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Abstract
Complex systems can, to a first approximation, be characterized by the fact that their dynamics
emerging at the macroscopic level cannot be easily explained from the microscopic dynamics of the
individual constituents of the system. This property of complex systems can be identified in
virtually all natural systems surrounding us, but also in many social, economic, and technological
systems. The defining characteristics of complex systems imply that their dynamics can often only
be captured from the analysis of simulated or observed data. Here, we summarize recent advances
in nonlinear data analysis of both simulated and real-world complex systems, with a focus on
recurrence analysis for the investigation of individual or small sets of time series, and complex
networks for the analysis of possibly very large, spatiotemporal datasets. We review and explain the
recent success of these two key concepts of complexity science with an emphasis on applications for
the analysis of geoscientific and in particular (palaeo-) climate data. In particular, we present
several prominent examples where challenging problems in Earth system and climate science have
been successfully addressed using recurrence analysis and complex networks. We outline several
open questions for future lines of research in the direction of data-based complex system analysis,
again with a focus on applications in the Earth sciences, and suggest possible combinations with
suitable machine learning approaches. Beyond Earth system analysis, these methods have proven
valuable also in many other scientific disciplines, such as neuroscience, physiology, epidemics, or
engineering.

1. Introduction

Data analysis is among the oldest techniques used in science and even long before, for various practical pur-
poses. For example, some of the earliest instances are related to the determination of rather regular weather
conditions for planning relocations during the hunter-gatherer epochs, or later for planning of sowing and
harvesting of agriculture-based sedentary societies. Another important challenge has been the prediction of
rare but potentially recurring events, such as Sun eclipses, appearances of a comets, epidemic outbreaks, heat
waves, floodings, or storm. Some of these basic problems were solved long ago, while others are still challenging
problems today, as we will explain in the following.

One of the properties of natural systems that has been used to address the above mentioned problems is
recurrence. Recurrence is a typical feature of dynamical systems that is often observed in our daily life and
across all scientific disciplines. Recurring phenomena were well known, attracted also much attention, and
were used already in ancient times. Examples are early astronomical observatories (one of the earliest was
probably Stonehenge [1, 2]), early explanations of the motions of the planets by Greek philosophers [3], or the
Maya calendar, which consists of several calendars of different periods and for different use, but all using a daily
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counting on a base of 20 days. A seminal finding by the French mathematician Poincar·e finally emphasized the
importance of recurrences for the study of dynamical systems and provided a mathematically sound concept: in
the context of studying the three-body problem for explaining celestial dynamics, he formulated the recurrence
theorem in 1890 which states that a conservative (i.e., volume preserving) dynamical system with bounded
orbits returns infinitely many times as close as one wishes to its initial state [4]. A measure-theoretic proof of
the theorem was given by Carath·eodory in 1919 [5].

A basic consequence of recurrence is the existence of periodicities in natural processes. Some of them,
as the one related to the daily or annual cycles, are very distinct. But others are not so clear, as for example
those appearing in the sunspot series or in the Canadian hare-lynx data [6]. The latter are often called hidden
periodicities. In analogy to optics, Schuster invented in 1898 the periodogram-technique [7] and he argued
that ‘. . . the periodogram furnishes more definite information than the optical instrument can’ [8]. This was
the beginning of modern time series analysis. He applied the periodogram to the analysis of sunspot data
in 1905 and inferred a mean period of 11.125 yr [8]. Later on, a complete theory of linear statistical time
series analysis has been developed, where the description via autoregressive processes by Yule in 1927 was a
milestone [9]. There are various textbooks on power spectrum analysis, linear models and filtering, such as
Box and Jenkins [10] or Priestley [11] and the corresponding techniques are available in many computational
toolboxes.

Although such kind of linear methods for the analysis of time series have found a lot of very success-
ful applications in science, engineering, (socio-)economics, physiology, psychology etc, in the course of the
last decades of the 20th century, the limits to linearity have become more and more important. The strong
progress in the study of nonlinear dynamical systems in the 1980’s and 1990’s opened new doors for a more
appropriate analysis of complex nonlinear systems, such as lasers, the human brain, power grids, or the Earth
system and its components. Techniques for the estimation of basic characteristics of nonlinear systems, such
as fractal dimensions, Lyapunov exponents or Kolmogorov entropy, were worked out and applied to various
disciplines with great success (cf Kantz and Schreiber [12]). Recurrence properties have been used for this
purpose as well and led to recurrence plots (RPs) [13] and recurrence quantification analysis (RQA) [14].
This specific approach is attracting increasing attention and finding applications in many different disciplines
[15–17]. For example, it helps in detecting Parkinson’s disease from handwriting [18], provided new insights
into the impact of palaeoclimate variability on human evolution [19], or uncovered the mechanism in com-
bustion processes leading to unstable and critical states in gas turbines [20]. We present this approach in detail
in section 2.

A challenge in investigating complex systems is their intrinsic composition of nonlinearly interlinked sub-
components, requiring the analysis of multivariate nonlinear time series. The above mentioned techniques
are mostly also suitable for multivariate time series. However, due to more refined measurement technologies,
ever larger data sets are becoming available at an ongoing basis. These datasets, such as the ones from remote-
sensing measurements, depend on both time and space, called spatio-temporal data, and require more suitable
techniques. One promising way to treat such kind of big data is based on complex networks or graphs. The
main reason for the very rapid evolution of complex network science during the last two decades is that it allows
a much better description of various real-world processes, as demonstrated first in sociology and engineering,
and later also in neuroscience, Earth sciences, and several other fields [21–28].

There is a basic problem to model a continuous dynamical system, as the brain or the climate, with a
discrete-in-space structure such as complex networks. As first proposed in 2004 [29], one option is to consider
different spatial regions as nodes and then define network links between the different regions based on suit-
able similarity measures from nonlinear data analysis. In section 3 we will explain this approach and present
recent progress to show the great potential of this methodology. In particular, these developments have recently
enabled to detect new mechanisms in the coupled eco-climate system in Amazonia and even led to much better
predictions of the Indian summer monsoon and El Niño activities.

Finally, we give open challenging problems in both chapters.

2. Recurrence analysis

2.1. State-of-the-art
For the numerical study of recurring processes, several approaches are of interest. The power spectrum anal-
ysis is probably one of the best known and widely used techniques for the analysis of periodicities in time
series [7], revealing the main periods within the measured signal (figure 1(B)). Wavelet analysis reveals similar
information, additionally providing a potential change of the detected periods over time (figure 1(C)). Both
approaches are useful, although coming with some limitations, especially in the presence of harmonics, non-
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Figure 1. Exemplary RP (D) showing the recurrence structure of a sequence of chaotic, periodic, and stochastic dynamics (A).
The power spectrum (B) only reveals the dominating frequency of the periodic epoch, although the signal consists of further
frequencies; the wavelet diagram (C) represents the different scales within the three segments of different dynamics. Quantifying
the RP (E) allows further insights into the dynamics, such as predictable time as derived from the average line length in the RP.

stationarity, nonlinearity, trends and noise, non-periodic signals, or generalizations for analyzing multi-variate
or spatial and spatio-temporal data.

A fundamental approach that can be used to investigate recurring features in time series (and even in spatial
data) is the RP [13] and its quantification RQA [14, 30]. This approach is not restricted to periodic variations
and has its roots in the theory of dynamical systems.

A RP is a two-dimensional, discrete, and finite representation of a dynamical system of arbitrary dimension
with state vectors�xi (t = i�t and sampling time �t). If the distance di,j between two states�xi and�xj at times i
and j is very small, then the state �xi recurred at time j. di,j can be defined in different ways, depending on the
current research question. A common choice is simply the Euclidean distance between the states�xi and�xj, i.e.,
di,j = ‖�xi −�xj‖. All pairwise tests for such pairs of recurring states form the square matrix R (figure 2),

Ri,j = �(� − di,j), (1)

where the recurrence threshold � finally defines the recurrences. Its graphical representation is called RP and
already provides a visual impression of the dynamics of the system (figure 1(D)). It even allows us to look at
high-dimensional systems which are almost impossible to visualize by this two-dimensional representation.

If only a univariate time series uk (k = 1, . . . , Nu) is available, the state vectors �xi can be reconstructed
(figure 2), i.e., by the time delay method [31, 32] which generates a state vector of dimension m from a time
series of length Nu:

�xi =
m�

j=1

ui+�(j−1)�ej, (2)

where �ej is the unit vector with (�ej)j = 1. The length of the constructed time sequence {�xi} is N = Nu −
� (m − 1).

Different kinds of dynamics lead to characteristically different patterns in the corresponding RPs
(figure 1(D)). Such differences are quantified with the RQA (figures 1(E) and 2). The first RQA measures
introduced were mainly based on the distribution of diagonal lines (and their lengths) in the RP, expressed
by the length distribution H(�) counting the number of diagonal lines in the RP that have exact length �.
One interesting, frequently used RQA measure that uses H(�) is the determinism DET, which is the fraction of
recurrence points forming diagonal lines of at least length � in the RP
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Figure 2. Schematic illustration of RP and RQA. A time series (top left) is first embedded in a higher-dimensional phase space
(top right), before the recurrence matrix is computed (bottom right). From the recurrence matrix, measures such as determinism
are computed (bottom left), which can then be interpreted in terms of changing dynamics of the underlying system.

DET =
�

���min
�H(�)

�
i,jRi,j

. (3)

It measures the likelihood that the dynamics of the system sustains to follow a dynamics that had been already
occurred at a previous time; it is, therefore, related to the local predictability of the dynamics.

A further important progress was to identify the binary, square matrix R as the adjacency matrix of a
complex network [33, 34]. The resulting recurrence network Ai,j = Ri,j − �i,j consists of nodes representing the
time points of the phase space trajectory and links that represent the similarity (recurrence) between a pair of
time points. The Kronecker delta �i,j is applied to avoid self-loops. The known network measures can be used
as additional diagnostic tools for time series analysis that complement the other measures obtained from RPs
[33–36].

Besides the application of RP quantification for the classification of different dynamics, studying the vari-
ation of a recurrence measure over time is a fundamental application and is successfully used to detect tran-
sitions between different dynamical regimes [37–39]. A sliding window is applied to the time series and the
recurrence measures are calculated and stored within each window, providing the temporal change of these
measures. (Abrupt) changes in the first two statistical moments (mean and variance) are clearly visible in the
RP by changes of density of points and block-like pattern. However, more subtle, qualitative changes, such as
critical transitions or chaos-chaos transitions, are not directly detectable by the first two statistical moments,
but can be identified by changes in the recurrence structure (e.g., line length distribution) and measured by
the RQA measures. The fundamental issue when drawing conclusions about the variation of these RP based
measures is whether the variation over time is significant or not. In order to get an impression about the
significance of the results, a statistical approach is required that provides a confidence interval for the RP mea-
sures. The approach depends on the null-hypothesis. For specific null-hypothesis, such as serial independence
(corresponding to the vertical line structure in the RP) or stochastic dynamics, a test statistic can be derived
analytically [40, 41]. However, dynamical changes are often not as simple and require either surrogate [42, 43]
or bootstrap tests [44, 45]. For example, a bootstrap test can use the distribution of line lengths within all slid-
ing windows together to bootstrap new line length distributions out from this merged line length distribution
[45].

The transition detection based on recurrence analysis is of high interest for the identification of abrupt
or gradual changes and transitions in palaeoclimate dynamics [17, 46–49]. For example, terrestrial, Holocene
palaeoclimate records (based on speleothems) from China and Australia have been analysed and their transi-
tions compared. The considered palaeoclimate proxy data represent the northern and the southern extent of
the complex East Asian–Indonesian–Austral summer monsoon, where the East Asian summer monsoon and
the Indonesian–Austral summer monsoon mutually influence each other. Before analyzing the data, a novel,
difference-filter based interpolation schema was applied, because the considered palaeoclimate time series were
irregularly sampled and differed in their sampling points [48]. The recurrence analysis has identified periods of
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Figure 3. Determinism of palaeoclimate time series of the (A) Indonesian–Austral and (B) East Asian summer monsoon.
Statistically significant excursions are indicated by exceeding the horizontal bands. Variations in the solar dynamics are presented
by the dashed lines. Figure modified after [50].

alternating, see-saw like weaker and stronger regular dynamics for those palaeoclimate records (figure 3). The
variation in regularity in the dynamics can be understood in terms of strong and weak monsoons anti-phased
between Asia and Australia [50]. A comparison with variability in solar dynamics suggested that the change
from weak to strong monsoon in the East Asian summer monsoon and, vice versa, in the Indonesian–Austral
summer monsoon, was probably triggered by solar variations via shifting the position of the intertropical
convergence zone [51].

Recurring patterns in data are also often discussed with respect to external drivers, such as the solar vari-
ability or Milankovich cycles. It is interesting and helpful to compare the recurrence properties of the external
forcing with those of climate data. For this purpose, several approaches for multivariate recurrence analysis
are available, e.g., those that study temporal differences [52, 53], different types of synchronization [38, 54],
and even causal relationships [55, 56].

By using the novel idea of combining mapograms with RPs, spatio-temporal recurrences of phytoplankton
growth with respect to potential external drivers was studied [57]. This study used satellite based variation of
chlorophyll concentration in the Southern Californian Bight from 1998 to 2016. RPs for chlorophyll concen-
tration as well as for the sea surface temperature (SST) in the Southern Californian Bight were constructed
using mapograms [58]. From the RPs, the potential external forcing were extracted [59] and compared to the
El Niño/Southern Oscillation (ENSO) index NINO3.4. in order to better understand the mechanism of phy-
toplankton growth. A remarkable coincidence between the variation of the NINO3.4 index and the detected
driving forces derived from the chlorophyll and SST was found. This supports the hypothesis of an impact of
the ENSO on the phytoplankton growth via SST.

In the previous examples, the dynamics of different systems have been compared by a simple comparison of
certain recurrence properties. But the RP approach allows even more sophisticated investigations of couplings
and synchronization. Cross RPs have been introduced to test for the simultaneous occurrence of a similar state
in two systems [52, 60]. Besides testing for interrelationship based on similar states, a CRP can be used to
visualize temporal divergence between similar dynamical systems [53]. An alternative for testing for similar
states in two systems, is to test for the simultaneous occurrence of recurrences in two different systems by joint
RPs. Joint recurrences are important when looking at generalized synchronizations [54] or coupling directions
[61, 62]. For example, using the fraction of recurrence points in the RP and the JRP, we can use concepts from
information theory and define conditional measures of dependence [56, 63].

The recurrence measure of dependence [63] has been used to study the feedback mechanism between the
Amazonian hydroclimatology and the tropical north Atlantic ocean [64]. The study found that precipitation
over the Amazon region controls the atmospheric pressure gradient between the tropical north Atlantic and the
Amazonian on short time scales (up to a few weeks). This pressure gradient controls the zonal winds over the
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tropical north Atlantic on short and intermediate time scales (up to a year). These zonal winds, finally, influence
the tropical Atlantic SST, which, to close the feedback loop, have an impact on precipitation at the Amazon
region. These results show that the Amazon region also plays a key role in the tropical Atlantic warming,
reinforcing the feedback and triggering severe droughts.

2.2. Future challenges and opportunities for RP analysis
In contrast to graph theory and complex network science, RP based analysis is much younger and is used by
a much smaller scientific community. Therefore, many issues are still open and several challenges have to be
addressed, enough room for potential theoretical work and improvements.

The scientific communities are becoming more interested in considering uncertainties that come along
with the data. New approaches have been suggested, such as simple Monte Carlo based approaches [65] or
Bayesian based approaches [66]. First ideas to incorporate uncertainties directly into the RP representation
have recently been published [67]. The binary RP is replaced by a probability matrix that states how likely a
recurrence occurs at a certain pair of time points. However, the quantification of such probability RP is not
easy and still deserves future development.

Another important issue is the impact of embedding and sampling (not only for recurrence analysis but on
time series analysis in general). In particular in palaeoclimate research, time series have usually non-equidistant
sampling points, due to changes in the sedimentation process, in varying secondary transformations of sedi-
ments (e.g., diagenesis), gaps during sedimentation (hiatusses), distortions during sampling retrieval (drilling)
or sampling in the lab, etc. The standard procedure is often to interpolate the time series to a common new
time axis. A higher temporal resolution than the original sampling can prevail additional recurrence structures
such as diagonal lines, where actually such lines would not exist. The increasing number of new high-resolution
geological data (e.g., [17]) makes the application of recurrence based analysis interesting, but comes with the
risk of misinterpretation due to interpolation or changing sampling times. The limits of interpolation have to
be carefully considered or alternative approaches, allowing for the direct application of time series analysis or
even RPs to irregularly sampled time series [50, 68], should be applied and further developed.

Recurrence analysis will also benefit from the increasing interest in machine learning. Recurrence patterns
could be used as feature vectors for neural network based classification [18, 69] or deep learning based fore-
casting [70]. Combining recurrence analysis with machine learning concepts will help in investigating the
recurrence structures in large sets of big data.

We expect a further increase of the popularity of RP based analysis and its increasing application in further
scientific fields, such as turbulence, plasma physics, hydrology, neuroscience, physiology, sociology, etc.

3. Complex networks for climate data analysis and extreme-event prediction

3.1. State-of-the-art
In the last two decades, complex networks have proven to be powerful tools for the quantitative analysis of
spatial dependency patterns of measured or simulated climatic observables.

The key concept is that of functional networks, which is also widely used in the analysis of data from
physiology or neuroscience. In this approach, network links represent associations or functional dependencies
between network nodes, rather than actual physical connections as in the case of anatomical networks. Assume
we are given a spatiotemporal dataset X ∈ RN×T , where each row xi(t) ∈ RT denotes a time series encoding
the temporal evolution of the climatic variable of interest at a location i. Functional climate networks are then
typically constructed in the following way. First, the time series xi from different geographical locations i are
identified with network or graph nodes vi ∈ V . Second, statistical dependencies between pairs of time series
xi and xj are represented by network links eij ∈ E (figure 4).

Time series, e.g., representing temperature, pressure, or rainfall variability, can directly originate from
measurement stations [71], from the single cells of spatially gridded data sets [72], or from climate indices
representing variability of entire climate modes [73].

To measure the dependencies between time series, a multitude of different similarity measures has been
proposed, including Pearson’s linear correlation coefficient [29] and modifications thereof [74, 75], nonlinear
mutual information [76–78], event synchronization [79, 80] to measure dependencies in highly intermittent
rainfall time series, as well as different causality measures [81–83]. Commonly, only the strongest or statistically
most significant dependencies are represented by network nodes, while weaker, non-significant dependencies
are discarded (figure 5).

The topology of the network or graph G = (V , E) can then be represented by the network adjacency matrix
A, for which (in the unweighted and undirected case) Aij = 1 if there exists a link eij between nodes vi and vj

and Aij = 0 otherwise, with straightforward extensions to the cases of directed and weighted networks.
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Figure 4. Schematic diagram showing how climate networks are constructed from data. Observation sites (top left) contain time
series encoding the variability of a climatic variable of interest (top right), which are identified with the nodes of the network.
Links are placed between any two nodes (bottom right) if there is a strong and significant similarity between the corresponding
pair of time series. Once this is repeated for all possible pairs of time series, a network is obtained, which encodes the coupling
structure of the climatic field of interest, in terms of the network topology. Different aspects of this coupling structure can finally
be quantitatively investigated using node- or link-based network measures (bottom left).

Figure 5. Estimated probability density function of the geographical distances of network links representing significant
synchronizations between extreme rainfall events (circles). A break in the scaling around 2500 km is marked by the vertical black
dashed line. For distances smaller than this threshold, the PDF approximately follows a power law with exponent close to one
(cyan), indicating that the probability of significant extreme-event synchronization scales inversely to the geographical distance.
This regime can be associated with regional weather systems. For larger distances, however, the probability of significant
extreme-event synchronizations increases again, with peak around 10 000 km. In this super-power law scaling regime, the
distance-distribution closely follows the distribution of all possible great circles on the Earth’s surface. Atmospheric Rossby waves
propagate—to a first approximation—along great circles, and have been suggested to be the main cause for these global-scale
teleconnections. Figure adapted from [100].

The key idea behind this functional network construction from observed or simulated data is thus to make
the spatial dependency structure of a climatic variable of interest mathematically accessible in terms of the
network adjacency matrix A (figure 4). In a following step, node-based network measures, quantifying for
example different aspects of centrality or clustering, can then be used to investigate specific characteristics of
the network topology, and in turn to infer information about the dynamical oceanic or atmospheric processes
causing the dependencies. For example, the simple network measure degree k, defined at node i as

ki =
N�

j=1

Aij, (4)
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quantifies the number of locations that exhibit statistically similar behavior as the time series xi. Focussing on
path structures within the network, the centrality measure betweenness b have been shown to be useful in the
context of climatic interpretation,

bi =
�

j�=i�=k

�jk(i)

�jk
, (5)

where �jk denotes the number of shortest network paths from k to j and �jk(i) the number of such shortest
paths that pass through node i. This measure is expected to be high in regions important for the large-scale
information transport in the functional network. Complementarily, the clustering coefficient c

ci =
1

ki(ki − 1)

�

j,k

AijAjkAki, (6)

measures how strongly links tend to form triangles of links, and thus the tendency toward homogenous,
clustered behavior.

It has, for example, been shown in a climate network representing dependencies between extreme rainfall
events that high degree and betweenness centrality values correspond to regions that are important for the
large-scale propagation of extreme events, whereas high clustering coefficients have been found in regions
where large, persistent convective systems frequently develop [84, 85].

Networks thus provide a highly flexible methodological framework for the investigation of spatial co-
variability patterns in climate dynamics, complementing and extending existing linear methods such as princi-
pal component analysis [86]. Generalizations toward interacting networks [87], as well as extensions to multi-
variate settings [88] and multi-scale approaches [89, 90] have further enhanced the flexibility and broadened
the applicability of network-based methods in the climate sciences.

Approaches based on complex networks have been widely employed to study the characteristics and large-
scale impacts of the ENSO [91–93]. Focussing on specific correlation characteristics between SST anomalies
in the tropical Pacific ocean, it has been shown that networks can be used to predict El Niño events up to one
year in advance [94], even crossing the so-called spring barrier for El Niño forecasting [95].

Very recently, a bi-variate network approach was implemented to study the influence of tropical Atlantic
ocean SSTs on rainfall anomalies in the central Amazon. It was revealed in the latter study that Amazon
droughts are preceded by the development of an SST dipole between the northern and the southern tropical
Atlantic ocean. This information could be used to establish an early-warning scheme that correctly hindcasts
six out of the seven most severe Amazon droughts that occurred during the last four decades [88].

Complex networks have also been extensively used to study spatial synchronization patterns of extreme
rainfall events on regional [79, 96–99] and global [90, 100] scales. It has been shown in this context that
well-known network centrality and clustering measures can be assigned a climatic interpretation, allowing
to associate the spatial patterns exhibited by such network measures with the driving atmospheric mecha-
nisms [80, 87, 99, 101]. For example, our understanding of atmospheric Rossby waves and the mid-latitude
jet streams has benefited significantly from analyses employing network-based methods [101, 102]. In partic-
ular, it has recently been shown in a climate network analysis that upper-atmospheric Rossby wave trains are
the main mechanism causing stable synchronization patterns of extreme rainfall on global scales, leading to
a super-power law scaling in the distance distribution of significant synchronizations between extreme events
at different locations [100] (figure 3): a power law-scaling was found in the latter study for the geograph-
ical distances of network links representing significant synchronizations between extreme rainfall events, if
restricted to distances below around 2500 km. For longer distances, however, the distribution strongly devi-
ates from the power law, with much higher probability than an extrapolation from the smaller distances
would suggest. This exceptional kind of scaling behavior has been associated with the presence of so-called
dragon kings [103, 104].

Apart from climatic analysis and identification of atmospheric mechanisms, networks have also been used
to evaluate the quality of different reanalysis datasets and the simulations of regional and global climate models
concerning the representation of extreme events and their dependency structures [105].

In some cases, network-based approaches have revealed previously unrecognized forecast potential for
extreme rainfall events [85, 100, 106]. The key idea in this context is that recurrent, temporally ordered
event patterns are captured in the network topology. A great advantage of network-based methods for spa-
tial pattern identification in this context is their flexibility. In particular, they allow to focus the analysis on the
dependencies of extreme events alone rather than on lower-order statistical moments as with more traditional
methods based on principal component analysis of the covariance matrix. Examples of spatial propagation
patterns revealed using complex networks include propagating mesoscale convective systems, frontal systems,
or tropical cyclones [85, 106], but also time-delayed synchronization patterns between extremes across large
spatial distances caused by quasi-stationary Rossby waves [100]. Assuming stationarity to some degree, such
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statistically inferred, time-lagged synchronization patterns can then be used to establish empirically-based
forecast rules. Based on insights into spatial dependency patterns gained from network analysis of climate
variables over the Indian subcontinent, a competitive prediction scheme for the onset and withdrawal of the
Indian summer monsoon has furthermore been established [107].

3.2. Future challenges and opportunities for network-based climate analysis
There is tremendous potential for further developing network-based approaches to investigate spatial co-
variability patterns of climatic observables beyond the linear regime. Upon identifying time intervals during
which specific, network-derived co-variability structures of interest are active, composites anomalies of con-
founding climatic variables can be derived to reveal the underlying mechanisms in the circulation dynamics
of the atmosphere or oceans.

Also for predictive purposes, it is important to go beyond purely statistical information on dependen-
cies between climatic variables at different locations, in particular to circumvent potential problems induced
by non-stationarity. Along the lines of the above, network-based approaches can play an interface role here,
connecting statistical information on recurring spatial co-variability patterns with the underlying physical
mechanisms.

A particular opportunity for future applications of networks in climate science, which has so far only been
touched upon in very few studies, is to compare network-derived spatial dependency patterns from observa-
tions with corresponding patterns obtained from simulations by general circulation models. Focussing first on
historical simulation runs, e.g., from the coupled model intercomparision project (CMIP), this can allow to
evaluate and compare the performance of different state-of-the-art general circulation models with respect to
reproducing observed spatial dependency structures. In a next step, future projections from the CMIP models
could be analyzed concerning such dependency structures, whilst taking into account the information on their
performance in reproducing structures from historical observations.

The recent success of machine and in particular deep learning methods in extracting information from large
sets of time series [108] suggests that these techniques also carry great potential for applications in the analysis
of climate data [109]. We see great potential in combining methods from complexity science that have already
been shown to be applicable for the analysis of geoscientific data—such as complex networks—with state-
of-the-art machine learning methods such as recurrent neural networks [110] for the analysis of time series
and convolutional neural networks [111] for the analysis and inference of maps between spatial patterns. In
particular, such deep learning architectures should prove extremely valuable in systematically extracting the
predictive skill that is encoded in the topology of networks representing the (temporally ordered) dependency
structure of climate variables at different locations.

Moreover, combinations of network approaches with machine learning techniques promise to be extremely
valuable in quantifying the interactions between different parts of the coupled Earth system, such as climate-
vegetation interactions. Even more generally, innovative combinations of these methodological frameworks
should be capable of improving our understanding of interactions between natural and socioeconomic sys-
tems; for example in the context of human migration causes by anthropogenic climate change. We expect
combinations of network theory and similar frameworks from complexity science with genuine machine learn-
ing approaches to also provide new and valuable insights in other fields where complex natural systems can be
studied from a data-centric perspective, such as epidemiology and neuroscience.

4. Conclusion

The problems and challenges arising from the analysis of data obtained from both simulated and real-world
complex systems will keep stimulating methodological developments in complexity science and beyond in
the decades to come. In addition to the natural complex systems that humans have started to study already
millennia before today, we are now producing ever more complex systems ourselves—such as the internet,
social networks, economic, or financial systems.

A key driver of further advances is the desire to improve predictions of the behaviour of complex systems
and especially—for example in the context of the ongoing climate change driven by the anthropogenic release
of greenhouse gases—of the response of complex systems to time-varying external forcing. But for this pur-
pose, it will be vital to improve our abilities to reveal the structural characteristics of complex systems from
data, with focus on both their temporal and spatial intricacies. Advancing our knowledge in this direction
will necessarily have to rely on improvements of our capabilities regarding data-driven inference of governing
principles, in order to reach a deeper understanding of the connection between the microscopic dynamics of
complex system constituents and their nonlinear interactions on the one hand, and the dynamics emerging
from these interactions at the macroscopic level, on the other hand. We are convinced that—among many
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other branches of complexity science—recurrence analysis and complex networks will have a crucial role to
play in this endeavour.
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[5] Carathéodory C 1919 Sitzungsberichte der Preussischen Akademie der Wissenschaften 24 (Berlin: Berlin-Brandenburgische

Akademie der Wissenschaften) pp 580–4
[6] Elton C and Nicholson M 1942 J. Anim. Ecol. 11 215
[7] Schuster A 1898 J. Geophys. Res. 3 13
[8] Schuster A 1906 Phil. Trans. R. Soc. A 206 69–100
[9] Yule G U 1927 Phil. Trans. R. Soc. A 226 267–98

[10] Box G E P and Jenkins G M 1976 Time Series Analysis (San Francisco, CA: Holden-Day)
[11] Priestley M B 1981 Spectral Analysis and Time Series (London: Academic)
[12] Kantz H and Schreiber T 1997 Nonlinear Time Series Analysis (Cambridge: University Press)
[13] Eckmann J-P, Kamphorst S O and Ruelle D 1987 Europhys. Lett. 4 973–7
[14] Zbilut J P and Webber C L Jr 1992 Phys. Lett. A 171 199–203
[15] Hou Y, Aldrich C, Lepkova K, Machuca L L and Kinsella B 2016 Corros. Sci. 112 63–72
[16] Ngamga E J, Bialonski S, Marwan N, Kurths J, Geier C and Lehnertz K 2016 Phys. Lett. A 380 1419–25
[17] Westerhold T et al 2020 Science 369 1383–7
[18] Afonso L C S, Rosa G H, Pereira C R, Weber S A T, Hook C, Albuquerque V H C and Papa J P 2019 Future Gener. Comput. Syst.

94 282–92
[19] Donges J F, Donner R V, Rehfeld K, Marwan N, Trauth M H and Kurths J 2011 Nonlinear Process Geophys. 18 545–62
[20] Pawar S A, Seshadri A, Unni V R and Sujith R I 2017 J. Fluid Mech. 827 664–93
[21] Costa L d F, Rodrigues F A, Travieso G and Villas Boas P R 2007 Adv. Phys. 56 167–242
[22] Lacasa L, Luque B, Ballesteros F, Luque J and Nuño J C 2008 Proc. Natl Acad. Sci. USA 105 4972–5
[23] Donges J F, Zou Y, Marwan N and Kurths J 2009 Europhys. Lett. 87 48007
[24] Rubinov M and Sporns O 2010 NeuroImage 52 1059–69
[25] Campanharo A S L O, Sirer M I, Malmgren R D, Ramos F M and Amaral L A N 2011 PloS One 6 e23378
[26] Schultz P, Heitzig J and Kurths J 2014 New J. Phys. 16 125001
[27] Gao J, Barzel B and Barabási A-L 2016 Nature 530 307–12
[28] Braga A C, Alves L G A, Costa L S, Ribeiro A A, de Jesus M M A, Tateishi A A and Ribeiro H V 2016 Physica A 444 1003–11
[29] Tsonis A A and Roebber P J 2004 Physica A 333 497–504
[30] Marwan N, Wessel N, Meyerfeldt U, Schirdewan A and Kurths J 2002 Phys. Rev. E 66 026702
[31] Takens F 1981 Detecting strange attractors in turbulence Dynamical Systems and Turbulence (Lecture Notes in Mathematics

vol 898) ed D Rand and L S Young (Berlin: Springer) pp 366–81
[32] Packard N H, Crutchfield J P, Farmer J D and Shaw R S 1980 Phys. Rev. Lett. 45 712–6
[33] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246–54
[34] Zou Y, Donner R V, Marwan N, Donges J F and Kurths J 2019 Phys. Rep. 787 1–97
[35] Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 New J. Phys. 12 033025
[36] Donner R V, Small M, Donges J F, Marwan N, Zou Y, Xiang R and Kurths J 2011 Int. J. Bifurcation Chaos 21 1019–46
[37] Trulla L L, Giuliani A, Zbilut J P and Webber C L Jr 1996 Phys. Lett. A 223 255–60
[38] Marwan N, Carmen Romano M, Thiel M and Kurths J 2007 Phys. Rep. 438 237–329
[39] Marwan N 2011 Int. J. Bifurcation Chaos 21 1003–17
[40] Aparicio T, Pozo E F and Saura D 2008 J. Econ. Behav. Organ. 65 768–87
[41] Hirata Y and Aihara K 2011 Int. J. Bifurcation Chaos 21 1077–84
[42] Thiel M, Romano M C, Kurths J, Rolfs M and Kliegl R 2006 Europhys. Lett. 75 535–41

10

https://orcid.org/0000-0002-1239-9034
https://orcid.org/0000-0002-1239-9034
https://doi.org/10.1038/2021258a0
https://doi.org/10.1038/2021258a0
https://doi.org/10.1038/2021258a0
https://doi.org/10.1038/2021258a0
https://doi.org/10.1038/239511a0
https://doi.org/10.1038/239511a0
https://doi.org/10.1038/239511a0
https://doi.org/10.1038/239511a0
https://doi.org/10.1007/bf02392514
https://doi.org/10.1007/bf02392514
https://doi.org/10.1007/bf02392514
https://doi.org/10.1007/bf02392514
https://doi.org/10.2307/1358
https://doi.org/10.2307/1358
https://doi.org/10.1029/tm003i001p00013
https://doi.org/10.1029/tm003i001p00013
https://doi.org/10.1098/rsta.1906.0016
https://doi.org/10.1098/rsta.1906.0016
https://doi.org/10.1098/rsta.1906.0016
https://doi.org/10.1098/rsta.1906.0016
https://doi.org/10.1098/rsta.1927.0007
https://doi.org/10.1098/rsta.1927.0007
https://doi.org/10.1098/rsta.1927.0007
https://doi.org/10.1098/rsta.1927.0007
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1209/0295-5075/4/9/004
https://doi.org/10.1016/0375-9601(92)90426-m
https://doi.org/10.1016/0375-9601(92)90426-m
https://doi.org/10.1016/0375-9601(92)90426-m
https://doi.org/10.1016/0375-9601(92)90426-m
https://doi.org/10.1016/j.corsci.2016.07.009
https://doi.org/10.1016/j.corsci.2016.07.009
https://doi.org/10.1016/j.corsci.2016.07.009
https://doi.org/10.1016/j.corsci.2016.07.009
https://doi.org/10.1016/j.physleta.2016.02.024
https://doi.org/10.1016/j.physleta.2016.02.024
https://doi.org/10.1016/j.physleta.2016.02.024
https://doi.org/10.1016/j.physleta.2016.02.024
https://doi.org/10.1126/science.aba6853
https://doi.org/10.1126/science.aba6853
https://doi.org/10.1126/science.aba6853
https://doi.org/10.1126/science.aba6853
https://doi.org/10.1016/j.future.2018.11.054
https://doi.org/10.1016/j.future.2018.11.054
https://doi.org/10.1016/j.future.2018.11.054
https://doi.org/10.1016/j.future.2018.11.054
https://doi.org/10.5194/npg-18-545-2011
https://doi.org/10.5194/npg-18-545-2011
https://doi.org/10.5194/npg-18-545-2011
https://doi.org/10.5194/npg-18-545-2011
https://doi.org/10.1017/jfm.2017.438
https://doi.org/10.1017/jfm.2017.438
https://doi.org/10.1017/jfm.2017.438
https://doi.org/10.1017/jfm.2017.438
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1371/journal.pone.0023378
https://doi.org/10.1371/journal.pone.0023378
https://doi.org/10.1088/1367-2630/16/12/125001
https://doi.org/10.1088/1367-2630/16/12/125001
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1016/j.physa.2015.10.102
https://doi.org/10.1016/j.physa.2015.10.102
https://doi.org/10.1016/j.physa.2015.10.102
https://doi.org/10.1016/j.physa.2015.10.102
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1016/j.physa.2003.10.045
https://doi.org/10.1103/physreve.66.026702
https://doi.org/10.1103/physreve.66.026702
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1103/physrevlett.45.712
https://doi.org/10.1016/j.physleta.2009.09.042
https://doi.org/10.1016/j.physleta.2009.09.042
https://doi.org/10.1016/j.physleta.2009.09.042
https://doi.org/10.1016/j.physleta.2009.09.042
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1016/j.physrep.2018.10.005
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1088/1367-2630/12/3/033025
https://doi.org/10.1142/s0218127411029021
https://doi.org/10.1142/s0218127411029021
https://doi.org/10.1142/s0218127411029021
https://doi.org/10.1142/s0218127411029021
https://doi.org/10.1016/s0375-9601(96)00741-4
https://doi.org/10.1016/s0375-9601(96)00741-4
https://doi.org/10.1016/s0375-9601(96)00741-4
https://doi.org/10.1016/s0375-9601(96)00741-4
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1142/s0218127411029008
https://doi.org/10.1142/s0218127411029008
https://doi.org/10.1142/s0218127411029008
https://doi.org/10.1142/s0218127411029008
https://doi.org/10.1016/j.jebo.2006.03.005
https://doi.org/10.1016/j.jebo.2006.03.005
https://doi.org/10.1016/j.jebo.2006.03.005
https://doi.org/10.1016/j.jebo.2006.03.005
https://doi.org/10.1142/s0218127411028908
https://doi.org/10.1142/s0218127411028908
https://doi.org/10.1142/s0218127411028908
https://doi.org/10.1142/s0218127411028908
https://doi.org/10.1209/epl/i2006-10147-0
https://doi.org/10.1209/epl/i2006-10147-0
https://doi.org/10.1209/epl/i2006-10147-0
https://doi.org/10.1209/epl/i2006-10147-0


J.Phys.Complex. 2 (2021) 011001 (11pp) N Boers et al

[43] Lancaster G, Iatsenko D, Pidde A, Ticcinelli V and Stefanovska A 2018 Phys. Rep. 748 1–60
[44] Schinkel S, Marwan N, Dimigen O and Kurths J 2009 Phys. Lett. A 373 2245–50
[45] Marwan N, Schinkel S and Kurths J 2013 Europhys. Lett. 101 20007
[46] Donges J F, Donner R V, Trauth M H, Marwan N, Schellnhuber H-J and Kurths J 2011 Proc. Natl Acad. Sci. 108 20422–7
[47] Marwan N and Kurths J 2015 Chaos 25 097609
[48] Ozken I, Eroglu D, Stemler T, Marwan N, Bagci G B and Kurths J 2015 Phys. Rev. E 91 062911
[49] Trauth M H, Asrat A, Duesing W, Foerster V, Kraemer K H, Marwan N, Maslin M A and Schaebitz F 2019 Clim. Dyn. 53 2557–72
[50] Eroglu D, McRobie F H, Ozken I, Stemler T, Wyrwoll K H, Breitenbach S F M, Marwan N and Kurths J 2016 Nat. Commun. 7

12929
[51] Wang Y et al 2005 Science 308 854–7
[52] Marwan N, Thiel M and Nowaczyk N R 2002 Nonlinear Process Geophys. 9 325–31
[53] Marwan N and Kurths J 2005 Phys. Lett. A 336 349–57
[54] Romano M C, Thiel M, Kurths J and von Bloh W 2004 Phys. Lett. A 330 214–23
[55] Feldhoff J H, Donner R V, Donges J F, Marwan N and Kurths J 2012 Phys. Lett. A 376 3504–13
[56] Ramos A M T, Builes-Jaramillo A, Poveda G, Goswami B, Macau E E N, Kurths J and Marwan N 2017 Phys. Rev. E 95 052206
[57] Riedl M, Marwan N and Kurths J 2017 Eur. Phys. J.: Spec. Top. 226 3273–85
[58] Riedl M, Marwan N and Kurths J 2015 Chaos 25 123111
[59] Casdagli M C 1997 Physica D 108 12–44
[60] Marwan N and Kurths J 2002 Phys. Lett. A 302 299–307
[61] Romano M C, Thiel M, Kurths J and Grebogi C 2007 Phys. Rev. E 76 036211
[62] Zou Y, Romano M C, Thiel M, Marwan N and Kurths J 2011 Int. J. Bifurcation Chaos 21 1099–111
[63] Goswami B, Marwan N, Feulner G and Kurths J 2013 Eur. Phys. J.: Spec. Top. 222 861–73
[64] Builes-Jaramillo A, Marwan N, Poveda G and Kurths J 2018 Clim. Dyn. 50 2951–69
[65] Breitenbach S F M et al 2012 Clim. Past 8 1765–79
[66] Schütz N and Holschneider M 2011 Phys. Rev. E 84 021120
[67] Goswami B, Boers N, Rheinwalt A, Marwan N, Heitzig J, Breitenbach S F M and Kurths J 2018 Nat. Commun. 9 48
[68] Ozken I, Eroglu D, Breitenbach S F M, Marwan N, Tan L, Tirnakli U and Kurths J 2018 Phys. Rev. E 98 052215
[69] Hatami N, Gavet Y and Debayle J 2018 Proc. SPIE 10696 106960Y
[70] Estebsari A and Rajabi R 2020 Electronics 9 68
[71] Rheinwalt A, Marwan N, Kurths J, Werner P and Gerstengarbe F-W 2012 Europhys. Lett. 100 28002
[72] Donges J F, Zou Y, Marwan N and Kurths J 2009 Europhys. Lett. 87 48007
[73] Tsonis A A 2007 Int. J. Bifurcation Chaos 17 4229–43
[74] Yamasaki K, Gozolchiani A and Havlin S 2008 Phys. Rev. Lett. 100 228501
[75] Ciemer C, Boers N, Barbosa H M J, Kurths J and Rammig A 2018 Clim. Dyn. 51 371–82
[76] Donges J F, Zou Y, Marwan N and Kurths J 2009 Eur. Phys. J.: Spec. Top. 174 157–79
[77] Barreiro M, Marti A C and Masoller C 2011 Chaos 21 013101
[78] Deza J I, Barreiro M and Masoller C 2015 Chaos 25 033105
[79] Malik N, Bookhagen B, Marwan N and Kurths J 2012 Clim. Dyn. 39 971–87
[80] Boers N, Bookhagen B, Marwan N, Kurths J and Marengo J 2013 Geophys. Res. Lett. 40 4386–92
[81] Hlinka J, Hartman D, Vejmelka M, Runge J, Marwan N, Kurths J and Paluš M 2013 Entropy 15 2023–45
[82] Runge J et al 2015 Nat. Commun. 6 8502
[83] Runge J, Nowack P, Kretschmer M, Flaxman S and Sejdinovic D 2019 Sci. Adv. 5 eaau4996
[84] Boers N, Bookhagen B, Marwan N, Kurths J and Marengo J 2013 Geophys. Res. Lett. 40 4386–92
[85] Boers N, Rheinwalt A, Bookhagen B, Barbosa H M J, Marwan N, Marengo J and Kurths J 2014 Geophys. Res. Lett. 41 7397–405
[86] Donges J F, Petrova I, Loew A, Marwan N and Kurths J 2015 Clim. Dyn. 45 2407–24
[87] Donges J F, Schultz H C H, Marwan N, Zou Y and Kurths J 2011 Eur. Phys. J. B 84 635–51
[88] Ciemer C, Rehm L, Kurths J, Donner R V, Winkelmann R and Boers N 2020 Environ. Res. Lett. 15 094087
[89] Agarwal A, Marwan N, Rathinasamy M, Merz B and Kurths J 2017 Nonlinear Process Geophys. 24 599–611
[90] Agarwal A, Caesar L, Marwan N, Maheswaran R, Merz B and Kurths J 2019 Sci. Rep. 9 8808
[91] Gozolchiani A, Havlin S and Yamasaki K 2011 Phys. Rev. Lett. 107 148501
[92] Wiedermann M, Radebach A, Donges J F, Kurths J and Donner R V 2016 Geophys. Res. Lett. 43 7176–85
[93] Fan J, Meng J, Ashkenazy Y, Havlin S and Schellnhuber H J 2017 Proc. Natl Acad. Sci. 114 201701214
[94] Ludescher J, Gozolchiani A, Bogachev M I, Bunde A, Havlin S and Schellnhuber H J 2013 Proc. Natl Acad. Sci. 110 11742–5
[95] Meng J, Fan J, Ludescher J, Agarwal A, Chen X, Bunde A, Kurths J and Schellnhuber H J 2020 Proc. Natl Acad. Sci. USA 117

177–83
[96] Stolbova V, Martin P, Bookhagen B, Marwan N and Kurths J 2014 Nonlinear Process Geophys. 21 901–17
[97] Rheinwalt A, Boers N, Marwan N, Kurths J, Hoffmann P, Gerstengarbe F W and Werner P 2016 Clim. Dyn. 46 1066–74
[98] Agarwal A, Marwan N, Maheswaran R, Merz B and Kurths J 2018 J. Hydrol. 563 802–10
[99] Kurths J, Agarwal A, Shukla R, Marwan N, Rathinasamy M, Caesar L, Krishnan R and Merz B 2019 Nonlinear Process Geophys. 26

251–66
[100] Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B and Kurths J 2019 Nature 566 373–7
[101] Boers N, Bookhagen B, Barbosa H M J, Marwan N, Kurths J and Marengo J A 2014 Nat. Commun. 5 5199
[102] Wang Y, Gozolchiani A, Ashkenazy Y, Berezin Y, Guez O and Havlin S 2013 Phys. Rev. Lett. 111 138501
[103] Sornette D 2009 Dragon-Kings, Black Swans and the Prediction of Crises Swiss Finance Institute Research Paper No. 09-36,

Available at SSRN: https://ssrn.com/abstract=1470006 or http://dx.doi.org/10.2139/ssrn.1470006
[104] Peters O, Christensen K and Neelin J D 2012 Eur. Phys. J.: Spec. Top. 205 147–58
[105] Boers N, Bookhagen B, Marengo J, Marwan N, von Storch J-S and Kurths J 2015 J. Clim. 28 1031–56
[106] Boers N, Bookhagen B, Marwan N and Kurths J 2016 Clim. Dyn. 46 601–17
[107] Stolbova V, Surovyatkina E, Bookhagen B and Kurths J 2016 Geophys. Res. Lett. 43 3982–90
[108] Fulcher B D and Jones N S 2017 Cell Syst. 5 527–31
[109] Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N and Prabhat 2019 Nature 566 195–204
[110] Connor J T, Martin R D and Atlas L E 1994 IEEE Trans. Neural Netw. 5 240–54
[111] Fukushima K 1980 Biol. Cybern. 36 193–202

11

https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1016/j.physrep.2018.06.001
https://doi.org/10.1016/j.physleta.2009.04.045
https://doi.org/10.1016/j.physleta.2009.04.045
https://doi.org/10.1016/j.physleta.2009.04.045
https://doi.org/10.1016/j.physleta.2009.04.045
https://doi.org/10.1209/0295-5075/101/20007
https://doi.org/10.1209/0295-5075/101/20007
https://doi.org/10.1073/pnas.1117052108
https://doi.org/10.1073/pnas.1117052108
https://doi.org/10.1073/pnas.1117052108
https://doi.org/10.1073/pnas.1117052108
https://doi.org/10.1063/1.4916924
https://doi.org/10.1063/1.4916924
https://doi.org/10.1103/physreve.91.062911
https://doi.org/10.1103/physreve.91.062911
https://doi.org/10.1007/s00382-019-04641-3
https://doi.org/10.1007/s00382-019-04641-3
https://doi.org/10.1007/s00382-019-04641-3
https://doi.org/10.1007/s00382-019-04641-3
https://doi.org/10.1038/ncomms12929
https://doi.org/10.1038/ncomms12929
https://doi.org/10.1126/science.1106296
https://doi.org/10.1126/science.1106296
https://doi.org/10.1126/science.1106296
https://doi.org/10.1126/science.1106296
https://doi.org/10.5194/npg-9-325-2002
https://doi.org/10.5194/npg-9-325-2002
https://doi.org/10.5194/npg-9-325-2002
https://doi.org/10.5194/npg-9-325-2002
https://doi.org/10.1016/j.physleta.2004.12.056
https://doi.org/10.1016/j.physleta.2004.12.056
https://doi.org/10.1016/j.physleta.2004.12.056
https://doi.org/10.1016/j.physleta.2004.12.056
https://doi.org/10.1016/j.physleta.2004.07.066
https://doi.org/10.1016/j.physleta.2004.07.066
https://doi.org/10.1016/j.physleta.2004.07.066
https://doi.org/10.1016/j.physleta.2004.07.066
https://doi.org/10.1016/j.physleta.2012.10.008
https://doi.org/10.1016/j.physleta.2012.10.008
https://doi.org/10.1016/j.physleta.2012.10.008
https://doi.org/10.1016/j.physleta.2012.10.008
https://doi.org/10.1103/physreve.95.052206
https://doi.org/10.1103/physreve.95.052206
https://doi.org/10.1140/epjst/e2016-60376-9
https://doi.org/10.1140/epjst/e2016-60376-9
https://doi.org/10.1140/epjst/e2016-60376-9
https://doi.org/10.1140/epjst/e2016-60376-9
https://doi.org/10.1063/1.4937164
https://doi.org/10.1063/1.4937164
https://doi.org/10.1016/s0167-2789(97)82003-9
https://doi.org/10.1016/s0167-2789(97)82003-9
https://doi.org/10.1016/s0167-2789(97)82003-9
https://doi.org/10.1016/s0167-2789(97)82003-9
https://doi.org/10.1016/s0375-9601(02)01170-2
https://doi.org/10.1016/s0375-9601(02)01170-2
https://doi.org/10.1016/s0375-9601(02)01170-2
https://doi.org/10.1016/s0375-9601(02)01170-2
https://doi.org/10.1103/physreve.76.036211
https://doi.org/10.1103/physreve.76.036211
https://doi.org/10.1142/s0218127411029033
https://doi.org/10.1142/s0218127411029033
https://doi.org/10.1142/s0218127411029033
https://doi.org/10.1142/s0218127411029033
https://doi.org/10.1140/epjst/e2013-01889-8
https://doi.org/10.1140/epjst/e2013-01889-8
https://doi.org/10.1140/epjst/e2013-01889-8
https://doi.org/10.1140/epjst/e2013-01889-8
https://doi.org/10.1007/s00382-017-3785-8
https://doi.org/10.1007/s00382-017-3785-8
https://doi.org/10.1007/s00382-017-3785-8
https://doi.org/10.1007/s00382-017-3785-8
https://doi.org/10.5194/cp-8-1765-2012
https://doi.org/10.5194/cp-8-1765-2012
https://doi.org/10.5194/cp-8-1765-2012
https://doi.org/10.5194/cp-8-1765-2012
https://doi.org/10.1103/physreve.84.021120
https://doi.org/10.1103/physreve.84.021120
https://doi.org/10.1038/s41467-017-02456-6
https://doi.org/10.1038/s41467-017-02456-6
https://doi.org/10.1103/physreve.98.052215
https://doi.org/10.1103/physreve.98.052215
https://doi.org/10.1117/12.2309486
https://doi.org/10.1117/12.2309486
https://doi.org/10.3390/electronics9010068
https://doi.org/10.3390/electronics9010068
https://doi.org/10.1209/0295-5075/100/28002
https://doi.org/10.1209/0295-5075/100/28002
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1209/0295-5075/87/48007
https://doi.org/10.1142/s0218127407019913
https://doi.org/10.1142/s0218127407019913
https://doi.org/10.1142/s0218127407019913
https://doi.org/10.1142/s0218127407019913
https://doi.org/10.1103/physrevlett.100.228501
https://doi.org/10.1103/physrevlett.100.228501
https://doi.org/10.1007/s00382-017-3929-x
https://doi.org/10.1007/s00382-017-3929-x
https://doi.org/10.1007/s00382-017-3929-x
https://doi.org/10.1007/s00382-017-3929-x
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1140/epjst/e2009-01098-2
https://doi.org/10.1063/1.3545273
https://doi.org/10.1063/1.3545273
https://doi.org/10.1063/1.4914101
https://doi.org/10.1063/1.4914101
https://doi.org/10.1007/s00382-011-1156-4
https://doi.org/10.1007/s00382-011-1156-4
https://doi.org/10.1007/s00382-011-1156-4
https://doi.org/10.1007/s00382-011-1156-4
https://doi.org/10.1002/grl.50681
https://doi.org/10.1002/grl.50681
https://doi.org/10.1002/grl.50681
https://doi.org/10.1002/grl.50681
https://doi.org/10.3390/e15062023
https://doi.org/10.3390/e15062023
https://doi.org/10.3390/e15062023
https://doi.org/10.3390/e15062023
https://doi.org/10.1038/ncomms9502
https://doi.org/10.1038/ncomms9502
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1002/grl.50681
https://doi.org/10.1002/grl.50681
https://doi.org/10.1002/grl.50681
https://doi.org/10.1002/grl.50681
https://doi.org/10.1002/2014gl061829
https://doi.org/10.1002/2014gl061829
https://doi.org/10.1002/2014gl061829
https://doi.org/10.1002/2014gl061829
https://doi.org/10.1007/s00382-015-2479-3
https://doi.org/10.1007/s00382-015-2479-3
https://doi.org/10.1007/s00382-015-2479-3
https://doi.org/10.1007/s00382-015-2479-3
https://doi.org/10.1140/epjb/e2011-10795-8
https://doi.org/10.1140/epjb/e2011-10795-8
https://doi.org/10.1140/epjb/e2011-10795-8
https://doi.org/10.1140/epjb/e2011-10795-8
https://doi.org/10.1088/1748-9326/ab9cff
https://doi.org/10.1088/1748-9326/ab9cff
https://doi.org/10.5194/npg-24-599-2017
https://doi.org/10.5194/npg-24-599-2017
https://doi.org/10.5194/npg-24-599-2017
https://doi.org/10.5194/npg-24-599-2017
https://doi.org/10.1038/s41598-019-45423-5
https://doi.org/10.1038/s41598-019-45423-5
https://doi.org/10.1103/physrevlett.107.148501
https://doi.org/10.1103/physrevlett.107.148501
https://doi.org/10.1002/2016gl069119
https://doi.org/10.1002/2016gl069119
https://doi.org/10.1002/2016gl069119
https://doi.org/10.1002/2016gl069119
https://doi.org/10.1073/pnas.1701214114
https://doi.org/10.1073/pnas.1701214114
https://doi.org/10.1073/pnas.1309353110
https://doi.org/10.1073/pnas.1309353110
https://doi.org/10.1073/pnas.1309353110
https://doi.org/10.1073/pnas.1309353110
https://doi.org/10.1073/pnas.1917007117
https://doi.org/10.1073/pnas.1917007117
https://doi.org/10.1073/pnas.1917007117
https://doi.org/10.1073/pnas.1917007117
https://doi.org/10.5194/npg-21-901-2014
https://doi.org/10.5194/npg-21-901-2014
https://doi.org/10.5194/npg-21-901-2014
https://doi.org/10.5194/npg-21-901-2014
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1007/s00382-015-2632-z
https://doi.org/10.1016/j.jhydrol.2018.06.050
https://doi.org/10.1016/j.jhydrol.2018.06.050
https://doi.org/10.1016/j.jhydrol.2018.06.050
https://doi.org/10.1016/j.jhydrol.2018.06.050
https://doi.org/10.5194/npg-26-251-2019
https://doi.org/10.5194/npg-26-251-2019
https://doi.org/10.5194/npg-26-251-2019
https://doi.org/10.5194/npg-26-251-2019
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1038/s41586-018-0872-x
https://doi.org/10.1038/ncomms6199
https://doi.org/10.1038/ncomms6199
https://doi.org/10.1103/physrevlett.111.138501
https://doi.org/10.1103/physrevlett.111.138501
https://ssrn.com/abstract=1470006
http://dx.doi.org/10.2139/ssrn.1470006
https://doi.org/10.1140/epjst/e2012-01567-5
https://doi.org/10.1140/epjst/e2012-01567-5
https://doi.org/10.1140/epjst/e2012-01567-5
https://doi.org/10.1140/epjst/e2012-01567-5
https://doi.org/10.1175/jcli-d-14-00340.1
https://doi.org/10.1175/jcli-d-14-00340.1
https://doi.org/10.1175/jcli-d-14-00340.1
https://doi.org/10.1175/jcli-d-14-00340.1
https://doi.org/10.1007/s00382-015-2601-6
https://doi.org/10.1007/s00382-015-2601-6
https://doi.org/10.1007/s00382-015-2601-6
https://doi.org/10.1007/s00382-015-2601-6
https://doi.org/10.1002/2016gl068392
https://doi.org/10.1002/2016gl068392
https://doi.org/10.1002/2016gl068392
https://doi.org/10.1002/2016gl068392
https://doi.org/10.1016/j.cels.2017.10.001
https://doi.org/10.1016/j.cels.2017.10.001
https://doi.org/10.1016/j.cels.2017.10.001
https://doi.org/10.1016/j.cels.2017.10.001
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1109/72.279188
https://doi.org/10.1109/72.279188
https://doi.org/10.1109/72.279188
https://doi.org/10.1109/72.279188
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251
https://doi.org/10.1007/bf00344251

	Complex systems approaches for Earth system data analysis
	1.  Introduction
	2.  Recurrence analysis
	2.1.  State-of-the-art
	2.2.  Future challenges and opportunities for RP analysis

	3.  Complex networks for climate data analysis and extreme-event prediction


