Global-scale modelling of flows and impacts of nitrogen use: Modelling approaches, Linkages and Scenarios
Recommended Citation:

The report is available on-line at: www.inms.international

About INMS:

The International Nitrogen Management System (INMS) is a global science-support system for international nitrogen policy development established as a joint activity of the United Nations Environment Programme (UNEP) and the International Nitrogen Initiative (INI). It is supported with funding through the Global Environment Facility (GEF) and around 80 project partners through the ‘Towards INMS’ project (2016-2022).

INMS provides a cross-cutting contribution to multiple programmes and intergovernmental conventions relevant for the nitrogen challenge. These include the Global Partnership on Nutrient Management (GPNM) and the Global Waste Water Initiative (GWWI) under the Global Programme of Action for the Protection of the Marine Environment from Land-based Activities (GPA), the UNECE Convention on Long-Range Transboundary Air Pollution (Air Convention), through its Task Force on Reactive Nitrogen (TFRN), the UN Convention on Biological Diversity (CBD), the UN Framework Convention on Climate Change (UNFCCC), the Vienna Convention for the Protection of the Ozone Layer, and many regional agreements, such as the Black Sea Commission, the Lake Victoria Basin Commission, the Partnership for Environmental Management for the Seas of East Asia (PEMSEA) and the South Asian Cooperative Environment Programme (SACEP).

INMS receives major additional funding through the work of the GCRF South Asian Nitrogen Hub supported by the UK Research & Innovation (UKRI) Global Challenges Research Fund (GCRF).

Disclaimer: This document has been prepared as a scientifically independent contribution. The views and conclusions expressed are those of the authors, and do not necessarily reflect policies of the contributing organisations or of the wider INMS membership.

Nitrogen for Life is the motif of UN Nitrogen Campaign launch, held in Colombo, Sri Lanka on 23-24 October 2019
Global-scale modelling of flows and impacts of nitrogen use:
Modelling approaches, Linkages and Scenarios

Prepared By

Wim de Vries¹, Wilfried Winiwarter², Lex Bouwman³, Arthur Beusen³, Benjamin Bodirsky⁴, David Leclère², Jinfeng Chang², Adrian Leip⁵, Marilena Muntean⁵, Rita van Dingenen⁶, David Kanter⁶, Hans van Grinsven³, Aafke Schipper⁵, Jan Janse³, Massimo Vieno⁷, Bill Bealey⁷, Jan Peter Lesschen¹, Carolien Kroese¹, Maryna Strokal¹, Jason Holt⁸, Sarah Wakelin⁸, Hanqin Tian⁹, Elizabeth Boyer¹⁰

Contributing Organisations

¹ Wageningen University and Research, Wageningen, The Netherlands
² International Institute for Applied Systems Analysis, Laxenburg, Austria
³ PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands
⁴ Potsdam Institute for Climate Impact Research, Potsdam, Germany
⁵ European Commission – DG Joint Research Centre, Ispra, Italy
⁶ Department of Environmental Studies, New York University, New York, United States
⁷ UK Centre for Ecology and Hydrology, Edinburgh Research Station, Midlothian, United Kingdom
⁸ National Oceanography Centre, Liverpool, United Kingdom
⁹ Auburn University, Auburn, United States
¹⁰ Penn State University, University Park, Pennsylvania, United States

INMS Report 2020/1
This research was funded by UNEP-GEF
Abstract

In this report document, we discuss the approach to a global integrated nitrogen assessment model chain allowing to evaluate the consequences of different socio-economic drivers (scenarios) and N mitigation management in terms of: (i) benefits, including food, feed, fibre (wood) and energy production and (ii) threats, including pollutant and greenhouse gas emissions, affecting the quality of air, soil and water and related climate, human health and biodiversity impacts and (iii) cost-effectiveness. This is done by addressing:

• The overall modelling approach, including (i) the type of models that are needed to simulate nitrogen benefits and threats and (ii) the model linkages needed to enable a consistent multi-model approach in response to a consistent set of scenarios of drivers (population development, income etc.) and N mitigation measures.

• The modelling practice including (i) the modelling approaches, distinguishing between empirical and process-based models, and (ii) the available models that would serve an integrated global scale nitrogen assessment, considering the variety of impacts and scales.

• A modelling protocol of the involved models including information on: (i) the models involved, (ii) basic agreements on base year (2010), spatial extent and resolution, temporal extent and resolution, (iii) scenarios, (iv) model outputs and (v) model linkages.

• A database platform for the INMS model inputs and outputs.

Keywords: modelling, nitrogen flows, nitrogen impacts: modelling approaches, scenarios, global scale
Contents

Foreword	9
Summary | 11

1 Background of the modelling approach | 13

2 Approach and model linkages to assess benefits and threats of nitrogen use in response to scenarios | 17
- 2.1 Overall approach | 17
- 2.2 Scenarios and nitrogen mitigation measures and interventions | 18
- 2.3 Modelling impacts of scenarios on global nitrogen requirements | 19
- 2.4 Modelling impacts of nitrogen management on food and feed production | 20
- 2.5 Modelling impacts of nitrogen management on water and air quality, climate, ecosystems and human health | 22
- 2.6 Needed model linkages to enable a consistent modelling approach | 23

3 Practices and available models for a global integrated nitrogen assessment | 25
- 3.1 Modelling practices | 25
- 3.2 Available global scale models | 26

4 Modelling protocol for the INMS global modelling effort | 29
- 4.1 Approach and models involved | 29
- 4.2 Basic agreements | 30
- 4.3 Scenarios and N policy story lines | 30
- 4.4 Deliverables/model outputs | 31
- 4.5 Model linkages and number of multi-model evaluations | 34
- 4.6 INMS Study regions | 36

5 Database Platform for the INMS model inputs and outputs | 38
- 5.1 Aims | 38
- 5.2 Scope
 - 5.2.1 Database System Approach | 38
 - 5.2.2 Types of data | 39
 - 5.2.3 Information/harmonization of databases | 39
 - 5.2.4 How INMS data cited? | 40
 - 5.2.5 Search filters | 40
 - 5.2.6 Data Collection and Validation | 41
 - 5.2.7 Downloading data | 42
 - 5.2.8 Licensing/Terms & Conditions | 42
 - 5.2.9 Next steps | 43

References | 44

Annex 1 Meta-description of scenario (Drivers –pressures) models. | 48
Annex 2 Meta-description of Pressure-State (emission, air, soil and water quality) models.

Annex 3 Meta-description of impact models.
For too long there has been insufficient attention given to bringing together the multiple ways in which humans have been altering the global nitrogen cycle, with the multiple impacts of this alteration on environment, health and economy.

Past efforts have typically examined only parts of the problem. Agricultural researchers have primarily focused on food and feed production and the economic benefits for farmers. In parallel, other researchers have assessed how agricultural activities and wastewater lead to leaching and run-off of nitrogen compounds, contributing with other nutrients to freshwater and coastal pollution. Even if much remains to be known, these issues have been intensively studied and informed matching policy development.

The same applies to air pollution. Nitrogen compounds such as nitrogen oxides (NOₓ) and ammonia (NH₃) are being emitted by human activities into the air, leading to increased concentrations of nitrogen dioxide (NO₂) and NH₃, exacerbating formation of fine particulate matter (PM₂.₅) and tropospheric ozone. Together with increased deposition of nitrogen compounds from the atmosphere, these are leading to major impacts on human health and ecosystems.

Again, the same human activities – transport, combustion, agriculture and wider land-use change – are leading to emissions of the greenhouse gas nitrous oxide (N₂O), which contributes to stratospheric ozone depletion in addition to its substantial warming effect on climate. These are specialist areas in their own right, while not enough attention has been given to addressing the close interconnection between these threats.

Other issues could be mentioned, but this basket of nitrogen pollutants and effects is already sufficient to show that nitrogen presents humanity with a special challenge. Whereas past efforts of environmental research and policy have typically focused on individual threats (water, air, climate, biodiversity, food etc.), with nitrogen we find that these dimensions must be brought together if humanity is to make real progress towards sustainability.

This is especially the case when it comes to examining the barriers-to-change. It is fair to say that progress in reducing these nitrogen-related threats over the past 30 years has been extremely limited. At the heart of the approach being developed by the International Nitrogen Management System (INMS) is the hypothesis that a joined-up approach for nitrogen will strengthen the case for taking action by offering multiple win-wins: for transboundary pollution of water and air, for climate, biodiversity, human health and economy. By counting the co-benefits, maximizing the synergies and
minimizing the trade-offs, there is the opportunity for action on nitrogen to be transformational in working toward the Sustainable Development Goals (SDGs).

One of the starting points for implementing this vision must be to increase the capability of the scientific community to work across traditional disciplinary boundaries. It means that we need to develop a more integrated approach to assessing the multiple benefits and threats of nitrogen use, which can then provide the foundation for examining how nitrogen-focused solutions could help many of the SDGs.

With this document, we start a new series of reports as outputs from the “Towards INMS” project supported by the Global Environment Facility (GEF) through the United Nations Environment Programme (UNEP). It is highly appropriate that this first report in the series focuses on developing the global scale system of nitrogen models. As such, it provides a foundation for other products to follow, including examination of future scenarios, development of guidance on assessment and examination of barriers and solutions.

These inputs will be critical as INMS works with the United Nations and its Member States to mobilize a more-coordinated international response on nitrogen. The support of the GEF/UNEP ‘Towards INMS’ project has already been decisive in catalysing adoption of the Resolution on Sustainable Nitrogen Management adopted at the fourth UN Environment Assembly (UNEP/EA.4/Res.14). The resulting mandate is now mobilizing development of the first global intergovernmental process on nitrogen, the Interconvention Nitrogen Coordination Mechanism (INCOM). Under the UNEP Nitrogen Working Group, this activity is bringing together Member States to strengthen cooperation between the main intergovernmental conventions and programmes, with support from the science community.

The approach as described in this report will be critical to help move this process forward. It provides the methods needed to underpin the first International Nitrogen Assessment, offering UN Member States and Conventions the tools they need.

Mark Sutton
Director, International Nitrogen Management System

Clare Howard
Coordinator, International Nitrogen Management System

Nicole Read
Project Coordination Unit, International Nitrogen Management System
Summary

The GEF/UNEP project Entitled “Targeted Research for improving understanding of the global nitrogen cycle towards the establishment of an International Nitrogen Management System” project, referred to as “Toward INMS,” aims to bring together the science community to consider evidence that can support policy development and management to mitigate environmental problems stemming from nitrogen pollution. An important overall goal is to establish a framework for a global integrated nitrogen modelling approach that enables to understand the past and to explore possible future developments and to assess the benefits and costs of feasible improvements in global and regional nitrogen management, in terms of improved food, goods and energy production, reduced pollution and climate threats.

The intended nitrogen integrated modelling approach aims to provide policy makers with an option space of possible interventions and to explore the outcomes for key sustainable development goals (SDGs) and environmental indicators, including a cost-benefit analysis. It further aims to contribute to the optimization of nitrogen management in the context of food, goods and energy production and other ecosystem services at the global scale, with a focus on aquatic impacts. In addition, the opportunities for regional scale assessments are considered, particularly where this is supported by detailed regional data. The modelling approach is multi-sectoral with a strong focus on agricultural N management (including NH₃, N₂O and N₂ emissions and nitrate leaching), but also including N losses in wastewater and NOₓ emissions related to energy production and industrial N uses. Where necessary through the coupling and interactions of element cycles, INMS also considers other nutrients (like phosphorus) or elements (like carbon).

In this background document, we discuss the approach to a global integrated nitrogen assessment model chain allowing to evaluate the consequences of different socio-economic drivers (scenarios) and N mitigation management in terms of: (i) benefits, including food, feed, fibre (wood) and energy production and (ii) threats, including pollutant and greenhouse gas emissions, affecting the quality of air, soil and water and related climate, human health and biodiversity impacts and (iii) cost-effectiveness. This is done below by addressing:

- The overall modelling approach, including (i) the type of models that are needed to simulate nitrogen benefits and threats and (ii) the model linkages needed (outputs from model ‘x’ as input to model ‘y’) to enable a consistent multi-model approach in response to a consistent set of scenarios of drivers (population development, income etc.) and N mitigation measures.
- The modelling practice, including (i) the modelling approaches, distinguishing between empirical and process-based models, and (ii) the available models that would serve an integrated global scale nitrogen assessment, considering the variety of impacts and scales.
- A modelling protocol of the involved models including information on: (i) the models involved, (ii) basic agreements on base year (2010), spatial extent and resolution, temporal extent and resolution, (iii) scenarios, (iv) model outputs and (v) model linkages.
- A database platform for the INMS model inputs and outputs.
The report also includes three annexes with an overview of characteristics of identified relevant global scale scenario (Integrated Assessment) models, quality models and impact models for potential use within INMS.
1 Background of the modelling approach

Rationale
The GEF/UNEP project Entitled “Targeted Research for improving understanding of the global nitrogen cycle towards the establishment of an International Nitrogen Management System” project, referred to as “Toward INMS,” aims to bring together the science community to consider evidence that can support policy development and management to mitigate environmental problems stemming from nitrogen pollution. An important overall goal is to establish a framework for a global integrated nitrogen modelling approach that enables to understand the past and to explore possible future developments and to assess the benefits and costs of feasible improvements in global and regional nitrogen management, in terms of improved food, goods and energy production, reduced pollution and climate threats. The modelling approach is multi-sectoral with a strong focus on agricultural N management (including NH₃, N₂O and N₂ emissions and nitrate leaching), but also including N losses in wastewater and NOₓ emissions related to energy production and industrial N uses. Where necessary through the coupling and interactions of element cycles, INMS also considers other nutrients (like phosphorus) or elements (like carbon).

Multiple sector model-based assessment at global scale, and where possible in defined INMS regions, is a key element of such an “Integrated Nitrogen Management System” (INMS). It provides a resource to inform policy makers on the multiple co-benefits of improved nitrogen management, and allows analysis of scenarios, incorporating cost-benefit assessment. The nitrogen integrated modelling approach aims to provide policy makers with an option space of possible interventions and to explore the outcomes for key sustainable development goals (SDGs) and environmental indicators, including a cost-benefit analysis. It further aims to contribute to the optimization of nitrogen management in the context of food, goods and energy production and other ecosystem services at the global scale, with a focus on aquatic impacts. In addition, the opportunities for regional scale assessments will be considered, particularly where this is supported by detailed regional data.

Modelling consensus
In April 2015, a pre-meeting on modelling took place in Edinburgh, in view of the so-called INMS-pump priming project, including the principle question “How different compartments of the nitrogen cycle should be linked when formulating global nitrogen integrated assessment models”. This principle question was split into four sub-questions:

1. Which effects, both benefits and threats, should be included in the modelling framework?
2. Should a detailed modelling framework be used, for an elaborated evaluation of impacts of N management measures, or a simplified system to do economic-optimization?
3. What global scale models are available, what are criteria to evaluate them for their potential use and which aspects are currently missing?
4. How can collaboration be organized between the various modelling groups?

A summary of results of that meeting is given below.

1. Measures and effects to be included in the modelling framework

13
It was agreed that the modelling framework should consist of:

1. Linkages between consumption-production (food, feed, industrial N products, bioenergy etc.)-pollution (quality of water, air and soil)-impacts (human health, climate and biodiversity),
2. Options to evaluate measures related to mitigation (linked to consumption-production) and adaptation (linked to impacts or possibly pollution).

2. *Impacts versus optimization modelling frameworks*

It was agreed that to evaluate impacts of scenarios including N management measures, we should focus on a comprehensive modelling framework, using multiple indicators, including (co-)benefits and adverse impacts of nitrogen and costs. Such an approach would allow us to assess cost-effectiveness and economic welfare optimization, with targets in terms of reduced threats or improved benefits or a combination of them. Cost-effectiveness is useful for selecting the most efficient measures, whereas a broader economic optimization aims to find the balance between societal costs and benefits. A simplified system (e.g., limited to the assessment of air, soil and water quality without further use of impact models but using/assessing critical levels and critical loads) could be worthwhile for cost-optimization, although the variation in circumstances/valuation makes a global cost-optimization very difficult.

3. *Criteria to evaluate the potential use of available global scale models*

It was decided to evaluate the potential of available models by various criteria, while distinguishing:

1. Driver (Scenario) - Pressure models enabling the linkage between scenarios, consumption-production and nutrient inputs/air emissions with linkage mitigation and possible cost-benefit optimization
2. Pressure-State models (air, soil and water quality): including loads and concentrations of nitrogen compounds (and where relevant other elements) in air soil and water.
3. State-Impact models (including human health, biodiversity and productivity of agricultural and terrestrial systems).

The criteria that were mentioned to evaluate the potential of the models were:
- Model aim/Functionality,
- Inputs considered: drivers of change,
- Outputs considered: e.g., N forms, other elements etc.,
- Biophysical representation,
- Steady state versus dynamic models,
- Data needs,
- Validity status,
- Spatially resolution; Temporal resolution (and extent),
- Linkage to scenarios/measures,
- Operational status, accessibility.

4. *Collaboration between various modelling groups*

The consensus was that we should form an N modelling community, focusing on:

1. Model improvement and data exchange
 - We focus on improving available models and rather than on development of new models or upscaling country/European scale models to the world unless a certain aspect is missing.
 - Data and system knowledge exchange is a crucial issue within the group.
2. Model use
- The output of integrated assessment models (here denoted as scenario models), which are able to translate scenario information into drivers of N use and related pressures on the system, are used by models predicting impacts on air, soil or water quality (denoted as quality models) and related impact on human health or biodiversity (denoted as impact models).
- The idea is to apply several models of scenarios, quality and impact to enable model intercomparisons.

Aim and content this document
In this document, we discuss the approach to a global integrated nitrogen assessment model chain allowing to evaluate the consequences of different socio-economic drivers (scenarios) and N mitigation management in terms of: (i) benefits, including food, feed, fibre (wood) and energy production and (ii) threats, including pollutant and greenhouse gas emissions, affecting the quality of air, soil and water and related climate, human health and biodiversity impacts and (iii) cost-effectiveness. This is done below by addressing:
- The overall modelling approach, including: (i) the type of models that are needed to simulate nitrogen benefits and threats and (ii) the model linkages needed (outputs from model 'x' as input to model 'y') to enable a consistent multi-model approach in response to a consistent set of scenarios of drivers (population development, income etc.) and N mitigation measures (Chapter 2).
- The modelling practice, including: (i) the modelling approaches, distinguishing between empirical and process-based models, and (ii) the available models that would serve an integrated global scale nitrogen assessment, considering the variety of impacts and scales (Chapter 3).
- A modelling protocol of the involved models including information on: (i) the models involved, (ii) basic agreements on base year (2010), spatial extent and resolution, temporal extent and resolution, (iii) scenarios, (iv) model outputs and (v) model linkages (Chapter 4).
- A database platform for the INMS model inputs and outputs (Chapter 5).

This report also includes three annexes with an overview of characteristics of identified relevant global scale scenario (Integrated Assessment) models (Annex 1), quality models (Annex 2) and impact models (Annex 3) which may be used within INMS.
2 Approach and model linkages to assess benefits and threats of nitrogen use in response to scenarios

2.1 Overall approach

The global integrated nitrogen assessment model chain to be developed aims to include all aspects of the so called DPSIR (Driver-Pressure-State-Impact-Response) diagram as illustrated in Figure 1.

![Figure 1. Aspects of- and models to be included in- global integrated N assessment model chain.](image)

We may consider also a more simplified model chain that ends with quality models, predicting fluxes and concentrations of N, which are then evaluated with impact based critical limits and loads, such as regional boundaries for N (see also De Vries et al., 2013; Steffen et al., 2015). Such a chain can be useful when applying cost optimization.

A full model chain, however, should include: (i) models that are able to evaluate scenarios, i.e. effects of changes in drivers (population development, income etc.) on food, feed and energy demand and related land allocation, nutrient and greenhouse gas emissions, followed by (ii) quality models and (iii) impact models that are able to assess the impacts of those changes on benefits and threats. The quality models should enable the prediction of the quality of air, soil and water in response to nutrient and greenhouse gas emissions. The impact models should be able to predict food and feed, i.e. crop and livestock, production (benefits), and associated environmental impacts (climate, human health and biodiversity, in response to changes in soil, air and water quality). In this context, it is relevant to the sustainable development goals (SDGs), as illustrated in Figure 2.

Interactions between cycles of nitrogen and those of other elements in relation to different environmental issues require specific attention. Examples of important interactions when considering soil quality and productivity include N, P, and other macro- and micronutrients as well as water availability; N and C in relation to climate; N and S in relation to air quality; N, P and Si when considering water quality.
2.2 Scenarios and nitrogen mitigation measures and interventions

The models to be linked for ‘Towards INMS’ should enable assessment and quantification of the global effects of nitrogen management linked to socioeconomic factors determining (i) food consumption and production, including population growth, trade, dietary change and (ii) agricultural practices (including the availability of infrastructure and technologies), while accounting for differences in site factors (climate, soil, crop). The main idea is to compare impacts related to a business as usual or baseline scenario, driven by population, Gross Domestic Product (GDP) and demands for energy and food; versus exploring impacts of interventions and adaptation in N management. Regarding the baseline, INMS can fully connect to established shared socioeconomic pathways (SSP) storylines where SSP2 is generally used as the baseline (Kriegler et al., 2014) or any other established scenario “family”, whereas the interventions and adaptations in N management should comprise a set of potential improvements, depending on the area.

We thus need to agree on storylines, being qualitative overarching scenarios, that can be used to integrate assumptions of all model (chains) at all scales. To provide assessments of the different components of nitrogen losses, recycling and nitrogen use efficiency, agreements are also needed on which major mitigation and management options have to be considered. This is important as identification of different mitigation options has implications for the modelling requirements.

Efforts should be made to make the INMS scenarios as consistent as possible with existing scenarios (e.g. the Shared Socioeconomic Pathways) to ensure comparability. The main idea of the INMS contribution is to focus on N needs and losses associated with various scenarios of food and energy demand. We may need, however, to include nitrogen mitigation measures in those story lines, including (i) improved farm (crop and livestock) management, (ii) increased waste (crop residues, animal manure, human waste) recycling and (iii) reduced food waste. Furthermore, dietary change may be included, by adapting existing global scenarios.
2.3 Modelling impacts of scenarios on global nitrogen requirements

Rationale
A global economic model should form the front of the model chain to provide welfare-optimal production patterns, and simulate major dynamics of the agricultural sector, including land allocation, while accounting for the scarcity of suitable land, water and economic resources, trade and technological progress. Such economic models (typically, partial equilibrium models) are the basis for any land N management system and should allow to estimate how per-capita requirements of N will change with economic development in relation to different management and development pathways and mitigation strategies that all influence the nitrogen cycle. The principle approach of such an economic model is illustrated in Figure 3.

Figure 3. Basic approach of a scenario model, predicting changes in food, feed and energy demand and related changes in land cover/land use, crop and nitrogen requirements, as used in IMAGE.

These models thus predict N requirements to produce food and goods and N emissions in view of energy demand under physical constraints of resource availability (including water and land) and considering international trade. This can then be compared with the current availability of N and other elements, and the extent in which the yield gap (difference between potential and actual production) in regions can be reduced by proper agricultural management. Global economic models also allow to balance costs and benefits at different with societal well-being. While general equilibrium models will cover all economic sectors, we expect to apply better resolved partial equilibrium models focussing on the agriculture and forestry sectors.

Modelling
Economic models to assess and allocate production (=supply) to satisfy the demand in a given scenario and year under resource limitations are the basis for an overall integrated global scale modelling of N flows and N impacts. Examples of integrated assessment models, that include economic models to allow such predictions, possibly after adaptation, include IMAGE 3.0, MAgPIE (Model of Agricultural Production and its Impact on the Environment) and GLOBIOM (see below). It is anticipated that such economic models should ultimately enable the:

• Assessment of food and feed demand and required crop and grass production for future changes in population growth, dietary patterns and bioenergy/biofuel production (assuming a baseline scenario and variations on it).
• Assessment of goods and energy demand and required industrial N uses from industrially fixed nitrogen and emitted NO\textsubscript{x} for future changes in population growth and ongoing wealthy society, resulting especially urban air pollution.

• Comparison of the food and feed demand with the current crop (food) and grass (feed) production based on the current use / presence of natural resources (current availability of water, fertility of land and supply of fertilizers, biological nitrogen fixation and fixation via NO\textsubscript{x} taking into account climate change (supply).

• Evaluation of the extent in which the yield gap (difference between potential and actual production) in regions could be reduced to fulfil the demand.

• Evaluation of the possibilities to alleviate the difference in food supply and demand by changing nitrogen management, including interactions with irrigation and fertilization with other nutrients, also given the finiteness of water and phosphate resources and limited transportation options, particularly in parts of Africa and Asia.

2.4 Modelling impacts of nitrogen management on food and feed production

Rationale
To assess the consequences of N management on future crop production and thus on the global food and feed system and the environment, it is important to consider the impacts of the availability of other major nutrients, i.e. phosphorus (P) and potassium (K), and of carbon and water – all under the constraint of land limitation and competition for land. Water availability and the associated distribution of water is essential for improved food security, particularly in areas where crop production and livestock systems are vulnerable to changing physical conditions (water availability), socio-economic developments and anticipated climate change, such as Southeast Asia, North Africa and Sub-Saharan Africa, the savannah regions in South America and the semi-arid regions in Latin America, and Southern Europe (Foresight, 2011). A study in Nature (Mueller et al., 2012) shows spatially explicit results where the current yield gaps are mainly caused by either water shortages or nutrient deficiencies. This study does not show, however, whether the yield gaps can be eliminated, because a comparison with resource availability and the costs to exploit them is lacking. Other analyses suggest that a future shortage of irrigation water will form a threat to food production where the extraction of fresh water is reaching its limits (Biemans, 2012). The influence of nitrogen (nutrient) and water management on agricultural production needs modelling at global scale, distinguishing relevant subscales (watersheds/landscapes, country/regions), acknowledging the fact that many decisions leading to agricultural N pollution are actually made at the field-scale. There is also an important interaction between nitrogen and water use efficiencies (NUE and WUE). A recent study indicates how NUE and WUE could be enhanced simultaneously in regions with water scarcity (Quemada & Gabriel, 2016). This integrated approach requires a combination of agronomic expertise on the response of crops to water and nutrients with basic knowledge of hydrology and soil chemistry. A typical expression of the scale dependence and context of N optimization is the N yield response curve (net economic result per hectare as a function of N input). A major driver for N losses to water is overuse of N which is driven by overestimation of N response and risk avoidance at farm level. The efficiency of nitrogen use is also affected by interactions with other nutrients such as phosphorus and potassium. Where phosphorus or potassium is limiting, addition of nitrogen is less effective and may lead to low NUE.
Analysis of the global nitrogen cycle has shown that about 75-80% of harvested nitrogen from agricultural activities goes to feed livestock, with only 20% going to feed people directly (Sutton et al., 2013). This points to the critical importance of livestock as being the major consumer of agricultural products (including crops and managed grassland). Moreover, livestock diets are generally richer in protein than human diets resulting in a higher share on nitrogen of the total crop production when compared to other indicators such as calories or dry matter. The total amount of nitrogen annually excreted in livestock systems is even higher than the total industrial fixation by the Haber-Bosch process. Any modelling of the global nitrogen cycle therefore needs to consider nitrogen inputs in the form of manure, as a basis for investigating alternative scenarios (management, mitigation, supply and demand) that link food and feed production. Similarly, with the increasing global transition to reduce the use of fossil fuels, increasing amounts of biomass produced by agriculture and forestry are used as bioenergy resources. These activities play an important and growing role in the global nitrogen cycle and also generate new claims on land, water and nutrients in addition to food and feed production.

The amount of N globally traded embedded in agricultural commodities (particularly in the form of feed) has progressively increased during the last 50 years and nowadays ca. one third of the nitrogen in agricultural production is internationally traded (Lassaletta et al., 2014b). On the other hand, the nitrogen use efficiency (NUE) has also evolved differently during the same period (Lassaletta et al., 2014a; Lassaletta et al., 2016) and policies and management can lead to significant reductions of N emission to the environment. Even with a significant improvement in NUEs, some countries have still an unacceptable level of N surpluses per ha that have to be considered when comparing sustainable agricultural practices. Thus, any global N model needs to be able to evaluate the effect of global trade considering the regional diversity of the NUEs, N surpluses, yield gaps and land availability as well as to estimate the potential effect of different alternative evolution of NUEs and also of the intensification or extensification of production underlying the international exchanges.

An evaluation of the effects of the changing nitrogen (nutrient) and water management on environmental quality requires various models, distinguishing spatially explicit N models and global N management models to assess N (and other element) demands and needed management changes from the more detailed models on hydrology, soil chemistry and crop growth. While the N models used to analyse scenarios with different management options often have a regional to global scale, the specialized models are mostly used to simulate processes at field, farm or landscape scales.

Modelling

Addressing these challenges would require linkage to or inclusion of the following types of models:

- *Hydrological models* focusing on water availability and water balances (inputs, evapotranspiration, discharge) are needed for the characterization of the amount of water and the prediction of the effects of adapted management of groundwater and surface water resources during drought periods.
- *Agricultural soil quality models* are needed for predictions of the change in soil quality in response to agricultural management.
- *Crop and grass growth models* are needed to assess the response in crop and grass production (including food, feed and bioenergy) to changes in nitrogen, water and other elements.
Livestock growth models are needed to assess the needs of livestock production and the manure generated in relation to different management and mitigation strategies that influence the nitrogen cycle.

2.5 Modelling impacts of nitrogen management on water and air quality, climate, ecosystems and human health

Rationale
A healthy economic planning and development requires not only an improvement of the food production but also maintenance or improvement of ecosystem services, such as to provide cleaner air, cleaner waters, carbon sequestration and biodiversity conservation. These require a reduction in all forms of nitrogen pollution. For example, protection of human health from particulate matter requires the reduction in emissions of nitrogen oxides (NO\textsubscript{x}) from combustion sources and agricultural soils, and of ammonia (NH\textsubscript{3}) from livestock management, fertilizers and biomass burning. Reduction of ammonia is also necessary because of its negative impacts on terrestrial biodiversity. In parallel the leaching and runoff of nitrogen (especially nitrates, NO\textsubscript{3}⁻) leads to eutrophication of surface waters (including fresh and coastal waters) with an associated loss of biodiversity in aquatic systems. Similarly, nitrous oxide (N\textsubscript{2}O) emissions from agriculture, transport and industrial activities contribute as a powerful greenhouse gas and ozone depleting substance. Lastly, although emission of di-nitrogen (N\textsubscript{2}) are environmentally irrelevant, they represent a significant wastage of global energy use, and are also likely to be associated with N\textsubscript{2}O emissions. All these effects are included in the term “nitrogen cascade”. Together measures that promote nitrogen use efficiency, including better recycling of all available N pools (e.g. industry, agriculture, waste water) across ‘nitrogen green economy’, can be expected to contribute to more efficient production while reducing environmental pollution threats at the same time (Sutton et al., 2013).

Both the availability and quality of external N sources (fertilizer, biological nitrogen fixation, NO\textsubscript{x} deposition) and their recirculation within the system through organic manures and crop residues play a central role in the assessment of their fate and effects on the environment. Regarding the agricultural sector, there is quite some experience on modelling the N surplus, being equal to the difference between N inputs, needed for production and N harvested in the final products. For the high-income regions with high N inputs, N surpluses are relatively easy to quantify with a reasonable reliability, but there are challenges for modelling N surplus for low N regions and future low N input scenarios. Also, the allocation of the N surpluses to different N loss terms is much more difficult and large variations exist due to differences in climate, soil, crops, slope etc. Therefore, modelling NUE and N losses at different scales (from global scale to field scale), including the involvement of other factors that change the NUE, such as the interaction with P, K and water, should be a key issue. Combining this knowledge is essential for the development of climate-robust agricultural production with simultaneous an increased productivity and profitability and a reduced environmental footprint.

Modelling effects on water and air quality (quality models)
An evaluation of the effects of the changing nitrogen and water management (including interactions with other elements) on environmental quality requires various models, including:
• **Emission models**: are needed to assess the future exchange (release or sequestration) of greenhouse gases (especially \(\text{N}_2\text{O} \), \(\text{CH}_4 \) and \(\text{CO}_2 \)) and \(\text{NH}_3 \) and \(\text{NO}_x \) emissions from agricultural systems in response to agricultural management, as well as from biomass burning and other sources.

• **Air quality (atmospheric transport) models**: are needed to assess impacts on air quality, in terms of exposure (concentrations) of \(\text{NH}_3 \) and \(\text{NO}_x \), ozone (\(\text{O}_3 \)) and particulate matter (\(\text{PM}_{2.5} \) and \(\text{PM}_{10} \)) and \(\text{N} \) deposition, in response to changes in \(\text{NH}_3 \) and \(\text{NO}_x \) emissions.

• **Water quality models**: are needed to quantify \(\text{N} \) and \(\text{P} \) concentrations in surface waters in response to \(\text{N} \) and \(\text{P} \) management. This does not only include pollution loads in (or at the mouth of) rivers, but also an assessment of impacts and fate of nitrogen in coastal and marine systems.

Modelling effects on climate, ecosystem health and human health (impact models).

A useful and easy tool to assess impacts of scenarios is to compare the concentrations in or fluxes from air, soil and water with critical levels and critical loads in view of impacts on ecosystems, climate or humans. This approach is applicable to all exposure-impact relationships and implies that specific impact models are not required. It offers a relevant short-cut for fast evaluations.

A specific evaluation of the effects of the changes in air, soil and water quality on ecosystem health, human health and climate, which is crucial in a cost-benefit assessment, requires, however, various impact models, including:

• **Earth System models/Terrestrial productivity models**: such models are needed for predictions of the change in carbon uptake and also \(\text{N}_2\text{O} \) emissions (greenhouse gas emissions) in response to \(\text{N} \) deposition, in interaction with climate and air quality of non-agricultural systems. Some models also include agricultural systems but compared to global crop models the level of detail is limited, also in view of the limited role of agricultural systems in carbon sequestration.

• **Human health impact models**: such models are needed to estimate human impacts, such as the loss of Disability Adjusted Life Years (DALY’s) and Quality Adjusted Life Years (QALY’s).

• **Biodiversity impact models**: these models are needed for predictions of impacts of deposition, soil and water quality on terrestrial and aquatic biodiversity.

2.6 Needed model linkages to enable a consistent modelling approach

Suggested model linkages to assess global scale impacts of changing \(\text{N} \) and water management on food production, greenhouse gas emissions, the quality of air, soil and water and impacts on human health and biodiversity on a global scale are illustrated in figure 4. The model linkages are not complete, but aim to illustrate the linkages between various models. Several models already integrate several of the above components. For example, LPJmL combines a crop growth and vegetation model with a hydrology model. Moreover, modelling frameworks like IMAGE or PIAM (REMIND-MAgPIE-LPJmL-MAGICC) (Kriegler et al., 2017) do already couple several of the above models. One integrated modelling approach that includes nearly all aspects at global scale is IMAGE (Integrated Model to Assess the Global Environment), being a modelling framework that started
some 25 years ago as IMAGE1.0 (Rotmans, 1990), being continually updated since then, including IMAGE 2.0 (Alcamo, 1994), IMAGE 2.1 (Alcamo et al., 1998), IMAGE 2.4 (Bouwman et al., 2006) and most recently IMAGE 3.0 modelling framework (Stehfest et al., 2014).

Figure 4. Suggested types of models and model linkages to assess global scale impacts of nitrogen on food production, greenhouse gas emissions and the quality of air, soil and water. The interaction with water availability is also included. Note that the figure is limited in that it does not specifically show the link from scenario models to hydrology models, nor specifically includes livestock-manure models nor “Cost-benefit models” nor potential feedback loops that would require iterative running of the models.
3 Practices and available models for a global integrated nitrogen assessment

3.1 Modelling practices

There are various possible modelling practices. Apart from empirical approaches, based on either experimental results or detailed model approaches (called meta-models), more detailed process-based model approaches may be relevant, for example to include interactions between N, water and other nutrients. Furthermore, a distinction can be made in steady-state models, such as emission models reacting directly on changes in activities, or dynamic models, such as soil models assessing long-term changes in soil element pools and availability in response to management. In choosing a model approach, and answering the question which approach is most appropriate, we need to balance the required model complexity (and inherent needed data) and available data.

In general, considering the coarse spatial resolution of global modelling approaches, it can be argued that parsimonious approaches based on experimental results are important in view of their limited data demands. Examples of approaches that could be used in an integrated modelling approach are:

- Emissions factor approaches for ammonia and nitrous oxide emissions, such as the IPCC (IPCC, 2006), GAINS (Aman et al., 2011), MITERRA (Velthof et al., 2007; 2009), INTEGRATOR (De Vries et al., 2011; Velthof et al., 2007; 2009) and IMAGE- Global Nutrient Model (GNM) (Bouwman et al., 2013) approaches, accounting for differences in crops, soil types, climate etc.
- Process-based models for simulating air quality, specifically regarding the impact of N compounds (NO\textsubscript{x}, NH\textsubscript{3}) on atmospheric concentrations of ozone and PM. Relevant models include the EMEP model (Simpson et al., 2012), the Transport Model TM5 (Dentener et al., 2006) and LOTOS-Euros (Schaap et al., 2008).
- Empirical relationships in models for water quality, with the dose being N and P inputs by diffuse and point sources and response the N and P concentrations in rivers, including the Global NEWS approach (Global NEWS approach; Mayorga et al., 2010), the process-based IMAGE- Global Nutrient Model (GNM) approach with spiralling concept (Beusen et al., 2015; Beusen et al., 2016) and the mechanistic RIVE model (Garnier et al., 2002) coupled to IMAGE-GNM. IMAGE-GNM is part of the IMAGE3.0 framework. It uses the hydrology from the PCR-GLOBWB model to simulate in-stream biogeochemistry. IMAGE 3.0 also includes LPJml to simulate water availability.
- Dose-response approaches for crop growth, with the dose being N inputs and response the crop growth with response curves per crop and region accounting for the impacts of differences in water, and other element availability (Quefts approach; Janssen et al., 1990; Sattari et al., 2014) versus a process-based modelling approach, as used in e.g. LPJml (Bondeau et al., 2007).
- Dose-response approaches for forest growth and related tree carbon sequestration, with the dose being e.g. N deposition and response being forest growth with response curves per tree type and region (boreal, temperate, tropical) accounting for the impacts of differences in soil quality, climate and ozone exposure (EUgrow approach; De Vries & Posch, 2011) versus process-based approaches in earth system models such as CLM (Lombardozzi et al., 2013; Thornton & Zimmermann, 2007) and OCN (Zaehele & Friend, 2010; Zaehle et al., 2011).
- Dose-response approaches for human health, with the dose e.g. being population density weighted Nr emissions or air and water pollution and response being the human
life year loss (increased incidence of disease, loss of DALY’s and QALy’s) or the critical N level exceedances for health impacts.

- Dose-response approaches for biodiversity, with the dose being e.g. N deposition and response being the mean species abundance or the use of critical N load exceedances for biodiversity impacts (Globio approach; Alkemade et al., 2009), versus models for simulating the impact of nitrogen and phosphorus on hypoxia and harmful algal blooms in coastal marine ecosystems (using outputs from the GEF project “Global foundations for reducing nutrient enrichment and oxygen depletion from land based pollution, in support of Global Nutrient Cycle”; GNC project).
- Critical N-input approaches using inverse-modelling approaches to assess critical N-inputs to agriculture and non-agricultural systems based on critical limits for N compounds in air, soil and water.

3.2 Available global scale models

Models that are available at global scale and their use in evaluating impacts of scenarios on: (i) future N demand/production in view of energy and food demand (scenario analysis, cost-benefit analysis) and their effects, including improved N management on (ii) the N cycle (quality models) and (iii) N impacts (impact models) are listed below. Scenario (Driver-pressure) models, allowing integrated scenario and cost-benefit analysis:

- IMAGE (Integrated Model to Assess the Global Environment) 3.0 (Stehfest et al., 2014) including a link to a Modular Applied General Equilibrium Tool (MAGNET; earlier GTAP/LEITAP; Van Meijl et al., 2006),
- GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model (publicly available for key regions: Europe, South Asia, East Asia, while implemented for all regions globally: Amann et al., 2011),
- MAgePIE (Model of Agricultural Production and its Impact on the Environment) (MAgagePIE; Bodirsky et al., 2014; Lotze-Campen et al., 2008).
- GLOBIOM (Global Biosphere Management Model) (Havlík et al., 2014).
- CAPRI (Common Agricultural Policy Regionalised Impact) model (Britz, 2005; Britz et al., 2005).

Quality (Pressure-state) models for water availability and air, soil and water quality

- Hydrological models predicting water fluxes/ availability in response to meteorology, being key for the assessment of leaching and runoff of N, such as LPJml (Biemans, 2012) (part of IMAGE 3.0), PCR-GLOBWB (Van Beek et al., 2011) (coupled to IMAGE-GNM because of its landscape and riverscape features relevant to biogeochemistry) and WBM (Fekete et al., 2010).
- Emission models, including: (i) empirical models, such as EDGAR (Van Aardenne et al., 2009; Van Aardenne, 2002), IMAGE- Global Nutrient Model (GNM) ((Bouwman et al., 2013), MITERRA Global; an extension of MITERRA Europe (Velthof et al., 2007; 2009) and IPCC approaches (Syakila & Kroeze, 2011), MAgagePIE (Bodirsky et al., 2014) and (ii) process-based models, such as as ForestDNDC (Werner et al., 2007) or LandscapeDNDC (Haas et al., 2013).
- Air quality (atmospheric transport) models predicting N air concentrations and N deposition, such as TM5-FASST (Dentener et al., 2006) and EMEP4 Earth (Vieno et. al 2016a,b).
- Soil quality models predicting changes in soil organic carbon, nitrogen and phosphorous contents and soil pH. Models that can calculate changes in soil organic carbon contents in agriculture worldwide include IMAGE coupled to LPJml (Bondeau et al., 2007), EPIC/GEPIC (Liu et al., 2007) and MITERRA-Global. Furthermore, IMAGE-S World can
also calculate worldwide changes in soil phosphorous contents in agricultural soils (Zhang et al., 2017). The other models could be combined with P models such as DPPS (Sattari et al., 2012; Wolf et al., 1987) and INITIATOR P (Van der Salm et al., 2016) to allow the calculation of such changes and with VSD+ (Bonten et al., 2016) to allow calculation of pH, which is not yet included in any of the models.

- Water quality models predicting N (DIN, DON, PN) runoff to rivers and oceans in response to point and diffuse N sources, such as Global NEWS (Mayorga et al., 2010), IMAGE- Global Nutrient Model (GNM) using a spiralling approach (Beusen et al., 2015; Beusen et al., 2016) and RIVE, the biogeochemistry part of Riverstrahler (Garnier et al., 2002), now coupled to PCR-GLOBWB and IMAGE.

Impact (State-impact) models for impacts on productivity, human health and biodiversity

- Crop growth models predicting crop growth in response to N inputs and other crop requirements. This includes process-based global scale crop growth models, such as LPJml (Bondeau et al., 2007; Müller et al., 2016; Müller et al., 2017) which is part of the IMAGE framework, EPIC/GEPIC (Liu et al., 2007), being part of GLOBIOM (Havlík et al., 2014), and continental scale models, such as WOFOST (Boogaard et al., 2013) and SIMPLACE (Gaiser et al., 2013) and empirical local scale models such as QUEFTS (Janssen et al., 1990; Sattari et al., 2014).

- Earth system models/terrestrial productivity/vegetation models predicting NPP of terrestrial ecosystems in response to N deposition, ozone exposure, CO₂ and climate, including process-based models such as LPJ guess (Sitch et al., 2003; Smith et al., 2014), LPJ-mi (part of IMAGE 3.0), CLM (Lombardozzi et al., 2013; Thornton & Zimmermann, 2007), OCN (Zaehle & Friend, 2010; Zaehle et al., 2011) and Jules (Mercado et al., 2009) and empirical response models, such as stoichiometric scaling models (De Vries et al., 2014), being an extension of response models at European scale (EUGROW; De Vries & Posch, 2011).

- Human health models predicting human health due to exposure to ozone and fine particulate matter (PM₂.₅) being influenced by N emissions, such as ITHIM (Woodcock et al., 2009), DYNAMO-HIA (Lhachimi et al., 2012) and IMAGE-Gismo (Stehfest et al., 2014).

- Terrestrial biodiversity models predicting plant species diversity/abundance in response to N deposition and other drivers, such as GLOBIO (Schipper et al., 2019), , being part of the IMAGE framework (Alkemade et al., 2009).

- Aquatic biodiversity predicting aquatic species diversity/abundance in response to N inputs and other drivers, such as GLOBIO-Aquatic (Janse et al., 2015), part of the IMAGE framework (Stehfest et al., 2014).

It is crucial in any global N management model chain to include scenario models. These are needed to evaluate impacts of scenarios and nitrogen management measures on nitrogen fixation/use through impacts on food and energy demand/production and land demand/land use. This is the basis for all subsequent quality models and impact models, evaluating nitrogen management measures in terms of environmental and human health in the context of those scenarios for integrated assessment models, developing cost-benefit and economic optimization is also a key issue. Data requirements for such analyses may differ between models. For example, the GAINS model performs its optimization using certain environmental criteria (critical loads, human health indicators) for which further input is collected elsewhere. This approach does not require linked detailed impact sub-models (compare IMAGE3.0) and a discussion is needed which approach is most favourable here.

A meta-description of the Scenario (Driver-pressure) models, Quality (Pressure-state) and Impact models participating in INMS is given in Annexes 1, 2 and 3, respectively.
4 Modelling protocol for the INMS global modelling effort

4.1 Approach and models involved

The goal of the INMS global modelling effort is a multi-model evaluation of various scenarios involving different types of models. The main model types are integrated assessment models (scenario models in Figure 5) that translate scenario information to provide outputs that can be used by other models, further down the effect chain. The approach and the models that are involved are illustrated below.

Figure 5. Overview of models involved in the multi-model comparison and their linkage

The models that are involved and their principle contact persons:
- IMAGE (with PCR-GLOBWB, GNM, GLOBIOM and GLOBIO aquatic): Lex Bouwman, Arthur Beusen
- MADRAT/MAgPIE: Benjamin Bodirsky
- GLOBIOM (with EPIC): David Leclère, Petr Havlík
- GAINS: Wilfried Winiwarter
- CAPRI: Adrian Leip (European Focus)
- EDGAR: Greet Maenhout, Marilena Muntean
- MITERRA-Global: Jan Peter Lesschen
- TM5-FASST: Rita van Dingenen
- EMEP4Earth: Massimo Vieno
- LPJml: Christoph Muller
- Global NEWS (includes VIC): Carolien Kroeze
- ERSEM/NEMO: Icarus Allan/Jason Holt (Focus on specific regions)
- DLEM: Tian Hanqin
4.2 Basic agreements

Models involved in the global intercomparison share the following characteristics:
- Base year: 2010,
- Spatial extent: World,
- Spatial resolution: Continental pre-defined regions, 0.5° by 0.5° degrees and (sub)basins,
- Temporal extent: At least past 1970-2010 and future 2010-2050. Most model up to 2070 and even some to 2100,
- Temporal resolution: periods 1970, 1990, 2010 in the past and 2030, 2050 and 2070 in future. Some models (and the scenario guidance) will extend to 2100. Those fixed years on maps. (NB models have their own temporal resolution and every year would be useful for presentation of trends).

Spatial resolution
For common presentation of all global scale model outputs, the idea is to use continental regions (AGMIP regions and INMS demonstration regions) as given in Section 6.2. At more-detailed levels, the idea is to use:
1. 0.5° by 0.5° degrees in all integrated assessment models (common resolution, i.e. in IMAGE, MAGPIE/MADRAT, GLOBIOM/GAINS; see Table 1),
2. Furthermore, each model can use its own resolution (e.g. countries, NUTS regions, other resolution grids, catchments as used in e.g. CAPRI, MITERRA, EDGAR and Global NEWS, respectively).

Temporal extent and resolution
For common presentation of all model outputs (intercomparison):
1. 1970-2070 (only possible for IMAGE and MADRAT/MAgPIE). GLOBIOM from 2000 onwards and GAINS between 1990 and 2070. Some models can be used from 2010 onwards (e.g. Global NEWS), some generate snap shots (individual years),
2. model-internal, finer resolution may be presented (see Table 1).

<table>
<thead>
<tr>
<th>Sources</th>
<th>IMAGE</th>
<th>MADRAT/MAgPIE</th>
<th>GLOBIOM</th>
<th>GAINS</th>
<th>CAPRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial resolution</td>
<td>0.5 x 0.5 degree¹</td>
<td>0.5 x 0.5 degree¹</td>
<td>0.5 x 0.5 degree¹</td>
<td>0.5 x 0.5 degree²</td>
<td>countries (77) and country blocks (40)³</td>
</tr>
</tbody>
</table>

¹ Also a version on 5 by 5 minutes
² GAINS uses country scale data but will provide explicit emission reduction formulations to models like GLOBIOM such that finely resolved results are possible
³ CAPRI will focus on Europe and the model is not meant for use in the global intercomparison

4.3 Scenarios and N policy story lines

Modellers have been requested to cover at minimum four and at maximum six combinations of scenarios and N policy story lines, i.e. (see Table 2):
- Three Shared Socioeconomic Pathway (SSP) scenarios with related Representative Concentration Pathway (RCP) scenarios:
 - A scenario with no/low environmental ambition, i.e. SSP5 “Fossil fuelled development – taking the highway” in combination with RCP8.5.
- Scenarios with intermediate ambition: SSP2 (middle of the road; typically business as usual) combined with RCP4.5.
- A scenario with high environmental ambition, i.e. SSP1 “Sustainability – taking the green road” in combination with (i) RCP4.5, with reduced N and P inputs compared to the current situation and (ii) RCP2.6, a scenario with a high climate ambition possibly being much less environmental friendly for N and P due to intense biofuel use.

- N policy storylines (N measure/ambition combinations) to be superimposed onto the selected scenarios with different N mitigation policy ambitions. The idea is to have specifically diverse N policy ambitions for the SSP2 scenario (see Table 2), while the other scenarios will have connected ambition levels in line with the SSP storyline. We will identify N policies with (i) a high ambition level, (ii) intermediate ambition level and (iii) low ambition levels for preservation of nitrogen compounds. The idea is to have region specific ambitions related to:
 - Food waste (losses in food by producers and consumers),
 - Waste (animal, crop and human) recycling,
 - Waste (water) treatment and reuse of nutrients (linked to recycling),
 - Increases in soil-crop NUE (applying 4 R strategy improvements) and crop-livestock NUE (applying improved feeding strategies).

Table 2: Selected SSP-RCP-N scenario combinations for model evaluation. The suggested minimum four scenarios are given in bold (Source: Kanter et al., 2018)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Climate Development</th>
<th>Land-use</th>
<th>Diet</th>
<th>N policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business-as-usual</td>
<td>No mitigation (RCP 8.5)</td>
<td>Fossil-fuel driven (SSP 5)</td>
<td>Medium regulation; high productivity</td>
<td>Meat & dairy-rich</td>
</tr>
<tr>
<td>Low N regulation</td>
<td>Moderate mitigation (RCP 4.5)</td>
<td>Historical trends (SSP 2)</td>
<td>Medium regulation; medium productivity</td>
<td>Medium meat & dairy</td>
</tr>
<tr>
<td>Medium N regulation</td>
<td>Moderate mitigation (RCP 4.5)</td>
<td>Historical trends (SSP 2)</td>
<td>Medium regulation; medium productivity</td>
<td>Medium meat & dairy</td>
</tr>
<tr>
<td>High N regulation</td>
<td>Moderate mitigation (RCP 4.5)</td>
<td>Historical trends (SSP 2)</td>
<td>Medium regulation; medium productivity</td>
<td>Medium meat & dairy</td>
</tr>
<tr>
<td>Best-case</td>
<td>Moderate mitigation (RCP 4.5)</td>
<td>Sustainable development (SSP 1)</td>
<td>Strong regulation; high productivity</td>
<td>Low meat & dairy</td>
</tr>
<tr>
<td>Best-case +²</td>
<td>Moderate mitigation (RCP 4.5)</td>
<td>Sustainable development (SSP 1)</td>
<td>Strong regulation; high productivity</td>
<td>Ambitious diet shift and food loss/waste reductions</td>
</tr>
<tr>
<td>Bioenergy</td>
<td>High mitigation (RCP 2.6)</td>
<td>Sustainable development (SSP 1)</td>
<td>Strong regulation; high productivity</td>
<td>Low meat & dairy</td>
</tr>
</tbody>
</table>

1 Scenario with expected highest N flows/N emissions
2 Scenario with expected lowest N flows/N emissions

The included narratives of N abatement given in Table 3. The integrated modellers will take guidance from recommendations provided in Table 3 (with support of the “scenario” Activity) but will use their own algorithms to adjust model parameters accordingly.

4.4 Deliverables/model outputs

The combination of SSPs and RCPs leads to changes in:
- land cover (forests, semi-natural vegetation, grassland, crop land): affecting N and P runoff from non-agricultural vs agricultural regions,
land use (type of crops): affecting N and P budgets from crop lands,
climate, i.e. changes in precipitation (patterns): affecting particulate N and P flows by erosion and dissolved N and P runoff.

The climate change impacts on spatial patterns of temperature and precipitation in response to the different RCPs will be based on the results of the HADCM2 GCM model. Model output of the various models given in Table 4.

Table 3: Narratives of N abatement.

<table>
<thead>
<tr>
<th>Sector & country group</th>
<th>N policy ambition levels</th>
<th>OECD</th>
<th>Non-OECD/High N</th>
<th>Non-OECD/Low N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crops</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>Target NUE by 2030</td>
<td>Target NUE in 10 years after catch-up with OECD countries</td>
<td>Target NUE in 30 years by avoiding historical trajectory</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>Target NUE by 2050</td>
<td>Target NUE in 30 years after catch-up with OECD countries</td>
<td>NUE follows historical trajectory towards high N/low NUE over 30 years, before improving</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>Current NUE remains constant</td>
<td>NUE trends from past 10 years continue if positive, otherwise NUE remains constant</td>
<td>Current decreasing NUE trends continue akin to countries with similar socioeconomic status</td>
<td></td>
</tr>
<tr>
<td>Livestock manure excretion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>10% reduction by 2030, 30% reduction by 2050</td>
<td>10% reduction by 2050, 30% reduction by 2070</td>
<td>Current rates remain constant to 2050</td>
<td>N excretion per unit animal (kg N LSU⁻¹ yr⁻¹)</td>
</tr>
<tr>
<td>Non-OECD/High N</td>
<td>N excretion rates same as OECD in 10 years after catch-up</td>
<td>N excretion rates same as OECD in 30 years after catch-up</td>
<td>Current trends continue if positive, otherwise remain constant</td>
<td>N excretion per unit animal product (kg N kg⁻¹ meat, milk, eggs)</td>
</tr>
<tr>
<td>Non-OECD/Low N</td>
<td>30% reduction for new livestock production after 2030</td>
<td>30% reduction for new livestock production after 2050</td>
<td>Current trends continue or remains constant</td>
<td></td>
</tr>
<tr>
<td>Manure recycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>90% recycling by 2030</td>
<td>90% recycling by 2050</td>
<td>Current rates remain constant to 2050</td>
<td>Excreted manure collected, properly stored and recycled (%)</td>
</tr>
<tr>
<td>Non-OECD/High N</td>
<td>50% increase in recycling by 2030; 100% increase by 2050</td>
<td>50% increase in recycling by 2050; 100% increase by 2070</td>
<td>Current trends continue if positive, otherwise remain constant</td>
<td></td>
</tr>
<tr>
<td>Non-OECD/Low N</td>
<td>90% recycling by 2030</td>
<td>90% recycling by 2050</td>
<td>Current trends continue or remain constant</td>
<td></td>
</tr>
<tr>
<td>Air Pollution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>70% of technically feasible measures by 2030, all measures by 2050</td>
<td>Current legislation (CLE) by 2030, 70% of technically feasible in 2050 increasing to all measures by 2100</td>
<td>CLE reached by 2040, further improvements slow</td>
<td>NOx emissions (t N yr⁻¹)</td>
</tr>
<tr>
<td>Non-OECD/High Med income</td>
<td>Same as OECD in 10 years after catch-up</td>
<td>Delayed catch-up with OECD (CLE achieved by 2050), 70% of technical feasible reductions achieved by 2100</td>
<td>CLE reached by 2040, further improvements slow</td>
<td></td>
</tr>
<tr>
<td>Non-OECD/Low income</td>
<td>CLE by 2030, OECD CLE by 2050, gradual improvement towards 70% technical feasible measures</td>
<td>OECD CLE achieved by 2100</td>
<td>CLE reached 2050, further improvements negligible</td>
<td>NH3 emissions (t N yr⁻¹)</td>
</tr>
<tr>
<td>Sector & country group</td>
<td>N policy ambition levels</td>
<td>Indicators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste water⁴</td>
<td>OECD</td>
<td>High >99% wastewater treated; 100% N and P recycling from new installations from 2020</td>
<td>Secondary treatment rate (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium >95% wastewater treated 100% N and P recycling from new installations from 2030</td>
<td>Sludge recycling (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low >90% wastewater treated</td>
<td>Organic recycling (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-OECD/High N</td>
<td>>80% wastewater treated; Recycling same as OECD in 10 years after catch-up</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-OECD/Low N</td>
<td>>70% wastewater treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>50% wastewater treated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>>30% wastewater treated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: LSU is livestock unit.

Table 4. Model outputs to be sent to CEH for uploading in the CEH database¹

<table>
<thead>
<tr>
<th>Model outputs</th>
<th>IMAGE</th>
<th>MAG-PIE</th>
<th>GLOBIOM</th>
<th>MI-TERRA</th>
<th>CAPRI</th>
<th>GAINS ³</th>
<th>EDGAR</th>
<th>EMEP4 Earth/TM5-FASST</th>
<th>Global NEWS</th>
<th>ERSEM NEMO⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drivers of N sources/N fate</td>
<td>Energy emissions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cropping patterns/ crop areas;</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>herd size/animal numbers</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop production, livestock production</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Climate parameters (rainfall, temperature)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N sources and withdrawal</td>
<td>N fertilizer and N manure input</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biological N fixation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmospheric deposition</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Point N sources</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aquaculture</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Livestock production</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crop N withdrawal</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Growth/NPP</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>crop yield</td>
<td>X²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NPP/forest yield</td>
<td>X²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N fate agricultural land</td>
<td>N (NH₃, N₂O, NOₓ, N₂) emissions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N leaching and N runoff</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air quality indicators</td>
<td>N deposition</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AOT40, POD</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N- PM2.5, N- PM10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water quality indicators</td>
<td>N (P) river export</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICEP index</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiversity indicators</td>
<td>Terrestrial diversity index</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aquatic diversity index</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marine impacts (Algal Blooms)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health indicators</td>
<td>DALY</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ DLEM is not yet included (focuses on global N export to rivers) as funding is not yet secured
² Crop production is calculated with LPJml in IMAGE and MAGPIE and with EPIC in GLOBIOM.
³ Limited to areas that have GAINS source-receptor matrices implemented (currently Europe and East Asia)
⁴ Not planned for use at global scale
Data delivery and exchange
The “scenario modelling group” agreed on a data exchange format, including a detailed description of the various outputs. The data exchange will be done by (i) csv files of a specific format for continental regions and (ii) NetCDF files for global scale at 0.5*0.5°. Deliverables to be send and uploaded in the a shared-access database by CEH are:
- model input and output data,
- accompanying meta data text describing the data.

4.5 Model linkages and number of multi-model evaluations

The N sources that can be produced by the integrated assessment models (IMAGE, MADRAT/MAgPIE, GLOBIOM) in response to scenarios are given in Table 5.

Table 5. N Sources produced by the integrated assessment in response to scenario inputs

<table>
<thead>
<tr>
<th>Sources</th>
<th>IMAGE</th>
<th>MADRAT/MAgPIE</th>
<th>GLOBIOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>x</td>
<td>x/x</td>
<td>x</td>
</tr>
<tr>
<td>Sewage/waste</td>
<td>x</td>
<td>x/x</td>
<td>x</td>
</tr>
<tr>
<td>Combustion,</td>
<td>x</td>
<td>x/</td>
<td>-</td>
</tr>
<tr>
<td>Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td>x</td>
<td>x/x</td>
<td>-</td>
</tr>
</tbody>
</table>

Outputs from the integrated assessment models (IMAGE, MAgPIE, GLOBIOM) that is relevant as input to other flow and impacts models include:

Land use (main outputs):
- cropping patterns/crop areas and crop yields,
- herd size/animal numbers.

N sources (main outputs):
- N fertilizer and N manure input to crop land and pasture,
- N uptake by crop land and pasture,
- N (NH₃, N₂O, NOₓ, N₂) air emissions,
- N leaching and N runoff,
- N input to non-agricultural systems,
- Point N sources.

Output from IMAGE, MAgPIE and GLOBIOM is input to:

1. Air quality models:
 - IMAGE- N emission scaling to Air quality model ensemble,
 - TM5-FASST using results of MAgPIE (and CAPRI for Europe),
 - EMEP4Earth using results of IMAGE or MAgPIE/MADRAT,
 Output:
 - NOₓ deposition, NHₓ deposition (currently in IMAGE),
 - Ozone exposure (AOT40, POD),
 - PM₂.₅, PM₁₀ (N components),

2. Water quality models, i.e.
 GLOBAL NEWS/Marina: Output
 - N (and P loads) to river mouths,
 - ICEP index,
 IMAGE-GNM: output
 - Spatially explicit nutrient delivery, retention and export,
 - N:P ratios, ICEP,
 IMAGE-GLOBIO aquatic: output
 - Mean species abundance,
• 3 Terrestrial biodiversity models, i.e.

IMAGE-GLOBIO: Output
- Species diversity index (linked to N deposition from IMAGE scaling procedure).

It should be noted that vegetation and crop models are intrinsically linked to scenario models (LPJmL gives crop yields, carbon stocks, which drives land use change, management and N fertilization in MAgPIE and IMAGE, while the same holds for EPIC and GLOBIOM.

Model linkages thus include:
1. Integrated assessment models to atmospheric transport models:
 - IMAGE - N emission scaling procedure with N deposition results of an air quality model ensemble (no specific link to air quality model),
 - IMAGE or MADRAT/MAgPIE - EMEP4Earth,
 - MADRAT/MAgPIe - TM5-FASST,

Further linkages
- CAPRI-TM5/FASST for Europe.

2. Scenario models to nutrient export models:
 - IMAGE-MITTERA GLOBAL,
 - IMAGE and/or MAgPIE and/or GLOBIOM-Global NEWS.

Agreements on linkages and outcomes
1. Integrated assessment models included:
 - Idea is that we have 3 Scenario-models predicting scenario impacts on (factors affecting) N sources, i.e. IMAGE, MADRAT/MAgPIE and GLOBIOM/GAINS,
 - CAPRI is too coarse in resolution but used in internal link with TM5-FASST (including links to EDGAR).

2. Number of multi-model evaluations:
 - N sources: IMAGE, MADRAT/MAgPIE and GLOBIOM/GAINS (3 outcomes),
 - N budgets: IMAGE, MADRAT/MAgPIE, GLOBIOM/GAINS and MITTERA Global (4 outcomes),
 - Air quality: EMEP4Earth and TM5-FASST (using results of MAgPIE/ MADRAT) (2 outcomes),
 - Water quality: IMAGE-GNM; Global NEWS linked to at least one of the models GLOBIOM, IMAGE and/or MAgPIE,
 - Terrestrial and Aquatic Biodiversity: IMAGE (1 outcome of each),
 - Marine Biodiversity: ERSEM-NEMO coupled to river input from IMAGE-GNM focusing on NW Europe, SE Asia and E Africa.

3. Linkage air quality to crop yields/NPP:
 - There is currently no linkage between deposition/air quality outputs to crop growth models (LPJmL, EPIC) nor to the Net Primary production in IMAGE-Magpie,

4. Linkage Global-NEWS to at least one of the models GLOBIOM/GAINS, IMAGE and/or MADRAT/MAgPIE,
 - Global NEWS has been developed on the basis of IMAGE and WBM plus input data; the model will be updated for the year 2010, with new input data from an IAM and hydrology from the VIC model. Global NEWS will be linked to at least one of the models GLOBIOM (at least for SSP2 and its alternative scenarios for N policies), IMAGE and/or MAgPIE (depends on the availability of 0.5° data from IMAGE and MAgPIE),

5. Human health impact by air quality is currently not sufficiently covered – efforts to extend model suite are ongoing.
4.6 INMS Study regions

The suggested INMS study regions are adapted from the AgMIP study, by including the INMS regions, as given in Table 6 and depicted in Figure 6.

Table 6 INMS Study regions: codes and corresponding AGMIP regions

<table>
<thead>
<tr>
<th>Study Code</th>
<th>Description</th>
<th>AgMIP region</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANZ</td>
<td>Australia, New Zealand</td>
<td>AgMIP region ANZ</td>
</tr>
<tr>
<td>EUR</td>
<td>Europe</td>
<td>AgMIP region EUR</td>
</tr>
<tr>
<td>FSU</td>
<td>Former Soviet Union</td>
<td>AgMIP region FSU</td>
</tr>
<tr>
<td>MEN</td>
<td>Middle East and Northern Africa</td>
<td>AgMIP region MEN</td>
</tr>
<tr>
<td>SAS</td>
<td>South Asia</td>
<td>AgMIP region OAS & IND</td>
</tr>
<tr>
<td>SAM</td>
<td>South America</td>
<td>AgMIP regions OSA & BRA</td>
</tr>
<tr>
<td>EAS</td>
<td>East Asia</td>
<td>AgMIP regions SEA & CHN</td>
</tr>
<tr>
<td>SSA</td>
<td>Sub-Saharan Africa</td>
<td>AgMIP region SSA</td>
</tr>
<tr>
<td>NAM</td>
<td>Northern America</td>
<td>AgMIP regions USA & NAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level 2 (Split for case study regions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANZ_ALL</td>
<td>Australia, New Zealand</td>
<td>AgMIP region ANZ</td>
</tr>
<tr>
<td>EUR_OTH</td>
<td>Europe other than European Atlantic Seaboard case study region</td>
<td>AgMIP region EUR - INMS study region EUR_XAS</td>
</tr>
<tr>
<td>FSU_OTH</td>
<td>Former Soviet Union other than Eastern Europe case study region</td>
<td>AgMIP region FSU - INMS study region EUR_XEE</td>
</tr>
<tr>
<td>MEN_ALL</td>
<td>Middle East and Northern Africa</td>
<td>AgMIP region MEN</td>
</tr>
<tr>
<td>OAS_OTH</td>
<td>South Asia other than East Asia case study region</td>
<td>AgMIP region OAS & IND - INMS case study region SAS_XSA</td>
</tr>
<tr>
<td>SAM_OTH</td>
<td>South America other than La Plata River Catchment case study region</td>
<td>AgMIP region - INMS case study region SAM_XPR</td>
</tr>
<tr>
<td>EAS_OTH</td>
<td>East Asia other than East Asia case study region</td>
<td>AgMIP region SEA & CHN - INMS case study region SEA_XEA</td>
</tr>
<tr>
<td>SSA_OTH</td>
<td>Sub-Saharan Africa other than East Africa Lake Victoria case study region</td>
<td>AgMIP region SSA - INMS case study region SSA_XLV</td>
</tr>
<tr>
<td>EUR_XAS</td>
<td>European Atlantic Seaboard case study region</td>
<td>INMS Case study region</td>
</tr>
<tr>
<td>EAS_XEA</td>
<td>East Asia case study region</td>
<td>INMS Case study region</td>
</tr>
<tr>
<td>FSU_XEE</td>
<td>East Europe case study region</td>
<td>INMS Case study region</td>
</tr>
<tr>
<td>SSA_XLV</td>
<td>East Africa Lake Victoria case study region</td>
<td>INMS Case study region</td>
</tr>
<tr>
<td>NAM_ALL</td>
<td>North America case study region</td>
<td>INMS Case study region</td>
</tr>
<tr>
<td>SAM_XPR</td>
<td>La Plata River catchment case study region</td>
<td>INMS Case study region</td>
</tr>
<tr>
<td>SAS_XSA</td>
<td>South Asia case study region</td>
<td>INMS Case study region</td>
</tr>
</tbody>
</table>

The clustering of countries into INMS regions is given in an excel file.
Figure 6. Overview of the study regions
5 Database Platform for the INMS model inputs and outputs

5.1 Aims

The aim of the INMS Database Platform is to allow searchable access to datasets and model records used in the INMs project. This will include, for example, access to nitrogen inventories, key input data to models and sharing of output model results. The users of this information will be those in the INMS community who are looking to improve harmonization and coordination of data and models within the nitrogen cycle. The main users will likely be modellers of the nitrogen cycle, but also those interested in impact assessment methodologies – measuring, modelling, and monitoring approaches - in support of regional and global assessment processes. Within the INMS project, the database system will act as a key knowledgebase system to the demonstration regions.

5.2 Scope

The scope of the database platform within INMS is to provide a system to provide ready access to data based on two main data types– namely dataset records (both input data to models and output results from models) and model meta-data records. Regarding model outputs, the first use is for the modellers and consequently these results will initially only be open to the A1.5/A2.1 modelling community. The system will be searchable via keywords and also by filtering records using tagged keywords. Datasets generated under the INMS activities will be downloadable from the INMS system while external datasets (e.g. model input data) will be referenced/signposted to where they are stored externally (e.g. external data centres). Some datasets can be presented as a web map service and datasets created from the INMS project will have their own DOI (digital object identifier) and will be citable.

5.2.1 Database System Approach

The INMS database platform will use existing technologies developed by NERC-CEH for their Environmental Information Data Centre (EIDC eidc.ceh.ac.uk). The EIDC provides discovery metadata on dataset records containing information about a dataset or model that enables prospective users to find it using simple search tools and to determine if the data is suitable for their needs. Discovery metadata contains simple information such as:

• A title,
• A short description of the dataset,
• A list of those who created the dataset (authors),
• Brief information about how the data were created/processed,
• Geographical location,
• how to access (download) the dataset,
• the terms and conditions regarding its use and how others using it should acknowledge & cite the data.

The production of effective use of metadata throughout the life-time of the INMS project will ensure effective utilisation of the data during and after the project has finished.
5.2.2 Types of data

The INMS system uses metadata standards GEMINI (which is based on INSPIRE) to provide common terms, definitions, and structure to ensure consistency in our dataset documentation.

The INMS platform will collect two main types of data:

- **Model meta-data records** providing a brief description of the model, authors with links to external pages, description of key input and output data, and spatial domain and resolution.
- **Dataset records** which can be for:
 - important model input datasets that we would like to share within the INMS community. They will not be stored in the INMS system but have a dataset record that points to where they are stored (e.g. an external data centre).
 - output model datasets or any dataset produced from INMS activities. These datasets will be stored in the system.

Spatial datasets can also be served to users as a Web Map Service (WMS), which provides a georeferenced map image returned as a jpeg or png that can be displayed in a web browser (see Figure 7 for an example). Additionally, images can be returned as transparent so that different layers from different datasets can be combined together to create overlaid maps that display more information.

![Figure 7: Web map service for N deposition to the UK using overlay maps](image)

Model Records - 15 global models have been chosen for supporting the INMS scenario activities. Outputs from Integrated models using scenario information are used by other models down the effects chain. The models and key contacts that are involved in INMS are given in Table 7.

5.2.3 Information/harmonization of databases

The various models use (different) global datasets on e.g.:

- Fertilizer inputs,
- Livestock numbers,
- Meteorology/climate,
• Land use/crop yields,
• Soils,
• Relief/slope,
• Etc.

There is a need for information and possible harmonization of global datasets used by the different models. The key/current global datasets by each model will be added in the database catalogue. When available, an overview will be made to see the possible (in)consistencies.

Table 7: INMS models and key contacts

<table>
<thead>
<tr>
<th>#</th>
<th>Model</th>
<th>Contact person/e-mail</th>
<th>Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IMAGE</td>
<td>Lex Bouwman lex.bouwman@pbl.nl</td>
<td>PBL</td>
</tr>
<tr>
<td>2</td>
<td>PCR-GLOBWB</td>
<td>Lex Bouwman lex.bouwman@pbl.nl</td>
<td>PBL</td>
</tr>
<tr>
<td>3</td>
<td>MAGPIE</td>
<td>Benjamin Bodirsky bodirsky@pik-potsdam.de</td>
<td>PIK</td>
</tr>
<tr>
<td>4</td>
<td>LPJml</td>
<td>Christoph Muller Christoph.Mueller@pik-potsdam.de</td>
<td>PIK</td>
</tr>
<tr>
<td>5</td>
<td>GAINS</td>
<td>Wilfried Winiwarter winiwart@iiasa.ac.at</td>
<td>IIASA</td>
</tr>
<tr>
<td>6</td>
<td>GLOBIOM</td>
<td>David Leclere leclere@iiasa.ac.at</td>
<td>IIASA</td>
</tr>
<tr>
<td>7</td>
<td>EPIC</td>
<td>Juraj Balkovič/Petr Havlík balkovic@iiasa.ac.at</td>
<td>IIASA</td>
</tr>
<tr>
<td>8</td>
<td>CAPRI</td>
<td>Adrian Leip Adrian.Leip@ec.europa.eu</td>
<td>JRC</td>
</tr>
<tr>
<td>9</td>
<td>EDGAR</td>
<td>Greet Maenhout greet.maenhout@ec.europa.eu</td>
<td>JRC</td>
</tr>
<tr>
<td>10</td>
<td>TM5-FASST</td>
<td>Rita van Dingenen rita.van-dingenen@ec.europa.eu</td>
<td>JRC</td>
</tr>
<tr>
<td>11</td>
<td>EMEP4Earth</td>
<td>Massimo Vienno mvi@ceh.ac.uk</td>
<td>CEH</td>
</tr>
<tr>
<td>12</td>
<td>MITERRA Global</td>
<td>Jan Peter Lesschen Janpeter.lesschen@wur.nl</td>
<td>WUR</td>
</tr>
<tr>
<td>13</td>
<td>GLOBAL NEWS</td>
<td>Carolien Kroeze Carolien.Kroeze@wur.nl</td>
<td>WUR</td>
</tr>
<tr>
<td>14</td>
<td>WBM/VIC</td>
<td>Carolien Kroeze Carolien.Kroeze@wur.nl</td>
<td>WUR</td>
</tr>
<tr>
<td>15</td>
<td>ERSEM/NEMO</td>
<td>Icarus Allen; jia@pml.ac.uk Jason Holt; jholt@noc.ac.uk</td>
<td>PML, NOC</td>
</tr>
<tr>
<td>16</td>
<td>GLOBIO: GLOBIO-aquatic</td>
<td>Aafke Schipper, Aafke.Schipper@pbl.nl Jan Janse, Jan.Janse@pbl.nl</td>
<td>PBL</td>
</tr>
</tbody>
</table>

5.2.4 How INMS data cited?

Details of the citation and acknowledgement that should be used for INMS data are set out on the metadata page of each dataset. Citations can be imported into most popular reference management software (for example EndNote or Zotero). Simply click on the ‘RIS’ or ‘BibTeX’ icons to download the citation in that format and import the file into the management software. (see Figure 8).

5.2.5 Search filters

You can narrow a search by using the filters in the left-hand menu or the simple search bar at the top where as you type, records that contain your search terms are displayed (see Figure 9).
5.2.6 Data Collection and Validation

Standardised and consistent methods will be used to collect and record data. During data collection, researchers must ensure that the data recorded reflect the actual facts,
responses, observations and events. Quality control methods during all stages of data collection and entry are important to ensure validity of data.

5.2.7 Downloading data

Having found a data resource that is of interest, you can download a copy (See Figure 10). If a dataset in catalogue is available to order, a "Download the data" link will be present in the detailed view for that record. The relevant Terms & Conditions of use of the data will be shown and you will be asked to confirm your acceptance.

Depending on the dataset, you may be prompted to make a number of choices in order to customise the download to your requirements. For example, in the case of a spatial dataset, this might include clipping out an area from a map, deciding which coordinate reference system to use, and selecting your preferred file format. If you proceed, your data will be prepared and after a short while you will receive an email which contains a download link. To download your data simply click on the link in the email.

![Figure 10: How to 'Get the data' - downloading link](image)

5.2.8 Licensing/Terms & Conditions

For downloading data created by the INMS project you agree to abide by a set of licensing terms and conditions that regulate their reuse. These, and any other restrictions, are clearly displayed in the catalogue record for the dataset. By accessing the data, you consent to be bound by the agreement and all the conditions therein. Such
conditions cover the use, distribution and transmission of the data as well as the exploitation of products and services derived from the data. You must always ensure that the data you use is appropriately cited together with the DOI. See Annex 1 for suggested Licence text.

5.2.9 Next steps

- Input model meta-data records to the system with external signposting to relevant input datasets
- Further development of INMS data vocabulary for tagging dataset records
- Be ready for capturing dataset outputs from modelling activities

Annex 1
Meta-description of scenario (Drivers – pressures) models.

<table>
<thead>
<tr>
<th>Criterion/Model Name</th>
<th>IMAGE 3.0 Global Nutrient Model</th>
<th>MAGPIE1</th>
<th>GLOBIOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Person</td>
<td>Lex Bouwman lex.bouwman@pbl.nl</td>
<td>Benjamin Bodirsky bodirsky@pik-potsdam.de</td>
<td>Peter Havlik; David Leclère havlikpt@iiasa.ac.at; leclere@iiasa.ac.at</td>
</tr>
<tr>
<td>Model aim/ Functionality</td>
<td>IMAGE is an ecological-environmental model framework that simulates the environmental consequences of human activities worldwide. The objective of the IMAGE model is to explore the long-term dynamics and impacts of global changes that result. It integrates a range of sectors, ecosystems and indicators. The future development of the agricultural economy can be calculated using the agro-economic model MAGNET. The Global Nutrient Model (GNM) is part of IMAGE and computes emissions of greenhouse gases, ozone precursors and acidifying compounds, nutrients in wastewater discharge to surface water, nutrient release from aquaculture, and agricultural and natural soil nutrient budgets.</td>
<td>The integrated assessment modelling framework REMIND-MagPIE can create long-term scenarios for greenhouse gases, aerosols and nitrogen-related pollutants. Within the agricultural sector, MAGPIE captures all major nitrogen flows from a cropland soil budget, over crop and livestock production, trade, up to the consumer, household waste and sewage. Finally, it captures crop- and livestock nitrogen surplus, as well as emissions into the environment. Within the energy and industry sector, REMIND captures the relevant nitrogen emissions.</td>
<td>GLOBIOM is a global economic bottom-up agricultural and forest sector model. The model is based on a detailed spatially explicit grid and estimates economic and environmental impacts, incl. nutrient balances, tightly linked with bio-physical process-based models like EPIC. The model is typically used for scenario analysis in medium (2030), long (2050), and very long (2100) time horizon.</td>
</tr>
<tr>
<td>Inputs/ Drivers of change</td>
<td>The ultimate drivers of change are income and population change, which lead to changes in diets, trade and domestic production, but also to land use changes, agricultural projection, fertilizer use and so on.</td>
<td>Drivers of change are income and population change, policy assumptions on trade and land-protection policies, climate change impacts, and technological development.</td>
<td>Population, GDP growth, dietary preferences, policies (bioenergy, biodiversity,…), technological progress</td>
</tr>
<tr>
<td>Outputs</td>
<td>Grid-based land use as well as gas emissions to air of all greenhouse gases, aerosols, ozone precursors and acidifying gas compounds from energy, industry and agricultural sectors and natural ecosystems including oceans; gridded soil nutrient budgets including input terms (fertilizer, manure, biological N fixation, atmospheric deposition, weathering (P)), and outputs (crop and grass withdrawal, surface runoff, denitrification and leaching); further gridded inputs to surface water include allochthones vegetation inputs to surface water, aquaculture and wastewater, grid-based retention of N and P, export to coastal seas of TN and TP. (A) Regional nitrogen budgets for croplands and pastures that can be downscaled to 0.5° grid. Inputs including fertilizer, manure, crop residues, belowground crop residues, biological N fixation, deposition, soil organic matter loss. Withdrawals include harvested crops and crop residues, and losses by volatilization, leaching and denitrification. (B) Regional nitrogen budgets for the agricultural supply chain, ranging from crop production, international trade, processing, use for livestock feed, food or material use, animal waste management, food waste and sewage. (C) Nitrogen pollution (total losses, N₂O, leaching, volatilization) on croplands, pastures, animal waste management systems, household consumption, Regional activity levels for agricultural and forestry sector; related environmental impact (fertilizer use, GHG emissions, nutrient cycle, land use and land use changes, irrigation water). Emissions cover CO₂ and non-CO₂ sources from the AFOLU sector. The regional output can be downscaled to a grid. Demand quantities, material trade flows, commodity prices are also model outputs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

industry, traffic, energy combustion.
(D) Non-nitrogen indicators like gridded dynamic land-use (multiple cropland activities, pasture, forest, natural vegetation), agricultural production, agricultural water use and co-limitation, phosphorus consumption, non-nitrogenous air pollutants (BC, OC, S,...), greenhouse gases, energy usage etc.

Biophysical representation	IMAGE uses climate data for the past and calculates future climate to account for changes in the hydrology relevant to the cycling of N; uses soil and geological information. IMAGE-GNM includes the hydrological model PCR-GLOBWB for computing runoff and flooding.	MagPIE uses outputs of the process-based LPJmL vegetation model to estimate climate-induced 0.5°-gridded crop productivity patterns, irrigation water availability and carbon stocks of different crop types and landuse types. Nitrogen-flows are estimated within MagPIE based on a budgeting approach. The biophysical constraints (land availability, water availability, nutrient availability, carbon storage) influence the endogenous socioeconomic dynamics within MagPIE. REMIND uses emission factors to relate emissions relevant activity (e.g. energy usage or traffic) into emissions.	
Technology representation	Technology improvement is possible on all kind of key parameters.	Technology includes key productivity parameters (yields, feed conversion efficiencies, nitrogen uptake efficiency, animal waste management), which are partly endogenously, partly scenario parameters. Additionally, marginal abatement cost curves can be used for GHG abatement.	
Data needs	FAOSTAT country data on food, feed and fodder crop production, livestock production, land use, inputs; equivalent subnational data for USA, China, India; IEA data on energy use; emission factors from EDGAR. Fertilizer use by crop from IFA.	Climate Data, FAOSTAT, IFA, IEA, EDGAR, Population and GDP projections.	FAOSTAT country data on agricultural production, demand, areas, prices. GLC2000 land cover map. Parameters for the different management systems are provided from biophysical models. Energy projections from energy models (e.g., PRIMES, POLES, IEA).
Validation status	IMAGE is validated with respect to the global carbon cycle for the historical period. Air emissions are consistent with EDGAR. IMAGE-GNM is not calibrated. Nutrient budgets have been validated with OECD published nutrient budgets at the country scale. River nutrient export has been validated with measurement data for Europe, USA and large world rivers; all comparisons are satisfactory for a global model.	REMIND-MagPIE-LPJ has participated and is participating in several model-intercomparison projects (AgMIP, ISIMIP, SSP, ROSE). Outputs are validated against past trends (e.g. FAO). Nutrient budgets have been validated against literature of current budgets and future scenarios.	Input data is harmonized with FAO statistics. GLOBIOM participated in various impact assessments for EC but also US EPA, Brazil (INPE) and others, where it undergoes review by country experts, scientific committees and various other stakeholders. The model also participated in the Agricultural Model Intercomparison and Improvement Project (AgMIP) and its performance can be compared to the top peers.
Spatial resolution	0.5 by 0.5 degree and 5 by 5 minutes; IMAGE is flexible with regard to spatial resolution and	MagPIE: Clustered 0.5° by 0.5° degrees. REMIND: 11 world regions. Downscaling to 0.5° resolution shall be possible in	Input data: Simulation Units based on biophysical characteristics; 5 by 5 minutes up to 0.5 by 0.5 degree. This
The document discusses the capabilities and applications of various models and software tools in the context of environmental and socio-economic studies. Here is a structured summary of key points:

Temporal resolution
- **1 year**
- **MAgPIE/Remind:** 5 year
- **10 year periods**

Linkage to scenarios and mitigation / measures
- **IMAGE** is especially designed for scenario analysis. Mitigation of greenhouse gases, ozone precursors and acidifying compounds is part of the model framework. The wastewater model includes several options to improve sewage connection and wastewater treatment. The nutrient model can deal with several measures such as the incorporation of manure, reduce emissions from animal houses, substitution of fertilizer by manure, integration of livestock and crop systems, increased efficiency in livestock and crop systems, as well as recycling of human excreta to substitute fertilizers.
- **MAgPIE/Remind** is able to simulate the SRES and SSP scenarios, as well as customized scenarios. Scenario drivers for example population and GDP growth assumptions on dietary dynamics, policies (trade, land-use, climate), or technological development (some technological development is also estimated endogenously).
- In regard to nitrogen, the mitigation measures that can be simulated cover the demand-side (lower livestock consumption, less food waste) and the supply side (efficient fertilization, efficient livestock management) and integrated measures (recycling of manure, household waste or sewage).
- **GLOBIOM** is designed to analyse economic and environmental impacts and trade-offs of different policies, socio-economic or climatic developments on the land use sectors. It forms with the MESSAGE model, the core of the IIASA Integrated Assessment Framework. Has been used recently to develop the SSP-RCP scenarios, OECD long-term agricultural outlook, and is being extensively used for scenario work in EU research projects.

Mitigation costs and co-benefits
- Mitigation costs and co-benefits are included for greenhouse gases, ozone precursors and acidifying compounds. No costs or benefits are computed for nutrients in agriculture.
- Co-benefits of mitigation can be simulated for many mitigation measures. Production side-measures can be related to costs. Improving these processes is an ongoing activity.
- While the costing of technological mitigation options for the agricultural sector is explicit and based on EPA (2008), the cost of most of the structural mitigation options incl. REDD+ is calculated endogenously based on opportunity cost.

Operationality
- **Fully operational**

Accessibility/ links
- **PC version is available for public. The GNM model is online available with one year of input data.**
- **Open-Source model will become public this year**
- **Model shared on a case by case basis.**

Literature sources
- Stehfest et al. (2014b); Morée et al. (2013); Bouwman et al. (2013g); Bouwman et al. (2013f); Bouwman et al. (2013e); Bouwman et al. (2013c); Bouwman et al. (2013a); Beusen et al. (2015); Beusen et al. (2016);
- Popp et al (2010)
- Strefler et al (2014)

1. MAgPIE: Global socio-economic agriculture and land-use model, cost-optimization model, recursive dynamic. REMIND: global intertemporal optimization model of the macro-economy and the energy sector. LPJmL: Dynamic Global Vegetation Model (DGVM)
Scenario (Drivers – pressures) models: continued

<table>
<thead>
<tr>
<th>Citation/Model Name</th>
<th>GAINS Global</th>
<th>DLEM</th>
<th>CAPRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model aim/Functionality</td>
<td>GAINS estimates emissions of air pollutants and greenhouse gases in future scenarios based on (1) projections of activity data and (2) rate of implementation of emission reducing technologies. An optimization algorithm allows to minimize costs of measures when intending to arrive at a given ecological "endpoint" (human health, biodiversity, GHG level etc.)</td>
<td>DLEM (Dynamic Land Ecosystem Model) is a process-based terrestrial ecosystem/land surface model that simulates daily carbon, water and nitrogen cycles in land ecosystems, GHG emissions from agricultural and natural soils, and carbon and nitrogen loading and export from watershed to oceans, driven by changes in atmospheric chemistry including ozone, nitrogen deposition, CO2 concentration, climate, land-use and land-cover types, land management practices and disturbances (i.e., fire, hurricane, and harvest).</td>
<td>The Common Agricultural Policy Regional Impact Analysis (CAPRI) modelling system is a large-scale comparative-static, global multi-commodity, partial equilibrium model for the agricultural sector. It has been developed for policy impact assessment of the European Common Agricultural Policy (CAP) and other policies affecting agriculture from global to regional and farm type scale, focusing on Europe (Britz et al., 2006; Britz & Witzke, 2014) CAPRI simulates changes in global agricultural trade and EU supply of agricultural commodities under given technological, economic and policy constraints. Strengths of CAPRI include the possibility of good representation of EU policies, the detailed description of farm management in EU supply models, and the biophysical approach based on nutrient mass-flow approach, including life-cycle assessment with regard to GHGs (operational) and nitrogen (operational end 2017) for agricultural commodities.</td>
</tr>
<tr>
<td>Inputs/Drivers of change</td>
<td>Energy consumption/projection, agricultural production/projection</td>
<td>Driving factors- Climate (temperature, precipitation, solar radiation, and relative humidity), atmospheric composition (CO2, O3, and nitrogen deposition), land use (deforestation, urbanization, harvest, nitrogen fertilizer application, manure application, and irrigation), and other disturbance (wildfire, climate extremes)</td>
<td>Population growth, demographic changes, changes in demand, GDP growth, market power and trade agreements, specific policies between EU and other countries, EU policies (CAP and others), technological changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Controlling factors- Soil (physical and chemical properties, and soil depth), geomorphology (elevation, slope, and aspect), river network (flow direction, accumulation area, river slope, river length, and river width), vegetation functional types, and cropping system</td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td>Country-level anthropogenic emissions to air of greenhouse gases and air pollutants (CO2, CH4, N2O, F-gases, SO2, NOx, NH3, VOC, PM-coarse, PM-fine, BC, OC), Abatement costs by technology, for "current legislation", "maximum reduction" and pre-</td>
<td>Grid-level/country-level carbon and nitrogen fluxes including: Ecosystem production (GPP, NPP, NEP) and crop yield Greenhouse gases (CO2, CH4, N2O) *Nitrogen pollutant (NH3) Riverine Fluxes: Carbon (DOC, POC and DIC) and Nitrogen (DON, DIN, TN)</td>
<td>Global: supply, final demand, feed processing, prices (consumer/producer) trade flows EU: Agricultural supply (crop areas, heard sizes, yield); agricultural management (farm inputs), gross value added</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Criterion/Model Name</th>
<th>Contact Person</th>
<th>Email</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAINS Global</td>
<td>Wilfried Winiwarter</td>
<td>winiwart@iiasa.ac.at</td>
<td>Hanqin Tian</td>
</tr>
<tr>
<td>DLEM</td>
<td>Adrian Leip</td>
<td>Adrian.Leip@ec.europa.eu</td>
<td></td>
</tr>
</tbody>
</table>
Defined policy scenario (optimized)

Water fluxes: ET, Runoff, discharge

Post-model processing indicators: yield response, farm income indicators, welfare analysis, CAP budget/insitutions, GHG and Nr emissions, N,P,K balances, energy use in EU agriculture, representative diets. Indicators following spatial downscaling to pixel-level: biodiversity friendly farming practices, potential soil losses by water erosion, landscape indicators.

<table>
<thead>
<tr>
<th>Biophysical representation</th>
<th>Biophysical relationships parametrized from specialized models: Source-receptor relationships (matrices) from CTM’s; “endpoints” as plant damage, human health effects, biodiversity from effect models</th>
<th>The biophysical component includes the instantaneous exchanges of energy, water, and momentum with the atmosphere, which involves micrometeorology, canopy structure, soil physics, radiative transfer, water and energy flow, and momentum movement.</th>
<th>Biophysical representation of flows of biomass and nutrients (N,P,K). Detailed representation of land.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology representation</td>
<td>More than 200 individual abatement technologies and abatement costs individually defined and implemented in connection with specific “target” emitted compound, interference with other compounds considered</td>
<td>DLEM-Agricultural version (AG) incorporates the representation of technology improvement through parameterization.</td>
<td>Technology improvements possible for large number of parameters.</td>
</tr>
<tr>
<td>Data needs</td>
<td>Energy projections and costs as well as industry projections from energy models (e.g., PRIMES, POLES, IEA); agricultural projections from like models (e.g., CAPRI, FAO). Source-receptor matrices require multiple CTM runs (available for EMEP-Europe, East Asia, South Asia), link to "endpoints" requires effect models to be run</td>
<td>At the global scale, climate data are derived from CRUNCEP 6-hourly climate datasets. Atmospheric CO₂ concentration data was obtained from a spline fit of the Law Dome before 1959, and from NOAA during 1959-2016. Monthly atmospheric ozone concentration was represented by AOT 40. Atmospheric nitrogen deposition data was obtained from ISIMIP. The global nitrogen fertilizer use data was from Lu et al., 2017-ESSD. The global manure application data was from Zhang et al., 2017-ESSD. The basic soil physical and chemical properties, such as soil texture, bulk density, soil pH etc., were obtained from Harmonized World Soil Database (HWSD). Cropland distribution was derived from the 5-arc minute resolution HYDE v3.1 data and aggregated to half-degree.</td>
<td>FAOSTAT, EUROSTAT, IFA</td>
</tr>
<tr>
<td>Validation status</td>
<td>Input data and emission output validated with country experts in national consultations</td>
<td>The DLEM simulation results have been extensively validated against a large number of field observations and measurements at site level (Lu & Tian, 2013; Ren et al., 2011; Tao et al., 2013; Tian et al., 2010; Tian et al., 2011). The DLEM-estimated fluxes and storages of water, carbon and nutrients are also compared with estimates from other approaches, such as statistical-based empirical</td>
<td>Model results are scrutinized annually when preparing a new 'baseline' for use at DG AGRI. CAPRI participates to the AgMIP project. Data base (national and regional) are checked on consistency and data gap, which are corrected if necessary (CoCo = consistent and complete database).</td>
</tr>
</tbody>
</table>
modelling, top-down inversion or other process-based modelling approaches at regional, continental and global scale

<table>
<thead>
<tr>
<th>Spatial resolution</th>
<th>Country scale; urban effects considered separately, also 0.5°x0.5° downscaling is available globally.</th>
<th>Global scale - 0.5°x0.5° Regional scale (Asia - 0.25°x0.25°, North America - 0.125°x0.125°)</th>
<th>CAPRI consists of a global market model and a regional supply model which run interactively. The global model is split into 77 countries and 40 country blocks, while the supply model runs at NUTS 2 level in the EU. The link between the supply and market modules is based on an iterative procedure until an equilibrium is obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temporal resolution</td>
<td>1 year</td>
<td>Daily</td>
<td>1 year</td>
</tr>
<tr>
<td>Linkage to scenarios and mitigation / measures</td>
<td>Emission reduction measures are the core of the GAINS methodology – cost-optimizing such measures is the central idea. Scenarios need to be developed externally.</td>
<td>Scenario drivers include climate change, elevated CO₂ concentration, change in ozone concentration, land use types, nitrogen fertilizer application, manure application, and atmospheric nitrogen deposition. With respect to nitrogen, the mitigation measures that can be simulated cover the demand-side (lower livestock consumption, lower fertilizer application, less greenhouse gas emission, less nitrogen loading to the river) and the supply side (efficient fertilization, efficient livestock management).</td>
<td>CAPRI is designed to run counter-factual scenarios around base line scenarios, which are linked to / consistent with other models, such as AgLink (for short-to-medium term outlook) and GLOBIOM (e.g. for SSP scenarios).</td>
</tr>
<tr>
<td>Mitigation costs and co-benefits</td>
<td>Costs are computed as a function of investments, interest rates and country specific labour/energy/commodity costs; co-benefits can be integrated in cost factors (e.g. negative energy costs)</td>
<td>Mitigation strategies to reduce the GHG emissions, reduce the N loading to the inland water (hypoxia), as well as maintain the food production.</td>
<td>Several technological GHG mitigation options are 'endogenous' in the CAPRI supply model cost function in order to simulate the most cost-efficient mitigation strategy, capturing also structural and leakage effects. The options include both livestock and crop measures and cover also NH₃ mitigation options. Reduction potentials costs are taken, amongst others, from the GAINS database. CAPRI has an extensive list of economic and environmental indicators to evaluate co-benefits.</td>
</tr>
<tr>
<td>Operationality</td>
<td>Stated features are fully operational</td>
<td>Fully operational</td>
<td>Fully operational</td>
</tr>
<tr>
<td>Accessibility/ links</td>
<td>The GAINS online tool is freely accessible on the Internet</td>
<td>Model shared on a case-by-case basis.</td>
<td>CAPRI (http://www.capri-model.org/dokuwiki/doku.php) The model is open/free for users.</td>
</tr>
</tbody>
</table>

1 MAgPIE: Global socio-economic agriculture and land-use model, cost-optimization model, recursive dynamic. REMIND: global intertemporal optimization model of the macro-economy and the energy sector. LPJmL: Dynamic Global Vegetation Model (DGVM)
References

IMAGE 3.0

MAGPIE

GLOBIOM

GAINS

DLEM

CAPRI
Annex 2 Meta-description of Pressure-State (emission, air, soil and water quality) models.

Emission models

<table>
<thead>
<tr>
<th>Model type/ name</th>
<th>Overall emission model</th>
<th>Agricultural emission model</th>
<th>Air Quality models</th>
<th>Air Quality models</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDGAR</td>
<td>Overall emission model</td>
<td>Agricultural emission model</td>
<td>Air Quality models</td>
<td>Air Quality models</td>
</tr>
<tr>
<td>METERRA Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact person
- Greet Maenhout: greet.maenhout@ec.europa.eu
- Jan Peter Lesschen: Janpeter.lesschen@wur.nl
- Rita van Dingenen: Rita.van-dingenen@ec.europa.eu
- Massimo Vieno: mvi@ceh.ac.uk

Model aim/ Functionality
- **EDGAR**: GHG and air pollutant emissions for all world countries in a consistent way bottom-up calculated, following IPCC (2006) guidelines.
- **METERRA Global**: is an environmental assessment model, which calculates greenhouse gases and nitrogen emissions from agriculture on a deterministic and annual basis. The model is based on relatively simple and transparent calculations using emission factors and statistical data at sub-national level. The model is used for scenario analysis and assessment of policy options and measures and results can be presented both as total and LCA based emissions.
- **TM5-FASST**: is a reduced-form model based on a full set of global SR receptor calculations with the TM5 CTM for 57 world regions, shipping and aircraft. It is extensively used to provide a fast screening of air pollution emission scenarios with regard to health, crop and climate impacts.
- **EMEP4Earth**: model is designed to calculate air concentrations and deposition fields for major acidifying and eutrophying pollutants, photo-oxidants and particulate matter. The model is driven by real time meteorology calculated by the WRF model. The EMEP4Earth model is derived from the EMEP/MSC-W model.

Inputs/ Drivers of change
- Input data from economic models is required, which results in changes in crop areas, crop yield, livestock numbers, fertilizer inputs etc.

Outputs
- Emission time series 1970-2012 per country and sector (and for CO2 till t-1 for most important countries); sector-specific grid maps per year and month for each substance (GHG and air pollutant).
- Nitrogen emissions (NH3, N2O, NOx), N leaching and runoff, GHG emissions (N2O, CH4, CO2), changes in soil organic carbon, nutrient balances. All outputs can be provided at the sub-national (e.g. province) and national level. In addition results can be expressed as LCA based per product emissions.
- Global fields of hourly-monthly 3D concentrations changes, deposition fluxes, and the associated metrics (e.g. SOMO35, AOT40 for ozone, RF for climate).
- Global fields of hourly 3D atmospheric concentrations, deposition fluxes, and the associated metrics (e.g. SOMO35, AOT40 for ozone).

Biophysical representation
- Regular updates (CO2 report annual).
- MITERRA Global distinguishes 40 crop types and 12 livestock categories. Calculations are done at sub-national level (n = 2400) using average biophysical data from detailed GIS data sets (e.g. climate, soil and land cover).

Steady state / dynamic
- Dynamic
- Dynamic
- Dynamic
- Dynamic
<table>
<thead>
<tr>
<th>Data needs</th>
<th>Statistics from IEA, FAO, USGS, WSA, IFA, ...</th>
<th>Main inputs are livestock numbers and production, crop areas, crop yield, fertilizer consumption and spatial data on land cover, soil and climate</th>
<th>Emission scenarios</th>
<th>Emissions and land use scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validation status</td>
<td>Via inverse modelling</td>
<td>Not validated, but use of accepted emission factors such as IPCC etc.</td>
<td>Mostly compared to the full TMS model, which was validated in various intercomparisons.</td>
<td>Mostly validated across Europe and the UK in particular. However, the official EMEP MSC-W team (www.met.no) have applied the model globally and in China.</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>0.1deg x 0.1deg</td>
<td>Sub-national level (i.e. provinces or states), n = 2400, at which statistical input data is available. GIS data is derived from more detailed maps.</td>
<td>In the emission regions 1x1 degree, with sub-grid parameterisation for population exposure.</td>
<td>Globally 1.0x1.0 degrees with the possibility to include nested regions (i.e. Africa 0.1x0.1 degrees, UK 0.05x0.05 degrees)</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td>monthly</td>
<td>1 year</td>
<td>Underlying: hourly. Most output aggregated to monthly. Impacts on annual scale.</td>
<td>Hourly, daily, monthly and annual</td>
</tr>
<tr>
<td>Linkage to scenarios and mitigation / measures</td>
<td>CIRCE scenarios calculated from 1990-2050</td>
<td>MITERRA-Global has been used to assess the total and LCA per product GHG from livestock production in Europe, Africa and Latin America. The European version of MITERRA has been used in several scenario studies and parameterized mitigation options are available for ammonia and GHG emissions, soil carbon sequestration and N leaching and runoff. Mitigation costs have not been included yet in MITERRA-Global, but for Europe several studies are available.</td>
<td>Flexible; used for UNEP, HTAP, OECD, CCAC, etc. scenarios.</td>
<td>Use of the INMS scenarios for the available emitted species and using a simple rescale of the HTAPv2 for the remaining emitted species.</td>
</tr>
<tr>
<td>Operationality</td>
<td>Fully operational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>http://edgar.jrc.ec.europa.eu/</td>
<td>Model is not publicly available, but can be adapted easily by developers to fit to stakeholder requirements</td>
<td>http://tm5-fasst.jrc.ec.europa.eu/</td>
<td>https://github.com/metno/emep-ctm</td>
</tr>
</tbody>
</table>
Water quantity (hydrological) and water quality models

<table>
<thead>
<tr>
<th>Model type/ name</th>
<th>Hydrological models</th>
<th>Hydrological models</th>
<th>Water quality models</th>
<th>Water quality models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript</td>
<td>WBM/VIC</td>
<td>PCR-GLOBWB</td>
<td>IMAGE GNM</td>
<td>GLOBAL NEWS</td>
</tr>
<tr>
<td>Contact</td>
<td>Carolien.Kroeze</td>
<td>Lex Bouwman</td>
<td>Lex Bouwman</td>
<td>Carolien.Kroeze</td>
</tr>
<tr>
<td></td>
<td>Carolien.Kroeze@wur.nl</td>
<td>lex.bouwman@pbl.nl</td>
<td>lex.bouwman@pbl.nl</td>
<td>Carolien.Kroeze@wur.nl</td>
</tr>
<tr>
<td>Model aim/</td>
<td>The Variable Infiltration Capacity (VIC) model (Liang et al., 1994) is a grid-based macro-scale hydrological model that hat solves both the surface energy balance and water balance equations.</td>
<td>PCR-GLOBWB models the water fluxes from precipitation, evaporation and evapotranspiration, soil moisture, aquifers to streams and rivers, accounts for water temperature. PCR-GLOBWB focuses on floodplains, wetlands, lakes and keeps track of the construction and filling of reservoirs. PCR-GLOBWB not only simulates water availability, but can also simulate flooding in river basins. It has a spatial resolution of 5 by 5 minutes and a temporal (output) resolution of 1 day</td>
<td>IMAGE Global Nutrient Model (GNM) is part of the integrated assessment model IMAGE and keeps track of soil nutrient reserves, and computes the fate of nutrients from wastewater discharge to surface water, nutrient release from aquaculture, agricultural and natural runoff, leaching to groundwater and groundwater transport and denitrification, processes in riparian zones, and instream retention in the world’s rivers, lakes, wetlands, reservoirs, and river export to the coastal seas; marine aquaculture release of nutrients</td>
<td>Global NEWS-2 quantifies river export of different nutrients (N, P, C, Si) in different forms (dissolved inorganic, dissolved organic, particulate) for past (1970, 2000) and future (2030, 2050) years for more than 6000 river basins. The model quantifies the indicator for coastal eutrophication potential (ICEP).</td>
</tr>
<tr>
<td>Functionality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs/</td>
<td>Climate parameters,</td>
<td>Climate parameters,</td>
<td>Drivers are land use and nutrient budgets, population and wastewater discharge, climate, hydrology, dam construction and reservoir development determining the travel time of the water and retention</td>
<td>Main drivers are population, economic development (income), land use, livestock and crop production. Main inputs are land use, use of synthetic and organic fertilizers, atmospheric N deposition, biological N2 fixation, total population, population with sewage connection, nutrient removal during treatment, water discharges, runoff, dams. Inputs for land use, population, diffuse and point sources of nutrients are from IMAGE; inputs for hydrology are from WBM. Inputs for future years were derived from IMAGE and WBM as well.</td>
</tr>
<tr>
<td>Drivers of</td>
<td>land surface</td>
<td>land usage, land</td>
<td></td>
<td></td>
</tr>
<tr>
<td>change</td>
<td></td>
<td>surface, land use,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>reservoir construction, location of lakes, wetlands, reservoirs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outputs</td>
<td>Surface runoff and</td>
<td>Water balance, water</td>
<td>Soil N and P contents and changes therein; nutrient delivery to surface water from surface runoff, groundwater, aquaculture, sewage water and open sewers, wastewater treatment plants, weathering; IMAGE-GNC computes concentrations in all grid cells and routes the water and nutrients through the river bed, floodplains, lakes, wetlands, reservoirs to the mouth of all world rivers</td>
<td>Main outputs are N, P, C and Si export by rivers to coastal waters (river mouth) and ICEP for 1970, 2000, 2030 and 2050.</td>
</tr>
<tr>
<td></td>
<td>base flow are routed</td>
<td>fluxes, water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>along the stream</td>
<td>temperature, discharge,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>network to the basin</td>
<td>runoff, water storage,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>outlet with an offline</td>
<td>water availability.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>routing model</td>
<td>flooding areas, water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>depth and area. Routing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>along the stream network</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>including lakes, wetlands, reservoirs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady state /</td>
<td>Dynamic</td>
<td>Dynamic</td>
<td>IMAGE-GNC is a dynamic model, as it keeps track of soil N and P reserves and N transport in groundwater</td>
<td>Steady state</td>
</tr>
<tr>
<td>dynamic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biophysical</td>
<td>The model represents</td>
<td>The land surface in PCR-GLOBWB is represented</td>
<td>IMAGE-GNC includes the hydrological model PCR-GLOBWB is represented</td>
<td>River export of dissolved nutrients is quantified</td>
</tr>
<tr>
<td>representation</td>
<td>sub-grid variability in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
vegetation and elevation, partitioning each grid cell into multiple land cover (vegetation) and elevation classes. The soil column is commonly divided into three soil layers. Evapotranspiration is calculated based on Penman-Monteith equation. Surface runoff in the upper soil layer is calculated based on the variable infiltration curve, and release of baseflow from the lowest soil layer is simulated according to the non-linear Arno recession curve. Precipitation falls as rain if air temperature exceeds 0°C, and as snow otherwise. Snow accumulates on the surface, and melt is temperature controlled. Potential evapotranspiration is broken down into canopy transpiration and bare-soil evaporation, which are reduced to an actual evapotranspiration rate based on soil moisture content. Vertical transport in the soil column arises from percolation or capillary rise, depending on the vertical hydraulic gradient present between these layers.

Data needs	Climate data, land cover	Climate parameters, land surface, land use, reservoir construction, location of lakes, wetlands, reservoirs.	Apart from the biophysical data, IMAGE uses FAOSTAT country data on food, feed and fodder crop production, livestock production, land use, inputs; equivalent subnational data for USA, China, India; IEA data on energy use; emission factors from EDGAR. Fertilizer use by crop from IFA.	All inputs are from IMAGE and WBM
Validation status	The model has been validated using hydrological datasets	The model has been validated using hydrological datasets	IMAGE is calibrated to historical carbon cycle and CO2 concentration. River nutrient concentrations and nutrient export has been validated with measurement data for different stations inside river basins for Europe, USA and large world rivers; all comparisons are satisfactory for a non-calibrated global model	Global NEWS-2 was validated and calibrated for large world rivers by comparing modelled river export of nutrients with measured values for 2000.
Spatial resolution	0.5 x 0.5 degree	5 by 5 minutes	0.5 by 0.5 degree	Basin. Basin inputs were aggregated from inputs (from IMAGE and WBM) of 0.5 by 0.5 degree
Temporal resolution	Hourly, daily, monthly, annual	Output resolution is 1 day	1 year	Annual
Linkage to scenarios and mitigation / measures	VIC has been widely used for change impact and scenario studies at global, European or large-river basin levels, as well as for seasonal forecasting work.	Through its linkage with IMAGE, PCR-GLOBWB can be used to simulate future scenarios; recent work also includes projections of hydropower and reservoir construction on the basis of the most suitable location in landscapes (energy, storage). PCR-GLOBWB has been used to implement the Shared Socioeconomic Pathways	IMAGE is especially designed for scenario analysis. The wastewater model includes several options to improve sewage connection and wastewater treatment. The nutrient model can deal with several measures such as incorporation of manure, reduce emissions from animal houses, substitution of fertilizer by manure, integration of	Millennium Ecosystem Assessment scenarios are used.
to elaborate nutrient futures. livestock and crop systems, increased efficiency in livestock and crop systems, as well as recycling of human excreta to substitute fertilizers. IMAGE allows for analysing in which parts of river basins measures are most effective to reduce nutrient concentrations and river export to the coastal seas.

References

EDGAR

MITERRA-Global

TM5-FASST

Van Dingenen, R., F. Dentener and S. Rao, 2017. TM5-FASST: a global atmospheric source-receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants. (manuscript in preparation for the special HTAP issue in Atmos. Chem. Physics)

EMEP/EMEP4Earth

VIC
PCR-GLOBWB

Global NEWS

IMAGE GNM
Beusen, A. H. W.: Transport of nutrients from land to sea. Global modeling approaches and uncertainty analyses, PhD, Department of Earth Sciences - Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands, 191 pp., 2014.
Annex 3 Meta-description of impact models.

Crop growth and productivity models

<table>
<thead>
<tr>
<th>Contact person</th>
<th>Model aim Functionality</th>
<th>Model type/name</th>
<th>Crop growth/Terrestrial productivity: LPJml</th>
<th>Crop growth Terrestrial productivity: EPIC</th>
<th>Terrestrial biodiversity GLOBIO</th>
<th>Aquatic biodiversity IMAGE-GLOBIO Aquatic</th>
<th>Marine Ecosystem ERSEM-NEMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christoph Muller Christoph.Mueller@pik-potsdam.de</td>
<td>Dynamic global vegetation model of natural and managed land, including a hydrology and a nitrogen module. The model can be used to quantify water, carbon and nitrogen dynamics under changes in climate, land use and management at the global scale or selected regions of interest. Provides consistent information on biogeochemical pools and fluxes, natural vegetation dynamics, crop yields and managed grassland dynamics.</td>
<td>Dynamic crop growth model. It contains routines for simulating crop growth, yield and competition, hydrological, nutrient and carbon cycle, weather simulation, soil temperature and moisture, soil erosion and a wide range of crop management options, including tillage, fertilization, irrigation, liming and pesticides. EPIC operates on a daily time step and can be used for long-term assessments spanning decades to centuries.</td>
<td>GLOBIO is a spatially explicit model to simulate the impacts of various anthropogenic pressures, such as climate change, land-use change and pollution, on terrestrial biodiversity intactness (quantified based on the mean species abundance (MSA) metric). The model is part of the IMAGE framework.</td>
<td>GLOBIO-Aquatic is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>ERSEM is a marine generic lower trophic level/biogeochemical cycling model. It describes pelagic and benthic ecosystems in terms of phytoplankton, bacteria, zooplankton, zoobenthos, and the cycling of C, N, O, P and Si. NEMO is a 3D hydrodynamic model that provides temporally and spatially resolved currents and mixing transports to ERSEM. Together ERSEM-NEMO simulate past and future ecosystem states, and assess anthropogenic impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juraj Balkovič, Erwin Schimid or Petr Havlík balkovic@iiasa.ac.at</td>
<td>GLOBIO is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>LPJml</td>
<td>Aafke Schipper, Jelle Hilbers Aafke.Schipper@pbl.nl</td>
<td>Jan Janse</td>
<td>Jan.Janse@pbl.nl</td>
<td>Icarus Allan or Jason Holt jia@pml.ac.uk jholt@noc.ac.uk</td>
<td></td>
</tr>
<tr>
<td>Juraj Balkovič</td>
<td>Dynamic crop growth model. It contains routines for simulating crop growth, yield and competition, hydrological, nutrient and carbon cycle, weather simulation, soil temperature and moisture, soil erosion and a wide range of crop management options, including tillage, fertilization, irrigation, liming and pesticides. EPIC operates on a daily time step and can be used for long-term assessments spanning decades to centuries.</td>
<td>GLOBIO is a spatially explicit model to simulate the impacts of various anthropogenic pressures, such as climate change, land-use change and pollution, on terrestrial biodiversity intactness (quantified based on the mean species abundance (MSA) metric). The model is part of the IMAGE framework.</td>
<td>GLOBIO-Aquatic is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>ERSEM is a marine generic lower trophic level/biogeochemical cycling model. It describes pelagic and benthic ecosystems in terms of phytoplankton, bacteria, zooplankton, zoobenthos, and the cycling of C, N, O, P and Si. NEMO is a 3D hydrodynamic model that provides temporally and spatially resolved currents and mixing transports to ERSEM. Together ERSEM-NEMO simulate past and future ecosystem states, and assess anthropogenic impacts.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christoph Muller Christoph.Mueller@pik-potsdam.de</td>
<td>Dynamic global vegetation model of natural and managed land, including a hydrology and a nitrogen module. The model can be used to quantify water, carbon and nitrogen dynamics under changes in climate, land use and management at the global scale or selected regions of interest. Provides consistent information on biogeochemical pools and fluxes, natural vegetation dynamics, crop yields and managed grassland dynamics.</td>
<td>Dynamic crop growth model. It contains routines for simulating crop growth, yield and competition, hydrological, nutrient and carbon cycle, weather simulation, soil temperature and moisture, soil erosion and a wide range of crop management options, including tillage, fertilization, irrigation, liming and pesticides. EPIC operates on a daily time step and can be used for long-term assessments spanning decades to centuries.</td>
<td>GLOBIO is a spatially explicit model to simulate the impacts of various anthropogenic pressures, such as climate change, land-use change and pollution, on terrestrial biodiversity intactness (quantified based on the mean species abundance (MSA) metric). The model is part of the IMAGE framework.</td>
<td>GLOBIO-Aquatic is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>ERSEM is a marine generic lower trophic level/biogeochemical cycling model. It describes pelagic and benthic ecosystems in terms of phytoplankton, bacteria, zooplankton, zoobenthos, and the cycling of C, N, O, P and Si. NEMO is a 3D hydrodynamic model that provides temporally and spatially resolved currents and mixing transports to ERSEM. Together ERSEM-NEMO simulate past and future ecosystem states, and assess anthropogenic impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juraj Balkovič, Erwin Schimid or Petr Havlík balkovic@iiasa.ac.at</td>
<td>GLOBIO is a spatially explicit model to simulate the impacts of various anthropogenic pressures, such as climate change, land-use change and pollution, on terrestrial biodiversity intactness (quantified based on the mean species abundance (MSA) metric). The model is part of the IMAGE framework.</td>
<td>GLOBIO-Aquatic is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>ERSEM is a marine generic lower trophic level/biogeochemical cycling model. It describes pelagic and benthic ecosystems in terms of phytoplankton, bacteria, zooplankton, zoobenthos, and the cycling of C, N, O, P and Si. NEMO is a 3D hydrodynamic model that provides temporally and spatially resolved currents and mixing transports to ERSEM. Together ERSEM-NEMO simulate past and future ecosystem states, and assess anthropogenic impacts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juraj Balkovič</td>
<td>GLOBIO-Aquatic is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>ERSEM is a marine generic lower trophic level/biogeochemical cycling model. It describes pelagic and benthic ecosystems in terms of phytoplankton, bacteria, zooplankton, zoobenthos, and the cycling of C, N, O, P and Si. NEMO is a 3D hydrodynamic model that provides temporally and spatially resolved currents and mixing transports to ERSEM. Together ERSEM-NEMO simulate past and future ecosystem states, and assess anthropogenic impacts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Christoph Muller Christoph.Mueller@pik-potsdam.de</td>
<td>Dynamic global vegetation model of natural and managed land, including a hydrology and a nitrogen module. The model can be used to quantify water, carbon and nitrogen dynamics under changes in climate, land use and management at the global scale or selected regions of interest. Provides consistent information on biogeochemical pools and fluxes, natural vegetation dynamics, crop yields and managed grassland dynamics.</td>
<td>Dynamic crop growth model. It contains routines for simulating crop growth, yield and competition, hydrological, nutrient and carbon cycle, weather simulation, soil temperature and moisture, soil erosion and a wide range of crop management options, including tillage, fertilization, irrigation, liming and pesticides. EPIC operates on a daily time step and can be used for long-term assessments spanning decades to centuries.</td>
<td>GLOBIO is a spatially explicit model to simulate the impacts of various anthropogenic pressures, such as climate change, land-use change and pollution, on terrestrial biodiversity intactness (quantified based on the mean species abundance (MSA) metric). The model is part of the IMAGE framework.</td>
<td>GLOBIO-Aquatic is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>ERSEM is a marine generic lower trophic level/biogeochemical cycling model. It describes pelagic and benthic ecosystems in terms of phytoplankton, bacteria, zooplankton, zoobenthos, and the cycling of C, N, O, P and Si. NEMO is a 3D hydrodynamic model that provides temporally and spatially resolved currents and mixing transports to ERSEM. Together ERSEM-NEMO simulate past and future ecosystem states, and assess anthropogenic impacts.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juraj Balkovič, Erwin Schimid or Petr Havlík balkovic@iiasa.ac.at</td>
<td>GLOBIO-Aquatic is a spatially explicit model to simulate the composite effect of pressure factors on biodiversity for catchments. In addition to biodiversity indicators, the model calculates the occurrence of harmful algal blooms in lakes</td>
<td>ERSEM is a marine generic lower trophic level/biogeochemical cycling model. It describes pelagic and benthic ecosystems in terms of phytoplankton, bacteria, zooplankton, zoobenthos, and the cycling of C, N, O, P and Si. NEMO is a 3D hydrodynamic model that provides temporally and spatially resolved currents and mixing transports to ERSEM. Together ERSEM-NEMO simulate past and future ecosystem states, and assess anthropogenic impacts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inputs/Drivers of change

| Inputs/Drivers of change | Temperature, Precipitation, Radiation, CO₂, soil, land use, organic and inorganic fertilizers. | Daily min and max temperature, solar radiation, precipitation; CO₂, soil and terrain, crop-specific sowing and harvest dates, cultivar specification, organic and inorganic fertilizers, irrigation, residue management. | The direct drivers of biodiversity loss considered in the current version (GLOBIO 4) are land-cover change, land-use intensity, habitat fragmentation, climate change, atmospheric nitrogen deposition, infrastructure (roads) and hunting (in tropical regions). | The drivers of aquatic biodiversity used are land use and land cover, nitrogen and phosphorus discharge to surface water (see IMAGE-Global Nutrient Model) river discharge, water temperature and hydrological disturbance by dams | Spatiotemporally resolved climatic inputs: air temperature, wind, precipitation etc. Riverine and diffuse inputs of freshwater, nutrients, sediments, DOM, DIC Alkalinity etc Atmospheric nitrogen deposition. Off shore infrastructure Fishing/aquaculture |

Outputs

<p>| Outputs | Global gridded (0.5° or more disaggregated, depending on input resolution) NPP, soil respiration, NEE, carbon and nitrogen pools, crop yields, nitrification, denitrification, leaching, runoff, volatilisation, nutrient stress, composition of biomass.... | Global gridded (from 5 arc-min to 0.5 arc-deg) crop yield, aboveground biomass, root biomass, soil carbon and nitrogen pools and fluxes, incl. volatilization, leaching, denitrification..., soil hydrology (runoff, percolate, subsurface flow, ET), erosion. | Spatially explicit (gridded) layers of mean species abundance (MSA), reflecting the degree to which the ecosystem is intact. Mean species abundance (MSA), reflecting the degree to which the ecosystem is intact. The model also calculates the amount of harmful algal blooms in lakes | Gridded 4D marine ecosystem and biogeochemical state and flux variables, e.g. biomass, primary production, O₂, pH etc. Aggregated and derived metrics. Typically daily-monthly. | Gridded 4D marine ecosystem and biogeochemical state and flux variables, e.g. biomass, primary production, O₂, pH etc. Aggregated and derived metrics. Typically daily-monthly. |</p>
<table>
<thead>
<tr>
<th>Steady state/dynamic</th>
<th>Dynamic</th>
<th>Dynamic</th>
<th>Static</th>
<th>Static</th>
<th>Dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysical representation</td>
<td>Process-based</td>
<td>Process-based</td>
<td>GLOBio uses empirical relationships between drivers and outputs</td>
<td>GLOBio aquatic uses empirical relationships between drivers and outputs</td>
<td>Fully coupled 4D hydrodynamics and mass conserving C, N, P, Si cycles through pelagic and benthic systems</td>
</tr>
<tr>
<td>Data needs</td>
<td>See inputs/drivers</td>
<td>See inputs/drivers</td>
<td>GLOBio 4 requires spatially explicit input data on land use, climate change (global mean temperature increase), atmospheric nitrogen deposition, the global road network, and rural settlements in tropical biomes.</td>
<td>Apart from the biophysical data, GLOBio-Aquatic has no specific data needs.</td>
<td>See inputs and drivers In-situ and earth observation data for validation and process assessment</td>
</tr>
<tr>
<td>Validation status</td>
<td>Validated in various peer-reviewed publications participated in AgMIP, ISIMIP, GGCMI</td>
<td>Validated in various peer-reviewed publications participated in AgMIP, ISIMIP, GGCMI</td>
<td>The pressure-impact relationships in GLOBio are built on extensive global datasets that compare local species composition under influence of a particular pressure to species composition in an undisturbed reference situation. These datasets as well as the model itself have been published in peer-reviewed articles.</td>
<td>The empirical relationships between aquatic biodiversity and land use, nutrient budgets and hydrological changes, were derived from an extensive compilation of case studies on rivers, lakes and wetlands. There is a geographical bias towards well studied regions, and regions where both disturbed systems and comparable reference systems still exist, such as in North America, Australia and New Zealand, and to a lesser extent Europe. Use of the model for other regions requires some caution, but is considered appropriate for large-scale assessments.</td>
<td>NEMO is widely used in operational forecasting scales from climate (CMIP), seasonal to short-term. It is widely validated in this context. ERSEM is extensively validated in regional simulations, e.g. NW European shelf seas where NEMO-ERSEM provides the operational oceanographic system for Copernicus. It has also been validated in the basinscale and global context as part of research projects.</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>Any resolution for which climate, soil and management data is available. Usually 0.5°</td>
<td>5° to 0.5° Any resolution for which management data is available</td>
<td>10 arc-seconds</td>
<td>0.5 by 0.5 degree</td>
<td>1° global 1/4° global planned in 2-3yrs 1/12° regional, NW European and SE Asia</td>
</tr>
<tr>
<td>Temporal resolution/extent</td>
<td>Daily, monthly/yearly</td>
<td>Daily, monthly, yearly</td>
<td>Yearly, decadal</td>
<td>1 year</td>
<td>Daily/Monthly Last 50yrs to next 100 years</td>
</tr>
<tr>
<td>Linkage to scenarios mitigation/measures</td>
<td>(RCP) climate scenarios, land use scenarios, management scenarios</td>
<td>Climate scenarios, crop management scenarios</td>
<td>Climate scenarios, land-use scenarios, management scenarios (RCPs, SSPs)</td>
<td>Policy options analysed with GLOBio-Aquatic and relevant for the nitrogen cycle include reduction of agricultural area (e.g. by means of consumption changes and/or reduction of food waste, and improved efficiency</td>
<td>Climate scenarios, terrestrial/atmospheric input, management scenarios. Coastal and sea scenarios e.g. fishing.</td>
</tr>
</tbody>
</table>
of nutrient use in agriculture, reduction of urban emissions, and designation/restoration of natural areas like wetlands and riparian buffer zones.

<table>
<thead>
<tr>
<th>Operativity</th>
<th>Basic version fully operational; nitrogen module is short before submission</th>
<th>Fully operational for 16 crops</th>
<th>Fully operational</th>
<th>Fully operational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessibility</td>
<td>Upon request, open source release after some quarantine time</td>
<td>The source code of the model is available upon request. A stand-alone version with documentation is currently being developed.</td>
<td>Accessible; however, the operation of the model may require assistance from PBL-Netherlands Environmental Assessment Agency</td>
<td>Model codes open-source. Some configurations available on request. Requires High Performance Computing resource</td>
</tr>
</tbody>
</table>

References

LPJ

EPIC

flexibility under the representative concentration pathways. Glob. Planet. Change 122, 107–121. doi:10.1016/j.gloplacha.2014.08.010

GLOBIO and GLOBIO-Aquatic

ERSEM-NEMO

Allen, JI; Somerfield, PJ; Gilbert, FJH. 2007 Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. Journal of Marine Systems, 64. Mar-14. 10.1016/j.jmarsys.2006.02.010

Barange, M; Merino, G; Blanchard, JL; Scholtens, J; Harle, J; Allison, EH; Allen, JI; Holt, JT; Jennings, S. 2014 Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature Climate Change. 6, pp. 10.1038/NCLIMATE2119

Glibert, PM; Allen, JI; Artioli, Y; Beusen, A; Bouwman, L; Harle, J; Holmes, R; Holt, JT. 2014 Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Global Change Biology. n/a-n/a. 10.1111/gcb.12662

Global-scale modelling of flows and impacts of nitrogen use:
Modelling approaches, Linkages and Scenarios

In this report document, we discuss the approach to a global integrated nitrogen assessment model chain allowing to evaluate the consequences of different socio-economic drivers (scenarios) and N mitigation management in terms of: (i) benefits, including food, feed, fibre (wood) and energy production and (ii) threats, including pollutant and greenhouse gas emissions, affecting the quality of air, soil and water and related climate, human health and biodiversity impacts and (iii) cost-efficaciveness. This is done by addressing:

- The overall modelling approach, including (i) the type of models that are needed to simulate nitrogen benefits and threats and (ii) the model linkages needed to enable a consistent multi-model approach in response to a consistent set of scenarios of drivers (population development, income etc.) and N mitigation measures.

- The modelling practice including (i) the modelling approaches, distinguishing between empirical and process-based models, and (ii) the available models that would serve an integrated global scale nitrogen assessment, considering the variety of impacts and scales.

- A modelling protocol of the involved models including information on: (i) the models involved, (ii) basic agreements on base year (2010), spatial extent and resolution, temporal extent and resolution, (iii) scenarios, (iv) model outputs and (v) model linkages.

- A database platform for the INMS model inputs and outputs.

Keywords: modelling, nitrogen flows, nitrogen impacts: modelling approaches, scenarios, global scale