Supporting Information for: "Increased heat stress reduces future yields of three major crops in Pakistan’s Punjab region, despite intensification of irrigation".

R.Becker¹,², C. Schüth³,⁷, R. Merz⁴, T. Khalid⁵, M. Usman⁶, T. aus der Beek⁷, R. Kumar⁸, S.Schulz³

¹University of Kassel, Nordbahnhofstr. 1, 37213 Witzenhausen, Germany
²Potsdam Institute for Climate Impact Research, Telegraphenberg A 62, 14473 Potsdam, Germany
³TU Darmstadt, Schnittspahnstraße 9, 64287 Darmstadt, Germany
⁴UFZ - Helmholtz Centre for Environmental Research, Theodor-Lieser-Straße 4, 06120 Halle, Germany
⁵University of Agriculture Faisalabad, P.O. Box No 38040 Faisalabad, Pakistan
⁶Martin-Luther University Halle-Wittenberg, Von-Seckendorff-Platz 4, 06120 Halle, Germany
⁷IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
⁸UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany

Contents of this file

1. Climate data selection and processing

2. Parameterization and model structures of SWAT and APSIM models

3. Crop specific results

Corresponding author: Rike Becker, Department of Agroecosystem Analysis and Modelling, University of Kassel, Nordbahnhofstr. 1, 37213 Witzenhausen, Germany. (rike.becker@uni-kassel.de)
Introduction The supporting information encompasses i. information on climate data selection and climate data pre-processing measures (e.g. bias-correction procedures), ii. a comparison of central model structural differences between the bio-physical model APSIM and the agro-hydrological model SWAT, and iii. additional crop type specific results of climate change impacts on biomass production, irrigation demands, evapotranspiration, and leaf area growth.

1. Climate Data Selection and Processing

1.1. Historical Climate Data

CFSR data (Climate Forecast System Reanalysis; Saha et al., 2010) is taken as historical reference climate data for a baseline period, from 1996-2005. To ensure the accuracy of the baseline data set, the CFSR data is bias-corrected using climate records of three available local climate stations, located in and in close proximity to the study area (shown in Fig. 1, in the main text). Non-parametric quantile mapping is used as statistical fitting method between observed and simulated data over the time period 1979-2005. The bias correction is conducted using the R-package “Qmap” (Gudmundsson et al., 2012).

Figure S1 and S2 show the fit of the reanalysis data before and after the bias correction, for precipitation and mean temperature. It shows, that the bias correction procedure was successful in removing the negative bias of original CFSR precipitation data as well as the positive bias of summer temperatures. Winter temperatures are “over corrected” and are now slightly underestimating temperatures from November until March. As the study focuses on climate impacts during the summer period (May-October), where a clear improvement of the fit between observed and bias corrected CFSR data can be achieved, we accept these results despite the winter-deviation from the observed data.
The same correction procedure (i.e. quantile mapping) was used to correct the remaining climate variables, namely Relative Humidity, Solar Radiation and Wind Speed, which are used by SWAT to calculate evapotranspiration rates according to Penman-Monteith (results not shown).

1.2. Climate Change Data

Climate change data is taken from the Coordinated Regional Climate Downscaling Experiment (CORDEX; www.cordex.org), which provides a suite of regional climate projections based on Global Climate Models of the Coupled Model Intercomparison Project, Phase 5 (CMIP5; Taylor et al., 2012).

We first select daily CORDEX climate projections, of 15 climate models, of the South-Asian CORDEX domain, at a resolution of 0.44 degrees x 0.44 degrees. CORDEX hindcast data of the same 15 GCM-RCM model combinations, is used to test the fit of CORDEX model outputs with the chosen baseline climate data from the CFSR-data set. Here, we use the maximum overlapping time period of the data products (1979-2005) to test their agreement. The performance of single CORDEX GCM-RCM combinations with respect to the baseline climate data is displayed in Figure S3, which shows their goodness of fit in terms of standard deviation, correlation and RMSE, with respect to each climate variable (i.e. precipitation, temperature, solar radiation, relative humidity, and wind speed).

The unsatisfactory performance of all models which employ the Regional Climate Model “RegCM4-4” for downscaling purposes (Figure S3, triangles), leads to the exclusion of these models. Based on the goodness of fit between CORDEX and CFSR data, we select the data sets of all 9 models which use “RCA4” Regional Climate Models for downscaling (Figure S3, dots).

To minimize any further bias, which the data sets of 9 selected RCMs still present, we apply a commonly used linear scaling correction approach (Teutschbein & Seibert,
2. SWAT and APSIM

2.1. Model description and model differences

In this study, we use two models from two different research communities. On the one hand we use the hydrological Soil & Water Assessment Tool (SWAT, Version SWAT2012 rev 664; Arnold et al., 2012) and on the other hand the biophysical-crop modelling framework Agricultural Production Simulator (APSIM v. 7.10, Version APSIM classic; Holzworth et al., 2014). Based on their model structure, both models have strengths and weaknesses in predicting future yields and plant water requirements. Calculation procedures for central variables discussed in the main paper (i.e. biomass production, LAI and yield) are as follows:

2.1.1. SWAT

Potential biomass production (biom) is calculated in SWAT based on the amount of intercepted light available for photosynthesis (H\textsubscript{photosyn}) and based on plant specific radiation-use efficiency (RUE), which defines the conversion of intercepted light at the leaf surface into biomass.

\[
\Delta \text{biom} = RUE \times H_{\text{photosyn}}
\]
The radiation use efficiency is adjusted according to changing CO₂-concentrations:

\[RUE = \frac{100 \times CO₂}{CO₂ + exp(r_1 - r_2 \times CO₂)} \] (2)

With \(r_1 \) and \(r_2 \) being plant specific shape coefficients, accounting for a plant specific light use efficiency under differing CO₂ concentrations. For the calculation of \(r_1 \) and \(r_2 \) please see the SWAT model documentation.

While the radiation-use efficiency itself is assumed to be independent of the plant growth stage, the amount of intercepted light depends on the plant leaf area development (Neitsch et al 2009).

\[H_{\text{photosyn}} = 0.5 \times H_{\text{day}} \times (1 - \exp(-k_l \times LAI_{\text{act}})) \] (3)

With \(H_{\text{day}} \) being the incident total solar radiation, \(k_l \) being the light extinction coefficient and LAI being the leaf area index.

The leaf area index, which controls the amount of intercepted light, is simulated dynamically based on the concept of potential heat units (PHUs). The heat unit theory assumes plant specific temperature requirements for the different phenological stages of plant maturation, denominated as “heat units”, or more commonly known as “growing degree days”. Heat units are accumulated over time and control the leaf and plant growth until a maximum LAI and plant maturity is reached, after which leaf senescence begins and LAI declines.

To estimate the actual plant growth, the actual LAI (\(LAI_{\text{act}} \)) and the actual biomass growth (\(\text{biom}_{\text{act}} \)) are reduced according to the stress experienced by plants due to extreme temperature stress (tstrs). Water stress (wstrs) and nutrient stresses (nstrs and pstrs) are reduced to a minimum in our study by assuring constant irrigation and sufficient
fertilization.

\[
\Delta LAI_{act} = \Delta LAI \times \sqrt{1 - \max(wstrs, tstrs, nstrs, pstrs)}
\]

(4)

\[
\Delta biom_{act} = \Delta biom \times \{1 - \max(wstrs, tstrs, nstrs, pstrs)\}
\]

(5)

Finally, yield is estimated in SWAT by multiplying the actual biomass, produced at the time of harvest, by a plant specific harvest index (HI).

\[
Yield = biom_{act} \times HI_{act}
\]

(6)

The harvest index depends on the fraction of accumulated potential heat units (fr_{PHU}) and is defined as

\[
HI = HI_{opt}(\frac{100 \times fr_{PHU}}{100 \times fr_{PHU} + \exp[11.1 - 10 \times fr_{PHU}]}).
\]

(7)

The actual harvest index (HI_{act} in eqn. 6) is a reduced HI, depending on the impact of water deficit stresses. In our study water deficit is close to zero and HI = HI_{act}, due to constant and demand based irrigation. Optimal harvest indices (HI_{opt}) used in this study are 40% for cotton and 50% for maize and rice, according to Awan et al. (2016).

This procedure shows that SWAT simulations of leaf area development, biomass and ultimately yield production are highly dependent on one single dominating environmental stress factor. In our study this results in a strong sensitivity of plant production to temperature stress, which leads to significant reductions of LAI, biomass and yield with increasing temperatures.

2.1.2. APSIM

APSIM is a modelling framework with separate crop modules for each plant type. It uses the Ozcot Model for cotton simulations (Hearn, 1994), the CERES-based maize model for maize simulations (Jones & Kiniry, 1986) and the Oryza2000 model for rice simulations (Bouman et al., 2001). Each model accounts for crop specific physiologies such as plant...
phenology, photosynthesis, plant stresses, nutrient cycling and carbon allocation. Details on the model structures and calculation steps for each separate model can be found in the above cited references.

The main difference to SWAT is the strength in accounting for more detailed bio-physical processes. The cotton model for example, includes a plant respiration factor (Resp) in the photosynthesis calculation (adopted from Hearn 1994).

\[
H_{\text{photosyn}} = 2.391 + H_{\text{day}}(1.374 - (0.0005414H_{\text{day}})) \times (1 - \exp(-k_t \times LAI)) - Resp \tag{8}
\]

The respiration factor is primarily affected by temperature stress. Thus, the photosynthesis and carbon assimilation part already accounts for the impact of stress factors in addition to impacts caused by changes in LAI. The maize model uses a similar concept to SWAT for the estimation of the light driven biomass production without the effects of photorespiration. Here the radiation use efficiency (RUE) solely varies with change in phenology but not due to changes in CO₂ (adopted from APSIM maize model documentation).

\[
\Delta\text{biom} = \min \{ (\text{soil water supply} \times \text{transpiration efficiency}), (RUE \times H_{\text{day}}) \} \tag{9}
\]

Accounting for various stresses in different phenological stages, makes the APSIM models less sensitive to one single dominating stress (= temperature stress in SWAT). Yet, some stages are lacking the impact of temperature stress, which might lead to an overestimation of plant productivity in environments, where the remaining stresses are low. The cotton model for example does not account for heat stress in the initial parts of leaf area development. In the leaf area formation, temperature stress is not considered until the first square event. After the first square event, it is indirectly included through vapor
pressure deficit (VPD).

\[
\Delta LAI_{act} = \sqrt{0.1847 - 0.1165 \times SMI - 1.514 \times VPD + 1.984 \times SMI \times VPD}
\] \hspace{1cm} (10)

When the soil moisture index (SMI) and VPD are low (as in the case of our intensively irrigated and from monsoon rainfall impacted region), LAI development will hardly be affected by environmental stresses. This is one reason for the strong differences between SWAT and APSIM results regarding their LAI estimations.

Yield estimation of the APSIM models are based on crop specific fruiting dynamics rather than on the more stringent harvest index (HI) method in SWAT. Yield is estimated based on grain number and grain filling (maize and rice) or ball growth rates (cotton), which makes it less dependent on LAI and dry matter production. This explains, why yield declines are projected even under strengthening leaf area development.

2.2. Management parameters

Table S1 lists the settings of both models regarding management parameters, which define irrigation settings, planting, growing and harvesting decisions as well as plant type specific information on optimal growing conditions (i.e. optimal temperature ranges of single cultivars).

2.3. Soil parameters

SWAT is able to account for spatially distributed soil information and distinguishes between five different soil type in the study area. Their local names are: Buchiana, Chuharkana, Farida, Jhang and Nokhar soils. The soil characteristics were adopted from the study by Awan et al. (2016) and thoroughly calibrated in a complex calibration procedure described in Becker et al. (2019). In addition, a field campaign was conducted and soil samples were taken. Laboratory soil test results were used to validate and improve the soil information.
The most prominent soil type is the so called "Jhang" soil type - a sandy-loam which covers approx. 63% of the study area. The second most abundant soil type (approx. 24% of the study area) is called "Farida" soil, with similar grain size distribution and soil characteristics as the "Jhang" soil. A sensitivity check of APSIM yield results with respect to soil parameters was conducted. Using "Farida" as well as "Jang" soil characteristics, APSIM results revealed that yield levels do not show any significant variation with respect to differences in these two soils (yield difference = 1.5%). We therefore select the prominent "Jhang" soil characteristics for the APSIM soil module, while maintaining all characteristics of the five different soils for SWAT. Detailed characteristics of Jhang soils are given in table S2 and S3 and details on the remaining soil types and soil layers can be made available on request or found in Becker et al. (2019).

2.4. Regional data sets used in SWAT and APSIM

Please see Table S4.

2.5. Model validation

Validating models such as SWAT and APSIM using observed yield data is challenging. Closely matching observed yield levels taken for example from national agricultural statistics is difficult, mainly due to model limitations in representing the actual environmental conditions, short-term changes in management strategies, farmer’s capabilities to react flexibly to environmental dynamics, potential plant diseases, technical standards in irrigation or harvesting, etc.. Using data from national statistics, which are often based on data at national or provincial level might further add to the uncertainty in yield validation of models which operate on regional scales.

Yet, to prove that crop model results show reasonable yield predictions a validation of yield estimates is necessary and a comparison with observed data is a common procedure.
To support the validity of the models used in this study, we compare their yield predictions with observed yield data from Agricultural Statistics of Pakistan, published by the Ministry of National Food Security & Research (http://www.mnfsr.gov.pk/frmDetails.aspx, last accessed: 12/22/2020). Yield data for cotton, rice and maize from the province of Punjab was taken for the years 2002-2013 and compared to simulated yield levels by SWAT and APSIM. The time period 2002-2013 corresponds to the last available 11 years of the CFSR climate data set, which is taken as reference climate data input in this study. The models were run for the same time period with the respective reference climate data and, due to the above mentioned difficulties in comparing the results with observed data, their average yield (mean of 11 years) was compared with the 11-year-average of the observed yield levels.

The validation results are shown in Fig. S4, where ”AGRIStats” corresponds to the data from Agricultural Statistics of Pakistan. Uncertainty bars show +/- one standard deviation. Deviations from estimated yield levels by APSIM are 23% for cotton and 38% for maize and 3% for rice. SWAT shows a relative error of 30% for cotton, 4% for maize and -35% for rice.

3. Crop specific results

In the main text we mention that our deductions on crop responses to climate change are based on average trends estimated for maize, cotton, and rice crops. Yet, the three selected crops are reacting differently to climate change and plant specific reactions should be taken into account, when impacts on individual crop types are the focus. Figures S5 to S8 give detailed information on the reaction of each crop type to the climate change scenarios of this study.
Separating the changes of each crop type reveals that even though the magnitudes in crop reactions to climate change are different the crops show similar responses (e.g. strong improving trend in yield and biomass with increasing CO$_2$; decreasing Irrigation demand with increasing temperatures for SWAT, less effect for APSIM; clearly decreasing SWAT-LAI for all crops and significant positive CO$_2$ effects on APSIM-LAI). With the exception of APSIM-maize, it can be stated that the difference in plant reaction to climate change is larger between the models than between the crop types. Which again hints to the importance of considering model structural differences.

References

doi: 10.2166/nh.2016.102

Figure S1. Results of precipitation bias correction procedure. Station data vs. uncorrected and bias corrected CFSR data

Figure S2. Results of temperature bias correction procedure of precipitation data. Station data vs. uncorrected and bias corrected CFSR data
Figure S3. Goodness-of-Fit between CFSR Reanalysis Data and CORDEX GCM-RCM models
Figure S4. Validation of crop yield estimations

Figure S5. Simulated biomass changes for cotton
Figure S6. Simulated biomass changes for maize

Figure S7. Simulated biomass changes for rice
Figure S8. Simulated changes in irrigation demand, ET and LAI showing mean changes per model and for each crop type.
Table S1. Management Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>APSIM</th>
<th>SWAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irrigation frequency</td>
<td>demand based</td>
<td>demand based</td>
</tr>
<tr>
<td>Irrigation efficiency [%]</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Irrigation trigger</td>
<td>soil water deficit</td>
<td>soil water deficit</td>
</tr>
<tr>
<td>Irrigation trigger 2(^a)</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Fertilizer application</td>
<td>on sowing day and each 14 days</td>
<td>with irrigation</td>
</tr>
<tr>
<td>Fertilizer type</td>
<td>Urea(_N)</td>
<td>Urea</td>
</tr>
<tr>
<td>Fertilizer amount [kg/ha]</td>
<td>100 at each irrig. event</td>
<td>100 at each irrig. event</td>
</tr>
<tr>
<td>Sowing rule</td>
<td>fixed date</td>
<td>fixed date</td>
</tr>
<tr>
<td>Cultivar type - cotton</td>
<td>S71BR</td>
<td>not specified (from SWAT data base)</td>
</tr>
<tr>
<td>(T_{opt}) cotton [°C]</td>
<td>20;30</td>
<td>30</td>
</tr>
<tr>
<td>(T_{base}) cotton [°C]</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Cultivar type - maize</td>
<td>Pioneer(_3153)</td>
<td>not specified (from SWAT data base)</td>
</tr>
<tr>
<td>(T_{opt}) maize [°C]</td>
<td>15;30</td>
<td>25</td>
</tr>
<tr>
<td>(T_{base}) maize [°C]</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Cultivar type - rice</td>
<td>BR3</td>
<td>not specified (from SWAT data base)</td>
</tr>
<tr>
<td>(T_{opt}) rice [°C]</td>
<td>30</td>
<td>25</td>
</tr>
<tr>
<td>(T_{base}) rice [°C]</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

\(^a\) Fraction of available soil water below which irrigation is applied

Table S2. Soil parameters of Jhang soils

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Bulk density (g/cm(^3))</th>
<th>AirDry (mm/mm)</th>
<th>LL15 (mm/mm)</th>
<th>DUL (mm/mm)</th>
<th>SAT(^b) (mm/mm)</th>
<th>KS (mm/day)</th>
<th>AWC (mm/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>1.45</td>
<td>0.102</td>
<td>0.203</td>
<td>0.380</td>
<td>0.403</td>
<td>11280</td>
<td>0.177</td>
</tr>
<tr>
<td>15-30</td>
<td>1.61</td>
<td>0.180</td>
<td>0.225</td>
<td>0.310</td>
<td>0.342</td>
<td>11280</td>
<td>0.085</td>
</tr>
<tr>
<td>30-60</td>
<td>1.61</td>
<td>0.225</td>
<td>0.225</td>
<td>0.310</td>
<td>0.342</td>
<td>11280</td>
<td>0.085</td>
</tr>
<tr>
<td>60-90</td>
<td>1.59</td>
<td>0.223</td>
<td>0.223</td>
<td>0.300</td>
<td>0.350</td>
<td>11280</td>
<td>0.077</td>
</tr>
<tr>
<td>90-120</td>
<td>1.59</td>
<td>0.223</td>
<td>0.223</td>
<td>0.300</td>
<td>0.350</td>
<td>2064</td>
<td>0.077</td>
</tr>
<tr>
<td>120-150</td>
<td>1.59</td>
<td>0.223</td>
<td>0.223</td>
<td>0.300</td>
<td>0.350</td>
<td>2064</td>
<td>0.077</td>
</tr>
</tbody>
</table>

\(^a\) calculated according to SWAT manual (Wilting Point = Field Capacity - Available Water Capacity (AWC))

\(^b\) calculated according to APSIM Soil manual (SAT = 1-(Bulk Density/2.65)-0.05)

Table S3. Soil grain size distribution for Jhang soils

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Clay %</th>
<th>Sand %</th>
<th>Silt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>3.5</td>
<td>65.5</td>
<td>31</td>
</tr>
<tr>
<td>15-30</td>
<td>3.5</td>
<td>65.5</td>
<td>31</td>
</tr>
<tr>
<td>30-60</td>
<td>3.5</td>
<td>65.5</td>
<td>31</td>
</tr>
<tr>
<td>60-90</td>
<td>3.5</td>
<td>65.5</td>
<td>31</td>
</tr>
<tr>
<td>90-120</td>
<td>6.5</td>
<td>84.4</td>
<td>9.1</td>
</tr>
<tr>
<td>120-150</td>
<td>6.5</td>
<td>84.4</td>
<td>9.1</td>
</tr>
</tbody>
</table>
Table S4. Regional Data Sets

<table>
<thead>
<tr>
<th>Variable</th>
<th>Spatial Resolution</th>
<th>Temporal Resolution</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEM</td>
<td>90x90 m</td>
<td>-</td>
<td>SRTM, NASA</td>
</tr>
<tr>
<td>Soil Map</td>
<td>500x500 m</td>
<td>-</td>
<td>WASID, Pakistan</td>
</tr>
<tr>
<td>Land-use classes</td>
<td>250x250 m</td>
<td>-</td>
<td>Awan and Ismaeel (2014)</td>
</tr>
<tr>
<td>Station Data</td>
<td>Point data (3 Stations)</td>
<td>daily</td>
<td>Pakistan Met. Dept. (PMD)</td>
</tr>
<tr>
<td>Reanalysis Data</td>
<td>approx. 25x25 km</td>
<td>daily</td>
<td>globalweather.tamu.edu</td>
</tr>
<tr>
<td>CC Projections</td>
<td>approx. 50x50 km</td>
<td>daily</td>
<td>www.cordex.org</td>
</tr>
</tbody>
</table>