ′⊕(f(t))

τ ′(f(t))
. (4.33)

Finally, we get

(τ ◦ f)	(t) ≥
(
1−

(
1− τ ′⊕(f(t))f(t)

τ ′(f(t))

)
f ′(t)2

)
τ ′(f(t))

f(t)
≥ τ ′⊕(f(t)) . (4.34)

The calculations for (τ ◦ f)⊕(t) are essentially the same.

Theorem 4.17. Let I ⊆ R be convex with 0 ∈ I. Let f : I → R be G-convex.

(i) Then, for all t ∈ I, t 6= 0,

f(t)− f(0) ≥ tf⊕(0) +
1

2
t2
1−max

(
f⊕(0)2, f	(t)2

)
max(f(0), f(t))

. (4.35)

(ii) Let τ ∈ S. Then, for all t ∈ I, t 6= 0,

(τ ◦ f)(t)− (τ ◦ f)(0) ≥ t(τ ◦ f)⊕(0) + 1

2
t2τ ′⊕(max(f(0), f(t))) . (4.36)

Proof. If t < 0, we can replace f by t 7→ f(−t). Thus, we can assume t > 0 without loss
of generality.
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(i) As f is G-convex, it is convex, see Proposition 4.4 (iii). Thus, f is twice differentiable
almost everywhere (Alexandrov’s theorem, cf. Lemma A.2). Let B ⊆ I be the set of
points where f is not twice differentiable including potential boundary points of I.
As f is Lipschitz continuous, it is absolutely continuous. Thus, by Lemma A.1,

f(t)− f(0) =

∫
[0,t]

f⊕(s)ds . (4.37)

As f is convex, f⊕ is nondecreasing. Thus, by Lemma A.1,

f⊕(s)− f⊕(0) ≥
∫
[0,s]\B

f ′′(r)dr . (4.38)

By Lemma 4.8, for r ∈ I \B ⊆ I̊,

f ′′(r) ≥ 1− f ′(r)

f(r)
. (4.39)

Thus,

f(t)− f(0) ≥
∫
[0,t]

(
f⊕(0) +

∫
[0,s]\B

1− f ′(r)2

f(r)
dr

)
ds (4.40)

≥ tf⊕(0) +
1

2
t2 inf

s∈[0,t]\B

1− f ′(s)2

f(s)
. (4.41)

As f ′ is nondecreasing, ([0, t] \B) → R, s 7→ f ′(s)2 is maximized at the extremes of
the domain. As f is convex, [0, t] → R, s 7→ f(s) is also maximized at the extremes.
Thus,

inf
s∈[0,t]\B

1− f ′(s)2

f(s)
≥

1−max
(
f⊕(0)2, f	(t)2

)
max(f(0), f(t))

. (4.42)

(ii) As τ and f are convex and τ is nondecreasing, τ ◦ f is convex. Thus, τ ◦ f is
twice continuously differentiable almost everywhere by Alexandrov’s theorem,
(cf. Lemma A.2). Let B ⊆ I be the set of points where τ ◦f is not twice differentiable.
As τ ◦ f convex on R, it is Lipschitz on [0, t] and, hence, absolutely continuous on
[0, t]. Thus, by Lemma A.1,

(τ ◦ f)(t)− (τ ◦ f)(0) =
∫ t

0

(τ ◦ f)⊕(s)ds . (4.43)

Furthermore, as (τ ◦ f)⊕ is nondecreasing, by Lemma A.1,

(τ ◦ f)⊕(t)− (τ ◦ f)⊕(0) ≥
∫
[0,s]\B

(τ ◦ f)′′(r)dr . (4.44)

For r ∈ I \B ⊆ I̊, by Lemma 4.16,

(τ ◦ f)′′(r) ≥ τ ′⊕(f(r)) . (4.45)

As τ ′ is concave, τ ′⊕ is nonincreasing. Thus, if r ∈ [0, t], then

τ ′⊕(f(r)) ≥ τ ′⊕

(
sup

s∈[0,t]

f(s)

)
≥ τ ′⊕(max(f(0), f(t))) (4.46)

EJP 30 (2025), paper 15.
Page 20/48

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1273
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variance inequalities for transformed Fréchet means in Hadamard spaces

as f is convex. Hence,

(τ ◦ f)(t)− (τ ◦ f)(0) ≥
∫
[0,t]

(
(τ ◦ f)⊕(0) +

∫
[0,s]\B

τ ′⊕(f(r))dr

)
ds (4.47)

≥ t(τ ◦ f)⊕(0) + 1

2
t2τ ′⊕(max(f(0), f(t))) . (4.48)

Remark 4.18 (on Theorem 4.17). The inequalities seem rather sharp. For f(t) =

|t|, (4.35) is an equality. Additionally, for τ = (x 7→ xα), α ∈ [1, 2], (4.36) is

tα ≥ α(α− 1)

2
tα , (4.49)

which is an equality for α = 2 and trivial for α = 1.

5 Transformed Fréchet means in Hadamard spaces

In this section, we restrict our discussion to Hadamard spaces. Basic properties of
the τ -Fréchet mean, τ ∈ S+

0 , and its variance functional are discussed in section 5.1
(Proposition 5.2). The variance inequality is shown in section 5.2 (Theorem 5.4). To
complete the discussion, Theorem 5.10 in section 5.3 shows a result for P(Y = m) > 0.

5.1 Basics

The notion of convexity can be transferred to Hadamard spaces, see, e.g., [4, chapter
2]. We use the term convex here, but some authors prefer geodesically convex in this
context.

Definition 5.1. Assume (Q, d) is Hadamard.

(i) A set A ⊆ Q is called convex if and only if for any q, p ∈ A, q 6= p, have γq→p ⊆ A.

(ii) A function f : Q → R is called convex if and only if for any q, p ∈ Q, q 6= p, we have
f ◦ γq→p is convex.

Proposition 5.2. Let τ ∈ S+
0 . Assume (Q, d) is Hadamard. Assume E[τ ′(Y o)] < ∞.

(i) The variance functional v : Q → R, v(q) := E[τ(Y q)− τ(Y o)] is convex.

(ii) Let M := argminq∈Q v(q) be the set of τ -Fréchet means. Then M is nonempty,
closed, bounded, and convex. Furthermore, M does not depend on the choice of
the reference point o.

(iii) If Y is concentrated on a closed convex set Y ⊆ Q, i.e., P(Y ∈ Y) = 1, then M ⊆ Y.

Proof. For a geodesic γ ∈ Γ1, the distance function yγ is G-convex, see Lemma 4.12.
Thus, t 7→ τ(Y γ(t))− τ(Y p) is convex. Hence, E[τ ′(Y o)] < ∞ implies that the variance
functional v is convex.

By Proposition 3.2, the bound E[τ ′(Y o)] < ∞ yields continuity of v via |v(q)− v(p)| ≤
D(q, p) with D from (3.5). Using [4, Example 2.1.3], the sublevel sets of v, {q ∈ Q |
v(q) ≤ a} for a ∈ R, are closed and convex. Furthermore, by Theorem 3.5 (i), v(q) → ∞
whenever qo → ∞. Following the proof of [4, Lemma 2.2.19] and using [4, Proposition
2.1.16], we obtain that M is nonempty, closed, bounded, and convex. It does not depend
on o, as all expectations are finite independent of the reference point (Proposition 3.2).
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Now consider a closed and convex set Y ⊆ Q such that P(Y ∈ Y) = 1. By [4, Theorem
2.1.12], for every q ∈ Q \ Y, there is p ∈ Y such that

yq2 ≥ yp2 + qp2 (5.1)

for all y ∈ Y. Thus, yq > yp. As we exclude constant transformations, τ ′ is concave,
and τ ′(x) ≥ 0 for all x ∈ [0,∞), we obtain that τ is strictly increasing and, therefore,
τ(yq) > τ(yp). Integration over Y ∈ Y yields E[τ(Y q)− τ(Y p)] > 0. Hence, q 6∈ M .

Remark 5.3.

(i) By the Hopf–Rinow theorem [10, Theorem 2.5.28], if Q is a locally compact
Hadamard space, every closed and bounded subset of Q is compact (Heine–Borel
property). Hence, Proposition 5.2 implies compactness of the τ -Fréchet mean set
in locally compact Hadamard spaces.

(ii) By Proposition 5.2 (iii), if Q is separable, then M is contained in the closed convex
hull of the support of Y , i.e., in the intersection of all closed convex supersets of
the support of Y . Note that, if Q is not separable, Y can have an empty support.

5.2 Variance Inequality

Theorem 5.4. Let τ ∈ S+
0 . Assume (Q, d) is Hadamard. Assume E[τ ′(Y o)] < ∞. Let

m ∈ argminq∈QE[τ(Y q)− τ(Y o)]. Let q ∈ Q \ {m}. Then

E
[
τ(Y q)− τ(Y m)

]
≥ 1

2
qm2E

[
τ ′⊕(max(Y m, Y q))

]
. (5.2)

Proof. Let γ := γm→q. For t ∈ [0, qm] and y ∈ Q, define Vy(t) := τ(yγ(t))− τ(yγ(0)). Thus,
Vy(0) = 0. By Theorem 4.17 (ii),

Vy(t) ≥ tV ⊕
y (0) +

1

2
t2τ ′⊕(max(yγ(0), yγ(t))) . (5.3)

By Proposition 3.2, E[τ ′(Y o)] < ∞ yields E[|VY (t)|] < ∞. Hence, G(t) := E[VY (t)] is
well-defined. Furthermore, as yγ is 1-Lipschitz, we have, for s ∈ [0, qm),

|∂+τ(yγ(s))| ≤ max
(∣∣τ ′(yγ(s))yγ⊕(s)

∣∣ , ∣∣τ ′(yγ(s))yγ	(s)
∣∣) (5.4)

≤ τ ′(yγ(s)) (5.5)

≤ τ ′(ym+ s) (5.6)

≤ τ ′(ym) + τ ′(s) . (5.7)

Thus,

E

[
sup

s∈[0,qm)

∣∣∂+τ(Y γ(s))
∣∣] ≤ E

[
τ ′(Y m)

]
+ τ ′(qm) < ∞ . (5.8)

Hence, we can swap integral and derivative to get

G⊕(t) = E
[
∂+τ(Y γ(t))

]
(5.9)

for t ∈ [0, qm). As G is convex and minimized at 0,

0 ≤ G⊕(0) = E
[
∂+τ(Y γ(0))

]
. (5.10)

Thus, integrating (5.3) yields,

G(t) ≥ 1

2
t2E
[
τ ′⊕
(
max(Y γ(0), Y γ(t))

)]
. (5.11)

Plugging in t = qm yields the desired result.
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Remark 5.5 (on Theorem 5.4).

(i) Theorem 5.4 applied to τ = (x 7→ x2), yields exactly the well-known variance in-
equality (1.6), which is an equality in Euclidean spaces, see (1.5). See also Example
5.6 and Example 6.3 for a further evaluation of the sharpness of the result.

(ii) If E
[
τ ′⊕(max(Y m, Y q))

] q→m−−−→ ∞, the lower bound in Theorem 5.4 can be steeper
than quadratic for q close to m. A sufficient condition for such a growth behavior is
given in Corollary 5.9 below.

(iii) On one hand, if τ ′⊕(x)
x→∞−−−−→ 0, the lower bound can be less steep than linear for q

far away fromm. It can even vanish for finite distance, e.g., for the Huber loss (1.2).
On the other hand, the variance functional is convex, see Proposition 5.2. Thus,
the slope of the variance functional cannot decrease. In other words, if the lower
bound in Theorem 5.4 is nontrivial for some q close to m, it can be extended by a
suitable affine function to all q further away from m. Furthermore, for q far away
from m, the variance functional looks like τ(qm) as stated in Theorem 3.5.

(iv) By [41, Lemma C.3], for every random variable Y with values in Q, there is τ ∈ S+
0

with τ ′⊕(x) > 0 for all x ∈ (0,∞) and E[τ ′(Y o)] < ∞. Thus, there is always a τ ∈ S+
0

such that Theorem 5.4 does not yield merely a trivial result.

Example 5.6.

(i) Let (Q, d) be the real line with Euclidean metric (R, |· − ·|). Let P(Y = 1) = P(Y =

−1) = 1
2 . Assume τ ∈ S is three times continuously differentiable on (0,∞).

Because of the symmetry of the distribution of Y , m = 0 is a τ -Fréchet mean of Y .
Then, for q ∈ (−1, 1),

v(q) := E[τ(|Y − q|)− τ(|Y |)] = τ(1 + q) + τ(1− q)

2
− τ(1) . (5.12)

Using a Taylor approximation, we have

v(q) =
1

2
q2τ ′′(1) +

1

6
q3 (τ ′′′(1 + ξ)− τ ′′′(1− ξ)) (5.13)

for some ξ ∈ [0, q]. Evaluating the lower bound in Theorem 5.4, yields

E[τ(|Y − q|)− τ(|Y |)] ≥ 1

4
q2 (τ ′′(1) + τ ′′(1 + |q|)) . (5.14)

The result obtained from Theorem 5.4 is close to the correct second order term for
q close to 0.

(ii) Let us consider τ = (x 7→ xα) for α ∈ (1, 2]. Then, in the same setup as in (i), we
obtain

1

2
α(α− 1)q2 ≤ E[|Y − q|α − |Y |α] ≤ 1

2
α(α− 1)q2 +

4

3
|q|3 (5.15)

for q ∈ [− 1
2 ,

1
2 ] via a Taylor approximation and explicit bounds on the third order

remainder term. Using Theorem 5.4 as in (i) and the bounds on q and α, we obtain
the lower bound 5

12α(α− 1)q2. Let us compare this result with the power transform
variance inequality in [49, Proposition 2]. Applied to our setting here, it establishes
an inequality of the form

Bα |q|α ≤ E[|Y − q|α − |Y |α] (5.16)

for some constant Bα ∈ [0,∞), which depends on α and the distribution of Y .
Because of (5.15), we must have Bα = 0 for α ∈ (1, 2), i.e., (5.16) only yields a
trivial result here, in contrast to Theorem 5.4.
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In the following, the infimum of an empty set is ∞.

Corollary 5.7. Let τ ∈ S+
0 . Assume (Q, d) is Hadamard. Assume E[τ ′(Y o)] < ∞. Let

m ∈ argminq∈QE[τ(Y q) − τ(Y o)]. Let x0 = inf{x ∈ (0,∞) | τ ′⊕(x) = 0}. Assume

P
(
Y m < x0

)
> 0. Then m is the only τ -Fréchet mean of Y .

Proof. Let p,m ∈ M := argminq∈QE[τ(Y q)− τ(Y o)], p 6= m. Then γ := γm→p ⊆ M as M
is convex by Proposition 5.2. Theorem 5.4 yields

0 = E
[
τ(Y γ(t))− τ(Y m)

]
≥ 1

2
mγ(t)2E

[
τ ′⊕
(
max(Y m, Y γ(t))

)]
. (5.17)

for t ∈ (0, pm]. As τ ′⊕ is nonnegative and nonincreasing, we obtain, using the triangle
inequality,

0 = τ ′⊕
(
max(Y m, Y γ(t))

)
≥ τ ′⊕

(
Y m+ t

)
≥ 0 (5.18)

almost surely. If P(Y m < x0) > 0, then we can make t > 0 small enough so that
P(Y m + t < x0) > 0. But then P(τ ′⊕

(
Y m+ t

)
> 0) > 0 by the definition of x0 in

contradiction to (5.18). Hence, M cannot contain two different elements.

Corollary 5.8 (Unique τ -Fréchet mean). Let τ ∈ S+
0 . Assume (Q, d) is Hadamard. Assume

E[τ ′(Y o)] < ∞. Assume τ ′⊕(x) > 0 for all x ∈ (0,∞). Then the τ -Fréchet mean is unique.

Proof. This directly follows from Corollary 5.7.

The following corollary draws a rather complete picture of the behavior of the
variance functional in form of upper and lower bounds for most settings where τ is not
linear. It distinguishes the growth behavior close to m from the one far away.

Corollary 5.9. Let τ ∈ S+
0 . Assume (Q, d) is Hadamard. Assume E[τ ′(Y o)] < ∞. Let

m ∈ argminq∈QE[τ(Y q) − τ(Y o)]. Let x0 = inf{x ∈ (0,∞) | τ ′⊕(x) = 0}. Assume

P
(
Y m < x0

)
> 0. Set β := 0 or assume β ∈ [0, 1) such that

lim inf
x↘0

τ ′⊕(2x)P
(
Y m ≤ x

)
x−β

> 0 . (5.19)

Then, there are c1, . . . , c4, δ ∈ (0,∞) with the following property:

(i) For all q ∈ Bδ(m)

c1qm ≥ E
[
τ(Y q)− τ(Y m)

]
≥ c2qm

2−β . (5.20)

(ii) For all q ∈ Q \ Bδ(m)

c3τ(qm) ≥ E
[
τ(Y q)− τ(Y m)

]
≥ c4τ(qm) . (5.21)

Proof. Using Theorem 5.4 and the triangle inequality, we obtain

E
[
τ(Y q)− τ(Y m)

]
≥ 1

2
qm2E

[
τ ′⊕(Y m+ qm)

]
≥ 1

2
qm2τ ′⊕(2qm)P

(
Y m ≤ qm

)
. (5.22)

Thus, by (5.19), there are δ0, c0 ∈ (0,∞) such that

E
[
τ(Y q)− τ(Y m)

]
≥ c0qm

2−β (5.23)

for all q ∈ Bδ0(m). Furthermore, by Theorem 3.5 (ii), there is δ1 ∈ (0,∞) such that

E
[
τ(Y q)− τ(Y m)

]
≤ 2 qmE

[
τ ′
(
Y m

)]
(5.24)
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for all q ∈ Bδ1(m). Moreover, by Theorem 3.5 (i), there is δ2 ∈ (0,∞) such that

2τ(qm) ≥ E
[
τ(Y q)− τ(Y m)

]
≥ 1

2
τ(qm) (5.25)

for all q ∈ Q \ Bδ2(m). Finally, as the variance functional is convex (Proposition 5.2), we
can close the gap between qm < min(δ0, δ1), where the bounds (5.23) and (5.24) hold,
and qm ≥ δ2, where (5.25) is true, by setting δ and the constant factors c1, . . . , c4 in the
statement of the corollary appropriately.

5.3 Point mass

When P(Y = m) > 0, Theorem 5.4 yields a variance inequality of the form

E
[
τ(Y q)− τ(Y m)

]
≥ 1

2
P(Y = m)qm2τ ′⊕(mq) . (5.26)

As τ ′(x) ≥ 0 and τ ′⊕ is nonincreasing, we have 1
2x

2τ ′⊕(x) ≤ τ(x) for all x ∈ (0,∞) (and
this inequality can be strict), so that the following theorem is an improvement.

Theorem 5.10. Let τ ∈ S+
0 with τ ′(0) = 0. Assume (Q, d) is Hadamard. Assume

E[τ ′(Y o)] < ∞. Then
E
[
τ(Y q)− τ(Y m)

]
≥ τ(qm)P(Y = m) (5.27)

for all q ∈ Q.

Proof. Let γ ∈ Γ1 with γ(0) = m. Define

f1(t) := E
[(
τ(Y γ(t))− τ(Y m)

)
1{Y=m}

]
= τ(t)P(Y = m) , (5.28)

f2(t) := E
[(
τ(Y γ(t))− τ(Y m)

)
1{Y 6=m}

]
. (5.29)

Then
E
[
τ(Y γ(t))− τ(Y m)

]
= f1(t) + f2(t) . (5.30)

We will show f2(t) ≥ 0 for all t ∈ [0,∞) to prove the theorem. The functions f1, f2, f1 + f2
are all convex as τ is convex and t 7→ yγ(t) is convex for all y ∈ Q (Lemma 4.12
and Proposition 4.4 (iii)). As limt→0 f1(t)/t = 0 by τ ′(0) = 0 and f1 + f2 ≥ 0,

lim inf
t↘0

f2(t)

t
≥ lim inf

t↘0

f1(t) + f2(t)

t
− lim sup

t↘0

f1(t)

t
≥ 0 . (5.31)

Assume there were t0 ∈ (0,∞) such that f2(t0) < 0. As f2(0) = 0 and f2 is convex, we
obtain, for all s ∈ (0, 1], f2(st0) ≤ sf2(t0). Thus, we would have

f2(st0)

st0
≤ f2(t0)

t0
< 0 . (5.32)

In other words, f2(t)
t would be smaller than a negative constant for all t ∈ (0, t0]. But this

contradicts (5.31). Hence, f2(t) ≥ 0 for all t ≥ 0.

6 The Fréchet median in Hadamard spaces

First, we show that focusing only on the Fréchet median is enough to essentially
complete the discussion of variance inequalities for τ ∈ S+

0 (section 6.1, Theorem 6.1).
In section 6.2, we discuss criteria for uniqueness of the Fréchet median (Theorem
6.6). A variance inequality for the Fréchet median is derived in section 6.3 (Theorem
6.15). It requires the random object Y to not be concentrated on a geodesic. The case
P(Y ∈ γ) = 1 for a geodesic γ is discussed in section 6.4 (Theorem 6.21).
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6.1 Reduction to the median

The next theorem shows that the cases not covered in the section 5, i.e., when
P
(
Y m < x0

)
= 0, x0 = inf{x ∈ (0,∞) | τ ′⊕(x) = 0}, essentially reduce to the case of the

Fréchet median.

Theorem 6.1. Let τ ∈ S+
0 . Let x0 = inf{x ∈ (0,∞) | τ ′⊕(x) = 0}. Assume x0 < ∞.

Let m ∈ argminq∈QE[τ(Y q) − τ(Y o)]. Define B0 := {q ∈ Q | P(Y q < x0) = 0}. Assume
m ∈ B0. Then

argmin
q∈Q

E[τ(Y q)− τ(Y o)] = B0 ∩ argmin
q∈Q

E[Y q − Y o] (6.1)

and, for all q ∈ Q,
E
[
τ(Y q)− τ(Y m)

]
≥ τ ′(x0)E

[
Y q − Y m

]
. (6.2)

Remark 6.2.

(i) Theorem 6.1 applies not only in Hadamard metric spaces, but in all metric spaces.

(ii) If the Fréchet median is unique and we can establish a variance inequality for
it, Theorem 6.1 implies that the τ -Fréchet (with the conditions on τ and Y stated
in the theorem) is unique and exhibits the same variance inequality up to a positive
constant factor.

Proof of Theorem 6.1. As x0 < ∞, we have b := supx∈(0,∞) τ
′(x) = τ ′(x0) with b > 0 as τ

is nondecreasing and not constant. As τ is convex with concave derivative, we further
have a constant a ∈ R such that

τ(x) > a+ bxif x ∈ [0, x0) ,

τ(x) = a+ bxif x ∈ [x0,∞) .
(6.3)

Let m0 ∈ argminq∈QE[Y q−Y o]∩B0. As b > 0 and m0 minimizes E[Y q−Y o] with respect

to q ∈ Q, it also minimizes a+ bE[Y q − Y o]. As we assume P
(
Y m0 < x0

)
= 0, we obtain

E[τ(Y m0)− bY o] = a+ bE[Y m0 − Y o] . (6.4)

Hence, m0 minimizes E[τ(Y q)− bY o] and therefore also E[τ(Y q)− τ(Y o)]. Thus, we have
shown

argmin
q∈Q

E[τ(Y q)− τ(Y o)] ⊇ B0 ∩ argmin
q∈Q

E[Y q − Y o] . (6.5)

Because of (6.3), we further obtain

E
[
τ(Y q)− τ(Y m0)

]
≥ bE

[
Y q − Y m0

]
(6.6)

with equality if and only if q ∈ B0. For m ∈ argminq∈QE[τ(Y q) − τ(Y o)], we have

0 = E
[
τ(Y m)− τ(Y m0)

]
because of (6.5). Hence, (6.6) and its condition for equality

imply m ∈ argminq∈QE[Y q − Y o] and m ∈ B0. Thus, we have

argmin
q∈Q

E[τ(Y q)− τ(Y o)] ⊆ B0 ∩ argmin
q∈Q

E[Y q − Y o] . (6.7)

Equations (6.5) and (6.7) imply (6.1), and (6.6) then shows (6.2).

In the next example, we consider the transformed Fréchet mean induced by the
Huber loss (the Huber-Fréchet mean). We apply either Theorem 5.4 or Theorem 6.1
depending on the threshold parameter of the Huber loss and compare the resulting
lower bounds with the exact variance functionals.
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Example 6.3 (Huber loss). Let us use the real line as our metric space (Q, d) = (R, |· − ·|).
Let δ ∈ (0,∞) and set τ := τh,δ, see (1.2). Let z ∈ (0,∞) and let Y be an R-valued random
variable with P(Y = −z) = P(Y = z) = 1

2 . Thenm = 0 is a τ -Fréchet mean and a Fréchet
median, and we have the following variance equations for τ : For z ≤ δ,

E
[
τ(Y q)− τ(Y 0)

]
=


1
2q

2 for |q| ∈ [0, δ − z] ,
1
4q

2 + 1
2 (δ − z) |q| − 1

4 (δ − z)2 for |q| ∈ [δ − z, δ + z] ,

δ |q| − 1
2 (δ

2 + z2) for |q| ∈ [δ + z,∞) ,

(6.8)

for z ≥ δ,

E
[
τ(Y q)− τ(Y 0)

]
=


0 for |q| ∈ [0, z − δ] ,
1
4q

2 + 1
2 (δ − z) |q|+ 1

4 (δ − z)2 for |q| ∈ [z − δ, z + δ] ,

δ(|q| − z) for |q| ∈ [δ + z,∞) .

(6.9)

Moreover, for the median variance functional, we have

E
[
Y q − Y 0

]
=

{
0 for |q| ∈ [0, z] ,

|q| − z for |q| ∈ [z,∞) .
(6.10)

Furthermore, in terms of Theorem 6.1, we have x0 = δ and

B0 =

{
(−∞,−(δ + z)] ∪ [δ + z,∞) for z < δ ,

(−∞,−(δ + z)] ∪ [δ − z, z − δ] ∪ [δ + z,∞) for z ≥ δ .
(6.11)

The Huber-Fréchet mean (set) is

argmin
q∈Q

E
[
τ(Y q)− τ(Y o)

]
=

{
0 for z ≤ δ ,

[δ − z, z − δ] for z ≥ δ .
(6.12)

and the Fréchet median set is

argmin
q∈Q

E
[
Y q − Y o

]
= [−z, z] . (6.13)

In the case z < δ, Theorem 5.4 yields

E
[
τ(Y q)− τ(Y 0)

]
≥


1
2q

2 for |q| ∈ [0, δ − z) ,
1
4q

2 for |q| ∈ [δ − z, δ + z) ,

0 for |q| ∈ [δ + z,∞) .

(6.14)

In the case z ≥ δ, Theorem 6.1 yields

E
[
τ(Y q)− τ(Y 0)

]
≥ τ ′(x0)E

[
Y q − Y m

]
=

{
0 for |q| ∈ [0, z] ,

δ(|q| − z) for |q| ∈ [z,∞) .
(6.15)

Remark 6.4.

(i) One can extend the bound in 6.14 using the convexity of the variance functional
(Proposition 5.2): For |q| ∈ [δ+z,∞), we obtain the lower bound 1

2 (δ+z) |q|− 1
4 (δ+z)2

on E
[
τ(Y q)− τ(Y 0)

]
.

(ii) Using (i), the lower bounds derived from Theorem 5.4 in the case z < δ show the
correct growth behavior of the variance functional up to a constant.

(iii) To apply Theorem 6.1 we require B0 to contain a transformed Fréchet mean. This
is only true in the case z ≥ δ but not in the case z < δ.

(iv) In the case z ≥ δ, Theorem 6.1 yields a non-trivial lower bound. But, in the specific
example here, it does not capture the growth behavior perfectly as the lower bound
is constant for a larger interval than in the case of the true variance functional.
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6.2 Uniqueness of the Fréchet median

To state the theorem on uniqueness of the Fréchet median, we introduce some
terminology. Recall I	 = I \ {inf I}, I⊕ = I \ {sup I}, and I̊ = I	 ∩ I⊕ for an interval
I ⊆ R (Notation 4.5).

Notation 6.5.

(i) For a set A, let #A be the cardinality of A.

(ii) A geodesic segment is a closed and bounded set that is an image of a geodesic.

(iii) For a geodesic γ : Iγ → Q, let γ̊ denote the interior geodesic image, γ̊ := γ(I̊γ).

(iv) Let γ ∈ Γ1. Define the left and right points of γ as

L(γ) :=
{
y ∈ Q

∣∣ ∀t ∈ I⊕γ : yγ⊕(t) = 1
}
, (6.16)

R(γ) :=
{
y ∈ Q

∣∣ ∀t ∈ I	γ : yγ	(t) = −1
}
. (6.17)

Theorem 6.6. Assume (Q, d) is Hadamard. Set M := argminq∈QE[Y q − Y o].

(i) Then M is a geodesic segment.

(ii) Assume #M > 1. Let γM ∈ Γ1 such that γM (Iγ) = M . Then

P(Y ∈ L(γM )) = P(Y ∈ R(γM )) =
1

2
and P(Y ∈ γ̊M ) = 0 . (6.18)

For the proof of this theorem, we first derive four simple lemmas.

Lemma 6.7. Let r, s ∈ R with r ≤ s. For y ∈ Q, let gy : [r, s] → R be convex. Assume
G : [r, s] → R with G(t) = E[gY (t)] exists and mint∈[r,s] G(t) = G(r) = G(s). Then G is
constant on [r, s] and gy is affine almost surely, i.e, there are ay, by ∈ R (measurable
functions Q → R) such that gY (t) = aY + bY t for all t ∈ [r, s] almost surely.

Proof. If r = s, the statement is trivial. Assume r < s. As all gy are convex, so is G. Thus,
G(t) = G(r) = G(s) for all t ∈ [r, s]. Thus,

0 =
s− t

s− r
G(r) +

t− r

s− r
G(s)−G(t) (6.19)

= E

[
s− t

s− r
gY (r) +

t− r

s− r
gY (s)− gY (t)

]
. (6.20)

As gy is convex,
s− t

s− r
gy(r) +

t− r

s− r
gy(s)− gy(t) ≥ 0 . (6.21)

Therefore,

P

(
gY (t) =

s− t

s− r
gY (r) +

t− r

s− r
gY (s)

)
= 1 . (6.22)

Hence, we can set

ay :=
s

s− r
gy(r) +

−r

s− r
gy(s) , (6.23)

by :=
−1

s− r
gy(r) +

1

s− r
gy(s) . (6.24)
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Lemma 6.8. Assume (Q, d) is Hadamard. Let y ∈ Q and γ ∈ Γ1. Assume yγ is affine on
Iγ . Then

(i) there is γ̃ ∈ Γ1 with γ ⊆ γ̃ and y ∈ γ̃,

(ii) there is t0 ∈ R \ I̊γ such that yγ(t) = |t− t0| on Iγ .

Proof. If #Iγ = 1, the statement is trivial. Assume Iγ has positive length. Then there
is a point in the interior, s ∈ I̊γ . As yγ is G-convex, it has a G-tangent g ∈ G at s. Then
g′′(s) ≤ 0, as g is touched from above be an affine function. The only elements of G that
do not have a positive second derivative are of the form t 7→ |t− t0| for some t0 ∈ R. As
g is G-tangent to yγ and yγ is affine, we have g(t) = yγ(t) = |t− t0| for t ∈ Iγ , where
t0 6∈ I̊γ .

Assume Iγ = [t−, t+] for t−, t+ ∈ R. Without loss of generality, assume t0 ≤ t− so that
yγ(t) = t− t0 for t ∈ Iγ . Let p := γ(t−). Let γ̃ : [t0, t+] → Q be the concatenation of γy→p

and γ, i.e.,

γ̃(t) :=

{
γy→p(t− t0) if t ∈ [t0, t−] ,

γ(t) if t ∈ [t−, t+] .
(6.25)

Clearly, y ∈ γ̃ and γ ⊆ γ̃. Furthermore, yγ̃(t) = t− t0 for all t ∈ Iγ̃ . Let t1 ∈ [t0, t−] and
t2 ∈ [t−, t+]. Using the triangle inequality, we obtain on one hand,

γ̃(t1)γ̃(t2) ≥ yγ(t2)− yγy→p(t1 − t0) = t2 − t1 (6.26)

and on the other hand,

γ̃(t1)γ̃(t2) ≤ pγy→p(t1 − t0) + pγ(t2) = t2 − t1 . (6.27)

Thus, γ̃(r)γ̃(s) = |r − s| for all r, s ∈ [t0, t+]. Hence, γ ∈ Γ1. Similar arguments can be
employed if Iγ is not a closed and bounded interval of the form Iγ = [t−, t+].

Lemma 6.9. Assume (Q, d) is Hadamard. Let I ⊆ N be finite. Let y, pi ∈ Q for i ∈ I. Let
T ∈ (0,∞). Assume there are γij ∈ Γ1 for i, j ∈ I with Iγij

= [0, T ] such that pi, pj ∈ γij
and y = γij(0). Then pi ∈ γy→p`

for all i ∈ I, where ` := argmaxi∈I ypi.

Proof. Let γ = γy→p`
. Then p` ∈ γ. As geodesics are unique in Hadamard spaces and γj`

also connects y and p`, we have γ ⊆ γj` for all j ∈ I. As γj`(ypj) = pj and ypj ≤ yp` for
j ∈ I, we have pj ∈ γ.

Lemma 6.10. Assume (Q, d) is Hadamard. Let M ⊆ Q be nonempty, closed, bounded,
and convex. If every 3 points in M lie on a common geodesic, then M is a geodesic
segment.

Proof. If #M = 1, the statement is trivial. As M is nonempty, we assume #M > 1. Let
p, q ∈ M , p 6= q.

Let Λ ⊆ Γ1 be the set of all unit-speed geodesics γ : [0, bγ ] → Q with bγ ∈ [qp,∞) such
that γ(0) = q, γ(qp) = p, and γ ⊆ M . As M is convex, this set contains at least one
element, γq→p ∈ Λ. As M is bounded, we have b∞ := supγ∈Λ bγ < ∞. Let (γn)n∈N ⊆ Λ

be a sequence such that (bγn)n∈N ⊆ R is a nondecreasing sequence with bγn

n→∞−−−−→ b∞.
Let n, k ∈ N, k < n. By the assumption of the lemma, the points q, γk(bk), γn(bn) lie on
a common geodesic, say γ. As geodesics are unique in Hadamard spaces, γk, γn ⊆ γ.
Hence, the restriction of γn to [0, bk] is exactly γk. With this, γ∞ : [0, b∞) → Q is well-
defined by γ∞(t) = γn(t) for any n ∈ N with bn ≥ t. As Q is complete, M is closed,
and γ∞ ⊆ M , we obtain the existence of m := limt↗b∞ γ∞(t) with m ∈ M . Thus, we
can extend the domain of γ∞ to [0, b∞] with γ∞(b∞) = m. By construction, γ∞ ∈ Γ1.
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Furthermore, for t > b∞ and any γ ∈ Γ1 with γ(0) = q, γ(qp) = p, and t ∈ Iγ , we have
γ(t) 6∈ M .

We can do the same in the other direction (the roles of p and q swapped) to obtain
γ̄ : [a∞, b∞] → Q such that γ̄ ∈ Γ1, γ̄ ⊆ M , and for any γ ∈ Γ1 with γ̄ ⊆ γ ⊆ M , we
have γ̄ = γ (as sets). Assume there is y ∈ M \ γ̄, then y, γ̄(a∞), γ̄(b∞) are connected by
a geodesic γ. As M is convex, γ ⊆ M . This contradicts the maximality property of γ̄.
Hence, M \ γ̄ is empty. As γ̄ ⊆ M , we have γ̄ = M and M is a geodesic segment.

Proof of Theorem 6.6. If #M = 1, M is a geodesic segment. From now on assume that
#M > 1. Then #M = ∞ as M is convex by Proposition 5.2. Let m, p ∈ M , p 6= m. Let
γ = γm→p. Define G(t) := E[Y γ(t) − Y m]. We have G(0) = G(pm) = 0 by definition of
M . Lemma 6.7 implies that G(t) = 0 for all t ∈ [0, pm] and there are R-valued random
variables aY , bY such that Y γ(t)−Y m = aY + bY t almost surely. By Lemma 6.8, we know
that P(bY ∈ {−1, 1}) = 1. As G(0) = G(pm) = 0, we must have aY = 0 almost surely and

P(bY = −1) = P(bY = 1) =
1

2
. (6.28)

We will use this result shortly. First, another consequence of Lemma 6.8 is

P
(
Y ∈

⋃
{γ̄ ∈ Γ1 | γp→m ⊆ γ̄} \ γ̊p→m

)
= 1 . (6.29)

For any three pairwise distinct points p1, p2, p3 ∈ M , we can apply (6.29) to each pair
m = pi, p = pj , i, j ∈ {1, 2, 3}. This yields the existence of a point y ∈ Q and γij ∈ Γ1 for
i, j ∈ {1, 2, 3} with following property: y 6∈ γ̊pi→pj

and y, pi, pj ∈ γij for all i, j ∈ {1, 2, 3}.
With this, Lemma 6.9 ensures that there is a common geodesic that contains p1, p2, p3.
Furthermore, by Proposition 5.2, M is convex, bounded, and closed. Thus, Lemma
6.10 implies that M is a geodesic segment. Hence, there are mL,mR ∈ M such that
M = γmL→mR

=: γM . Applying (6.29) to mL,mR, yields P(Y ∈ γ̊M ) = 0, and our earlier
observation (6.28) implies the remaining part of (6.18).

Remark 6.11 (on Theorem 6.6).

(i) On the real line, m ∈ R is a median of Y if and only if P(Y ≥ m) ≥ 1
2 and P(Y ≤

m) ≥ 1
2 . Furthermore, if the median is not unique, P(Y ≥ m) = P(Y ≤ m) = 1

2 for
all medians m. The latter statement is generalized in (6.18) to Hadamard spaces.

(ii) Assume there are p,m ∈ M with p 6= m. Define

Y :=
⋃

{γ̄ ∈ Γ1 | γp→m ⊆ γ̄} . (6.30)

Then by Theorem 6.6, P(Y ∈ Y) = 1. Furthermore, Y = L(γM ) ∪ γ̊M ∪ R(γM ),
where γM ∈ Γ1 is the geodesic with M = γM and the unions are disjoint.

Definition 6.12. Assume (Q, d) is a geodesic space, see Definition 4.9. We say that (Q, d)

is non-branching [45, Definition 2.8] if following condition is fulfilled: Let y, p, q ∈ Q
and γy→p, γy→q unit-speed geodesics connecting y and p, and y and q, respectively. If
γy→p(yp/2) = γy→q(yq/2), then q = p.

According to [45, Remark 2.9], if (Q, d) is a geodesic space with finite lower curvature
bound, then it is non-branching.

Corollary 6.13. Assume (Q, d) is Hadamard.

(i) If Y is not concentrated on a union of geodesics that all intersect in a common
geodesic segment of positive length, then the Fréchet median is unique.
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1
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1
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1
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1
2

1
2

Figure 2: The Fréchet median in the stick figure space. The stick figure shown here is to
be taken as a subset of R2 with its intrinsic distance. It is a Hadamard space: Convex
subsets of the Euclidean plane are Hadamard spaces. Moreover, gluing Hadamard spaces
together yields a new Hadamard space according to Reshetnyak’s Gluing Theorem [43,
Theorem 3.12]. Thus, the stick figure, which is obtained from gluing together a disk and
some line segments is Hadamard. For (a): Let γ ∈ Γ1 be the geodesic starting at the
stick figures neck such that its image is the purple torso. Then the red head is the left
set L(γ) and the green legs make up the right set R(γ). The arms do not belong to either
set. In (b) – (f) the orange color depicts a distribution where small circles with a number
on the side indicate a point mass with that probability and the orange half circle in (e) is
to be taken as a uniform distribution on the colored area of one half of the total mass. In
(f) the probability mass in the legs and in the head each make up one half in total. The
Fréchet median set is shown in purple. It is either a geodesic segment of positive length
in (c) – (e), (g) or a single point in (b), (f).

(ii) Assume (Q, d) is non-branching. If Y is not concentrated on a geodesic, then the
Fréchet median is unique.

Proof. This is a direct consequence of Theorem 6.6.

A simple criterion for uniqueness for any τ -Fréchet mean with τ ∈ S+
0 is the following.

Corollary 6.14. Let τ ∈ S+
0 . Assume (Q, d) is Hadamard and separable. Assume

E[τ ′(Y o)] < ∞. Assume that the support of Y is convex. Then the τ -Fréchet mean of Y
is unique.

Proof. Let x0 = inf{x ∈ (0,∞) | τ ′⊕(x) = 0}. Let M = argminq∈QE[τ(Y q) − τ(Y o)] be
the set of τ -Fréchet means of Y . Assume #M > 1. Then Corollary 5.7 implies that
P
(
Y m < x0

)
= 0 for all m ∈ M . Let Y denote the support Y . It is closed by definition

and assumed to be convex. From Proposition 5.2, we then obtain M ⊆ Y. Thus, for all
ε ∈ (0,∞), P

(
Y m < ε

)
> 0. Hence, x0 = 0, which means that τ is linear.

By Theorem 6.6, Y is a subset of a union of geodesics that all intersect in the geodesics
segment γM = M for a γM ∈ Γ1. Furthermore, M ⊆ Y and P(Y ∈ γ̊M ) = 0. Let m ∈ γ̊M .
On one hand, as m ∈ Y, for all ε > 0, we have P(Y ∈ Bε(m)) > 0. On the other hand,
there is ε > 0 such that Bε(m) ∩ Y ⊆ γ̊M , which implies

P(Y ∈ Bε(m)) = P(Y ∈ Bε(m) ∩ Y) ≤ P(Y ∈ γ̊M ) = 0 . (6.31)

As this is contradictory, our initial assumption that #M > 1 must be wrong.

EJP 30 (2025), paper 15.
Page 31/48

https://www.imstat.org/ejp

https://doi.org/10.1214/25-EJP1273
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Variance inequalities for transformed Fréchet means in Hadamard spaces

6.3 Variance inequality

For η ∈ [0, 1] and p, q ∈ Q, q 6= p, define the bowtie complement (see Figure 3)

A(p, q, η) :=
{
y ∈ Q

∣∣ max
(
yγp→q

⊕(0)2, yγp→q
	(qp)2

)
≤ 1− η2

}
. (6.32)

Theorem 6.15. Assume (Q, d) is Hadamard. Let m ∈ argminq∈QE[Y q − Y o]. Let
q ∈ Q \ {m}. Then

E
[
Y q − Y m

]
≥ 1

2
η2 qm2E

[
max

(
Y m, Y q

)−1
1A(m,q,η)(Y )

]
. (6.33)

Proof. Set γ := γm→q. For t ∈ [0, qm], define

G(t) := E
[
Y γ(t)− Y γ(0)

]
. (6.34)

We want to swap limit and integral to calculate G⊕(0). For this we use dominated
convergence, which we can apply as

E

[
sup

t∈(0,qm]

∣∣∣∣Y γ(t)− Y γ(0)

t

∣∣∣∣
]
≤ 1 , (6.35)

as Y γ is 1-Lipschitz. As G(t) is convex and minimized at t = 0, we have

0 ≤ G⊕(0) = E[Y γ
⊕
(0)] . (6.36)

Applying Theorem 4.17 (i) yields, for t ∈ (0, qm],

G(t) ≥ tG⊕(0) +
1

2
t2E

1−max
(
Y γ

⊕
(0)2, Y γ

	
(t)2

)
max

(
Y γ(0), Y γ(t)

)
 . (6.37)

Now fix t = qm. As Y γ is 1-Lipschitz, we have

E

1−max
(
Y γ

⊕
(0)2, Y γ

	
(t)2)

)
max

(
Y γ(0), Y γ(t)

)
 (6.38)

≥ E

1−max
(
Y γ

⊕
(0)2, Y γ

	
(t)2

)
max

(
Y γ(0), Y γ(t)

) 1A(m,q,η)(Y )

 (6.39)

≥ η2E
[
max

(
Y γ(0), Y γ(t)

)−1
1A(m,q,η)(Y )

]
. (6.40)

Thus, together with (6.36) and (6.37), we obtain

G(t) ≥ 1

2
t2η2E

[
max

(
Y γ(0), Y γ(t)

)−1
1A(m,q,η)(Y )

]
. (6.41)

Remark 6.16 (on Theorem 6.15).

(i) Let (Q, d) be a separable Hilbert space with inner product 〈· , ·〉, induced norm
‖·‖, and induced metric d. Let v ∈ Q with ‖v‖ = 1. Let γ ∈ Γ1 be given by
γ : R→ Q, t 7→ tv. Let y ∈ Q. Then

yγ(t) =
√

(t− t0)2 + h2 , (6.42)
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where

t0 := 〈y , v〉 , h :=

√
‖y‖2 − 〈y , v〉2 . (6.43)

Then

yγ⊕(t)2 ≤ 1− η2 (6.44)

⇔ η yγ(t) ≤ h (6.45)

⇔ (t− t0)
2 ≤ 1− η2

η2
h2 . (6.46)

As an example, y ∈ A(γ(0), γ(t),
√
2/2) is equivalent to

max(|t− t0| , |t0|) ≤ h , (6.47)

where |t− t0| is the distance between γ(t) and y projected to γ and h is the distance
between y and γ. See Figure 3 for an illustration.

(ii) Assume (Q, d) is Hadamard and locally compact. Let m, q, y ∈ Q, q 6= m 6= y.
Let γ := γm→q. By the First Variational Formula [10, Corollary 4.5.7], we have
yγ⊕(0) = − cos(α), where α is the angle [10, Definition 3.6.26] between γ and
γm→y. Hence, we can interpret the bowtie complement A(m, q, η) as a subset of Q
where all geodesics are removed that intersect γ at γ(0) or γ(qm) with an angle of
α0 or less, where α0 depends on η.

Example 6.17. We want to compare Theorem 6.15 with the variance inequality [30,
Theorem 2.3] for the Fréchet median in Euclidean spaces (geometric median). To this
end, we apply our lower bound to the uniform distribution on a sphere of radius

√
k in Rk,

k ≥ 2, centered at the origin, as the authors do in [30, Remark 2.4]. The Fréchet median
is m = 0. Let q ∈ Rk with 0 < ‖q‖ ≤

√
k. If ‖y‖ =

√
k, then max(‖y‖, ‖y − q‖) ≤ 2

√
k.

Hence, Theorem 6.15 yields

E[‖Y − q‖ − ‖Y ‖] ≥ 1

2
η2‖q‖2E

[
max(‖Y ‖, ‖Y − q‖)−1

1A(0,q,η)(Y )
]

(6.48)

≥ 1

4
η2‖q‖2 k− 1

2P(Y ∈ A(0, q, η)) , (6.49)

where, with v := q/‖q‖,

A(0, q, η) =
{
y ∈ Rk

∣∣∣ η2 max
(
‖y‖2, ‖y − q‖2

)
≤ ‖y‖2 − 〈y , v〉2

}
(6.50)

⊇
{
y ∈ Rk

∣∣∣ η2‖q‖2 + 〈y , v〉2 ≤ (1− η2)‖y‖2
}
. (6.51)

Because of symmetry, we can take q = (r, 0, . . . , 0) ∈ Rk with 0 < r ≤
√
k. Then

A(0, q, η) ∩
{
y ∈ Rk

∣∣ ‖y‖2 = k
}
⊇
{
y ∈ Rk

∣∣ η2r2 + y21 ≤ (1− η2)k
}
. (6.52)

The random variable Y can be written as Y =
√
kX/‖X‖ where X is a standard normal

random vector in dimension k. Let U :=
∑n

k=2 X
2
i . Then U and X2

1 are independent and
have a χ2 distribution with k − 1 and 1 degree of freedom, respectively. Hence,

Bk := k−1Y 2
1 =

X2
1

X2
1 + U

∼ Beta

(
1

2
,
k − 1

2

)
, (6.53)

where Beta(α, β), α, β ∈ (0,∞) is the Beta distribution with density

[0, 1] → R, x 7→ cα,βx
α−1(1− x)β−1 (6.54)
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γ

m q

A(m, q, η)

Figure 3: Visualization of the bowtie complement A(m, q, η) in R2. The Euclidean plane is
depicted as a gray area. The image of a geodesic γ : R→ R2 with γ(0) = m and γ(qm) = q

is shown in black. The sets {y ∈ R2 | yγ⊕(0) > 1− η2} and {y ∈ R2 | yγ⊕(qm) > 1− η2}
are depicted as purple and orange dotted areas, respectively. The set A(m, q, η) is the
gray area without the dotted areas.

for a constant cα,β ∈ (0,∞). Hence,

P
(
Y 2
1 ≤ (1− η2)k − η2r2

)
= P

(
Bk ≤ 1− η2 − k−1η2r2

)
. (6.55)

We obtain the lower bound on the variance functional,

E[‖Y − q‖ − ‖Y ‖] ≥ 1

4
η2‖q‖2 k− 1

2P
(
Bk ≤ 1− η2 − k−1η2‖q‖2

)
, (6.56)

for q ∈ Rk with 0 < ‖q‖ <
√
k, where Bk ∼ Beta

(
1
2 ,

k−1
2

)
. Let ε ∈ (0, 1]. Then

P(Bk ≤ ε)
k→∞−−−−→ 1 . (6.57)

Set η2 = 1
2 (1− ε) to obtain

lim inf
k→∞

inf
q∈B√

k(0)

E[‖Y − q‖ − ‖Y ‖]
‖q‖2 k− 1

2

≥ 1

8
(1− ε) . (6.58)

As ε ∈ (0, 1] is arbitrary, (6.58) also holds with the lower bound 1
8 . Thus, we obtain a

better constant than derived in [30, Remark 2.4].

With Theorem 6.15, we can show quadratic and faster variance inequalities for the
Fréchet median in Hadamard spaces. To able to deal easily with the bowtie complement
A(m, q, η), we restrict ourselves to Euclidean spaces in the next corollary.

Corollary 6.18. Let k ∈ N, k ≥ 2, and (Q, d) = (Rk, ‖ · − · ‖) be Euclidean. Let
m ∈ argminq∈Rk E[‖Y − q‖ − ‖Y ‖] be a Fréchet median of Y . Assume that Y has a
Lebesgue density ρ : Rk → [0,∞) with constants δ, c ∈ (0,∞), ζ ∈ [0, 1) with one of the
following properties:

(i) We have ζ = 0 and, for all x ∈ Rk with ‖x‖ = δ, ρ is continuous at m+ x and

ρ(m+ x) ≥ c . (6.59)
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(ii) We have ζ ∈ (0, 1) and

ρ(m+ x) ≥ c‖x‖−ζ−k+1 (6.60)

for all x ∈ Bδ(0) \ {0}.

Then m is the only Fréchet median of Y and there is C ∈ (0,∞) depending only on k, c, ζ

such that

E[‖Y − q‖ − ‖Y −m‖] ≥ C ‖q −m‖2−ζ (6.61)

for all q ∈ Bδ(m).

Proof. Let q ∈ Bδ(m) \m. As max(ym, yq) ≤ 2δ for y ∈ Bδ(m), Theorem 6.15 yields

E[‖Y − q‖ − ‖Y ‖] ≥ 1

4
δ−1η2qm2P(Y ∈ A(m, q, η) ∩ Bδ(m)) . (6.62)

For the case ζ = 0, note that A(m, q, η) ⊆ A(m, q̃, η) for q̃ = m+ t(q −m) with t ∈ (0, 1).
Hence, for any constant η ∈ (0, 1), one can show a quadratic lower bound using (6.62)
and (6.59).

Now consider the case ζ > 0. Without loss of generality, m = 0 and q = (r, 0 . . . , 0)>

for r = ‖q‖ ∈ (0, δ). If ‖y‖ ≤ r, then max(‖y −m‖ , ‖y − q‖)−1 ≥ (2r)−1. Thus, we obtain
from Theorem 6.15

E[‖Y − q‖ − ‖Y ‖] ≥ 1

4
η2rP({‖Y ‖ ≤ r} ∩ {Y ∈ A(m, q, η)}) . (6.63)

Fix η = 5−
1
2 . Let

Ãr :=

{
y ∈ Rk

∣∣∣∣ ‖y‖ ∈
(
3

4
r, r

)
,

y1
‖y‖

∈
(
0,

2√
5

)}
. (6.64)

One can show that Ãr ⊆ A(0, q, η) ∩ Br(0), see Figure 4. Thus, using (6.60),

P({‖Y ‖ ≤ r} ∩ {Y ∈ A(m, q, η)}) ≥ c

∫
y∈Ãr

‖y‖−ζ−k+1
dy

= c

∫ r

3
4 r

s−ζ−k+1

∫
y∈Ãr,‖y‖=s

1dxds

≥ cck,ζr
1−ζ ,

where ck,ζ ∈ (0,∞) only depends on k and ζ. Hence,

E[‖Y − q‖ − ‖Y ‖] ≥ 1

20
cck,ζr

2−ζ . (6.65)

Remark 6.19.

(i) Note that (6.60) implies

P
(
Y m ≤ x

)
≥ ck,ζx

1−ζ (6.66)

for x ≤ δ and a constant ck,ζ ∈ (0,∞).

(ii) Compare Corollary 6.18 with Corollary 5.9 using τ(x) := xα, α ∈ (1, 2]: Let δ ∈
(0,∞). If

P
(
Y m ≤ x

)
≥ cx1−ζ (6.67)
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m q

A(m, q, η)

Ãr

Figure 4: Construction of Ar (green area) in the proof of Corollary 6.18 illustrated in R2.
Also confer Figure 3.

for x ≤ δ and a constant c ∈ (0,∞), we can choose β = ζ + 1 − α if ζ ∈ [α − 1, 1),
and Corollary 5.9 yields

E
[
Y q

α − Y m
α
]
≥ c̃ qm1+α−ζ (6.68)

for a constant c̃ ∈ (0,∞). For α ↘ 1, this variance inequality approaches the one
obtained in Corollary 6.18 (up to a constant factor). In this sense, the two results
are consistent.

6.4 When concentrated on a geodesic

We now discuss the growth behavior of the variance functional of the Fréchet median
when the distribution of Y is concentrated on a geodesic. This is almost equivalent to the
case of the median on the real line as the image of a geodesic is isometric to a convex
subset of R. But we have to additionally establish a variance inequality for q ∈ Q not on
the supporting geodesic. We first derive a lemma for the median on the real line.

Lemma 6.20. Let X be a real-valued random variable with median 0. Define

a+ := P(X > 0) , a0 := P(X = 0) , a− := P(X < 0) . (6.69)

Then
|a− − a+| ≤ a0 . (6.70)

Let t ∈ R. Then

E[|X − t| − |X|]− |t| a0 − t (a− − a+) =

{
2E
[
(t−X)1(0,t](X)

]
if t > 0 ,

2E
[
(X − t)1[t,0)(X)

]
if t < 0 .

(6.71)

Proof. As 0 is the median of X, P(X ≥ 0) ≥ 1
2 and P(X ≤ 0) ≥ 1

2 . Thus,

a− ≤ 1

2
≤ a0 + a+ , a+ ≤ 1

2
≤ a0 + a− . (6.72)

Therefore |a+ − a−| ≤ a0. Assume t > 0. For all x ∈ R, we have

|x− t| − |x| =


−t if x ≥ t ,

t− 2x if x ∈ [0, t] ,

t if x ≤ 0 .

(6.73)
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Thus,

E[|X − t| − |X|]− ta0 = −tP(X > t) + E[(t− 2X)1(0,t](X)] + ta− . (6.74)

Furthermore,

−tP(X > t) + ta− − t (a− − a+) = t (a+ − P(X > t)) (6.75)

= tP(X ∈ (0, t]) (6.76)

= E[t1(0,t](X)] . (6.77)

Taking the last two displays together, yields

E[|X − t| − |X|]− ta0 − t (a− − a+) = 2E[(t−X)1(0,t](X)] . (6.78)

The case t < 0 is similar.

Theorem 6.21. Assume there is a geodesic γ such that P(Y ∈ γ) = 1. Let m ∈
argminq∈QE[Y q − Y o]. Let q ∈ Q. Then the projection p = argminz∈γ qz of q onto
γ exists uniquely. Without loss of generality, assume γ is unit-speed, γ(0) = m, and
γ−1(p) ≥ 0. Define

a− := P
(
γ−1(Y ) < 0

)
, a0 := P(Y = m) , a+ := P

(
γ−1(Y ) > 0

)
. (6.79)

Then

E[Y q − Y m] ≥ qma0 + pm (a− − a+) + E
[(
qp+ pm− Y m

)
1(0,qp+pm]

(
γ−1(Y )

)]
. (6.80)

Proof. According to [43, Proposition 2.6], the projection p = argminz∈γ qz exists uniquely
and fulfills √

yp2 + qp2 ≤ yq ≤ yp+ qp (6.81)

for all y ∈ γ. We have

E[Y q − Y m] = qmP(Y = m) + E
[(
Y q − Y p

)
1Y 6=m

]
+ E[

(
Y p− Y m

)
1Y 6=m] . (6.82)

For the third term, let X := γ−1(Y ). Then 0 = γ−1(m) is the median of X as γ is an
isometry onto its image. Let s := γ−1(p) = pm. By Lemma 6.20,

E[
(
Y p− Y m

)
1Y 6=m] = E[|X − s| − |X|]− |s| a0 (6.83)

= s (a− − a+) + 2E
[
(s−X)1(0,s](X)

]
. (6.84)

For the second term in (6.82),

E
[(
Y q − Y p

)
1Y 6=m

]
≥ E

[(√
Y p

2
+ qp2 − Y p

)
1Y 6=m

]
(6.85)

≥ E
[
max

(
0, qp− Y p

)
1Y 6=m

]
. (6.86)

Let h := qp. Then

E
[(
max

(
0, qp− Y p

))
1Y 6=m

]
(6.87)

= E[max(0, h− |X − s|)1X 6=0] (6.88)

= E
[
(h− s+X)1[s−h,s](X)1X 6=0

]
+ E

[
(h+ s−X)1(s,s+h](X)

]
. (6.89)
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If h ≥ s ≥ 0,

E[max(0, h− |X − s|)1X 6=0] + 2E
[
(s−X)1(0,s](X)

]
(6.90)

= E
[
(h+ s−X)1(0,s+h](X)

]
+ E

[
(h− s+X)1[s−h,0)(X)

]
(6.91)

≥ E
[
(h+ s−X)1(0,s+h](X)

]
. (6.92)

If s ≥ h ≥ 0,

E[max(0, h− |X − s|)1X 6=0] + 2E
[
(s−X)1(0,s](X)

]
(6.93)

= E
[
(h+ s−X)1[s−h,s+h](X)

]
+ 2E

[
(s−X)1(0,s−h)(X)

]
(6.94)

≥ E
[
(h+ s−X)1(0,s+h](X)

]
. (6.95)

Thus, (6.82) can be bounded from below by

qma0 + s (a− − a+) + E
[
(h+ s−X)1(0,s+h](X)

]
. (6.96)

Finally, we obtain

E[Y q − Y m] ≥ qma0 + pm (a− − a+) + E
[(
qp+ pm− Y m

)
1(0,qp+pm]

(
γ−1(Y )

)]
. (6.97)

Example 6.22. Let (Q, d) be a Hilbert space with inner product 〈· , ·〉 and induced norm
‖·‖. Let U be an R-valued random variable with a uniform distribution on [− 1

2 ,
1
2 ]. Let

v ∈ Q have norm ‖v‖ = 1. Let Y = Uv. As Y has a convex support, its Fréchet median
(or geometric median in this context),

m = argmin
q∈Q

E[‖Y − q‖ − ‖Y ‖] , (6.98)

is unique by Corollary 6.14. Because of symmetry,m = 0. Furthermore, Y is concentrated
on the unit-speed geodesic γ : [− 1

2 ,
1
2 ] → Q, t 7→ tv. Let q ∈ Q with projection p onto

{tv | t ∈ R}. Then s := 〈q , v〉 = ‖p‖ and h :=

√
‖q‖2 − 〈q , v〉2 = ‖q − p‖. Set r := s + h.

From Theorem 6.21, we obtain

E[‖Y − q‖ − ‖Y ‖] ≥ E
[
(r − ‖Y ‖)1(0,r]

(
γ−1(Y )

)]
(6.99)

= rP(U ∈ [0, r])− E
[
U1[0,r](U)

]
(6.100)

= min

(
1

2
, r

)(
r − 1

2
min

(
1

2
, r

))
(6.101)

≥ 1

2
rmin

(
1

2
, r

)
. (6.102)

Note that ‖q‖ ≤ r ≤
√
2‖q‖. Thus, we obtain a quadratic lower bound for all q ∈ Q close

to the median.

A Reference results

Lemma A.1 (Fundamental theorem of calculus for Lebesgue integrals). Let a, b ∈ R with
a < b. Let F : [a, b] → R.

(i) Assume F be nondecreasing. Then F is differentiable almost-everywhere with the
derivative F ′(x) ≥ 0 almost everywhere. Furthermore,∫ b

a

F ′(x)dx ≤ F (b)− F (a) . (A.1)
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(ii) Assume F is absolutely continuous. Then F is differentiable almost-everywhere, F ′

is Lebesgue-integrable, and we have∫ b

a

F ′(x)dx = F (b)− F (a) . (A.2)

Proof. See [16, chapter 3].

Lemma A.2.

(i) Rademacher’s Theorem: Every locally Lipschitz function f : Rk → Rn is almost
everywhere differentiable.

(ii) Alexandrov’s Theorem: Every convex function f : Rk → R is twice differentiable
almost everywhere.

Proof. See [33, Theorems D.1.1 and D.2.1].

B Auxiliary results

B.1 One-sided derivatives

Lemma B.1. Let I ⊆ R be convex and f : I → R. Let t0 ∈ I. Assume ∂±f(t0) exists.
Then, for all v0 ∈ ∂±g(t0), there are (t+n )n∈N, (t

−
n )n∈N ⊆ I with t+n > t−n and t0 ∈ [t−n , t

+
n ]

such that t±n
n→∞−−−−→ t0, and

lim
n→∞

g(t+n )− g(t−n )

t+n − t−n
= v0 . (B.1)

Proof. Let α ∈ [0, 1] so that v0 = αg⊕(t0) + (1 − α)g	(t0). We can clearly choose the
sequences (t+n )n∈N, (t

−
n )n∈N ⊆ I with t+n > t−n , t0 ∈ [t−n , t

+
n ], and t±n

n→∞−−−−→ t0 so that

α =
t+n−t0

t+n−t−n
. Then

g(t+n )− g(t−n )

t+n − t−n
= α

g(t+n )− g(t0)

t+n − t0
+ (1− α)

g(t0)− g(t−n )

t0 − t−n
(B.2)

n→∞−−−−→ αg⊕(t0) + (1− α)g	(t0) (B.3)

B.2 Distance functions

Lemma B.2. Let t1, t2 ∈ R, t2 6= t1 and x1, x2 ∈ [0,∞). There are s ∈ R, h ∈ [0,∞) with√
(t1 − s)2 + h2 = x1 and

√
(t2 − s)2 + h2 = x2 (B.4)

if and only if

|x1 − x2| ≤ |t1 − t2| ≤ x1 + x2 . (B.5)

In this case,

s =
t22 − t21 + x2

1 − x2
2

2δ
, (B.6)

h =
1

2

√
2 (x2

1 + x2
2)− δ2 − δ−2(x2

1 − x2
2)

2 , (B.7)

where δ := t2 − t1. Furthermore, h = 0 if and only if |δ| ∈ {|x1 − x2| , x1 + x2}.
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Proof. As x1, x2 ≥ 0, (B.4) is equivalent to

(t1 − s)2 + h2 = x2
1 , (B.8)

(t2 − s)2 + h2 = x2
2 . (B.9)

Subtracting the two equations yields

(t1 − s)2 − (t2 − s)2 = x2
1 − x2

2 . (B.10)

Thus,

0 = (t1 − s)2 − (t2 − s)2 − x2
1 + x2

2 (B.11)

= t21 − 2st1 + s2 − t22 + 2st2 − s2 − x2
1 + x2

2 (B.12)

= 2s(t2 − t1) + t21 − t22 − x2
1 + x2

2 (B.13)

and we obtain

s =
−t21 + t22 + x2

1 − x2
2

2(t2 − t1)
. (B.14)

We plug this in to (B.8) to obtain for the other parameter,

h2 = x2
1 − (t1 − s)2 (B.15)

= x2
1 − t21 + 2st1 − s2 (B.16)

= x2
1 − t21 + 2t1

−t21 + t22 + x2
1 − x2

2

2(t2 − t1)
−
(
−t21 + t22 + x2

1 − x2
2

2(t2 − t1)

)2

. (B.17)

To ensure h2 ≥ 0, we calculate

(2(t2 − t1))
2
h2 (B.18)

= (2(t2 − t1))
2 (

x2
1 − t21

)
+ 2t1 (2(t2 − t1))

(
−t21 + t22 + x2

1 − x2
2

)
(B.19)

−
(
−t21 + t22 + x2

1 − x2
2

)2
(B.20)

= 2t21x
2
1 + 2t21x

2
2 − 4t2t1x

2
1 − 4t2t1x

2
2 + 2t22x

2
1 + 2t22x

2
2 (B.21)

− t41 + 4t2t
3
1 − 6t22t

2
1 + 4t32t1 − t42 − x4

1 − x4
2 + 2x2

1x
2
2 (B.22)

= 2 (t1 − t2)
2 (

x2
1 + x2

2

)
− (t1 − t2)

4 − (x2
1 − x2

2)
2 (B.23)

= 2∆
(
x2
1 + x2

2

)
−∆2 − (x2

1 − x2
2)

2 , (B.24)

where ∆ := (t1 − t2)
2. We need that 2∆

(
x2
1 + x2

2

)
−∆2 − (x2

1 − x2
2)

2 ≥ 0 for h to exist. In
other words,

(x1 − x2)
2 ≤ ∆ ≤ (x1 + x2)

2 (B.25)

or

|x1 − x2| ≤ |t1 − t2| ≤ x1 + x2 . (B.26)

Then

h2 =
2∆
(
x2
1 + x2

2

)
−∆2 − (x2

1 − x2
2)

2

4∆
, (B.27)

which, for h ≥ 0, is equivalent to

h =
1

2

√
2 (x2

1 + x2
2)−∆−∆−1(x2

1 − x2
2)

2 . (B.28)
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Lemma B.3. Let g ∈ G with parameters t0 ∈ R and h ∈ [0,∞), i.e.,

g(t) =
√
(t− t0)2 + h2 . (B.29)

Let s ∈ R. Assume g(s) > 0. Then g is twice continuously differentiable at s and

g′′(s)g(s) = 1− g′(s)2 . (B.30)

Proof. We calculate the first and second derivative of g at s:

g′(s) =
s− t0√

(s− t0)2 + h2
=

s− t0
g(s)

, (B.31)

g′′(s) =
g(s)− (s− t0)g

′(s)

g(s)2
. (B.32)

Thus,

g′′(s)g(s) =
g(s)− (s− t0)g

′(s)

g(s)
= 1− g′(s)2 . (B.33)

B.3 Convex and concave

Lemma B.4. Let τ ∈ S not constant. Then, for x ∈ (0,∞),

1 ≤ xτ ′(x)

τ(x)− τ(0)
≤ 2 . (B.34)

Proof. By Lemma 2.4,

τ ′(x) + τ ′(0)

2
≤ τ(x)− τ(0)

x
≤ τ ′

(x
2

)
. (B.35)

As τ ′(0) ≥ 0 and τ ′ is nondecreasing,

1

2
xτ ′(x) ≤ τ(x)− τ(0) ≤ xτ ′(x) . (B.36)

Lemma B.5.

(i) Let f : [0,∞) → R. Assume f is concave. Let a, b ∈ [0,∞) with a ≥ b. Then
x 7→ f(a+ x) + f(b− x) is nonincreasing on [0, b]. If additionally f(0) ≥ 0, then f is
subadditive.

(ii) Let f : [0,∞) → R. Assume f is convex. Let a, b ∈ [0,∞) with a ≥ b. Then
x 7→ f(a+ x) + f(b− x) is nondecreasing on [0, b].

Proof. We prove the first part; the second part is similar. As f is concave, we have

f(a) ≥ a− b+ x

a− b+ 2x
f(a+ x) +

x

a− b+ 2x
f(b− x) , (B.37)

f(b) ≥ x

a− b+ 2x
f(a+ x) +

a− b+ x

a− b+ 2x
f(b− x) (B.38)

for x ∈ [0, b]. Adding the two inequalities yields

f(a) + f(b) ≥ f(a+ x) + f(b− x) . (B.39)

As this inequality also applies when a, b are replaced by ã = a+ x̃, b̃ = b− x̃ for x̃ ∈ [0, b],
we have that x 7→ f(a+ x) + f(b− x) is nonincreasing. Subadditivity follows by setting
x = b.
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Lemma B.6. Let τ ∈ S.

(i) Let x, y ∈ [0,∞). Then

τ ′(x+ y) ≤ τ ′(x) + τ ′(y) ≤ 2τ ′
(
x+ y

2

)
. (B.40)

(ii) Let a, x ∈ [0,∞). Then

τ ′(ax) ≥ aτ ′(x) for a ≤ 1 , (B.41)

τ ′(ax) ≤ aτ ′(x) for a ≥ 1 . (B.42)

(iii) Let x, y ∈ [0,∞). Assume y ≥ x. Then

xτ ′(y) ≤ yτ ′(x) . (B.43)

Proof. These are all well-known properties of nonnegative, concave functions.

(i) Use Lemma B.5 and Jensen’s inequality.

(ii) Use (1− t)τ ′(x0) + tτ ′(x1) ≤ τ ′((1− t)x0 + tx1) on points x0 = 0, x1 = x, t = a and
on x0 = 0, x1 = ax, t = 1/a, respectively, and note that τ ′(0) ≥ 0.

(iii) Apply (ii) with a = y/x.

Lemma B.7. Let τ ∈ S, τ 6≡ 0. Let r ∈ [0,∞). Then

τ(x+ r)

τ(x)

x→∞−−−−→ 1 . (B.44)

Proof. The statement is trivial for r = 0. Assume r > 0. By Lemma 2.4,

τ ′(x+ r) + τ ′(x)

2
≤ τ(x+ r)− τ(x)

r
≤ τ ′

(
x+

r

2

)
. (B.45)

From Lemma B.4, we infer
τ ′(x)

τ(x)

x→∞−−−−→ 0 . (B.46)

Thus, on one hand,

τ(x+ r)

τ(x)
=

τ(x+ r)− τ(x)

τ(x)
+ 1 (B.47)

≤
rτ ′
(
x+ r

2

)
τ(x)

+ 1 (B.48)

≤ r
τ ′(x)

τ(x)
+

rτ ′(r/2)

τ(x)
+ 1 (B.49)

x→∞−−−−→ 1 . (B.50)

On the other hand, as τ is nondecreasing,

τ(x+ r)

τ(x)
≥ 1 . (B.51)
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Lemma B.8. Let τ ∈ S+
0 with T := supx∈[0,∞) τ

′(x) < ∞. Let a ∈ (0,∞). Then

ax

τ(x)

x→∞−−−−→ a

T
and

τ(ax)

τ(x)

x→∞−−−−→ a . (B.52)

Proof. On one hand, for all x0 ∈ [0,∞),

τ(x) ≤ τ(x0) + T (x− x0) . (B.53)

One the other hand, τ ′(x)
x→∞−−−−→ T as τ is convex. Hence, for all δ ∈ (0,∞), there is

x0 ∈ [0,∞) such that
τ(x) ≥ τ(x0) + (1− δ)T (x− x0) (B.54)

for all x ≥ x0. Thus, if a > 0 and δ ∈ (0, 1), we can choose x0 ∈ [0,∞) large enough so
that

τ(ax0) + (1− δ)Ta(x− x0)

τ(x0) + T (x− x0)
≤ τ(ax)

τ(x)
≤ τ(ax0) + Ta(x− x0)

τ(x0) + (1− δ)T (x− x0)
(B.55)

for all x ≥ x0. Hence, we obtain τ(ax)/τ(x)
x→∞−−−−→ a. The argument for ax

τ(x)

x→∞−−−−→ a
T is

similar.

C Omitted proofs

C.1 From Section 2.2

Proof of Lemma 2.3.

(i) As τ , τ ′ are convex and concave, respectively, we immediately obtain continuity on
(0,∞). As τ is nondecreasing and convex, it must also be continuous at 0. By the
definition of τ ′(0), it is continuous at 0.

(ii) The statements are well-known properties of finite, continuous, concave functions
such as τ ′, see, e.g., [38, Theorem 24.1].

(iii) As τ is convex and nondecreasing on [0,∞),

h 7→ τ(h)− τ(0)

h
(C.1)

is nondecreasing and nonnegative. Thus, τ⊕(0) exists.

Fix ε > 0. As τ ′ is continuous, it is uniformly continuous on the compact interval
[0, 2]. Thus, we can find δ ∈ (0, 1] such that |τ ′(x)− τ ′(y)| ≤ ε for all x, y ∈ [0, 2] with
0 < |x− y| ≤ δ. Thus, for any h ∈ (0, δ] and x ∈ (0, 1],∣∣∣∣τ(x+ h)− τ(x)

h
− τ ′(x)

∣∣∣∣ =
∣∣∣∣∣ 1h
∫ h

0

τ ′(x+ z)− τ ′(x)dz

∣∣∣∣∣ ≤ ε . (C.2)

Choose h ∈ (0, δ] small enough such that,∣∣∣∣τ(h)− τ(0)

h
− τ⊕(0)

∣∣∣∣ ≤ ε . (C.3)

As τ is continuous and h is fixed, we can find x ∈ (0, δ] small enough such that

|τ(x+ h)− τ(h)| ≤ hε , (C.4)

|τ(x)− τ(0)| ≤ hε . (C.5)
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Thus, using the triangle inequality and putting the bounds together, we obtain∣∣τ ′(0)− τ⊕(0)
∣∣ (C.6)

≤ |τ ′(0)− τ ′(x)|+
∣∣∣∣τ ′(x)− τ(x+ h)− τ(x)

h

∣∣∣∣ (C.7)

+

∣∣∣∣τ(x+ h)− τ(x)

h
− τ(h)− τ(0)

h

∣∣∣∣+ ∣∣∣∣τ(h)− τ(0)

h
− τ⊕(0)

∣∣∣∣ (C.8)

≤ 3ε+
1

h
(|τ(x+ h)− τ(h)|+ |τ(x)− τ(0)|) (C.9)

≤ 5ε . (C.10)

As ε > 0 can be chosen arbitrarily small, τ ′(0) = τ⊕(0).

Proof of Lemma 2.4. Let x, y ∈ [0,∞) with x > y. For the lower bound, as τ ′ is concave,

τ(x)− τ(y) =

∫ x

y

τ ′(u)du (C.11)

≥ (x− y)

∫ 1

0

(1− t)τ ′(y) + tτ ′(x) dt (C.12)

=
x− y

2
(τ ′(x) + τ ′(y)) . (C.13)

For the upper bound, concavity of τ ′ implies the existence of an affine linear function h

with h(u) ≥ τ ′(u) for all u ∈ [0,∞) and

h

(
x+ y

2

)
= τ ′

(
x+ y

2

)
. (C.14)

Thus,

τ(x)− τ(y) ≤
∫ x

y

h(u)du (C.15)

=
x− y

2
(h(x) + h(y)) (C.16)

= (x− y)h

(
x+ y

2

)
. (C.17)

Proof of Lemma 2.5. First, consider the case x ≥ y. Define f(x, y) = τ(x − y) − τ(x) −
τ(y) + 2yτ ′(x). We want to show f(x, y) ≥ 0. The derivative of f with respect to y is

∂yf(x, y) = −τ ′(x− y)− τ ′(y) + 2τ ′(x) . (C.18)

As τ ′ is nondecresing and x ≥ max(y, x − y), we obtain ∂yf(x, y) ≥ 0. Hence, f(x, y) ≥
f(x, 0) = 0, as τ(0) = 0.

Now, consider the case x ≤ y. Set g(x, y) = τ(y − x) − τ(x) − τ(y) + 2yτ ′(x), which
yields

∂yg(x, y) = τ ′(y − x)− τ ′(y) + 2τ ′(x) . (C.19)

As τ ′ is subsadditive (Lemma B.6), we obtain ∂yg(x, y) ≥ 0. Thus, g(x, y) ≥ g(x, x) =

−2τ(x)+ 2xτ ′(x) as τ(0) = 0. As τ ′ is nondecreasing and τ(0) = 0, we have τ(x) ≤ xτ ′(x).
Hence, g(x, y) ≥ 0.
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C.2 From Section 4

Proof of Proposition 4.2.

(i) The quadratic polynomial t 7→ t2 + at+ b attains its minimum −a2

4 + b at t0 = −a
2 . It

is nonnegative if and only if 4b ≥ a2. A function of the form t 7→ (t− t0)
2 + h2 can

be written as t2 + ãt+ b̃ with ã = −2t0 and b̃ = t20 + h2. Thus, 4b̃ ≥ ã2. Furthermore,
we can clearly choose h ∈ [0,∞) and t0 ∈ R to obtain any ã, b̃ ∈ R with 4b̃ ≥ ã2.

(ii) Let ‖ · ‖ be the norm of the Hilbert space Q. By the Pythagorean theorem,

‖y − γ(t)‖2 = ‖y − γ(t0)‖2 + ‖γ(t0)− γ(t)‖2 (C.20)

= ‖y − γ(t0)‖2 + (t− t0)
2 , (C.21)

where γ(t0) is the orthogonal projection of y onto γ. If the dimension of Q is at
least 2, we can choose y to obtain any value for t0 ∈ R and ‖y − γ(t0)‖ ∈ [0,∞).

Proof of Proposition 4.3.

(i) Trivial.

(ii) If g1, g2 are parameterized by t0,1, h1 and t0,2, h2, respectively, then squaring the
two equations yields

(s− t0,1)
2 + h2

1 = (s− t0,2)
2 + h2

2 , (C.22)

(t− t0,1)
2 + h2

1 = (t− t0,2)
2 + h2

2 . (C.23)

The difference of these two equations yields

(s− t0,1)
2 − (t− t0,1)

2 = (s− t0,2)
2 + (t− t0,2)

2 , (C.24)

which is equivalent to (t− s)(t0,1 − t0,2) = 0. Using t0,1 = t0,2 in f1(s) = f2(s) yields
h2
1 = h2

2.

(iii) Set h(x) = g2(x)
2 − g1(x)

2. Then h is an affine linear function as the squared terms
cancel. Furthermore, h(r) ≥ 0, h(s) ≤ 0, and h(t) ≥ 0. Thus h ≡ 0 and we have
g1 = g2.

(iv) Follows directly from Lemma B.2.

Proof of Proposition 4.4.

(i) All functions in G are nonnegative.

(ii) All functions in G are 1-Lipschitz. Let t1, t2 ∈ R. Without loss of generality, assume
f(t2) ≥ f(t1). Let g ∈ G be a G-tangent of f at t2. Then f(t2)−f(t1) ≤ g(t2)−g(t1) ≤
|t2 − t1|.

(iii) All functions in G are convex. Thus, Proposition 4.6 (i) yields convexity of f (we do
not use (iii) in the proof of Proposition 4.6 (i)).

(iv) Let g ∈ G be a G-tangent of f at t1. Then f(t1) + f(t2) ≥ g(t1) + g(t2). By Lemma
B.2, g(t1) + g(t2) ≥ |t1 − t2|.
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(v) The only function g ∈ G with g(t0) = 0 is |t− t0|. As f is 1-Lipschitz and t 7→ |t− t0|
is a lower bound of f with equality at t0, f must also be the function t 7→ |t− t0|.

Proof of Proposition 4.15.

(i) The functions g, g2 : R→ R are convex. Thus, their subdifferentials are the closed
intervals between the respective left and right derivative. Let t0 ∈ R. By Proposition
4.6 (ii), for all s ∈ R,

g(s)2 ≥ g(t0)
2 + 2(s− t0)g(t0)g

⊕(t0) + (s− t0)
2 . (C.25)

This inequality holds if we replace g⊕(t0) by g	(t0) (follow the proof of Proposition
4.6 (ii)). Thus it is true for every subderivative (subgradient in one dimension) in
∂g(t0). Furthermore,

∂g2(t0) = {2g(t0)v | v ∈ ∂g(t0)} . (C.26)

Thus, by Proposition 4.14, g2 is strongly convex with modulus 1.

(ii) Set g :=
√
f . As f is strongly convex with modulus 1, by Proposition 4.14,

g(s)2 ≥ g(t0)
2 + (s− t0)(g

2)⊕(t0) + (s− t0)
2 := f̃(s) . (C.27)

As the square root of a degree two polynomial with positive second order coefficient
is convex, g is convex. Thus, its one-sided derivatives exist. There is v0 ∈ ∂±g(t0)

such that (g2)⊕(t0) = 2g(t0)v0. As we assume g to be 1-Lipschitz, we have v20 ≤ 1

and (1 − v20)g(t0)
2 ≥ 0. We use the first of these two inequalities to show f̃ ≥ 0.

Hence, we can define g̃ :=

√
f̃ . The second inequality allows us to write

g̃(s) =

√
(s− s0)

2
+ h2 (C.28)

with s0 = t0 + g(t0)v0 and h2 = (1− v20)g(t0)
2. Now we have g(s) ≥ g̃(s) for all s ∈ I

by (C.27). Furthermore, we calculate g(t0) = g̃(t0). Clearly, g̃ ∈ G. Hence, g̃ is a
G-tangent of g at t0.
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