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Abstract

Climate change is projected to impact food production stability in many tropical countries

through impacts on crop potential. However, without quantitative assessments of where, by

how much and to what extent crop production is possible now and under future climatic con-

ditions, efforts to design and implement adaptation strategies under Nationally Determined

Contributions (NDCs) and National Action Plans (NAP) are unsystematic. In this study, we

used extreme gradient boosting, a machine learning approach to model the current climatic

suitability for maize, sorghum, cassava and groundnut in Ghana using yield data and agro-

nomically important variables. We then used multi-model future climate projections for the

2050s and two greenhouse gas emissions scenarios (RCP 2.6 and RCP 8.5) to predict

changes in the suitability range of these crops. We achieved a good model fit in determining

suitability classes for all crops (AUC = 0.81–0.87). Precipitation-based factors are sug-

gested as most important in determining crop suitability, though the importance is crop-spe-

cific. Under projected climatic conditions, optimal suitability areas will decrease for all crops

except for groundnuts under RCP8.5 (no change: 0%), with greatest losses for maize (12%

under RCP2.6 and 14% under RCP8.5). Under current climatic conditions, 18% of Ghana

has optimal suitability for two crops, 2% for three crops with no area having optimal suitabil-

ity for all the four crops. Under projected climatic conditions, areas with optimal suitability for

two and three crops will decrease by 12% as areas having moderate and marginal condi-

tions for multiple crops increase. We also found that although the distribution of multiple

crop suitability is spatially distinct, cassava and groundnut will be more simultaneously suit-

able for the south while groundnut and sorghum will be more suitable for the northern parts

of Ghana under projected climatic conditions.

1. Introduction

The agricultural sector of tropical countries is at great risk from the impacts of climate change.

This is because of changes in weather patterns, which determine yields and crop production in

these areas [1, 2]. Projections show that about a third of the world’s population will be living in

these countries by 2050, and the impact on agriculture is regarded as the most important and

immediate danger of climate change to society [3, 4]. In Ghana, agriculture employs more
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than half of the population directly and indirectly and is important for in contributing to food

security, gross domestic production (GDP) and balance of payments [5]. Changing climatic

conditions pose significant threat to the growth of the agricultural sector in Ghana because

heavy reliance on rain fed production and drought vulnerability, especially as less than 2% of

the agricultural area is under irrigation [6, 7].

In Ghana, the country’s agriculture sector is dominated by smallholder family farms that

are predominantly rain fed and thus climate sensitive [8, 9]. Among the leading agricultural

food commodities by harvest area in the country are cassava, maize, groundnuts and sorghum

[10]. An understanding of the risk of climate change to the agriculture sector in Ghana is

required to build resilience. Among the impacts of climate change on agriculture in Ghana are

unpredictable and variable rainfall, increasing temperatures, and longer dry periods. Some

studies have observed delays in the onset of rain seasons in some regions [11]. Other studies

have observed that the changes in n the onset of rainfall are beneficial for some crops while

detrimental to other crops and yet all these crops are important for the food security basket

[12]. Therefore, an integrated assessment that indicated the impacts of climate change on mul-

tiple crops is required to provide a comprehensive picture of the impacts. This because the

smallholder farmers, who form the majority of farmers in Ghana, rarely produce individual

crops [13–15].

Despite massive developments in agricultural production technology, weather and climate

still play a significant role in influencing agricultural production in Africa and elsewhere [16–

18]. In particular, under rain-fed conditions the production potential of a crop depends on the

climatic conditions of an area. Therefore, each crop will thrive within a specific climatic enve-

lope that can be enhanced by management–yet climate change will alter satisfaction of these

requirements and subsequently the geography of crop suitability [19]. Thus, climate change

adaptation measures such as agricultural intensification, crop diversification, improved crop

varieties and other management strategies needed to stabilize or enhance food production

now and under projected climatic conditions should operate within the natural production

domains that determine crop suitability. Crop suitability is a measure of the climatic and other

biophysical characteristics of an area to sustain a crop production cycle to meet current or

expected targets [20, 21]. When combined with climate projections, suitability assessments are

used to gauge shifts in crop potential under climate change [22, 23]. Since the results are spa-

tially explicit, the suitability models identify the areas where adaptation measures are mostly

required to avert the consequences of a predicted decline in climatic suitability of the crops.

Despite the potential of role of multiple crops in the food basket, limited attention has been

paid on assessing the impacts of climate change on multiple crops to provide farmers with

options for diversification or crop switching. There are no explicit indications of which crop

combinations work where and with what individual or combined production outcomes.

Impact studies have also mostly focused on individual crops with testing of adaptation mea-

sures following the same pattern. To the best of our knowledge, there are no publications

assessing multiple crop suitability at national or local levels to guide farmers to select most suit-

able crops for their areas in building resilience. Such assessments are imperative for spatially

explicit targeted adaptation planning and investment under Nationally Determined Contribu-

tions (NDCs) for Ghana. Furthermore, assessing agricultural potential is important in achiev-

ing many sustainable development goals (SDGs) such as reduction of poverty (SDG1),

averting hunger (SDG2), enhancing good health and well-being (SDG3), responsible con-

sumption and production (SDG12), reducing impacts of climate change (SDG13) and suste-

nance of life on land (SDG15) [24, 25].

In this study, we applied crop climatic suitability models to assess the impact of climate

change agro-climatic suitability for cassava, groundnuts, sorghum and maize in Ghana. Maize,
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sorghum, cassava and groundnuts are important staple crops planted on nearly three million

hectares annually, which is ~83% of all the cropped area in Ghana [26]. Furthermore, diets in

Ghana include combinations of maize or sorghum, cassava and groundnut in various propor-

tions [27, 28], making it important that these crops are available also under climate change.

There is a paucity of data on spatially explicit climate change impact assessments and limited

analysis of impacts on multiple crops in same areas. Therefore, the aim of this study was to

assess the impacts of projected climate change on four important food crops in Ghana by mid-

century. Specifically, we intended to (i) identify the determinants of crop suitability in Ghana,

(ii) identify climate change impacts on crop climatic suitability for individual and multiple

crops with maize, sorghum, cassava and groundnuts as key food crops.

2. Methods

2.1 Crop production data

Data used in modelling the climatic suitability were obtained from the Ministry of Food and

Agriculture (MoFA)’s statistics department, which is an independent government organiza-

tion that is responsible for collecting and compiling official agricultural statistics in Ghana.

Crop yields for maize, sorghum, cassava and groundnut are reported in metric tons per hectare

(dry mass). This is the ratio of total production per year in a district divided by total land culti-

vated for that crop in that district for that year. These datasets are obtained from the agricul-

tural extension officers in each district who carry out crop cutting experiments to estimate

production and cropped area annually. Yield data used were from 2006 to 2016.

2.2 Defining crop suitability classes

The production data for each of the four crops was split into four groups (optimal, moderate,

marginal and limited) using percentiles of the average yield between 2006 and 2016 (Fig 1A).

Fig 1. (a) Trends in yield for maize, sorghum, groundnut and cassava in Ghana from 2006 to 2016. (b) The 11 year mean crop yield distribution for each of the

four suitability classes across all districts from measured data. The right axis in (a, b) is for cassava yields only.

https://doi.org/10.1371/journal.pone.0229881.g001
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Optimal suitable areas were defined as those areas that were above the 75th percentile of the

mean yield of crop, representing areas with no significant limitations to sustained production

and stability over time. Moderately suitable areas were those between the 50th and 75th per-

centile of the average yield, indicating areas with moderately severe limitations for sustained

productivity or increased variability which increases the risk of crop failure. Marginally suit-

able areas had yield between the 25th and 50th percentile for the period, representing areas

with severe limitations for sustained productivity, and pronounced variability between the

years. Limited suitability areas are areas under the 25th percentile of the yield in the period,

indicating areas where biophysical conditions are not apt for the crop, thus showing constantly

low yields over time (Fig 1B). The assignment of one of the four groups (limited, marginal,

moderate or optimal) was done per pixel and time frame. To ensure that data were in cropped

areas, a NASA 2015 crop mask was used as obtained from the Global Croplands database [29].

2.3 Biophysical variables for crop suitability

This study applied an empirical supervised learning model to determine four crop suitability

classes from agronomically important climatic and soil variables at national level [30, 31].

Eight biophysical parameters were used in modelling the climatic suitability of the four crops

under current and future climatic conditions. These were total rainfall in the growing season,

total rainfall received between March and September, sum of rainfall in the crop sowing

month, rainfall coefficient of variation, diurnal temperature range between March and Sep-

tember, mean temperature growing season, mean temperature between March and September

and top soil organic carbon (Table 1). The eight variables were selected because they are

known to have major agronomic influence on the crops [32, 33]. The main growing period

was defined as March to July in the South and end of May to September for the North accord-

ing to distribution of rainfall and temperatures in Ghana [34] (S1 Fig). The precipitation vari-

ables were derived from the Climate Hazards Group InfraRed Precipitation with Station data

(CHIRPS) daily data at 0.05 degrees resolution from 2006 to 2016 [35]. Temperature variables

Table 1. The eight biophysical variables used for crop suitability modelling and their descriptions and derivations

from daily weather data.

Variable Description�

Total rainfall in the growing season Sum of rainfall for 24 May (DOY = 145) to 30 September (JD = 274) for

the north and 1 March (JD = 61) to 30 June in the south.

Total rainfall received between March

and September

Sum of rainfall received from 1 March (DOY = 61) to 30 September

(DOY = 274) to represent the whole growing season for both north and

south.

Sum of rainfall in the crop sowing

month

Sum of rainfall received from 24 May to 30 June (DOY = 182) in the north

and 1 March (DOY = 61) to 30 April (DOY = 121) in the south.

Rainfall coefficient of variation The ratio of the standard deviation of the monthly sums of rainfall

between March and September to the mean monthly rainfall.

Diurnal temperature range between

March and September

The average of the differences between maximum temperature and

minimum temperature from 1 March (DOY = 61) to 30 September

(DOY = 274).

Mean temperature growing season Average temperature between 24 May to 30 September (JD = 274) for the

north and 1 March (DOY = 61) to 30 June (DOY = 182) in the south

Mean temperature between March and

September

Average temperature between 1 March (DOY = 61) to 30 September

(DOY = 274) to represent the whole growing season for both north and

south

Top soil organic carbon The amount of organic carbon in the top 5cm of the soil per ha.

� DOY is Day of Year

https://doi.org/10.1371/journal.pone.0229881.t001
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were derived from the WFDEI Near Surface Temperature data for the same period at 0.5

degrees resolution [36]. Top soil organic carbon was obtained from ISIRIC [37].

For future climatic conditions, the same climatic variables used in model fitting were

derived from data on projected climatic conditions for Ghana. We used climate projections of

the Inter-Sectoral Impact Model Inter-comparison Project (ISIMIP) for the period 2006 to

2016 (baseline) and for 2041 to 2050 (future). This climate data consisted of four different gen-

eral circulation models (GCM) projections, namely GFDL-ESM2M [38, 39], HadGEM-ES2

[40], IPSL-CM5A-LR [41], and MIROC-ESM-CHEM [42]. These GCMs were chosen because

they are available with bias-adjustment [36, 43]. For future projections, the RCP2.6 and

RCP8.5 scenarios were selected to represent the 1.5–2˚C-target of the Paris Agreement and a

scenario without climate policy, respectively, to capture the range of climatic possibilities

(Table 2). The modelling for climate impact assessment were run on the assumption of no

change in soil organic carbon as there are currently no spatial near-future projections for this

variable. All these variables were clipped to Ghana and then scaled, ensuring that they have a

matching spatial resolution and extent. The same set of responses, predictors and scenarios

were used for each crop and each scenario.

2.4 Modelling approach

Suitability models or their variants have been used in assessing the geography of crop suitabil-

ity and in modelling impacts of climate change on agriculture for different crops. While the

common approach is to use a 2 class (suitable/unsuitable) approach for modelling crop suit-

ability [44–47], we propose a method that models four suitability classes (optimal, moderate,

marginal and limited) as a 2 class system may over-estimate climate impacts by not scaling the

suitability. Scaled four-class (high, moderate, marginal and unsuitable) suitability models are

an alternative for determining suitability classes of agricultural crops from machine learning

algorithms [31, 48–51]. To model the four suitability classes of the four crops, we applied the

eXtreme Gradient Boosting (XGBoost) machine learning approach to the variables. XGBoost

is an improvement of the recursive tree-based partitioning method of gradient boosting

machines (GBM) by Friedman [52]. Gradient boosting is a technique implemented in a com-

plex prediction model by iterative combinations of ensembles of weak prediction models into

Table 2. Projected rainfall and temperature changes as used in the suitability modelling under the RCP2.6 and RCP8.5 for Ghana. Variables are summarized across

the country.

Scenario Model Sum rainfall

Mar -Sept(mm)

Sum rain

sowing month

(mm)

Rainfall coefficient

of variation (%)

Rainfall

growing season

(mm)

Average Tmax

—Tmin (T˚C)

Mean temperature

growing season (T˚C)

Mean temperature

Mar-Sept (T˚C)

Current Current 1246 228 69 558 9.9 24.5 25.7

RCP2.6 GFDL +52 +2 -2 +30 -0.4 +1.5 +1.3

IPSL -43 +3 +3 -14 -0.2 +1.8 +1.5

HADGEM -4 +10 +3 +14 -0.3 +2.2 +1.4

MIROC +58 +21 +6 +41 -0.4 +1.1 +1.3

Model

mean

+16 +9 +3 +18 -0.3 +1.7 +1.4

RCP8.5 GFDL +59 +27 +3 +40 -0.7 +2.1 +2.5

IPSL -117 -3 +2 -29 -0.1 +2.8 +2.6

HADGEM -13 +10 +3 +7 -0.5 +1.5 +2.5

MIROC +86 +21 +2 +51 -0.3 +2.3 +1.8

Model

mean

+3.8 +13.9 +2.8 +17.5 -0.4 +2.2 +2.3

https://doi.org/10.1371/journal.pone.0229881.t002
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a single strong learner. This is achieved through sequentially building a series of smaller trees,

where each tree tries to complement each other and correct for the residuals in the predictions

made by all previous trees [53, 54]. The XGBoost algorithm develops the GBM approach fur-

ther through using an ensemble of classification and regression trees (CARTs) to fit training

data samples to targets [55, 56]. An independent binary tree decision rule structure is pro-

duced for each CART and contains a continuous score on each leaf node, and for a given

input, the output is the sum of the corresponding leaves’ scores [57, 58]. This is done in an

additive way as the predictions are made from weak classifiers that constantly improve over

the previous prediction error with higher weights at the next step to improve the scoring. The

learning of the model in XGBoost is based on defining an objective function which describes

the predictive accuracy of the model and regularization function describing the complexity

[54, 55, 57]

The XGBoost approach was developed by Chen and Guestrin [54] and has been widely rec-

ognized as one of the best machine learning algorithms because it is fast, accurate and based

on smaller models compared to similar family of models [55, 59]. It also has better results

because it ameliorates the iterative optimization procedure inherent in traditional GBMs [54].

Specifically, for crop suitability modelling the XGBoost is able to provide a scaled four class

model that is more representative than a binary suitable/unsuitable model in a computation-

ally efficient way for large scale spatial analysis, and since it reduces over-fitting with feature

subsampling, it is more appropriate for model extrapolation under climate change. In recent

machine learning performance studies, XGBoost has outperformed other algorithms [56,

60–62]. Parameter tuning for automatically determining the number of rounds, maximum

tree depth and sigma was done using the caret package [63] while the XGBoost was imple-

mented with the xgboost package [64] using the multi:softmax objective in R (version 3.5). The

input data was randomly split into 70% for model fitting (training and validation) and the

remaining 30% for independent model testing.

2.5 Identifying the contribution of variables to crop suitability

We used the regularized gain to determine the contribution of each variable to suitability of

each crop. The gain is the relative contribution of a variable to the model calculated by taking

each variable’s contribution for each tree in the model. A higher value of this metric when

compared to another variable implies it is more important for generating a prediction. If the

difference between the full model (with all variables) and a model without a specific variable is

small, it is assumed that the relative importance of this variable is low and vice versa. The con-

tribution of each variable is then standardized between 0 (lowest importance) and 1 (highest

importance) [65]. This approach is widely used in selection of variables that are important for

predicted variables in machine learning.

2.6 Model evaluation

We used the confusion matrix to assess the accuracy of the modelled suitability classes relative

to reference data that was set aside for model evaluation. The overall accuracy (OA), kappa

coefficient, multi-class AUC and class specific metrics (sensitivity, specificity, positive predic-

tion value, negative prediction value, precision, recall, F1-score, prevalence, detection rate,

detection prevalence and balanced accuracy) were used as calculated from the confusion

matrix. OA is the percentage that indicates the probability that a grid cell is modelled correctly

by the model relative to the known reference data. The OA is calculated by dividing the sum of

the entries that form the major diagonal (i.e., the number of correct classes) by the total num-

ber of samples for each crop. The kappa coefficient (k) [66] measures the accuracy of the
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model predictions by comparing it with the accuracy expected to occur by chance with k values

ranging from -1 (poor) to 1 (good) [22]. The multiclass area under receiver operating charac-

teristic curve (AUC) was used to validate model fit by comparing and averaging all pairwise

class AUC. Sensitivity for suitability class is the percentage of a category on the reference data

that is correctly modelled as belonging to that category, and measures proportion of pixels

omitted from a reference suitability class (omission error). Specificity expresses the proportion

of a category on the reference data that is included erroneously in another suitability class

(commission error) [67]. Other metrics used for class accuracy are described in full in litera-

ture [68, 69]. This analysis was done in R v.3.3 (R Core Team, 2013).

2.7 Assessment of climatic suitability for cultivation of multiple crops

In order to determine the climatic suitability for cultivation of the four key food crops for

Ghana, we combined the suitability of the crops to understand which areas are suitable for

which crops and to what degree. At first the maps were stacked to determine the number of

crops that were suitable for each cell. To determine suitability for multiple crops, we summed

the modelled crop suitability with each class ranked from 1 (limited) to 4 (optimal). This pro-

duced climatic suitability scale crops for the four crops on a scale from 4 (very low) to 16 (very

high). After that, realizing that suitability of two-crops was most frequently observed, further

analysis of determining which pairs of crops were suitable at each of the pixels. Pairs of crops

were summed to produce a potential between 2 (very low) to 8 (very high). Changes in suit-

ability proportion and distribution between the current and the projected climatic conditions

were assessed by counting and comparing areas and proportions of cells between times and

scenarios.

3. Results

3.1 Model performance evaluation

To reliably assess crop suitability, we first evaluated the fit of the model on an independent test

data set. There were differences in the model fit between crops, but all crops showed a good fit.

The best accuracy was for modelling sorghum (OA = 0.82, k = 0.75 and AUC = 0.87) (see

Table 3). Modelling evaluation metrics for each of the four suitability classes such as sensitivity,

specificity, positive and negative prediction values, precision, recall, F1-score, prevalence,

detection rate, detection prevalence and balanced accuracy are shown in S1 Table. These accu-

racy metrics indicated that the model was able to match observed classes for all the crops and

thus could be used with confidence in assessing suitability of the four crops in Ghana under

current and future climate.

3.2 Contribution of variables to crop suitability

The relative contribution of each variable to modelling crop suitability was determined by ana-

lyzing the importance of each variable to the model. The percent contributions of each variable

Table 3. Overall accuracy, kappa and multi-class AUC values as indicators model performance for maize, sorghum, groundnut and cassava in determining crop

suitability classes in Ghana.

Crop Accuracy Kappa Multiclass-AUC

Maize 0.75 0.66 0.81

Sorghum 0.82 0.75 0.87

Groundnuts 0.75 0.66 0.85

Cassava 0.71 0.59 0.84

https://doi.org/10.1371/journal.pone.0229881.t003
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to the explained variability of each crop are shown in Fig 2. The suitability of each crop and its

geographical range are influenced by different biophysical parameters. The rainfall factors

combined (sum of all three rainfall-related factors) have a larger influence on the potential

suitability for the four crops in Ghana compared to the influence of temperature-based factors.

These rainfall factors explain up to 60% of explained variability of cassava, up to 59% the vari-

ability of groundnuts, 66% for maize and 57% the variability of sorghum (Fig 2).

The total sum of rainfall received between March and September is more important in

determining the suitability of maize (25%), cassava (23% and sorghum (19%). The mean tem-

perature was not identified as important for any crop, but the diurnal temperature range

explains about a quarter of the suitability for sorghum (26%), which is the highest value for

any single variable. Variation of rainfall was important for all crops in almost equal measure

(12–16%), with more importance for maize. Soil organic carbon was important (>10% contri-

bution) for maize and cassava. The contribution of rainfall sum for sowing months, growing

season mean temperature and mean temperature between March and September to the suit-

ability of the four crops was mostly minimal (Fig 2).

3.3 Projected climate change impacts on agronomic variables

Projected changes in agronomically important variables are shown in Table 3. The results indi-

cate an increase in rainfall in Ghana for the cropping period, the sowing month and the grow-

ing season. However, these increases in rainfall will be accompanied by increases in the CV of

rainfall of 3% for both scenarios at national level. Less rainfall increases are projected for

RCP8.5 compared to RCP2.6 except for rainfall amounts in the sowing months. There is GCM

agreement in direction of change for rainfall CV for RCP8.5 and sum of rainfall for sowing

months for RCP2.6 and fir all temperature variables, which all indicate warming (Table 3). As

expected, higher warming is projected under RCP8.5 compared to RCP2.6 with a decreasing

temperature range.

Fig 2. Variable importance of each of the parameters used in determining the suitability for maize, sorghum,

groundnut, and cassava in Ghana.

https://doi.org/10.1371/journal.pone.0229881.g002
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3.4 Suitability and suitability changes of individual crops

Under current climatic conditions, the suitability of maize is very variable across the country

with no specific regional distribution. Optimal suitable areas for maize cover 22% (51323 km2)

of the country (Figs 3A and 4A). Under projected climatic conditions the areas that have opti-

mal suitability for maize production will decrease by 12% (6084 km2) and by 14% (7171 km2)

under RCP2.6 and RCP8.5 respectively as suitability transition from being optimal to moder-

ately suitable and marginal. These are the largest changes from the optimal suitable areas of

the crops modelled in this study. Areas that have marginal suitability are projected to increase

by 8% (6885 km2) under RCP2.6 and by 7% (5703 km2) under RCP8.5 scenario, with limited

areas decreasing by 11% or 5800 km2 (RCP2.6) and by 8% or 4508 km2 (RCP8.5) (Figs 3B and

3C and 4A and Table 4).

Sorghum was modelled as having largest area for which it is optimally suitable (28% or

66731 km2), which is the highest of the four crops for this category (Figs 3D and 4B). Under

climate change, the optimal suitability areas for sorghum are projected to decrease by 10%

(6445 km2) and 13% (8716 km2) decrease under RCP2.6 and RCP8.5 respectively (Figs 3E and

3F and 4B). Some parts of northern Ghana that have limited suitability for sorghum will

become suitable under both RCP2.6 and RCP8.5 with an evident northwards shift in sorghum

suitability under climate change. The areas that are unsuitable for sorghum are projected to

increase by 12% or 7263 km2 (RCP2.6) and 13% or 7601 km2 (RCP8.5) by the 2050s (Fig 3E

and 3F and Table 4).

Cassava was modelled as mostly suitable in the southern forested bimodal rainfall areas of

Ghana (Fig 3G). Under RCP2.6, the results show that by the 2050s, optimal suitable areas for

cassava will decrease by 7% (2798 km2) while under RCP8.5, they will decrease by 9% (3731

km2) (Fig 4C). Concurrently, the areas that have limited suitability for cassava will also slightly

decrease by 4% (3039 km2) under RCP2.6 and by 3% (2338 km2) under RCP8.5 from the cur-

rent 35%. The results showed that 48% (115868 km2) of Ghana can produce groundnuts (opti-

mal and moderate suitability) under current climatic conditions (Fig 3J). Optimal suitable

areas (17% or 39861 km2) are mostly located in the northern and central zones of Ghana (Fig

3K and 3L). Under projected climate change, the results show that the areas that have optimal

suitability for groundnuts will decrease by 3% (1498 km2) under RCP8.5 but will remain stable

at 17% (+169 km2) under RCP8.5, a trajectory different from other crops modelled in this

study (Table 4 and Fig 4D).

3.5 Climatic suitability of multiple crops for current and future climatic

conditions

The suitability of each pixel for multiple crops was evaluated by determining the number of

crops in each suitability class suitable for that pixel. Under all climatic conditions, none of the

areas has optimal suitability for all the four crops in Ghana (Fig 5A). Under current climatic

conditions, 2% (3716 km2) of the country has moderate suitability for at least three of the four

crops. This area is projected to remain unchanged under both RCP2.6 and RCP8.5 (Table 5

and Fig 4B and 4C and S2 Table).

Similar significant decreases in suitability are also projected for areas that have moderate

suitability for at least two of the four crops as these will decrease to 5% (12837 km2) under

RCP2.6 and 6% (13512 km2) under RCP8.5. Much of these high suitable areas will become

suitable for fewer crops under climate change as areas that are moderately suitable for all the

four crops will increase to 1% under both RCP2.6 (3040 km2) and RCP8.5 (3378 km2) while

those moderately suitable for two crops will increase from 19% (44591 km2) to 24% or 57427

km2 (RCP2.6) and 25% or 60130 km2 (RCP8.5). Under both scenarios, the areas that are
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marginally suitable for the four crops will increase from 1% (1689 km2) under current climate

to 3% (7770 km2 RCP2.6) or 1% (3040 km2 for RCP8.5) of the country. Similarly, the areas

that are marginal for two of the four crops will increase from 9% (21958 km2) under current

Fig 3. Suitability maps for (a) maize under current conditions (b) maize by 2050 under the RCP2.6, (c) maize under RCP8.5, (d) sorghum under current

conditions (e) sorghum in 2050 under RCP2.6 in Ghana under (f) sorghum under RCP8.5, (g) cassava under current conditions (h) cassava in 2050 under

RCP2.6 in Ghana under (i) cassava under RCP8.5, (j) groundnuts under current conditions (k) groundnuts in 2050 under RCP2.6 in Ghana under (l)

groundnuts under RCP8.5.

https://doi.org/10.1371/journal.pone.0229881.g003
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climatic conditions to 17% under RCP2.6 (39861 km2) and RCP8.5 (40875 km2), with a con-

current reduction in areas that are moderately suitable for just one crop as these become less

(Fig 4B and 4C and Table 5).

We assessed the suitability of dual crops under current and projected climatic conditions

through pairwise combinations of suitability maps (Fig 6). Areas with a highest suitability of

dual crops are 5.5% (13175 km2) for maize and groundnuts, 5.4% (12837 km2) for cassava and

sorghum and 5.2% (12499 km2) for maize and cassava (Figs 6 and 7 and S2 Table); all other

combinations are below 5%. Except for cassava and groundnut, all suitability combinations of

crops are projected to decrease for the areas where both crops currently have the high suitabil-

ity class. Concurrently, the areas where a more crops will be moderate and marginal or mar-

ginal for both crops will increase for both RCP2.6 and RCP8.5 (Fig 7). Although the results

show on dual crop suitability vary across the country, aggregated results show the most com-

mon suitability under climate change will be sorghum and groundnuts for the northern parts

and cassava and groundnuts for the southern parts of Ghana. The least potential dual

Fig 4. Assessment of changes in suitability according to the applied GCMs and RCP for (a) maize (b) sorghum, (c) cassava and (d) groundnuts in Ghana.

https://doi.org/10.1371/journal.pone.0229881.g004

Table 4. Mean percentage changes in area suitable for each suitability class under climate change for maize, sorghum, cassava and groundnuts.

Crop Maize Sorghum Cassava Groundnut

Suitability RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5

Limited -10.6 -8.2 -11.8 -9.4 -3.7 -2.8 -7.6 -7.1

Marginal 8.1 6.6 12.1 12.7 5.2 4.2 11 4.5

Moderate 14.4 15.5 9.3 9.7 5.6 8.2 0.4 2.1

Optimal -11.9 -14.0 -9.7 -13.1 -7.2 -9.6 -3.8 0.4

https://doi.org/10.1371/journal.pone.0229881.t004
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suitability will be for cassava and sorghum, and groundnut and sorghum. There are also differ-

ences in dual crop suitability between the north and south of Ghana (S3 Table).

4. Discussion

The impacts of climate change on food security are multi-faceted. Therefore, in this study we

quantified the impacts of climate change on the multiple crop potential by assessing the suit-

ability of key food crops in the case of Ghana. A model for estimating crop suitability for

maize, sorghum, cassava and groundnuts under current climate was constructed, which reli-

ably reproduced observed suitability patterns. Therefore, we deem the model as sufficiently

robust to predict the suitability of the four crops under future climate conditions. We identi-

fied, quantified and mapped individual and multiple crop suitability for assessing impact areas

projected climatic conditions.

4.1 Contribution of variables to crop suitability in Ghana

Important biophysical predictors of the suitability of each crop were identified and these corre-

spond to the reported crop requirements, growing conditions and spatial distribution of the

four crops in Ghana [70–72]. The finding that precipitation-based factors are most important

for the suitability of maize, sorghum and cassava is in line with other studies as rainfall remains

the most important determinant of agricultural production in many African countries. For

example, drought stress and related plant water availability constraints have been singled out

as the most limiting factors for these crops in West Africa and elsewhere[8, 73–76], particularly

as these crops are almost entirely produced under rain-fed conditions.

Fig 5. Modelled suitability maps of four crops under (a) current (b) RCP2.6 and (c) RCP8.5 climatic conditions for Ghana.

https://doi.org/10.1371/journal.pone.0229881.g005

PLOS ONE Climate change and food crops suitability in Ghana

PLOS ONE | https://doi.org/10.1371/journal.pone.0229881 June 29, 2020 12 / 21

https://doi.org/10.1371/journal.pone.0229881.g005
https://doi.org/10.1371/journal.pone.0229881


Although rainfall amounts are generally high in Ghana (over 800 mm in most years), pre-

cipitation remains an important factor in determining crop potential. This is because of the cli-

mate gradient in Ghana from the south to the north, and its intra-seasonal variation

influencing the suitability of the different crops. For comparison, in China fit was observed

that temperature-related variables as more important factors for maize suitability than precipi-

tation [77], highlighting the local relevance of our results that cannot simply be extrapolated.

We found that sorghum suitability is also influenced by the diurnal temperature range, which

concurs with current understanding that sorghum is a more adverse weather tolerant crop.

This tolerance is enabled by heterotic mechanisms that allow for greater biomass and yield

production at a shorter period, ‘stay green’ mechanisms, and lodging and desiccation tolerance

compared to other crops [78, 79].

4.2 Individual and multiple crop suitability under climate change

Of the four crops modelled in this study, groundnut suitability is the most resilient under cli-

mate change, showing the smallest loss in suitable growing areas. This could be explained by

groundnuts being legumes with a short growth period and whose harvested parts grow below

ground and thus are partly protected by the soil from direct effects of warming. Groundnut

viability is closely related to rainfall patterns [80, 81], particularly the amount of rainfall in the

growing season due to the less extensive root system, and thus projected increases in rainfall

can directly increase suitability for groundnut production. This is especially so as the assess-

ment of changes in agronomic variables show increased rainfall variability than changes in

Table 5. Area and percentage of different levels of suitability of multiple crops in Ghana under current and future climates.

Suitability Scenario Measure One crop Two crops Three crops Four crops

Very high Current Area(km2) 98978 41888 3716 0

% 41 18 2 0

R26 Area(km2) 69588 12837 338 0

% 29 5 0 0

R85 Area(km2) 79385 13512 338 0

% 33 6 0 0

High Current Area(km2) 105058 44591 5405 0

% 44 19 2 0

R26 Area(km2) 107761 57427 20268 3040

% 45 24 8 1

R85 Area(km2) 104045 60130 18917 3378

% 44 25 8 1

Low Current Area(km2) 89519 65197 21958 1689

% 37 27 9 1

R26 Area(km2) 87492 77696 39861 7770

% 37 32 17 3

R85 Area(km2) 62832 62494 40875 3040

% 26 26 17 1

Very low Current Area(km2) 74318 59792 13175 1351

% 31 25 6 1

R26 Area(km2) 61143 38510 3716 3716

% 26 16 2 2

R85 Area(km2) 77696 29389 14188 0

% 32 12 6 0

https://doi.org/10.1371/journal.pone.0229881.t005
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total values. These results concur with findings by earlier studies on the potential impacts of

climate change in Ghana which reported groundnuts as less impacted compared to other food

crops [5]. Our findings show that sorghum remains a high potential crop in the northern parts

of Ghana under a changed climate, as limited areas in these areas decrease. This result under-

lines the importance of sorghum, which is already a major food crop in the northern parts of

Ghana.

The greatest climate change risk was identified for maize which is the crop with the most

planted area and the highest net consumption in the country [82]. Apart from the reliance of

maize production on rainfall in Ghana, the fact that maize is more sensitive to weather vari-

ables than other crops also explain this loss. Maize responds to both warming and increased

rainfall variability as water deficit can cause reduced growth by allocating more carbon to the

root system, reducing leaf expansion and photosynthesis. Higher temperature, meanwhile, can

cause loss of pollen viability, damage to tissue enzymes and accelerated senescence [83]. These

severe impacts of climate change on maize production in Africa have already been reported

elsewhere [46, 84, 85].

Fig 6. Maps showing the suitability of dual crop suitability for pairwise crop combinations across Ghana under current, RCP2.6 and RCP8.5 climatic scenarios.

https://doi.org/10.1371/journal.pone.0229881.g006
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In addition to these crop-specific climate responses, the predominant outcome of the suit-

ability modeling is that the impacts of climate change are site and crop-specific. The impacts

are determined by both the biophysical factors that influence crop viability and the specific

genetic characteristics of the crops. Shifts in crop suitability have been identified as a key influ-

ence of climate change, spurring a need for adequate adaptation measures in the identified

areas or planning for food transfer systems that distribute food between the areas that will

become suitable and those that will become marginal for a particular crop [19, 86].

This study indicates that there will be a reduction in the suitability of multiple crops in

Ghana under climate change. Areas which are currently optimally and moderately suitable

for production of the four crops will decrease while areas marginally and moderately suit-

able for two or more crops will increase. Although multiple crop suitability does not indi-

cate potential for growing the crops together, the reduced potential for multiple crops

under climate change reduces the choices farmers have in terms of crop production, which

increases risks. The more the crops are suitable for a farmer in a pixel, the mode the farmer

can make production choices for crops for both food security and trading of surplus, which

are both being curtailed by climate change. Furthermore, the finding that two crop combi-

nations involving sorghum and groundnuts for the north and maize and groundnuts for the

south have the most potential under climate change is important for adaptation planning

and investment in these crops.

Fig 7. Area fractions suitable for (a) maize and sorghum (b) Maize and cassava (c) Maize and Groundnut (d) Cassava and Sorghum, (e) cassava and groundnut and

(f) Sorghum and groundnut. The lines are Gaussian distribution fit for each climatic scenario. Ld-Ld is for limited suitability for both crops, Ld-Mg is area with

limited for one of the 2 crops and marginal for the other, Mg-Mg is area where both crops are marginal, Mg-Md is area that is marginal for one crop while

moderately suitable for the other crop, Md-Md is where both crops are moderately suitable, Md-Op is where one crop is moderately suitable and the other has

optimal suitability and Op-Op is where both crops are optimally suitable.

https://doi.org/10.1371/journal.pone.0229881.g007
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There are a number of adaptation measures that can be applied to increase multiple crop

suitability to avert the modelled reduced potential. Altieri and Nicholls [87] posit that smart

agricultural systems such as raised beds and semi-permanent water collecting basins that act as

field-scale micro-catchments can sustain production of different crops under climate change

as they can work for most crops. These and other conservation agriculture techniques could

improve potential for multiple crops. This is especially important as rain fed agricultural sys-

tems are projected to remain dominant in African agricultural systems [88]. While these have

potential, they should not add to complexity of already complex agricultural systems in Ghana

and other African countries [89] through, for example, increasing labor burden [90, 91]. At

national scale, policies encouraging the production of multiple crops such as development of

market incentives for many crops can also help promote resilience. Shifting extension advice

from individual crops to multiple crops could be an important first entry point.

4.3 Considerations in the interpretation of the results of crop suitability

modelling

There are some limitations and potential sources of uncertainty that should be considered in

the interpretation of our results. The suitability models are driven by climate and soil data and

current crop production data, which have inherent uncertainties. Future projections of crop

production suitability are produced by combining suitability models with projections based on

GCMs that describe potential future conditions. These different GCMs rely on different

parameters and incorporate different functions to cover the dynamics of atmospheric circula-

tion, ocean effects, or feedbacks between the land surface and the atmosphere. Therefore, they

are prone to disagreements or errors that will be propagated in the modelling. Our modelling

omitted direct physiological interaction effects in multiple crops such as nitrogen fixation,

water retention, pollination, completion or competition for nutrients that cannot be captured

by this type of modelling. The area suitability calculations also include other land that may not

be available for agricultural production because of the resolution. These other land areas are,

for instance, urban areas, protected areas and riparian zones which cannot be removed at the

spatial resolution of the datasets used. Thus, interpretation should be on the relative change

rather than the absolute change in area suitable for each crop.

5. Conclusion

In this study we provide a quantitative starting point to gauge future suitability of multiple

crops as a strategy to build climate resilient agricultural systems that are not available else-

where. We conclude that impacts of climate change on different crops, regions and climatic

scenarios are uneven, and highlight the crops and areas that are likely to be impacted the most.

From such information, the types, scale and urgency of investing into adaptation strategies in

the light of the NDC and NAP implementation process can be guided accordingly. Thus, our

approach identified local impacts across the entire country that could be more useful for adap-

tation planning in ecologically, culturally and socio-economically heterogeneous farming sys-

tems such as in Ghana. In addition, and maybe more importantly, our integrated approach

that assessed crop suitability of multiple crops implicitly captured opportunities and losses of

many co-benefits that can be gained from multiple crops which are common in tropical coun-

tries but are not captured or indicated in individual crop assessments. The results from this

study provide a scientific basis on which a national-level risk assessment on the impacts of cli-

mate change on multiple crops can be implemented. Since the information in this study is spa-

tially explicit, areas requiring prioritization in adaptation action can be identified as those to

experience the largest changes in area suitability and number of suitable crops. There is a
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chance that the impacts of climate change could be reduced through systematic planning for

climate-adapted development. This is, to our best knowledge, the first study to assess the

impacts of climate change on multiple crops quantitatively at this resolution for a whole

country.
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