Originally published as:

DOI: [10.1073/pnas.1902469117](https://doi.org/10.1073/pnas.1902469117)
Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica

Chris S. M. Turnery,1,a, b,c,1, Christopher J. Fogwilld,1, Nicholas R. Golledgee, f,d,1, Nicholas P. McKay9, Erik van Sebilleh, i, l, Richard T. Jones2,2, David Etheridge1, Mauro Rubinod,1, d, David P. Thornton1, Siwan M. Daviesf,1, Christopher Bronk Ramseyd, Zoë A. Thomasg, h, i, t, Michael I. Birdp, q, r, Niels C. Munksgaardd, e, Mika Kohno3, John Woodward1, Kate Winter1, Laura S. Weyrich1, u, v, Camilla M. Rootest, w, Helen Millman3, Paul G. Albertbt, Andres Riveraa, Tas van Ommeent, Mark Curran2, v, y, Andrew Moy2, v, t, Stefan Rahmstorfaa, bb, Kenji Kawamura1, d, ddee, Claus-Dieter Hillenbrandd, e, Michael E. Weberg, Christina J. Manninghh, Jennifer Younguv, v, and Alan Cooperii

aPalaeoentology, Geobiology and Earth Archives Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington NSW 2033, Australia; bAustralian Research Council Centre of Excellence in Australian Biodiversity and Heritage, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington NSW 2033, Australia; cChronos 14Carbon-Cycle Facility, University of New South Wales, Sydney NSW 2052, Australia; dSchool of Geography, Geology and the History of Art, University of Oxford, OX1 3TG, United Kingdom; eAntarctic Research Centre, Victoria University of Wellington, Wellington 6140, New Zealand; fDepartment of Physical Geography, Imperial College London, London SW7 2AZ, United Kingdom; gDepartment of Earth Sciences, Royal Holloway University of London, Surrey TW20 OEX, United Kingdom; hDepartment of Physics, Imperial College London, London SW7 2AZ, United Kingdom; iDepartment of Marine and Atmospheric Research, University of Tasmania, Hobart, TAS 7001, Australia; jInstitute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584 CS Utrecht, The Netherlands; kDepartment of Geography, Exeter University, Devon EX4 4RJ, United Kingdom; lClimate Science Centre, Commonwealth Scientific and Industrial Research Organisation Ocean and Atmosphere, Aspendale, VIC 3195 Australia; mInstitute of Geophysical and Geochemical Sciences, University of Edinburgh, Edinburgh, EH9 3JW, United Kingdom; nDepartment of Geography, Swansea University, Swansea SA2 8PP, United Kingdom; oResearch Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3TG, United Kingdom; pCentre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia; qAustralian Research Council Centre of Excellence in Australian Biodiversity and Heritage, James Cook University, Cairns, QLD 4870, Australia; rResearch Institute for the Environment and Livelihoods, Charles Darwin University, Darwin NT 0909, Australia; sDepartment of Geocology, Geosciences Center, University of Göttingen, 37077 Göttingen, Germany; tDepartment of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom; uAustralian Centre for Ancient DNA, University of Adelaide, Adelaide SA 5005, Australia; vAustralian Research Council Centre of Excellence in Australian Biodiversity and Heritage, University of Adelaide, Adelaide SA 5005, Australia; wDepartment of Geography, University of Sheffield, Sheffield S3 7ND, United Kingdom; xDepartment de Geografa, Universidad de Chile, Santiago, Chile; yDepartment of the Environment and Energy, Australian Antarctic Division, Kingston, TAS 7050, Australia; zAntarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, TAS 7001, Australia; ++Earth System Analysis, Potsdam Institute for Climate Impact Research, D-14412 Potsdam, Germany; ***Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany; ****Research Organizations of Information and Systems, National Institute of Polar Research, Tachikawa, Tokyo 190-8518, Japan; *****Department of Polar Science, Graduate University for Advanced Studies, Tachikawa, Tokyo 190-8518, Japan; ####Institute of Biogeosciences, Japan Agency for Marine–Earth Science and Technology, Yokosuka 237-0061, Japan; #####Palaeo Environments, Ice Sheets and Climate Change, British Antarctic Survey, Cambridge CB3 0ET, United Kingdom; ######Steinmann Institute, University of Bonn, 53115 Bonn, Germany; #######Department of Earth Sciences, Royal Holloway University of London, Surrey TW20 OEX, United Kingdom; and #####South Australian Museum, Adelaide, South Australia 5005, Australia

Edited by Johannes Sutter, University of Bern, Bern, Switzerland, and accepted by Editorial Board Member Jean Jouzel December 27, 2019 (received for review February 11, 2019)

The future response of the Antarctic ice sheet to rising temperatures remains highly uncertain. A useful period for assessing the sensitivity of Antarctica to warming is the Last Interglacial (LIG) (129 to 116 ky), which experienced warmer polar temperatures and higher global mean sea level (GMSL) (+6 to 9 m) relative to present day. LIG sea level cannot be fully explained by Greenland Ice Sheet melt (~2 m), ocean thermal expansion, and melting mountain glaciers (~1 m), suggesting substantial Antarctic mass loss was initiated by warming of Southern Ocean waters, resulting from a weakening Atlantic meridional overturning circulation in response to North Atlantic surface freshening. Here, we report a blue-ice record of ice sheet and environmental change from the Weddell Sea Embayment at the periphery of the marine-based West Antarctic Ice Sheet (WAIS), which is underlain by major methane hydrate reserves. Constrained by a widespread volcanic horizon and supported by ancient microbial DNA analyses, we provide evidence for substantial mass loss across the Weddell Sea Embayment during the LIG, most likely driven by ocean warming and associated with destabilization of subglacial hydrates. Ice sheet modeling supports this interpretation and suggests that millennial-scale warming of the Southern Ocean could have triggered a multimeter rise in global sea levels. Our data indicate that Antarctica is highly vulnerable to projected increases in ocean temperatures and may drive ice–climate feedbacks that further amplify warming.

Antarctic ice sheets | marine ice sheet instability (MIS) | paleoclimatology | polar amplification | tipping element

The projected contribution of the Antarctic ice sheet to 21st-century global mean sea level (GMSL) ranges from negligible (1) to several meters (2, 3). Valuable insights into the response of ice sheets to warming may be gained from the Last Interglacial (LIG) (or Marine Isotope Stage [MIS] 5e in marine sediment records; 129,000 to 116,000 y before present or 129 to 116 ky) (4–9). This period experienced warmer polar temperatures and higher GMSL (+6 to 9 m, possibly up to 11 m) (4, 10–13) relative to present day, and was the most geographically widespread expression of high sea level during a previous warm period (4, 10). LIG sea level cannot be fully explained by Greenland Ice Sheet melt (~2 m) (8), ocean thermal expansion, and melting mountain glaciers (~1 m) (4), implying substantial Antarctic...
Significance

Fifty years ago, it was speculated that the marine-based West Antarctic Ice Sheet is vulnerable to warming and may have melted in the past. Testing this hypothesis has proved challenging due to the difficulty of developing in situ records of ice sheet and environmental change spanning warm periods. We present a multiproxy record that implies loss of the West Antarctic Ice Sheet during the Last Interglacial (129,000 to 116,000 y ago), associated with ocean warming and the release of greenhouse gas methane from marine sediments. Our ice sheet modeling predicts that Antarctica may have contributed several meters to global sea level at this time, suggesting that this ice sheet lies close to a “tipping point” under projected warming.

mass loss (3, 4, 14, 15). Half a century ago, John Mercer was the first to propose that the marine-based West Antarctic Ice Sheet (WAIS) is vulnerable to warming through loss of buttressing ice shelves and may have made a significant contribution to global sea level during the LIG (5–7). Recent work has further demonstrated that extensive deep, marine-based sectors of the East Antarctic Ice Sheet (EAIS) may have accelerated melting, thus contributing to higher LIG sea levels (14). While an isotopic signature of a relatively cool LIG climate preserved in the Mount Moulton blue ice field (16) may be explained by substantial WAIS mass loss (17), no direct physical evidence has yet been identified (4, 18). Temperature estimates derived from climate model simulations provide an indirect measure of change but typically suggest ~1 °C less warming than proxy-based reconstructions (4, 8, 19). When used to drive ice sheet models, these climate anomalies are not sufficient to remove the floating ice shelves that buttress ice flow from central Antarctica (20). In an attempt to bypass these problems, ice sheet models have been driven by a wide range of prescribed climate scenarios; however, these suggest widely different sensitivities dependent on model physics and parameterization (21, 22), with >2 °C (and in some instances >4 °C) ocean warming required for the loss of the WAIS, exceeding paleoclimate estimates (3, 9, 20, 23) and different sensitivities of Antarctic ice sheet sectors (18, 24, 25).

Here, we report a high-resolution record of environmental change and ice flow dynamics from the Patriot Hills Blue Ice Area (BIA), exposed in Horseshoe Valley (Ellsworth Mountains; Methods) (Fig. 1A). Horseshoe Valley is a locally sourced compound glacier system (i.e., with negligible inflow) that is buttressed by, but ultimately coalesces with, the Institute Ice Stream via the Horseshoe Valley Trough, making the area sensitive to dynamic ice sheet changes across the broader Weddell Sea Embayment (WSE) (26). Due to strong prevailing katabatic airflow, an extensive BIA (more than 1,150 m across) has formed to the leeward side of the Patriot Hills, where ancient ice is drawn up from depth within Horseshoe Valley (Fig. 1E). Regional airborne and detailed local ground-penetrating radar (GPR) surveys show a remarkably coherent series of dipping...
(24 to 45°) layers, broken by two discontinuities, which represent isochrons across the Patriot Hills BIA, extending thousands of meters into Horseshoe Valley. A “horizontal ice core” across the BIA spans the time intervals 0 to 80 ky and 130 to 134 ky (Methods and SI Appendix, Fig. S5) constrained by analysis of trace gases and geochemically identified volcanic layers exposed across the transect, which have been Bayesian age modeled against the recently compiled continuous 156-ky global greenhouse gas time series (CO₂, CH₄, and N₂O) (27) on the AICC2012 age scale (28) (Fig. 1B and Methods). The record is located 50 km inland from the modern grounding line of the Filchner–Ronne Ice Shelf in the WSE (29) and close to the Rutford Ice Stream, one of the largest methane hydrate reserves identified in Antarctica [total organic carbon estimated to be 21,000 Gt (30), equivalent to ~2,000 yr of the current carbon emission rate of 10 GtC/year (https://www.co2.earth/global-co2- emissions)]. Today, precipitation at the site is delivered via storms originating from the South Atlantic or Weddell Sea (31). Crucially, the Ellsworth Mountains also lie in a sector of the continent that is highly responsive to isostatic rebound under a scenario of substantial WAIS mass loss, potentially preserving ice from around the time of the LIG in small valley glaciers and higher ground areas (32).

The Patriot Hills Record

The isotopic series of 6D across the Patriot Hills BIA exhibits a coherent record of relatively low values between 18 and 80 ky, consistent with a glacial-age sequence (Fig. 2E). Below these layers and at the periphery of zones of higher ice flow (29), we find an older unit of ice exposed at the surface expressed by a step change to enriched (interglacial) isotopic values (Fig. 2E and SI Appendix, Fig. S7), implying proximal warmer conditions and reduced sea ice extent (33). Importantly, we identify a distinct tephra horizon near the boundary of this older unit of ice, which, based on major and trace element geochemical fingerprinting (Fig. 3 and SI Appendix, Fig. S11), is correlated to a volcanic ash from the penultimate deglaciation (Termination II) referred to as Tephra B in marine sediments on the West Antarctic continental margin (34) and identified at 1,785±14 m depth in the Dome Fuji ice core, where it is dated to 130.7±1.8 ky (AICC2012 timescale) (28, 33, 34). The start of the oldest section of the sequence is dated here to 134.1±2.2 ky, consistent with most recently acquired marine radiocarbon sounding lines, and GPR profiles, which imply older ice exists at depth in the Ellsworth Mountains (29, 32) (Fig. 1B–E).

The combined tephra and trace gas analyses suggest a ~50-ky hiatus after Termination II (130.1±1.8 ky). Radio-echo sounding surveys across the WSE have identified a large subglacial basin comprising lineaments reflecting restricted, dynamic, marine-proximal alpine glaciation, with hanging tributary valleys feeding an overdeepened Ellsworth Trough (35). The extensive nature of the subglacial features implies substantial and repeated mass loss of the marine sections of the WAIS (presumably through the Pleistocene), with the ice margin some 200 km inland of present day (35). However, the timing of most recent retreat is currently unknown. While previous surface exposure dating in the region has suggested that the WAIS contribution to global sea level rise during warmer periods was limited to 3.3 m above present (36), relatively short-duration interglacial periods may have resulted in near-complete deglaciation (35). Previous work has interpreted erosional features D1 and D2 in the Patriot Hills BIA to be a consequence of extensive ice surface lowering in Horseshoe Valley (up to ~500 m since the Last Glacial Maximum, 21 ky) and more exposure of katabatic-enhancing nunataks, resulting in increased wind scour (26, 37). While this scenario may explain unconformity D0, previous work has demonstrated Horseshoe Valley and the wider WSE to be highly sensitive to periods of ice stream advance or retreat in the last glacial cycle and Holocene, with dramatic reductions in surface elevation (26, 37–39), changes that may result in more than just increased wind scour. Importantly, the head of Horseshoe Valley is an overdeepened trough (down to ~2,000 m below sea level), while toward the mouth of the valley, a subglacial ridge is found at ~200 m below current sea level with an ice thickness of some 750 m (Methods and SI Appendix, Fig. S3), allowing the isolation and stagnation of ice in Horseshoe Valley over multiple millennia. Furthermore, glaciological investigations assessing the impact of ice shelf loss on glaciers along the Antarctic Peninsula provide important insights into the preservation of ice, albeit on a smaller scale. The 2002 Larsen B ice shelf collapse led to many of the tributary glaciers abruptly changing from a convex to a concave profile (cross-section) (40), with relict ice left isolated on the upper flanks of the valleys (41). These scenarios are consistent with extensive grounding line retreat across the inner shelf of the Weddell Sea and associated substantial ice loss across the wider WSE (29).

The ice at Patriot Hills therefore appears to preserve a record of glacier flow in Horseshoe Valley up to the moment when the Filcher–Ronne Ice Shelf collapsed, after which the sequence remained isolated due to regional ice flow reconfiguration for multiple millennia; a situation that persisted until the ice surface had risen sufficiently to enable the regional ice flow to recover sometime during late MIS 5. We cannot, however, discount the possibility that there were one or more cycles of ice mass gain and loss through MIS 5. The presence of a discrete older ice unit along the flanks of the Ellsworth Mountains (29) (Fig. 1 and SI Appendix, Fig. S2) and the subsequent inferred highly variable climate and/or sea ice extent across the wider WSE (SI Appendix, Figs. S7 and S13) imply the preservation of ice from MIS 6/5 (Termination II) and 5/4 transitions in Horseshoe Valley. Our data provide evidence for substantial mass loss across the WSE during the LIG.

Ocean Warming

What could be the cause of this ice loss in the South Atlantic sector of the Southern Ocean? Recent work has proposed that the iceberg-rafted Heinrich 11 event between 135 and 130 ky (during Termination II) may have significantly reduced North Atlantic Deep Water (NADW) formation and shut down the Atlantic meridional overturning circulation (AMOC) (42), resulting in net heat accumulation in the Southern Hemisphere (43, 44). In the Southern Ocean, the associated northward Ekman transport of cool surface waters (something akin to today; Fig. L4) was likely compensated by increased delivery of relatively warm and nutrient-rich Circumpolar Deep Water (CDW) toward the Antarctic margin (14, 34, 43, 45, 46), potentially leading to enhanced thermal erosion of ice at exposed grounding lines (43, 47). This interpretation is supported by the enriched benthic foraminifera 13C values into the LIG (46), a proxy for the influence of NADW on CDW in the south, implying northern (warmer) waters were reaching far south for much of this period (and a cause of persistent loss of ice volume) (Fig. 2F). The unambiguous precise correlation between the Patriot Hills ice and West Antarctic marine records (34) afforded by the Termination II tephra demonstrates that the warming recorded in the BIA is coincident with a major, well-documented peak in marine temperatures and productivity around the Antarctic continent and in the Southern Ocean (34, 45, 46) (Fig. 2). The subsequent delivery of large volumes of associated freshwater into the Southern Ocean during the LIG would have reduced Antarctic Bottom Water (AABW) production.
(46), resulting in increased deepwater formation in the North Atlantic (43, 48, 49) (Fig. 4C). Recent modeling results suggest that increased heat transport beneath the ice shelves can drive extensive grounding-line retreat, triggering substantial drawdown of the Antarctic ice sheet (2, 14, 20) (Fig. 4B). Of concern, warming of the ocean cavity in the WSE is projected to increase during the 21st century (50).

With Southern Ocean warming and concurrent ice sheet retreat, the large methane reservoirs in Antarctic sedimentary basins (e.g., Rutford Ice Stream) could have become vulnerable to release...
consistent with elevated levels of CH₄ and active methane oxidation methylotrophs and live on single and multicarbon sources (54), identified at (Fig. 2E microbes dominated the detectable microbial diversity (immediately prior to inferred ice loss, where feature of the Patriot Hills BIA genetic record was detected dominated environments (53), they would be expected to be at obligate methylotrophs and can be present in nonmethane-transect and laboratory controls. While such microbes are not utilizing microorganisms were found in three samples along the Patriot Hills transect and were absent from other samples on the ice may be collected by passing storms and delivered onto the ice sheet (e.g., prokaryotes, DNA), offering insights into offshore environmental processes (51, 52). To investigate environmental changes prior to and after the ice sheet reconfiguration recorded in the Patriot Hills BIA, we applied an established ancient DNA methodology and sequencing to provide a description of ancient microbial species preserved within the ice (Methods). Methane-utilizing microorganisms were found in three samples along the Patriot Hills transect and were absent from other samples on the transect and laboratory controls. While such microbes are not obligate methylotrophs and can be present in nonmethane-dominated environments (53), they would be expected to be at very different abundances to what we find. The most striking feature of the Patriot Hills BIA genetic record was detected immediately prior to inferred ice loss, where Methyloversatilis microbes dominated the detectable microbial diversity (~130 ky) (Fig. 2E and SI Appendix, Fig. S15). Methyloversatilis was only found in high abundance in this sample (with trace amounts identified at ~22 ky). Crucially, Methyloversatilis are facultative methylotrophs and live on single and multicarbon sources (54), consistent with elevated levels of CH₄ and active methane oxidation by Methyloversatilis or other methanotrophic taxa in marine sediments or in the water column during the end of Termination II (SI Appendix). More work is needed to explore the potential for microbial methane utilization in this unique environment.

Antarctic Ice Sheet Modeling

The inferred substantial mass loss across the WSE implies a major role for ocean warming during Termination II and the LIG. To provide a framework for interpreting ice sheet dynamics around the Patriot Hills and across Antarctica, we present a series of temperature sensitivity experiments using the Parallel Ice Sheet Model, version 0.6.3 (Fig. 5) (2). We report here nine different simulations that capture a range of ocean and atmospheric warming scenarios (0° to 3 °C). Importantly, the most comprehensive published high-latitude (240° S) network of quantified sea surface temperature (SST) estimates suggests an early LIG (~130 ky) warming of 1.6 ± 0.9 °C relative to present day (9, 23), providing an upper limit on the sensitivity of the Antarctic ice sheet to ocean temperatures. The pattern of circum-Antarctic ocean warming during this time period is not well established so we assume a spatially uniform warming pattern relative to present day temperatures. Our model time series illustrates that the majority of ice loss takes place within the first two millennia, depending on the magnitude of the forcing (Fig. 5 and Table 1). This corresponds to the time period of inferred loss of marine-based sectors of the ice sheet (Fig. 2), primarily in West Antarctica. In contrast to some whole-continent models, our simulations do not include mechanisms by which a grounded ice cliff may collapse (3), a process that produces considerably faster and greater ice margin retreat than reported here.

For the 2 °C warmer than present day ocean temperature scenario (comparable to reconstructed estimates) (9, 23), with no additional atmospheric warming, our model predicts a contribution to GMSL rise of 3.8 m in the first millennium of forcing (Fig. 5B). The loss of the Filchner–Ronne Ice Shelf within 200 y of warming triggers a nonlinear response by removing the buttressing force that stabilizes grounded ice across large parts of the WSE and the EAIS (most notably the Recovery Basin) (Fig. 6 and SI Appendix, Fig. S17). Ongoing slower ice loss subse- quently occurs around the margins of East Antarctica, producing a sustained contribution to sea level rise. Even for relatively cool ocean-forced runs, we find the shelves collapse quickly between the 21st–23rd centuries (SI Appendix, Fig. S18). Indeed, during the warmer ocean model runs, the shelves disappear too quickly to observe the relevant processes on the timescale covered by the snapshots. For instance, under the scenario of 2 °C linear warming, the ice shelves disappear within 600 y of forcing (when temperatures reached between +0.4 and +0.8 °C). Other modeling studies using a range of different setups have reported similar rapid losses of the ice shelves during the onset of the LIG (24, 25). Our results are therefore consistent with an increasing body of evidence that the stability of Antarctic ice shelves is vulnerable to a relatively low temperature threshold (2, 24, 25).

Recent work has suggested that the Ellsworth Mountains would have experienced a relatively large positive isostatic adjustment (>200 m) accompanying the loss of the WAIS (24, 25, 32), although the model outputs may be underestimated (25). To investigate how an evolving ice sheet geometry would manifest across the wider region, we extracted local ice surface and bed elevations for the WSE from the model simulation that uses a preindustrial ice sheet configuration with 2 °C ocean warming and no atmospheric warming. Fig. 6A–G illustrates the sequence of events that take place as the ice sheet evolves. First, loss of the Filchner–Ronne Ice Shelf in the Weddell Sea triggers a non-linear response, removing the buttressing force that stabilizes grounded ice across large parts of the WSE and the EAIS (most notably the Recovery Basin) (55). The loss of back-stress allows for an acceleration of grounded ice and a rapid but short-lived
The evidence for substantial mass loss from Antarctica in the early LIG has important implications for the future (4, 62). Our field-based reconstruction and modeling results support a growing body of evidence that the Antarctic ice sheet is highly sensitive to ocean temperatures. Driven by enhanced basal melt through increased heat transport into cavities beneath the ice shelves (2, 47), this process is projected to increase with a weakening AMOC during the 21st century (50, 63–65), which may lead to other positive feedbacks such as destabilization of methane hydrate reserves (30).

Methods

Patriot Hills. Site description and geomorphological context. The Patriot Hills BIA (Horseshoe Valley, Ellsworth Mountains; 80°18′S, 81°21′W) is a slow flowing (<12 m yr⁻¹) compound glacier system situated within an overdeepened catchment that coalesces with the Institute Ice Stream at the periphery of the WSE (29, 37, 66–68) (Fig. 1 and SI Appendix, Figs. S1–S4). Airborne radio-echo sounding surveys across the Ellsworth Mountains have revealed several wide (up to 34 km across) and long (260 km) subglacial troughs containing
ice up to 2,620 m thick (Fig. 1) (29), along the side of which, two radar zones have been interpreted to indicate layers of ice with contrasting physical properties, consistent with snow deposited during previous glacial/interglacial transitions. In contrast to the other troughs across the Ellsworth Mountains, contemporary ice within the Horseshoe Valley Trough maintains the slowest average flow speeds of all, at 12 m a⁻¹ (cf. the main trunk of the Institute Ice Stream reaches speeds up to 415 m a⁻¹) (30). This is in large part due to the configuration of the Horseshoe Valley Trough where the ice thickness measures in excess of 2,000 m at the head of the valley and reduces to ~1,400 m downstream; toward the mouth of the valley, a subglacial ridge is found at ~200 m below sea level with the ice thickness some 750 m thick (31). The new Digital Elevation Model data for the WSE is available at https://data.bas.ac.uk/full-record.php?id=GBNERC/BRSPDC00937. The configuration of the bed and resulting slow flow in Horseshoe Valley has two major benefits for our study. It allows 1) a long record of ice to accumulate, and 2) the isolation and preservation of ice during periods of regional and Antarctic-wide mass loss.

In the lee of a small mountain chain at the end of Horseshoe Valley called Patriot Hills, strong local katabatic winds descend into the valley from the polar plateau, ablating the ice sheet surface by up to 170 kg m⁻² yr⁻¹ (68). As a result, ancient ice is drawn up from depth in the Horseshoe Valley Trough to form an extensive BIA (more than 1,150 m across; (31, 37, 38). High-resolution analysis using GPR (37) and isotopes identifies three distinct unconformities [surface distances relative to an arbitrary transect datum (31) set at zero]: 247 m (D1), 360 m (D2), and ~339 m (D0). Based on the trace gas, tephra, and isotopic values of the surface ice beyond D0 (closest to Patriot Hills), we interpret this section of the record to be Termination II in age (see below). No glaciomarine sediments have been identified at any of the boundaries.

Previous work has interpreted erosional features D1 and D2 in the Patriot Hills BIA to be a consequence of extensive ice surface lowering in Horseshoe Valley (up to ~500 m since the Last Glacial Maximum, 21 ky) and more exposure of katabatic-enhancing nunataks, resulting in increased wind scour (26, 37). While this scenario may explain unconformity D0, other studies have demonstrated Horseshoe Valley and the wider WSE to be highly sensitive to periods of rapid ice stream advance or retreat in the last glacial cycle and Holocene with dramatic reductions in surface elevation (26, 37–39). Recent work investigating the impact of ice shelf loss on glaciers along the Antarctic Peninsula provides important insights, albeit on a smaller scale. The 2002 Larsen B ice shelf collapse led to many of the tributary glaciers abruptly changing from a convex to a concave profile (40), with relic ice left isolated on the upper flanks of the valleys (41). Under a scenario of extreme ice surface lowering arising from ocean warming during the early LIG, the ice at Patriot Hills preserves a record of glacier flow in the overdeepened Horseshoe Valley up to the moment when the Filcher–Ronne Ice Shelf collapsed, after which the sequence likely remained isolated for multiple millennia until the ice surface had risen sufficiently to reincorporate the isolated ice into the glacier sometime during late MIS 5. The relatively enriched deuterium and ¹³C stable isotopes values, ancient DNA (notably the detection of Methyloversatilis microbes in the sample form ~340 m in the Patriot Hills record), and ice sheet modeling are consistent with early offshore warming in the south Atlantic and substantial ice mass loss in the early LIG (34, 46, 62), preserving most (if not all) of the Termination II ice record during the period represented by the D0 unconformity (see below). We therefore consider D0 reflects a significant fall in surface elevation and change in flow direction due to isostatically driven isolation of the valley during a period of rapid drawdown of the ice streams across the WSE. Chronology. Chronological control across the transect is provided by a comprehensive suite of trace gas samples—carbon dioxide (CO₂), methane (CH₄) and nitrous oxides (N₂O)—and volcanic tephra horizons. The trace gas measurements provide a range of possible age solutions against the recently published 156-ky smoothed global time series for these gas species (27), which together with the absolute constraints provided by the tephra horizons, allows the development of a robust chronological framework that can be tied directly to the isotopic series through high-resolution GPR (31, 37) (SI Appendix, Figs. S6 and S7). A Kovacs 9-cm-diameter ice core was used to collect ice for gas and taken from ~3-m depth to minimize modern air contamination and/or alteration (31). The samples were double bagged and sealed in the field, and transported frozen to the Commonwealth Scientific and Industrial Research Organisation (CSIRO) ICELAB facility in Melbourne for the extraction and measurement of trace gases using a modified dry extraction “cheese grater” and cryogenic trapping technique (70, 71). The trapped air samples were analyzed by gas chromatography, and the trace gas concentrations are reported against the calibration scales maintained by CSIRO GASLAB (72). Where sufficient material was available, duplicates were analyzed.

The presence of visible tephra layers (volcanic ash horizons) provides additional chronological control for the Patriot Hills BIA. Here, we report two new tephas from Patriot Hills at 10 and ~340 m, both observed as ~4-cm

![Fig. 5. Modeled Antarctic ice sheet evolution under idealized forcing scenarios consistent with range of inferred LIG temperatures. (A) Sea level equivalent mass loss for ice sheet simulations forced by a range of air and ocean temperature anomalies relative to present day. “dt” and “dOT” describe atmospheric and ocean temperature anomalies, respectively. B–D show Antarctic ice Sheet extent at present day and 1 °C, 2 °C and 3 °C warmer ocean temperatures over time intervals of 1, 2, and 5 ky, respectively (with no atmospheric warming); equivalent sea level contribution is given in the Bottom Left corner of each panel. Locations of Patriot Hills (Ellsworth Mountains, WAI) and ice core records discussed in this study are shown in B. Inset box in B outlines region shown in Fig. 6.](image-url)
units of dispersed shards (SI Appendix, Fig. 59). Shards were extracted by centrifugation of the melted ice samples and put onto a glass slide for electron microprobe analysis. The slides were ground and polished using silica carbide paper and decreasing grades of diamond suspension to expose fresh sections of glass. Single-grain analyses of 10 oxides were performed on a Cameca SX-100 electron microprobe at the Tephrochronology Analytical Unit, University of Edinburgh. See SI Appendix for operating conditions (73); geochemical results are provided in SI Appendix, Table S1. The shards from 10 m are bimodal, with a basanitic and trachytic composition (SI Appendix, Fig. 510). The shards from –340 m are trachytic in composition and exhibit a tightly clustered population (SI Appendix, Fig. S11). Both were compared to published tephras from across Antarctica (34, 74, 77, 85); data previously unpublished.

A widespread tephra found in marine sedimentary records on the West Antarctic continental margin (Tephra B) has been proposed to correlate to the 1,156-m-long Patriot Hills (Ellsworth Mountains, WAIS) transect (33–34, 77, 85), and probably originates from the Marie Byrd Land volcanic province (West Antarctica) (34). The recognition of a widespread tephra horizon across a large sector of the Antarctic at the very onset of the LIG provides a time-parallel marker horizon crucial for future studies investigating Antarctic ice sheet mass loss.

To develop an age model, we undertook Bayesian age modeling using a Poisson process deposition model (P_sequence) in the software package OxCal, version 4.2.4 (https://c14.arch.ox.ac.uk) (SI Appendix, Tables S3 and S4) (88, 89). Using Bayes theorem, the algorithms employed sample possible solutions with a probability that is the product of the prior and likelihood probabilities (90, 91). “Calibration curves” with 20-y resolution were developed for the three trace gas species using the 156-ky time series (27). Taking into account the deposition model, the reported ages of the tephra layers, and the common age solutions offered by the trace gas measurements, the posterior probability densities quantify the most probable age distributions. The available constraints suggest the 1,156-m-long Patriot Hills BIA transect spans time intervals from –134.2 to –1.3 ky comprising four key zones: 4 (–362 to –339 m, equivalent to 134.2 ± 2.2 to 130.1 ± 1.8 ky), 3 (–326 to 240 m, equivalent to 80.3 ± 6.1 to 22.7 ± 2.8 ky), 2 (240 to 360 m, equivalent to 22.7 ± 2.8 to 10.3 ± 0.4 ky), and 1 (360 to 800 m, 10.3 ± 0.4 to 1.3 ± 0.6 ky). The Agreement Index (a measure of the agreement between the model—prior—and the observational data—likelihood) for the Patriot Hills age model was 101.6% (A|prior = 71.2%), exceeding the recommended rejection Agreement Index threshold of 60% (89) (Methods). Regardless of the relatively large uncertainty associated with the oldest section of ice (zone 4), the identification of the 130.7 ± 1.8 ky (AICC2012 timescale) Tephra B/Dome Fuji 1,785.14 m (33, 34, 77, 85) within Patriot Hills at –340 m unequivocally demonstrates the presence of Termination II-age ice. Future age constraints will inevitably help improve the accuracy and precision of the age model.

Table 1. Sea level equivalent mass loss (meters) for Antarctic ice sheet simulations forced over 10,000 y by range of annual air and ocean temperature anomalies relative to present day

<table>
<thead>
<tr>
<th>Temperature Anomaly</th>
<th>1,000 y</th>
<th>2,000 y</th>
<th>5,000 y</th>
<th>10,000 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C SST warming</td>
<td>2.2</td>
<td>4.5</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>2°C SST warming</td>
<td>2.5</td>
<td>5.5</td>
<td>6.5</td>
<td>6.8</td>
</tr>
<tr>
<td>4°C SST warming</td>
<td>2.9</td>
<td>6.5</td>
<td>7.7</td>
<td>8.2</td>
</tr>
</tbody>
</table>

Note: The temperatures applied were applied linearly over the first 1,000 y.
Isotopes. δD and δ18O isotopic measurements were performed between 1- and 3-m resolution at James Cook University using diffusion sampling–cavity ring-down spectrometry (International Atomic Energy WICO Laboratory ID 16139) (92). This system continuously converts liquid water into water vapor for real-time stable isotope analysis by laser spectroscopy (Picarro L2120-i). See SI Appendix for operating conditions. To ensure reproducibility, a subset of samples was rerun at University of New South Wales ICELAB for δD and δ18O using a Los Gatos Research Liquid Water Isotope Analyzer 24 d (International Atomic Energy WICO Laboratory ID 16117). Reported overall analytical precision on long-term ice core standards is <0.2‰ for δD and <0.13 for δ18O values. All isotopic values are expressed relative to the Vienna Standard Mean Ocean Water (VSMOW) 2. The isotopic datasets generated in this study are available in the publicly accessible National Oceanic and Atmospheric Administration (NOAA) Paleoclimateology Database (93) and are available upon request.

Ancient DNA analysis. BiAs offer the opportunity to process large-volume samples of continental Antarctic ice in the field (7–kg per temporal sample), creating the prospect of generating sufficient microbial concentrations to permit detailed genetic biodiversity surveys (51, 52) (Fig. 2). To obtain the samples, a Kovac corer was thoroughly cleaned with 1 to 3% bleach and wiped with 95% ethanol between core extractions to minimize cross-contamination. After coring, the top 1 m of ice was removed and discarded, before 1- to 2-m-long cores were collected in 50-cm sections and immediately placed into clean TFE flexible plastic tubing. A heat sealer was used to close the tubing at the top and bottom of the core. The sealed core was then cut from the remaining tubing with a sterile blade, and the process was repeated to encase the core in a second layer of the plastic tubing for protection during transport. Within 1 to 6 h of extraction, the tubing-encased BIA cores were hung inside a large dome tent to melt via solar radiation over 12 to 24 h, using black plastic bin liners around the tubing to speed up the melting process wherever necessary. Once the BIA sample was transferred from the inside layer of tubing directly into a hand-powered vacuum filtration system cleaned with 1 to 3% bleach and ethanol wipes between samples. For each sample, disposable, sterile, 0.45-μm nitrocelulose filters were used to filter and collect whole bacterial organisms trapped in the ice during its formation, and reduce noise caused by environmental DNA. Filters were stored in sterile plastic bags, frozen at –20°C, and returned to the Australian Antarctic Division in a dry ice-cooled cooler.

Strict ancient DNA methodologies designed to assess low-biomass microbial samples were applied (94) (see SI Appendix for detailed methodology and analysis). DNA from all ice samples as well as extensive sampling and laboratory controls were extracted using two methods to maximize species recovery, and 16S ribosomal RNA libraries were amplified in triplicate using published, universal bacterial and archaeal 16S ribosomal RNA (rRNA) primers. After DNA sequencing, all individually indexed 16S rRNA libraries were de-multiplexed, quality filtered, and imported into QIIME, version 1.8.0. Microbial taxa were identified by comparing sequences to the Greengenes, version 13, reference database and binning sequences with 97% similar to known species into operational taxonomic units using closed reference clustering in UCLUST. Sampling and laboratory contaminants were then filtered from ice samples, and an average of 30.8% of the reads for each sample were cleaned. The remaining sequences were pooled, and the resulting taxa present in each sample were explored as a proportion of the total filtered DNA sequencing reads. Alpha and beta diversity was explored in QIIME, and importantly, no statistically significant differences in diversity were detected across the samples. Ancient DNA sample data is available upon request. While the current sample numbers limit resolution, our study highlights the untapped potential of BIA genetic data to explore cryosphere microbial communities to investigate glacial and environmental change (52).

Ice Sheet Modeling. To investigate former ice sheet dynamics around the Patriot Hills and across Antarctica, we take a range of values for polar ocean warming (1 to 3°C) (9, 11, 23) and employ the Parallel Ice Sheet Model (PISM), version 0.6.3 (2), an open source 3D, thermomechanical coupled ice sheet ice sheet model. PISM employs a stress balance that supersedes the

scale interpolated ice shelf basal melt component of this scheme (2, 98). Calving is parameterized using horizontal strain rates and a minimum threshold of 5 m yr−1. Our experiments initialized to LIG conditions and are identical to that described in detail elsewhere (101, 102). Climate and ocean temperature perturbations are applied as spatially uniform linear increments added to boundary distributions representing present-day conditions. Linear increases take place between 2,000 and 3,000 model years. The first 2,000 y (no forcing) allow any transient behavior associated with model initialization to take place in the absence of environmental perturbations, whereas the subsequent 1,000 y force the ice sheet to evolve slowly to changes in air and ocean temperature and precipitation. All experiments are run at a spatial resolution of 20 km.

Reconstructed summer SST anomalies relative to present day (the 1998 World Ocean Atlas) (9) were used to inform on a range of warmer air and ocean LIG conditions and applied to a stable modern configuration of the Antarctic Ice Sheet to help interpret the Patriot Hills record (Table 1). A limitation of this approach is that the transient history from the preceding glacial state is not simulated. However, for the response of the ice shelves, this colder prehistory should not be critical, and the experiments as performed are directly relevant for the future of the ice sheets. From these simulations, we extract data from the first 10 ky. The ice sheet modeling outputs support the view that ocean (rather than atmosphere) warming was the primary driver of the LIG ice mass balance changes and that large parts of Antarctica (SI Appendix, Fig. 51B). With a surface ocean warming of 2 °C, our simulations suggest isolation and stagnation of ice in Horseshoe Valley and the loss of the Bungenstock Ice Rise within 400 y of warming (equivalent to 0.8 °C of warming as a result of the linear temperature increase over 2,000 to 3,000 model years) (Figs. 5 and 6) and ultimately restricted ice accumulation in western WSE (SI Appendix, Fig. 520).

We caution that, for the LIG, subglacial ocean warming is poorly constrained. While recent work has suggested that sea surface warming may propagate to depths important for ice shelves (including embayments) within a few decades (103, 104), proxy SST could instead record "bottom-up" warming (i.e., as a consequence of circulatory change) and may underestimate the magnitude of the warming. We however, consider, that warming of +2 °C is likely to be at the upper end of potential LIG warming scenarios (14) and the forcing used here in our simulations to be conservative. Recent work using PISM showed that substantial collapse of WAIS is possible within only a few centuries even under modest warming (105). Those simulations used a much stiffer bed parameterization and were run at 5-km resolution. Other studies have suggested with 5-km resolved PISM simulations that, if mass loss comparable to recent decades is maintained for as little as 60 y, the WAIS could be irreversibly destabilized over subsequent millennia through the collapse in the Amundsen Sea sector (60), overcoming any isostatically driven rebound. On the basis of these comparisons, we can be confident that our inference of substantial mass loss from WAIS under modest ocean/atmospheric warming is not especially dependent on the model used, the way that the bed is parameterized, or the resolution of the simulations. Modeled Antarctic ice sheet contributions to global sea level are provided in Table 1. The ice sheet model data are available upon request.

ACKNOWLEDGMENTS. C.S.M.T., C.J.F., M.I.B., A.C., and N.R.G. are supported by their respective Australian Research Council (ARC) and Royal Society of New Zealand fellowships. Fieldwork was undertaken under ARC Linkage Project (LP120200724), supported by Linkage Partner Antarctic Logistics and Expeditions. J.W. and K.W. undertook GPR survey of the Patriot Hills record through the Natural Environment Research Council Project (NE/I027576/1) with logistic field support from the British Antarctic Survey. M.D. acknowledges financial support from Coleg Cymraeg Cenedlaethol, the European Research Council, and the Fullbright Commission (259253 and FP7/2007-2013). K.K. was supported by Japan Society for the Promotion of Science and Australian Research Council Federation Fellowship. Fieldwork was supported by the Australian Climate Science and Innovation Program (15KK0027 and 17H06320). We thank Dr. Chris Hayward and Dr. Gwilyd Jones for electron microprobe assistance; Kathryn Lacey and Gareth James for help with preparing the tephra samples; Dr. Neia Dunbar, Nils Ivenson, and Andrei Kurbatov for discussion on tephra correlations; CSIRO GASLAB personnel for support of gas analysis; Prof. Bill Sturges and Dr. Sam Allin of the Centre for Ocean and Marine Sciences (University of East Anglia, Norwich, UK) for performing the sulfur hexafluoride analyses; Leevie Caesar (Potsdam Institute for Climate Impact Research) for preparing the recent trend in SSTs in Fig. 1; Vicki Taylor (British Ocean Sediment Core Research Facility, Southampton, UK) for assistance with marine core sampling; and Dr. Emeile Capron (British Antarctic Survey) for help with reconstructing the LIG climate. We thank CSIRO’s contribution, which was supported in part by the Australian Climate Science Change Program, an Australian Government Initiative. We also acknowledge Johannes Sutter, Torsten Albrecht, and Jonathan Kingslake for advice on reconstructing early southern LIG temperatures. We thank one anonymous reviewers for their insightful comments that helped improve this manuscript.
E. V. Korotkikh et al., The last interglacial as represented in the glaciochemical record from Mount Moulton Blue Ice Area, West Antarctica. Quat. Sci. Rev. 30, 1940–1941 (2011).
E. V. Korotkikh et al., The last interglacial as represented in the glaciochemical record from Mount Moulton Blue Ice Area, West Antarctica. Quat. Sci. Rev. 30, 1940–1941 (2011).
72. R. Franey et al., “The CSIRO (Australia) measurement of greenhouse gases in the
global atmosphere” in Baseline Atmospheric Program Australia 1999–2000,
N. Tindale, N. Derek, P. Fraser, Eds. (Bureau of Meteorology and CSIRO Atmospheric
Research, Melbourne, VIC, Australia, 2003), pp. 42–53.
73. C. Hayward, High spatial resolution electron probe microanalysis of tephras and melt
74. B. Narcisi, J. R. Petit, B. Delmonte, I. Basile-Doelsch, V. Maggi, Characteristics and
sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): Implications
for past atmospheric circulation and ice core stratigraphic correlations. Earth Planet.
75. B. Narcisi, J. R. Petit, B. Delmonte, Extended East Antarctic ice-core tephrostratigraphy.
76. B. Narcisi, J. R. Petit, M. Tiepolo, A volcanic marker (92 ka) for dating deep east
77. M. Kohno, Y. Fujii, T. Hirata, Chemical composition of volcanic glasses in visible
tephra layers found in a 2503 m deep ice core from Dome Fuji, Antarctica. Ann.
78. N. W. Dunbar, W. C. McIntosh, R. P. Esser, Physical setting and tephrochronology of
the summit caldera ice record at Mount Moulton, West Antarctica. Geol. Soc. Am. Bull.
79. N. W. Dunbar, A. V. Kuratov, Tephrochronology of the Siple Dome ice core, West
80. B. Narcisi, J. R. Petit, A. Langone, B. Stenni, A new Eemian record of Antarctic tephra
layers retrieved from the Talos Dome ice core (Northern Victoria Land). Global
81. B. Narcisi, J. R. Petit, B. Delmonte, C. Scarchilli, B. Stenni, A 16,000-yr tephra framework
82. B. Narcisi, J. R. Petit, J. Chappellaz, A 70 ka record of explosive eruptions from the
83. I. Basile, J. R. Petit, S. Tournon, F. E. Grousset, N. Barkov, Volcanic layers in Antarctic
(Vostok) ice cores: Source identification and atmospheric implications. J. Geophys.
84. N. A. Iversen et al., The first physical evidence of subglacial volcanism under the West
85. S. Fujita, F. Parrenin, M. Severi, H. Motoyama, W. E. Wolff, Volcanic synchronization of
Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr. Clim. Past 11,
86. E. Tomlinson, T. Thorarson, W. Müller, M. Thirwall, M. Menzies, Microanalysis of
tephra by LA-ICP-MS—strategies, advantages and limitations assessed using the
87. K. P. Jochum et al., MPI-DING reference glasses for in situ microanalysis: New ref-
88. C. Bronk Ramsey, S. Lee, Recent and planned developments of the program OxCal.
89. C. Bronk Ramsey, Dealing with outliers and offsets in radiocarbon dating. Radiocarbon
90. T. Higham et al., The timing and spatiotemporal patterning of Neanderthal disap-
92. N. C. Munksgaard, C. M. Wurster, M. I. Bird, Continuous analysis of Δ18O and δD
values of water by diffusion sampling cavity ring-down spectrometry: A novel
sampling device for unattended field monitoring of precipitation, ground and sur-
93. C. S. M. Turner, J. C. Fogwill, Patriot Hills, West Antarctica 135,000 year blue ice
isotope data. National Oceanic and Atmospheric Administration National Centers
for Environmental Information Paleoclimate Database. https://www.ncdc.noaa.gov/
94. C. J. Adler et al., Sequencing ancient calcified dental plaque shows changes in oral
microbiota with dietary shifts of the Neolithic and Industrial revolutions. Nat.
95. E. Bueler, C. S. Lingle, J. Brown, Fast computation of a viscoelastic deformable Earth
performance of grounding line motion in a shallow model compared with a full-
Stokes model according to the MISMIP3d intercomparison. J. Glaciol. 60, 353–360
(2014).
97. E. Bueler, J. Brown, Shallow shelf approximation as a “sliding law” in a thermo-
98. M. A. Martin, A. Levermann, R. Winkelmann, Comparing ice discharge through West
Antarctic gateways: Weddell vs. Amundsen Sea warming. Cryosphere Discuss. 9,
99. T. Albrecht, A. Levermann, Fracture field for large-scale ice dynamics. J. Glaciol. 58,
100. A. Levermann et al., Kinematic first-order calving law implies potential for abrupt
101. A. R. A. Aitken et al., Repeated large-scale retreat and advance of Totten Glacier
102. N. R. Golledge, R. H. Levy, R. M. McKay, T. R. Naish, East Antarctic Ice Sheet most
103. D. Roemmich et al., Unabated planetary warming and its oceanic structure since
104. W. Llovel, I. Fukumori, B. Meyssignac, Depth-dependent temperature change con-
tributions to global mean thermosteric sea level rise from 1960 to 2010. Global
105. N. R. Golledge et al., Global environmental consequences of twenty-first-century
106. S. J. Johnsen et al., Oxygen isotope and palaeotemperature records from six Greenland
ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat.
108. S.-s. Sun, W. F. McDonough, Chemical and isotopic systematics of oceanic basalts:
Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 42,